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Summary., — We study the interacting electromagnetic shock waves
with nonconstant profiles in general relativity. It is shown that by medi-
fying the metric functions of the Bell-Szekeres solution, such solutions can
be obtained.

PACS. 04.20, — General relativity.

1. — Introduction.

As a manifestation of the nonlinear feature of general relativity, two light
waves scatter each other to develop a new region of space-time known as the
interaction region. Although this problem, in analogy with photon-photon
scattering of quantum electrodynamics is an important oue, little has been
achieved toward a complete understanding of it. The first and actually the
only available solution so far was given by BeLL and SzEKERES (') (hence-
forth, BS), describing the inferaction of two constant-profile shock electro-
magnetic (e.m.) waves. A minor contribution to the BS solution was given later
by showing that the number of incoming shock waves can be arbitrarily in-
creased (2). In this case the interaction region emerges as a region of many BS
cells whose exact number is determined by the number of incoming shocks. The
main features of the BS solution however, such as gravitational impulse waves

(1) P. BeELL and P. SZERERES: Gen. Rel. Grav., 5, 275 (1974).
(2) M. Gurses and M. Haruirsoy: Lett. Nuovo Cimento, 34, 588 (1982).
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arising at the null boundaries, conformal properties and the removable sin-
gularities remain unchanged. The interaction region of the BS solution is iso-
metric to the Bertotti-Robinson solution (3-4), which is known to be the unique
conformally flat solution to Einstein-Maxwell (EM) equations for nonnull
e.m. field.

In this paper we consider the interaction of nonconstant-profile e.m. shock
waves and show that the solutions can be obtained by modifying the arguments
of the metric functions in the BS solution. The conclusion is that locally we
recover the BS line element with nonconstant e.m. field strength, whereas in
the null co-ordinates the two solutions differ. We state our result depending
on two functions restricted by two constraint conditions and the BS choice of
null co-ordinates happens to be the simplest form satisfying those conditions.

2. — Interaction of electromagnetic waves.

The generic form of the line element describing the interaction region of the
collinearly polarized (°) e.m. waves is given by (1)

(1) ds*=2exp[— M]dudv— exp[— U] (exp [V]dx?+ exp[— V]dy?),

where the metric functions depend on the null co-ordinates # and v. The in-
coming states (regions II and III) are characterized by nonflat metrics as-
sociated with incoming e.m. waves. Region I contains no e.m. waves and
must naturally be flat. For the details of the space-time picture we refer
to (). The Maxwell and Einstein-Maxwell (EM) field equations as derived
in BS are given as follows (note that we adopt the same notations of BS):

(2) 2¢2,0= Usps— Vugpo

(3) 2¢@0u= Uupo— Voips,

(4) g =0,

(5) U= U,U,,

(6) 2Us— U + 20U M, = V3 + 4kl )?,
(7) 2Upy— U+ 20U, M, = Vi + 4k|g[?,
(8) 2My+ U U, =V, V,,

(9) 2Vue— UuVo— U, V= 2k(ge@z + Gog)

G
(k = const = @),

(®) B. BerrtorTi: Phys. Rev., 116, 1331 (1959).
{4} I. RoBinson: Bull. Acad. Pol. Sci., Ser. Sci. Math. Astron. Phys., 7, 351 (1959).
(5) P. SzeKERES: J. Math. Phys. (N.Y.), 13, 286 (1972).
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where the e.m. field amplitudes (¢.e. the spinor components ¢, and ¢,) are the
« scale invariant » oneg as defined in (5). The solution to this set of equations
as obtained by BS is

b
M=0 2. — const = @ = —= = const
) Pr=Pr= Vi 3 Po=Po Vi ’
(10)
exp [— U]= cos (au — bv) cos (au -+ bo), exp[V]= %;—g .
The solution given in ref. (%), on the other hand, is obtained from BS by
modifying the arguments of cosine terms, namely by making the substifutions

aub(u —>za O(u —u,),
=1

(11) bvl(v _?Zb (v —2,)0(v — ;)

i=1

(a;, b, constants, related to the fluxes of the shocks) .

The theta functions in the arguments guarantee the consistent matching of
the disjoint space-time regions, albeit it restricts the metric to be of class C°
and piecewise C. The fact that this substitution yields a nontrivial result is
seen by computing the components of the Riemann tensor.

3. — Interacting electromagnetic waves with nonconstant field strength.

We provide now solutions to the above set of equations (2)-(9) for the case
when ¢, and ¢, are not constants (with still ¢, = 0). For this purpose we
substitute w — f(u) and v — g(v), where f and ¢ are functions to be determined
below. The ansatz solution seeked is expressed in the Rosen form by

(12) ds? = 2f ¢’ dudv — cos? [af(u)0(u) — bg(v) O(v)[ dw? —
— cos® [af(u) O(u) - bg(v)B(v)[ dy*,

where f' = df/du, g’ = dg/d» and the e.m, spinor components are chosen as

(13) P2 = \/‘f O(u \/—g "6(v) .

