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Distinct family of colliding gravitational waves in general relativity
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We present a new family of exact solutions for the Einstein equations that describes colliding

gravitational shock waves with cross polarization. In the limit of single polarization it reduces to a

family that, up to a transformation of its metric functions, is distinct from the well-known Szekeres

family. Furthermore, this family of solutions does not belong to the largest family found recently by

Ferrari, Iba5ez, and Bruni.

I. INTRODUCTION

In recent years there has been revived interest in phys-
ics literature on the topic of colliding gravitational waves
(CGW's) in general relativity. ' From the physics
standpoint, among the topics discussed so far, the
emergence of essential space-time singularities dominates.
This distinctive singularity feature of colliding pure plane
gravitational waves emerges in contrast with its cylindri-
cal ' and pure electromagnetic counterparts, for in
the latter case an imperative singularity does not arise.

In this paper we shall derive a new family of CGW's
with a cross (second) polarization that does not belong to
the largest family found by Ferrari, Iba5ez, and Bruni. '

However, our family of solutions does not have anything
new to contribute to the singularity aspect in the topic of
CGW's. In this sense, it does not contradict the generic
singularity nature of the resulting space-time subsequent
to the collision. In particular, horizons do not form
around the singularities of our space-times. From a phys-
ical point of view these solutions represent colliding grav-
itational shock waves with various wave fronts. Impulse
waves occur in the family for the special choice of our pa-
rameters.

In the limit of linear (single) polarization our family
reduces to a family that is related to the well-known Szek-
eres' (S) family by a transformation of the metric com-
ponents that will be described in the paper.

Our method of solution is to parametrize the Ernst
function in terms of the solutions of the Euler-Darboux
equation in the geometry of CGW's. A similar method
was used in general relativity long ago, " to integrate sta-
tionary axially syrnrnetric Einstein fields of isolated
masses. However, because of the lack of physical
significance, the solutions obtained by such a method in
the latter case were discarded completely. In colliding
electromagnetic shock waves this method led to an in-
teresting solution, and being prompted from that solu-
tion, we apply the same technique to the collision of pure
gravitational waves.

In Sec. II we explain our formalism and reduce our
equation into the standard Ernst' form. A particular
family of solutions and analysis of its physical properties
follow in Sec. III. Concluding remarks in Sec. IV are fol-

lowed by the Appendix in which we give a solution for
CGW's in terms of a Painleve transcendent.

II. THE FORMALISM

X (e cosh W dx +e cosh W dy —2 sinh W dx dy),

where all metric functions depend on the null coordinates
u and U alone. From experience with the mathematics of
CGW's it is well known that the metric function U is
fixed as a coordinate condition, M is determined from the
equations of quadratures, whereas V and W satisfy the
Einstein equations

2 V» —U„V„—U, V„=—2 tanh W'( V„W, + V, W„), (2)

2 W„„—U„R'„—U„W„=2V„V,sinh W cosh 8' . (3)

In obtaining new solutions for colliding waves in general
relativity, oblate- (prolate-)type coordinates proved to be
useful and therefore we shall follow a similar trend by
defining new coordinates ~ and ~ by

u
"1 (1 v "2)l/2+v "2

(1 1)1/2

0 u 1 (1 v 2)1/2 v 2 (1 1)1/2
(4)

where n, and n2 are arbitrary Szekeres (S) parameters,
such that n; )2. We would like to add that the geometry
of COW's allows us to introduce such parameters as
powers of the null coordinates. Physically these replace-
ments amount to the modification of the wave fronts con-
sidered in collision. On account of the constraints in axi-
ally symmetrical geometry, the oblate (prolate) coordi-
nates in such geometries do not a11ow a simi1ar generali-
zation for n, & 2. Equations (2) and (3) become now, after
employing the coordinate condition for U,

=+I—2+I —0. =1—u ' —v ',

The space-time line element that we adopt in this paper
is the one introduced first by Szekeres

ds =2e™dudv —e
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[(1—r ) V, ],—[(1—o ) V ]
= —2tanhW[(1 —H}V,W, —(1—o )V W ], (6)

[(1 2—)W,], [—(1—o )W ]

the metric functions V and W. However, if this is done,
one can show easily that by a global rotation of the (x,y)
coordinate axes, the polarization angle will be set to zero;
thus the metric will diagonalize. To overcome this
diSculty we introduce the standard Ernst potential'

= —sinh W cosh W[(1 r—) V, —(1 —cr ) V ] . (7) g=e2~+ g@, (16}

We introduce next a pair of complex potentials (Z, g),
defined in terms of the metric functions V and W by

