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New exact solutions of the vacuum Einstein field equations are constructed which describe the collision of 
plane gravitational waves. These solutions generalize those of Szekeres by relaxing the requirement of 
collinear polarization. 

I. INTRODUCTION 

Penrosel discovered that in the field of plane gravita­
tional waves null rays are focused on certain hypersurfaces 
where the Riemann tensor takes divergent values. Another 
situation where such focusing effects appear explicitly is the 
collision of two gravitational plane waves where each wave is 
focused by the field of the other and the resulting configura­
tion possesses a space-time singularity. All these properties 
are verified by the exact solutions of Einstein equations giveq 
by Khan and Penrose2 for colliding impulsive waves and 
Szekeres3

•
4 for shock waves. These solutions, describing the 

collision between plane gravitational waves with constant 
linear polarization enable us to study the details of this focus­
ing. It is natural to ask how the focusing properties and the 
resulting space-time singularity are modified when we intro­
duce new degrees offreedom into the problem. For this pur­
pose we have recently presented a new solution of the vacu­
um Einstein field equations which describes colliding 
impulsive gravitational waves with linear but not necessarily 
collinear polarizations. 5 This implies that the colliding plane 
waves are still linearly polarized but their directions of polar­
ization are out of phase by a constant phase parameter. We 
have pointed out that certain features of the problem are 
modified; for example, the collision results in giving an angu­
lar momentum as well as a mass aspect to the gravitational 
field in the interaction region. The physical space-time sin­
gularity on the other hand, although undergoing minor 
modifications by this additional degree offreedom, is still 
present. Furthermore Szekeres' conclusion that the space­
time singularities arise inevitably for arbitrarily weak incom­
ing gravitational waves remains valid in this new situation as 
well. The general problem which takes into account the ef­
fect of arbitrary polarization has been considered by Sbytov6 

who showed without giving explicit solutions that the phys­
ical singularity appears even when the effect of arbitrary po­
larization is taken into account. The. singularity in these so­
lutions of Einstein's equations results from the assumptions 
of planar wave fronts as pointed out by Penrosel a long time 
ago. 

In this paper we shall present a family of exact solutions 
which generalizes the family of Szekeres to the case of non­
collinear polarizations. The first member of this family (i.e., 
impulsive waves) has already been given in Ref. 5. The plan 
for this paper is as follows: In Sec. II we shall review the 
Szekeres' solutions and cast them into a form where the col-

liding waves initially have a constant phase difference be­
tween them. Our method for obtaining the new solutions is 
based on the theory of harmonic mappings of Riemannian 
manifolds due to Eells and Sampson.7 The application of this 
theory to general relativity8-1O proved to be a useful technique 
that facilitates the solution of many problems. For the paper 
to be self-contained we shall briefly present the necessary 
tools for applying the theory of harmonic maps. 

In Sec. III using harmonic maps we cast the basic field 
equations of this problem into a form similar to Ernst'sll for 
axisymmetric fields. The solutions is then immediate, and we 
adapt a solution which involves two arbitrary constants. One 
of these constants which corresponds to the relative polar­
ization angle of the incoming waves is an analog of Kerr's 
rotation parameter. The second constant on the other hand 
is a Taub-NUT like parameter which has no immediate 
physical interpretation for the colliding wave problem. Fur­
thermore, there are other solutions of the field equations 
which include a Weyl-Tomimatsu-Sato parameter, but 
these solutions must be excluded as they do not reduce to the 
desired incoming and outgoing plane wave solutions. While 
in the family of Szekeres' solutions there are two indepen­
dent parameters, we have been able to generalize them only 
for the case when these two parameters are equal. Finally in 
the Appendix we calculate the Newman-Penrosel 2 curva­
ture components which manifests the singularities of these 
solutions. 

