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Summary. — We present a method that generates a class of transcendent solutions
to Ernst system in Einstein-Maxwell theory of general relativity.

In an earlier paper (1) we presented the general similarity integral to the Ernst
equations in Einstein-Maxwell theory (?), where the similarity variables were arbitrary
harmonic functions in eylindrical co-ordinates. It has been shown later () that by em-
ploying a particular independent variable the basic differential equation transforms into
the type of Painleve’s fifth transcendent, resulting therefore in a transcendental solution
to Einstein-Maxwell equations. In this paper we shall give criteria about how this
class of transcendental solutions can be increased in number.

The powerful technique that aided in complete similarity integral was based on
the harmonic mappings, ¢4: M — M', where

4 = {5, g, 7, ,7} — {@1, @2, P8, (134} ,
(1) M:ds? = gy daotda’= de? + dez® + g2 de? (u,v=1,2),
M':ds'?= g,p(P) dP1d PP (4,B=1,2,3,4),

() As'?= (&& + 9 — 1)H{dEAE(L — o) + Ay (L — £8) + £7dn dE + nf A& di}.
Upon variation of the energy functional (= the action)
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(') M. HariLsoy: Leff. Nuovo Cimenio, 37, 231 (1983).
(*) F.J. ERNsT: Phys. Rev., 168, 1415 (1968).
(*) B. LEAUTE and G. MARCILHACY: Leti. Nuovo Cimenio, 40, 102 (1984).
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one obtains the pair of Ernst equations (Ernst system)

@ {(§§+nﬁ—1)V25=2V§~(§V§+ﬁV17),

(58 + 97— 1) V2 = 2 V- (E VE + 4 V) .

In ref. () we had integrated these equations under the assumption that @4 is only
a function of v which satisfied V2 = 0, i.e. v is harmonic. Employing nonharmonic
variables transforms the problem naturally into a much complicated one (*). We show
now that when @4 depends on two independent harmonic functions the problem can
be stated as a

Theorem. Let @4 be parametrized by two harmonic functions v and & such that
D4(v, §) is geodesic with respect to each of them independently. The field equations
from the action principle then are satisfied, provided the constraint condition Vv-
- V& = 0 holds.

Proof. The variational principle SE[®] = 0 yields the covariant equation

o4 oP? 9 @P°
au(ﬁy””4)+v_g””T§o =0

dxh da¥

Using the fact now that &4= &4(v, ¥), one obtains

o4 0DE 0P o4 " oDB 0°
9oy (0 + To—— o + g B+ Tpo— — |+

v 0 o092 20 895 op
n op4 Ve P4 e ” o024 I oPB o dC 0
oo VT Gy VO g ubst vs b\ g+ T ) = 0

Harmonicity and the geodesic condition makes all foregoing expressions vanish, whereas
the last term is made vanish by virtue of the constraint

(5) Vo-Vi= 0.

Let us note that Kerr solution can be reformulated in terms of two harmonic func-
tions in conform to the above theorem. Indeed, in prolate spheroidal co-ordinates x, ¥,
eq. (5) reads

(#*— 1) v, ¥, + (1 — ), 8= 0,

and is solved by the harmonic pair of functions v = tgh~'# and & = tgh-ly.
Although the expression for ®4(v, #) can be more general in terms of v and &, we
ghall proceed by making a particular, separable dependence, namely, &4(v, %) =
= f4(v) exp [ic#]. In this choice ¢ is an arbitrary, real constant and the results of
ref. (1) will be obtained in the limit ¢ = 0. In order to formulate our objective in a
covariant language, we consider the harmonic map, @4: M,—~ M’, between the mani-
folds, M,: ds;= exp [2v] dv® + d&2 + exp [2v] dg?, and M’, given by expression (2).

() M., Harusoy: J. Eng. Appl. Sci., in press.
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Our further parametrization will be

( {@:”E:ycos%xp[awcm, o= g,
6)

P3= 5 = ysin Pexp [ + ¢B)], Pi= 7,

which casts the action functional into
(7) By, ¥, o, ] :fd@(yz— 1y [y'2 + Al -y ¥+

1 G
+ y2cos? ¥ o't 4 sin? Y- p'2) — A sin® 2 (o’ — f')2 - *y? 62”] , (' = 7) .
v
Note that §-dependence washes out from the variational principle, its overall effect
being to bring into the action such a c-dependent term. It is readily observed that ¥, «
and B equations remain invariant and correspond to egs. (10), (12) and (13) of ref. (1),
respectively. The y equation modifies due to the c¢-term, and reads as

® oy
¥ —

k2 2
L+ )Z[y(a+b)2——]'c v

" . yz, ¢xp [2v] =

where, the constant k, @ and b are the same constants by integrations adopted in ref. (1).
Changing variables by v = Ino and y%= Y, transforms this equation into

7.4 1 1 1 1 2_ﬁ
)] Y+ Y — (2y+y_l)y2+ Y(¥Y — )[(—;—b) Y2]+

2 r+1 = i)
+20Y(Y_1) 0 (*aa’
which is identified as a particular Painleve’s fifth transcendent (}). Once ¥ (and therefore
) is known, all the remaining ¥, « and p equations can be reduced to quadratures,
as functions of y. From the one-to-one correspondence hetween the Ernst system and
Einstein-Maxwell’s theory, the foregoing solution provides a transcendental solution
to the latter.

The constraint condition Vo V= 0 (= v,% + v,%,) admits the simplest solution
as v = logp, ¥ = #, which corresponds to the solution of ref. (). A new solution is
given by the choice of harmonic functions,

z 22\}
(10) v = (g% + &%), ﬁ:log[—Jr(l—l—Q—z)].
0

We remark that it is not clear about how large this set of harmonic functions satisfying the
above constraint is. In the complex plane it is well-known that this reduces to the class
of harmonic and conjugate harmonic functions. Further, the Kerr solution does not
admit such a transcendental extension, since its @-function is not in the separable
form which we have assumed.

In conclusion, we note that the foregoing procedure to obtain transcendental solu-
tions can directly be adopted in any completely integrable systems that are expressible
in terms of harmonic maps. The self-dual SU, gauge field problem is one such example.

() E. INcE: Ordinary Differential Equations (Dover Publ., New York, N.Y., 1956), p. 317.