—V

Z —= = (1+i sinh W) .
1+g cosh W

where e = —g and N is a twist potential, and make
use of the well-known trick in the Ernst formalism.
Namely, if (16) solves the Ernst equation given by Eq. (9)
then there is an associated solution given by

Equations (6}and (7}are expressed in terms of these com-
plex potentials as

E=e g + 1 cO, (17)

(ReZ) I [(1—H)Z, ],—[(1—o )Z ] ]

=(1—r )Z, —(1 cr —)Z, (9)

provided the function co is integrated from the pair of in-
tegrability equations

=2g[(l ~ )ri, (1—o—)g ] . (10)

—Ue —4+(p

—Ue —4+~
O

(18)

(19)

One readily identifies this pair of equations as the one
satisfied by the Ernst potentials E and g, associated with
the Killing field that arises in a difFerent context. For the
sake of obtaining new solutions in COW's, we shall ex-
ploit this analogy to a certain extent and refer to Eq. (10)
as the Ernst equation.

We proceed now with the following parametrization of
the complex potential r):

We require now Ernst's E, defined in (16) to be identical
with Z in (15) [and therefore in (8)], since they both satis-

fy the same equation. This requirement expresses ~ and
%' in terms of Vand Win accordance with

tanhW, cot. +=e sin. hW . (20)

When the values of 4 and 4 obtained in this way and U
from (5) are put into Eqs. (18) and (19), we obtain

[(1—r )X,],—[(1 o)X —] =0 . (12)

where both 0 and P are real functions of their argument
X, which satisfies the Euler-Darboux (ED) equation co,=2tan8(1 —o )X

co =2tan8(1 —H)X, .

(21)

(22)

2X„„—U„X,—U, Xu ——0 (13)

Since this equation has the same structure of the Laplace
equation, there is no loss of generality in referring to its
solutions as the harmonic functions. In the Appendix we
parametrize g with two independent harmonic functions
and obtain results in terms of Painleve's fifth transcen-
dent.

We recall that in the null coordinates the ED equation
reads

Thus, the integrability equations for co reduce to the con-
dition for X to satisfy the ED equation (12), a condition
that we have already assumed a priori In the ne. xt sec-
tion we shall make a particular choice for X and deter-
mine the metric functions explicitly.

III. A FAMILY OF EXACT SOLUTIONS

While the choice for X as the solution of the ED equa-
tion (12) can be much more general, at this point we shall
make the choice

in which Vis given by Eq. (5)
Substituting (11) into (10) leads to the following solu-

tions for 0 and P (Ref. 15)
e2X

(k& +k2 )/4 (k& k2 )/4
1+o.

1 —o. (23}

&2 cosh2X —cos8, ta= —(tan8)coth2X,
cosh2X +cos8 ' (14)

where 8 is a constant of integration that will be interpret-
ed, as in the case of colliding electromagnetic waves, to
measure the second (cross) polarization of the waves in
collision. From Eq. (8) and solution (14) we calculate the
expression for Z by

due to Szekeres. ' The parameters (k„k2) are related to
(n „n2 ), through the Einstein equations by

k; =8 1 —— (i =1,2) .
1

n;

Using this value for X in Eqs. (21) and (22) we obtain co

easily as
cos8 —i sin8 cosh2X

cosh2X —cos8 sinh2X co= —,'tan8[(k, —k~ }~+(k,+k~)o ], (25)

We may employ this expression for Z in Eq. (8) to find and the Ernst potential e takes the form
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e e sin —je cos—
cosO 2 2

+—tan8[(k) —k2)r+(k(+k2o )o ],
2

(26)

fore we shall ignore it.
The result for the metric functions V and 8 follow

directly from Eqs. (20) and (15) for (p, whereas the metric
function M is integrated from the equations of quadra-
tures'

in which U and X are given by (5) and (23), respectively.
Direct substitution of this expression into Eq. (9), in place
of Z, verifies that it is truly an Ernst solution. Also, we
have the freedom to add one more parameter to our e by
considering its Ehlers transform. This, however, will not
enhance the physics of CGW's at our disposal and there-

I

2U U +2U M =P' + V cosh P'

2+U M = ~2+ V2co

(27)

(2g)

which are to be transformed into the (w, (T) coordinates,
for a straightforward calculation. The results are

e
—v e

—U

e sin —+e cos—2X 2~ —2X 2~
cosh@' cos0 2 2

(29)

e tanh W = —,
' tan8[(k1 —k2 )r+ (k, ~ k2 )o ],

(k)+k2)/8 q (k)+k2) /16 2 (k) —k2) /16

(30)