II. COLLIDING PLANE GRAVITATIONAL WAVES 

Grvaitational plane waves are described by the metric 
for Pop waveslJ 

ds2= 2duUv' -dx'2-dy'2_2H(x',y',u')du'2, (1) 

where H (x' ,y' ,u') is the real part of an analytic function in 
x' + iy' and an arbitrary function of u'. For plane waves with 
constant linear polarization H (x' ,y',u ') takes the form 

H(x',y',u')=h (U')(y'2_X'2), (2) 

where h (u') is given in the case of Szekeres' family of solu­
tions by 

h (u')=u'n~lt5(u') 

n(l-n)(2-lIn)1I2u(u') 2(n~ I) () (u(u'» 
+ 8(1- u 2n (u'W (u(u') ) 2 

(3) 
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where u' is the harmonic coordinate appearing in the canoni­
cal form of the line element (1) while u is the Rosen coordi­
nate whose relation to u' is given below. Here, () denotes the 
Heaviside unit step function and the integer n satisfies the 
condition n> 1. We notice here that, for n = I, h (u')=!5(u') 
which corresponds to impulsive waves while for higher val­
ues of n it corresponds to shock waves. For discussing the 
problem of colliding waves it is necessary to obtain a C' form 
of the metric, we therefore transform to the Rosen form 

ds2=2e -M dudv-e - U [e v cosh W dx2 

+ e - v cosh W dy2 - 2sinh W dxdy ], (4) 

where M, U, V, and Ware functions of the null coordinates 
(u,v) only. For the case of Szekeres' family Rosen form is 
accomplished by the transformation 

x' = (1-un () )1/2-KI2(1 + un (:J) 1/2+KI2X, 

(5) 

x {x> [K-U n()(u)] [I +u n()(u»)K!2 

where K is a real parameter related to n by 

K2=2-l/n (6) 

and the Rosen form of the metric is given as 

ds2=2[ I-u 2n () (u)](I-l/n)/2dudv- [I-u 2n () (u)] 

x{[ I-u n()(u)] -K [I +u n()(u»)"dX' 

+ [1 + un e (u) ]-K [ 1 - un () (U)]K dY' }. (7) 

The metric (4) represents the most general form for plane 
waves with arbitrary polarization. In the case ofIinear polar­
ization we have the simplifying feature that W =0, but in this 
paper we shall investigate the collision of linearly polarized 
plane waves with a relative phase difference which require 
two mutually non orthogonal Killing vectors fx and fY- So we 
shall now introduce a new parameter which measures the 
angle of polarization of the gravitational wave within the 
coordinate system under consideration. For convenience we 
choose this parameter to be the angle of rotation of (X, Y) 
coordinates in accordance with 

(8) 

121 J. Math. Phys .• Vol. 20. No.1, January 1979 

a being a real parameter. Now we obtain the metric (7) in the 
form 

ds2 = 2(1-p2) (l-l/n)/2dudv _ (1-P 2 ) 

2P 

x {[ I + F + (I - F) sinaK] dx2 

+ 2cosaK( F - 1 )dxdy }, 

where 

p= (I-P )K, p=unO(u). 
I+p 

(9) 

Let us note that with this choice of the rotation angle the 
choice aK=1T/2 results in Eq. (7). In order to discuss colli­
sion of gravitational plane waves, it is convenient to consider 
space-time manifold in four disjoint patches as in Fig. 1. Let 
us consider two gravitational plane waves travelling in +z 
and -z directions. Prior to the collision of these waves the 
space-time region between them (region I) is Minkowski 
space while region II is given by the nonflat metric (9). We 
obtain region III from region II by replacing u ...... v and 
a <c-+ {3 everywhere. In region II we shall employ the follow­
ing null tetrad, 

I =(I_p2) (1 -1In)!28 0 
11- p~ , 

(10) 

II ill 
I 

Flat 

v u 

v 
FIG. I. Space-time diagram for colliding gravitational plane waves. 
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and we find that 

). =nK un -Ie (u){l-p') (1/"-3)12, 

t/!4 =Kn (l __ p2) 1111-- 3 [(l-n) u n-2_U n- \5(u)], (11) 

are the only nonvanishing Newman-Penrose (NP) quantities. 
The metric (7) represents a type N field. Similarly for the 
region III the nonvanishing NP quantities are u,p, and t/!o. 
We shall now consider the space-time geometry in the inter­
action region using these solutions as boundary conditions. 
The resulting space-time in the interaction region (region 
IV) becomes algebraically general. 