The functions f and ¢ are not arbitrary, but solutions of the EM equations con-

7 ~ Il Nuovo Cimenio B.
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sistently yield the following conditions:
(14) f(u)d(u) =0,

(15) (g?f;) S(u) 0

and similar conditions for the function g. It is readily observed that the simplest
possible f(u) satisfying these constraints is the one corresponding to the BS solu-
tion, namely, f(u) = » (and g(») = »). Other interesting values which satisfy
the above constraints without giving rise to degeneracy in the space-time
metric are the following:

, . . U
flu) = {smu, sinh u, tghu, w exp {u], » cos u, cosa’ } ,
(16) v
g(v) = {sin v, sinh v, tgh v, v exp [v], v cos v, s } .
It is observed that the nonconstancy of e.m. spinor components serve to gen-
erate the metric function M, which vanishes in the case of BS. In the null

tetrad
- { lu=exp[— M[2]d}, nu=exp[— M/2]0;,
(17

— VZm,, = exp[— U[z)(exp [V/216% + i exp[V/2]6%) ,
the scale-invariant, nonvanishing Weyl components are given by

l Y,— —q (%) S(u) tg b g(v)9(v},
(18)

‘ [ (g%) d(v) tga flu)d(u) .

Let us note that the constraint (15) is just the requirement to provide a non-
flat metric.

In order to identify the incoming waves in the Brinkmann (%) co-ordinate
system, which is a harmonic system, we express our solution in the BS form

(19) ds?= 2dfdg— cos? (af — bg) da® — cos? (af + bg)dy?,
that reduces in the region IT (g = 0) to

(20) ds?= 2djdg — cosz af(da® + dy?).

() H.W. BRINKMANN: Proc. Natl. Acad. Sei. U.8. 4., 9, 1 (1923).
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This line element is obtained from the Brinkmann metric
(21) ds?=2dU0dV — dX2— d¥Y2— 6(U)( X2+ Y2)dU?

by the following co-ordinate transformation (which is equivalent to a null
rotation):
U=f, X=aoF, Y=yF,

(22)
V =g+ 3@ +y)FF,,

where F = cos af. It is observed that f and g correspond to the null co-ordinates
of regions II and III, respectively, when the waves are expressed in har-
monic co-ordinates.

4. — Electromagnetic-potential approach.

The basic EM equations (5), (8) and (9) are obtained by the variational
principle of the Lagrangian

(23) L=exp[-U(M,U,+MU+UU, -V, V,)—2kexp[—V]4,4,,

where the e.m. 4-potential is given by 4,= A467. The e.m. spinor components
are defined by

U—V
(pZ_ﬂA eXp[ ]7

(24) .
Py = — \/_A exp[L V].

The variational equation, 3L/3A = 0, yields the equation satisfied by the
potential function A, which is equivalent to the Maxwell equations given in
egs. (2) and (3). This is given by

(25) (exp [‘ V]-Au)v + (eXP [_ V]Av)u =0 ’

which admits the solution

o
(26) A= Vi sin (af0{u) — bgh(v)) .
We introduce now the following co-ordinates:

(27) T =sin (af — bg), o= sin (af 4 bg),
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80 that the space-time describing interacting e.m. waves is expressed by

1 dre do?
2ab

(28) ds?= — ?ﬂﬁi_‘.ﬁ)_(l_rz)dxz—(] —Uz)dyz

and the e.m. potential becomes A = V/(2/k)o.
Another useful co-ordinate system is provided by the choice

(29) §=af+by, n=af—1dg.

This co-ordinate system proves to be useful in studying geodesics motion and
the Dirac equation in the interaction region (?). The space-time metric reads
(we scaled » and y for obvious reason in the sequel)

1
(30) dsz = 5ah [dn? — df2 — coszy dy'? — cos? £da'?].

This is easily transformed into Bertottfi-Robinson solution by the following
transformations:

. :
(Bl sing=:, 2'=g, =In(—2), g=2—9,

5. — Discussion.

The proper solution for the problems of interacting (colliding) waves in
general relativity should go from region I (flat space), through regions II
and ITI (incoming regions) into region IV (the interaction region). The reverse
order, namely from region IV to regions II and III, although happens to be
the simpler route, results mostly in nonphysical incoming states. The choice
of realistic wave forms yield unfortunately set of coupled systems of partial
differential equations whose exact solutions become almost impossible.

For e.m. case, we have shown that changing the incoming waves only serves
to modify the metric functions in the BS metric. No matier how the profile
of the incoming waves is chosen from a set that satisfies certain constraints, the
e.m. waves confinue into the interaction region unchanged. This may be a
general feature of interacting e.m. waves, and for this reason we prefer to
name the problem interaction, rather than collision. Loecally, in the co-ordinates
(7, o) or (&, n) all solutions are expressed in BS form, but in the null co-ordinates
the details of incoming e.m. waves modify the arguments.

() M. Hacir: Int. J. Theor. Phys., 20, 911 (1981).
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As a final remark, we would like fo point out an interesting property of
the Riemann tensor components for the interacting e.m. waves. The periodic
nature of ¥, and ¥, in eq. (18) remids a sequence of dark (bright) amplitudes
in analogy with the interacting beams in a double slit experiment. Within
coming decades experimental general relativity may develop enough to check
this aspect empirically.