—k /8 —k /8X(1+ra+'t/1 —r +I o)—' (1 rcr+—+1—r +1—(r )
' e sin —+e cos—

2 2
(31)

where U and X are given in (5) and (23), respectively. The incoming metrics for region II and III are found by setting
u =0 and u =0, respectively, and since these regions have common aspects, we shall study only region II. We obtain
region II functions by substituting ~=0 =u:

e =1—u ', sinhW=(k)sin8)
n) /2 n) k) /2 —1

u '
1 —u

'

, k, . 2g , k, 2g(1+u ') 'sin —+(1+u ') 'cos—
2 2

e
—2V

2 '2
n] 2 k~ 2 8 n) k] 2 8 8

(1—u ') ' (1+u ') 'sin —+(1—u ') 'cos — + k, tan — u
cos 8 2 2 1

L

n&/2 k] /8+k&/2 n&/2 k ] /8+k~/2
e

—M (1 u 1
)

) 1 (1+u 1

)
1

(33)%~(u) =
8(u)G(u) for n, )2, n2) 2,

Since u here has the meaning uH(u), i.e., with a Heaviside unit step function, for u &0 it reduces to the flat-space
metric, as it should. An important point, however, is that in order to make sure that physical sources are absent on the
null boundary between region I (i.e., fiat space) and region II, Eq. (29) must be satisfied with uH(u) in place of u in the
metric. We would like to remark that were we to employ S parameters n; for n, & 2, it would result in such an ambigui-
ty on u =0. For this reason we make the choice for our parameters such as to satisfy n; )2.

The general structure of the only nonvanishing Weyl scalar curvature +4 in the region II is

constX5(u)+8(u)F(u) for n( ——2, n2)2, n2 2, n1)2, ——

in which F(u) and G(u) are both functions that charac-
terize the incoming shock-wave profiles.

In order to discuss the 0=0 limit of our solutions, we
would like to review some aspects of CGW's with linear
polarizations. The vacuum Einstein equations are

A large family of solutions (U, V, M) to this system was
given by Szekeres' to which we shall refer as the S fami-
ly. One can easily verify' ' that there is a second family
(S' family) of solutions ( U', V', M'), related to the S fami-
ly by

U„„=U„U, ,

2U„„—U„'+2U M„=V',

2U,„—U,'+2U„M„= V„',

2M„, + U„U„=V„V, ,

2V„„—U„V, —U, V„=O .

(34)

U'= U, V'= V+au,
aM'=M+aV+ U (a =const) .
2

(35)

We have discussed elsewhere' ' that such a relation be-
tween two different solutions forms an isometry on the
configuration manifold, where the dynamics of general
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relativity is expressed in the language of harmonic maps.
Such isometrics, however, have nothing to do with the
isometrics of the space-time manifold and therefore the
relation between S and S' families cannot be reduced to a
mere coordinate transformation.

It can be checked that in the limit 0=0 our solutions
I

(29)—(31) do not reduce to the S family, but reduce to the
S' family for the particular parameter a =1.

The particular case for k, =k2 ———2 (or n, =n2=2)
which is known as the Nutku-Halil (NH) solution in the
S family, corresponds in the S' family to the (for later
reference we abbreviate NH') solution

—2cr ( 1 —r )
'/ sin 8

(1—o )'/ (1 2r—cos8+r )

(1—2)' cos8

[(I—0' )(1 2wco—s8+7 ) +4o(1—r')sin 8]'/

sinh 8' =

e V

where

w=u+I —v +v+1 —u, cr=u+I —v —v+1 —u

—U (1 p)1/2(1 2)1/2 —M ( r s8+~)
( 1 P)1/2+ ( 1 2)l/2

(36)

We would like to add that this solution overlaps with the family of solutions given by Ferrari, Iba5ez, and Bruni, for
their particular parameters s, = l, s2 ——0. This is expected, since after all, for n, =n2 ——2, our coordinates in this paper
coincide with theirs. The region II line element of the NH' solution is given by

1
3/2

ds' =2, , du dv — dx ' —(1+u )(1 u)'d—y ',(1+u)'/2 1 —u
(37)

which represents impulsive waves accompanied by shock waves. This is to be compared with the simplicity of the in-
coming metric of the Khan-Penrose' solution

ds =2 du dv —(1+u ) dx —(1 u) dy—

to which it is related by the transformation (35).
In order to see the singular points (hypersurfaces) in our general solution (29)—(31) we calculate the nonvanishing

Weyl scalars of the Newman-Penrose formalism. From the nonvanishing 4'0, %4, and 42 the most compact one is %'2

and we calculate it in the null tetrad of Szekeres' as

nl /2 —1 n2I2 —1

n, n, u '
U

'

