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Summary. — Using Einstein-Rosen’s linearly polarized waves as the seed
solution, we derive an interesting solution for the Einstein’s equations that
describes the evolution of such waves with the second polarization.

PACS 04.20 — General relativity.

1. — Introduction.

Cylindrical gravitational waves with cross polarization are described by the
line element

e8] ds®=exp[2(y — ¥)](dt? — do?) — exp [2¥](dz + wd¢)® — o2exp [— 2¥]d¢2,

due originally to Jordan, Ehlers, Kundt (') and Kompaneetz (?). Metric functions
¥, y and w are functions of ¢ and ¢ alone and the particular case (e = 0), describing
waves with single polarization, was studied first in a historical paper by Einstein
and Rosen (ER)(®). The vacuum Einstein equations are equivalent to the

(') P.JORDAN, J. EHLERS and W. KUNDT: Abh. Akad. Wiss. Mainz Math. Naturwiss.-
KL, 2 (1960). o

() A. S. KOMPANEETZ: Z. Eksp. Teor. Fiz., 34, 953 (1958) [Sov. Phys. JETP, 7, 659
(1958)].

() A. EINSTEIN and N. ROSEN: J. Franklin Inst., 223, 43 (1937).
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following set of equations:

1 exp[4¥]

@ Fom 0= 0= T ),
@) e +% 0, — 0, = 4, ¥, — ),
@ = oF4 ¥+ e"p—[—‘:‘-’l W+ o),
5) y:=2oY. ¥, + ex_pé:_’f”lwtw;.

A constrained Lagrangian describing this system of equations is

expl4¥] (

(6) L= = d) A - V) - —

wf - w?) ’

where A=p is to be imposed as a coordinate condition subsequent to the
variation. The (¥, ») part of this Lagrangian is equivalent to the one introduced
by Ernst(*) in connection with stationary fields, namely

|ve?
7 =1
( ) 0 (1 - ’5’2)2 3
where
® e (1 —1tw)?— 3%exp[—4¥]

(A +aexp[— 2P+
Equations (2) and (3) are equivalent, now, to the Ernst equation
9 (g -1 VE=28(Vep,
where the gradient and the Laplacian are defined on the geometry
(10) dsf = dp® — dt® + o%dg?,
in which ¢ is a cyclic variable.
In the following section we proceed to derive a solution with a nontrivial

cross-term in the metric (w # 0) and interpret it to describe the self-interacting
gravitational waves.

() F. J. ERNST: Phys. Rev., 167, 1175 (1968).
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2. — The solution.

As the solution of Ernst equation we adopt
1D £ =y(X) exp [iB(X)],

where y and 8 are both functions of a single function X, that satisfies the
cylindrical wave equation

(12) X,-1x -x.=0.

e

Complete integral of this system is given (®) (without electromagnetism) by

2_ cosha cosh2X —1
cosha cosh2X +1°

13)

(14) tg (8 —By) = —sinha ctgh2X,

in which 3, and « are both constants of integration. For our later convenience we
shall make the choice j3,=0, since this can be justified by a coordinate
transformation. Make now the parametrization (%)

_exp[2¥]—-1+1i®
exp2¥1+1+i9’

(15)

where the auxiliary potential ¢ is related to » by the pair of equations

{ 0P =exp[4¥]w,,
(16)

o0, =exp[4 7] w,.
Comparing the foregoing expressions we obtain

1-y* 3 2y sing

17 exp[2¥] = , = .
{17 pLEY] 1+y*—2ycosp 1+y*—2ycosp

Since we are interested in the Einstein-Rosen waves, we would like to choose a
particular seed function given by X =3AJ,(cs) cosat, where J, is Bessel’s
function of order 0, and A arid o are constants. As a result of integrating w from
(16) and the quadrature equation for y, we obtain the following solution for the

() M. HALILSOY: Lett. Nuovo Cimento, 37, 231 (1983).
() S. CHANDRASEKHAR: Proc. R. Soc. London, Ser. A, 408, 209 (1986).
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metric functions:
exp[—2¥] = exp[AJ,cos 5t] sinh? —021 + exp [— AJjcos ot] cosh? % ,

(18) 1 w=—(Asinha)pJ(eo) singt,

y= % AP EHT5+ J5) — 200 J4J1 cos?at] = yig,

where Ji(po) is the Bessel’s function of order 1. It is observed that the metric
function y remains invariant under the addition of cross polarization. This is
connected with the fact that y represents the energy of the waves, as suggested
by various authors (®).