The Einstein field equations for the metric (4) are well 
known, but as in Ref. 5 we shall use of Eells and Sampson's 
theory of harmonic mappings of Riemannian manifolds to 
cast the problem into a simple form. We consider two 
Riemannian manifolds (M,g) and (M' ,g') with dimensional­
ities n,n' respectively and a map fM -----+ M'. Eells and 
Sampson's energy functional, which in local coordinates is 
given by 

Elf)=Jg' alA alA gik \g\ l12d"x, (12) 
AB ax! axk 

defines an invariant functional of the mapping. We shall be 
interested in those maps for which the first variation 
vanishes 

/jElf)=O, (13) 

i.e., harmonic maps. We had shown earlier that the Einstein 
field equations for the metric (4) are obtained as harmonic 
maps where M is a flat two-dimensional manifold with the 
metric 

ds2 = 2dudv (14) 

and M' has metric 

ds"=e- u(2dM dU +dlP-dW'-cosh'W dV2) (15) 

If we vary the energy functional formed from these two met­
rics, we obtain the Einstein field equations first obtained for 
this problem by Szekeres who used a different approach 
based on the Newman-Penrose formalism. 

III. NEW FAMILY OF EXACT SOLUTIONS 

We shall now derive a new family of exact solutions of 
the Einstein's field equations which correspond to the colli­
sion oflinearly polarized plane gravitational waves with dif­
ferent phase parameters. These will generalize exact solu­
tions for collinear polarizations given by Khan-Penrose and 
Szekeres. For this purpose we shall consider the metric for 
M' manifold. As we noted earlier the 2-section of this mani­
fold spanned by Vand W coordinates is a space of constant 
curvature, but in order to change this line element into the 
normal form we first imbed this 2-section in a three-dimen­
sional flat manifold. The imbedding coordinates are given by 

122 J. Math. Phys., Vol. 20, No_ 1, January 1979 

a = cosh V cosh W + sinh W, 

{3 = cosh V cosh W - sinh W, 

Y= sinh V cosh W, 

subject to the constraint 

a{3-y'= 1. 

(16) 

(17) 

The relevant part of the metric becomes dad{3-dr'. 
Now let us choose a new parametrization which satisfies the 
constraint Eq. (l7) by letting 

a=cosv sinhw+coshw, 

(3= -cosv sinhw+coshw, 

r=sinvsinhw, (18) 

the metric of M' then takes the form 

ds "=e -U(2dM dU+dU'-dw2- sinh'w dv'), (19) 

which is the required form. Once we have cast the metric of 
M' into this form we introduce a complex function 1] which is 
defined by 

- 1 W n=elV"tanh_ ., 2K' (20) 

where K is a constant so that the metric of M' becomes 

(21) 

where the bar denotes complex conjugation. Varying the en­
ergy functional constructed from the metrics (14) and (21) 
with respect to M, U, and 7j, we get the field equations 

(22) 

(23) 

(24) 

There is an analogy between Eq. (24) and the Einstein's 
equation for stationary axisymmetric gravitational fields in 
Ernst's formulation 

(25) 

Note, however, that the definition of 1] in Eq. (20) is entirely 
different from Ernst's t. The crucial point here is the follow­
ing: We want the coupled partial differential equations to be 
a familar set of equations so that we can directly write their 
solutions, but the choice of dependent as well as independent 
variables are further restricted by the requirement that the 
reSUlting solution should have the proper boundary condi­
tions. These considerations suggest that we search for a co­
ordinate transformation so that we can pass from the patch 
l U,v 1 to another patch [r,ul which has properties analo­
gous to prolate spheroidal coordinates. This transformation 
is given by 
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U=u n (1- V 2n)'/2+ V n (I-u 2n )'12, (26) 
where n> 1 is an integer. Under this change of coordinates 
the metric of M is transformed into 