4(1 —u ')' (1—v ')'
3w( r cos8 ) +c—os28 rcos8—

(1 2~cos8+—r ) 2V 1 —v Vl —o (Vl —v +V 1 —o )

+i sin8
7 1—

1 —cr (1 cr )(1—2rcos8+—r ) +4cr (1—H)sin 8

0-2
2(~—cos8) — (3~—~ —2 cos8)

1 —~

4~0. sin 8
(1—cr2)(1 2~cos8+7. —)
4cr sin 8(3r r 2cos8)— —

(1—2rcos8+r )
(39)

We readily observe that essential singularities occur on
the hypersurfaces u =1, v =1, ~=1, and o. =1. The
latter two surfaces are equivalent in the null coordinates
to

Q +v (40)

which is the usual hypersurface of essential singularity
that arise in the S family. One can predict, without going
into a detailed analysis, that S and S' families have com-
mon singular hypersurfaces.

One interesting aspect of the NH' solution (36) that'is
also shared by the NH solution is that the simultaneous
changes u ~—u and v ~ —v (or ~~ 7., o ~ cr) in—the-
solution results also in the solution. This property pro-
vides us an alternative interpretation for the CGW, as
follows: the singularity, u +v =1, which is located in
the past (t &0), evolves in time such that at t =0, outgo-
ing gravitational waves emerge. Accordingly, NH and
NH' space-times decay into impulsive gravitational
waves and impulsive waves accompanied with shock
waves, respectively.
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IV. CONCLUDING REMARKS

The family of solutions presented in this paper is
characterized by three independent parameters: n, , n2
(or ki, kz), and 8. Physically it describes the collision of
gravitational shock waves that for the particular case
(n, =2) contain also an impulsive term 5(u), accom-
panied by shock waves. Our solution shows that the larg-
est family of solutions of Ferrari, Ibanez, and Bruni can
be enlarged further by employing the S parameters n,
and n2. In the limit 8=0, our family reduces to S' family
rather than S family. It remains open however, to see
whether S and S' families with the second polarizations
are transformable into each other [i.e., the generalization
of the transformation (35) for W&0].

Finally, we would like to add that Chandrasekhar's re-
cent' generalization of the diagonal metrics can be em-

ployed in our formalism to obtain the corresponding non-
diagonal metrics. For any given solution for the ED (or
Laplace) equation, the problem can be reduced to the
determination of co through the Eqs. (21) and (22).
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APPENDIX

and determine the resulting space-time metric functions.
Substituting (A4) into (A2) and (A3) leads to

P"=0 (A5)

and

200' 1+0 „,2 2X

] Q2 ] Q2
(A6)

respectively. Equation (A5) trivially gives

&=&oY+ro (A7)

with Po and ro two arbitrary constants of integration.
For (A6), we make the change of variable in accordance
with

n =tanh(X/4),

and obtain

(A8)

X"+Poe (sinhX)=0, (A9)

where a prime denotes d/dX. This equation is identified
as a degenerate form of Painleve's fifth transcendent that
arise also in cylindrical gravitational waves with cross po-
larization. '

The metric functions V and W can easily be expressed
in terms of P and X as

We parametrize the complex potential g now in terms
of two functions as

zr 1+cosP tanhX/2
1 —cosP tanhX/2

' (A 10)

~(X, Y) =n(X)e'I""', (Al) sinh W = —sinP sinhX/2 . (Al 1)

2QQ' +(1—n )Q" (1 r )Yr (1 o' )Ye

Q(1+Q )P' (1—H)x, —(1—cr )X
(A3)

where the primes stand for derivatives with respect to
their respective arguments. For different choices of X
and Y we obtain different solutions to the above set of
differential equations. As an example we would like to
make the choice

e =(1—r )(1 cr ), Y=rcr— (A4)

where Q and P are real functions of their respective argu-
ments X and Y, both satisfying the ED equation (12).
Direct substitution of (Al) into Eq. (10) leads to the fol-
lowing pair of equations:

n pi (1 r)X,Y,—(1—o )—X Y

n'+1 n' p' (1—H)x', —(1—~')x'.

(A2)

The integration of M follows from the integrability Eqs.
(28) and (29) and the result is

M = —,'X ——,
' I dX X' +4Poe sinh— (A12)

and the space-time metric components become complet-
ed.

The interesting thing in employing two independent
harmonic functions X and Y is that the metric cannot be
diagonalized so that, unlike the case treated in the paper,
we do not need to integrate the metric functions V and W
from the twist potential. We remark finally that the
method used in this appendix to obtain transcendental
solutions was described before. ' A detailed analysis of
such transcendental functions within the context of
COW's, provided any physical interpretation can be at-
tributed to them at all, may be the subject of a future arti-
cle.
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