In the limit « =0, our solution obviously reduces to the solution of Einstein
and Rosen. We would like to note also that if one adopts the parametrization (8),
without integrating « from the auxiliary potential &, then the metric that one
obtains will be diagonalizable.

The problem of interacting cylindrical gravitational waves can be cast into a
suitable characteristic form, where the ingoing and outgoing field strengths are
denoted by (I,1,) and (0., 0,) respectively. The notations + and X stand for
the two different polarization states (i.e. linear and cross, respectively). The
field equations (2)-(3) in these new amplitudes take the following first-order
forms (7):

(19) L.=2"%.r0,,
I, -
(20) 0:,= 0. +1,0,,
2p
IX + X
21 Ix,uz 0 _I+O><9
2p
I+ 0y
@2 0.,= 2% o1,
2p

where the null coordinates are defined by 2u=t¢t—-¢ and 2v=%t+¢ and the
amplitudes are defined by

I+=2(]{/‘t+]}f‘c), O+=2(Wt_¥f;)a

(23)
1 = exp[2¥]
e

_ exp [2¥]

(w, + (up) , O (o; — w;) .

() T. PiraN and P. N. SAFIER: Nature (London), 318, 271 (1985).
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In terms of these new amplitudes our solution reads as follows:

24) I.=sA (%) (Josinat + J; cos of)
(25) L=~ ij\i,@ (Josinat +J; cosat),
(26) 0.=54 (%) (Josinst — J, cos st),
27 Oy = % (Josinat — J;cosat),

in which we have abbreviated M = exp[AJ,cos st]sinh®(2/2) — exp[— AJ,cos 7t] -
-cosh®(«/2) and N = exp[—2¥]. '

We can study further the asymptotic behaviour of these fields by making use of
the Bessel’'s functions and the expansion

(28) exp [AJ, cos ot] = 1+ AJ,cosqt.

The asymptotic values can be expressed in a compact form by

12
(29) I=1.+il.=A(%%) sin (E - 2m) explif],
e 4
2 1/2
30) 0=0,+i0, = —A(—’) sin(zn +2ua>exp[—i0],
7P

in which % and v are the null coordinates and we have redefined our second
polarization parameter by tg=sinha. The expression I-0 as can readily be
observed is asymptotically independent of the second polarization.

Similar to the recently published solutions(®*), our solution is regular
everywhere. This feature is decided after one studies the components of the
Riemann tensor. For this purpose we have calculated the only nonzero Weyl
scalars ¥y, ¥, and ¥, in the null tetrad of Szekeres (°). Among these, ¥, is the

() T. PirAN, P. N. SAFIER and J. KaTz: Phys. Rev. D, 34, 331 (1986).
(") P. SZEKERES: J. Math. Phys. (N.Y.), 13, 286 (1972).
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most compact one and we give it here:

a2 A¥(JZsin® ot — J# cos? ot)

31 ¥y = .
@1 ? 8(cosha cosh2X — sinh 2 X)?

-[(coshasinh 2X — cosh2X + 2¢sinh «)? + 3 sinh?a] +

coshasinh2X — cosh2X + 2isinha

+ AT, cos ot
S o T Cosh acosh 2X — sinh 2X

We would like to add that linear superposition of the waves, as sums or
integrals with suitable amplitude factors, can be obtained easily. We mention, as
an example, the form of the waves considered by Bonnor (%), which is obtained
from the ER waves in the way described by Weber and Wheeler (). The seed
solution in this particular case is to be chosen by Y =y/(x?+ y?), where the
coordinates are defined by

(32) p= (@t + D"y -1, t=uay,

where the ranges of these coordinates are — o <x <+ » and 1<y <. In this
coordinate system Laplace equation, V2Y =0 is given by

(33) [(@*+DY.L - [(¥*-1Y,],=0.