(27) 

where the conformal factor [) is irrelevant because it does 
not enter into the energy functional in Eq. (12). The useful­
ness of these new coordinates will appear when we rewrite 
the differential operators in the field equations using the 
( T,U J coordinate patch. First we note that in region IV 

e - U = l-u 2n _ V 2n =(l-r)'I2(I-u2)1!2 (28) 

and two useful identifies are given by 

2¢ uv - U v ¢ u - U u ¢ v 

=[) (T,U) ( [(1-r) ¢ r] r - [(1-u2) tP (7](7 J, (29) 

tP uX v + tP vX u 
=[) (T,U) ((l-r) tP TX T -(l-u2) ¢ o-X 0-1. (30) 

where tP and X are any two functions which are at least twice 
differentiable. It is straightforward to show that Eq. (24) in 
the coordinate patch (T,U 1 is given by 

(7]ft - 1)! [(1 -T
2)7]T] T - [(1-u2)7]a] a 1 

(31) 

which is the familiar Ernst's equation. It is well known that it 
admits a solution of the form 

7] =ei
[(u+PlI2) [ TCOS (a~/3)+iU sin( a~/3)], (32) 

where the arbitrary constants a and/3 are chosen to be polar­
ization parameters in regions II and III respectively. Taking 
into considerations the boundary effects of the different 
space-time regions, we letu - uO (u) and v _ vO (v) so that 
the solution (32) is equivalent to 

7]=e ia pw+e if3 qr, 

where 

(33) 

Comparing the solution (32) with that given by Ernst for 
axisymmetric gravitational fields we immediately notice 
that (a -/3)/2 plays the role of a rotation parameter while 
(a +/3)/2 is the Taub-NUT parameter. Using this solution 
in the (u,v J patch [i.e., Eq. (33)J, we shall proceed to con­
struct the space-time metric and show that it has the correct 
boundary values. This amounts to the determination of M, 
U, V, and W. From the definition (20) and (33) we read the 
solutions for OJ and v, 

. v 1 (. 'nffi 
Sm - == -- pw slOa+qr Sh'l-'h 

K [7][ 
(34) 

sinh~=~. 
K 1-[7][2 

(35) 

The original metric functions Vand Ware given in terms of 
OJ and v by 

2V cOSOJ+sinv sinhOJ 
e = , 

coshOJ - sinv sinhOJ 
(36) 

sinhW=cosv sinhOJ. (37) 

In order to determine M, we integrate (23), so that the final solution for the metric functions is given as follows 

e - U =t2 = l_p2_ q2, (38) 

(39) 

where nand K are related by (6). This solution may be expressed in terms of a null tetrad defined as 

I =e -M12 8° 
Ji f.-L' 

n =e - MI2 t> I 

" " ' 

(40) 

(41) 

m,,=te-Ul2 [e Vl2(isinh tw- cosh tW)8 ~ +e -VI2(sinh!W-i cosh !W)8!]. (42) 

Now let us show that in the second region limit the solution (38)-(41) coincides with the Rosen form (9). For this purpose we set 
q=O and obtain the solution 

e - U _ (2 = 1 _ p2 , 

123 J. Math. Phys., Vol. 20, No.1. January 1979 Mustafa Halil 
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(44) 

123 

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

128.123.44.23 On: Sun, 21 Dec 2014 00:39:24



sinh W=!COsaK[C=~ t -C~~ t], 
e 2V = (1 +p) 2K +(1-p) 2K + sinaK [(1 +p) 2K -(l-p) 2K] 

(1 +p) 2K +(1-p) 2K -sinaK[(l +p) 2K -(1-p) 2K]' 

(45) 

(46) 

which gives the metric (9) so that the boundary conditions are satisfied. For n =K= 1 our solution (38)-(41) takes the form 

(47) 

(48) 

sinh W = 2(pw cosa + qr cosfl) 
(2+2p2q2_2pqrw cos(a-(3) , 

(49) 

1 +p2W2 +q2r2+ 2pqrw cos(a -(3) + 2(pw sina +qr sinj3) 

1 +p2W2+q2y2+2pqrw cos(a -(3)-2(pw sina +qr sin,B) , 
e 2V = 

(50) 

p=uf}(u), q=vf}(v), 

which is the solution reported in Ref. 5. In the limit a =(J=1T/2 this solution reduces to the solution by Khan and Penrose, 

(51) 
(58) 

(52) 

W=o, (53) 

v r+q w+p e =----. (54) 
r-q w-p 

Finally, in the limit Ka=(JK=1T/2 for n=2, K=(3/2)112 the 
solution (38)-(41) reduces to 

which corresponds to the solution given by Szekeres. We 
have therefore generalized Szekeres' family to the case of 
linear but noncollinearly polarized plane gravitational 
waves for the case when Szekeres' parameters n1 and n2 are 
equal. In another publication we shall show that gravitation­
al wave and stationary axially symmetric fields can be treat­
ed in a unified manner,14 where the solution of one class 
enables us to derive solutions to the other class and vice­
versa. This procedure can be extended to Einstein-Maxwell 
fields as well. 

(rw) -)12 

e- M =t5 
, 

(pq+rw») 

W=o, 

(55) 

(56) 

(57) 
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APPENDIX: SINGULARITIES 
In order to see the physical singularities of our solutions, we calculate the curvature invariants which are as follows: 

u ,,-IV n-I \ -pqrw «(2+2p2q2) cos(a-(3)-2pqrw) 
Re¢'2=n2 f} (u)fJ (v +K2 , 

rw t (1-11712)2 
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+ :~; [r(1-2q2)- p~ (1+2r)COS(a-p)-7z2(~~P _ K;: + (~~;~~1;1)] 

2 , sin v sinhliJ·coshliJ 
-KqW 

1 +cos2vsinh2liJ 
}) ], 

Imr,b4= - Kn [([ (n -1) u "~2e (u)+u n~ 18(u) ] (2COSVCOShliJ Z 
2~171(l +cos'vsinh2liJ) 1_1171' 

qw sinvsinhliJsin(a-p) ) +n u 2(n~ I) e (u){ 2cosv·coshliJ [r(1-2q2)- pqw 
1171 1_11712 r' 

_ Kq
2

w
2 

cosv sinhliJ·cosh2liJ sin'(a-p)- 4KqW sinv·coshliJ sin(a-p) Z I)], 
r 117 1 J r 117 I' 

where 

K+ -K 
Z =pr(1-2q2)+qw(1-2p')cos(a-p) and cosv=~, 

21171" 
2coshliJ = ( 1 + 117 I )K _ ( 1 - 117 I )K 

1-1171 1+ 1171 

are to be substituted into these expressions. We observe that r=w=O are singular surfaces expected from the focusing proper­
ties of the incoming waves. Same singularities arise from the roots ofl17I=O. This is equivalent to 
p' +q2_ 2p2q2 = 2pqrwcos(a -P), other roots of which depend on (a-p). The spacelike singularity t '= 1_u2n _v2n =0 reap­
pears in the above invariants as well. We notice further that another singularity is provided by 1_1171' = 0, which is equivalent to 
t 2=2pq[rwcos(a-p)-pq], which gives additional singularities depending on the values of a and {3. For example, the choice 
a-{3= (2n -1)1T12 gives t '= _2p2q2 which is satisfied for two symmetric hyperbolic branches starting at (u = 1, v=O) and 
(v = 1, u = 0) and going in the increasing u,v directions so that it lies beyond the main singularity t 2 = O. The singularity t 2 = 0 
seems to be the essential feature of colliding plane gravitational waves. 
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