The next step is to employ the solution for ¥:

(34) exp[—2¥]=exp[—2Y]sinh? % + exp[2Y] cosh? % s
where a is a constant, and integrate « from the pair of equations

(y?*—D(y*—2x?

w,=2sinha @ty ,
35
(85) . xy(x®+ 1)
wy=4smhaT—2—§—.
(@ +y°)

After this, it remains to integrate for the metrie function y from the
quadrature equations and, as in the Einstein-Rosen case, y turns out to be an

() W. B. BONNOR: J. Math. Mech., 6, 203 (1957).
(™ J. WEBER and J. A. WHEELER: Rev. Mod. Phys., 29, 509 (1957). .
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invariant. In conclusion, the solution is

-2y 2y
2_ . =J 2 —_—
exp[— 2¥]=sinh exp[ Ty :]+cosh exp[x2+y2],
39 | o=2sinha ¥ D,
x? 4yt
@+ Dy -1 y -t -2
= yp=————(6 Y+ .
Cavor A B o e

In the limit a =0, we obtain the solution given long ago by Bonnor(®) and
therefore our solution generalizes Bonnor’s nonsingular fields in general
relativity.

3. - Discussion of energy.

Eells and Sampson(**) define an invariant energy functional from the
harmonic maps between the two given Riemannian manifolds by

af* 3f*
dw® dx?

BN E(f)=5 ngB(f) g®\gdra = % f(Lagrangian) dedt,

It was shown that Einstein equations admitting two killing vectors can be cast
into the mathematical formulation of harmonic maps (¥). For the problem of
cylindrical waves, the two Riemannian manifolds are chosen by

J M:ds? =g, dade’ =de? — dt? + 22dg?,

(38) exp[4¥]

o Gt

| wdsm=guipartarr = - aye-

dx
7
Here f* = {¥, ), », v} represents the harmonic maps such that the integrand of
E(f) coincides with Lagrangian (6), and the variational principle 3E(f) = 0 yields
the Einstein equations.

Let us show first that the Hamiltonian constructed from the Lagrangian
density (6) turns out to be zero. For this purpose we define the conjugate
momenta by P,= af/a,b, etc., where the dot stands for time derivative. The
Hamiltonian dens1ty H, is deﬁned then by

(39) Hoy=Pyy+P,s+Py—7,

(*) J. EELLS jr. and J. H. SaAMPSON: Am. J. Math., 86, 109 (1964).
(™ Y. NUTKU: Ann. Inst. H. Poincaré A, 21, 175 (1974).



570 M. HALILSOY

which leads, after substitutions, to

exp [ ¢l

(40) =1+ )+ (wf +of) = 2.7,

By virtue of eq. (4) and the fact that A = p, this expression for A, vanishes. One
possible way to overcome this difficulty is to consider only the unconstrained
(¢, ») part and neglect the y-term in the Lagrangian. This reduced part of the
Lagrangian is well known to be identical with the Ernst Lagrangian in which y
does not appear. Once this choice is made, our reduced Lagrangian density is

p[4¢]
42

(41) o= 2 - - (e — o),

which yields the positive definite Hamiltonian density

Xp[ ¢l

(42) =1+ + —— (o + o).

Comparing this with eq. (4) we observe that
(43) H=7..

An energy can thus be defined by integrating this density:

(44) E=J’(de= fndF Y

This energy is called «C»-energy and it represents the total gravitational energy
per unit length between ¢ = 0 and  at time ¢. (Note that «C» stands for the word
cylindrical.) It was introduced first by Thorne (*) in 1965 from a different line of
thought. Qur derivation of «C»-energy here is due to Chandrasekhar (%).

We remark that, in order to have a conserved energy, we must have
H=y,=0. The transcendental cylindrical waves found by Chandrasekhar
satisfy this criterion. For the ER waves (and also in this paper) on the other
hand we have

(45) Yt= 211'A20'2p<]0:]1$in20t¢0,

which implies that y, #0.
The energy per unit length in the z-direction confined in the cylindrical

() K. THORNE: Phys. Rev. B, 138, 251 (1965).
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annulus between ¢; and g, (>¢;) is given for the ER waves by

2
- ?

hat

c2 2 )
E=|yd= é[GZ‘OZ(J%"'J%)—20".9J()JlCOSZO't] ‘
(46) de=5

which is a positive definite quantity. However, due to condition (45), the waves
represented by the ER solution are not stationary.

I thank Prof. H. H. Aly for valuable discussions.

® RIASSUNTO (*)
Usando le onde linearmente polarizzate di Einstein-Rosen come soluzione seme, si deduce
una soluzione interessante per le equazioni di Einstein che deserive Pevoluzione di tali

onde con la seconda polarizzazione.

(*) Traduzione a cura della, Redazione.

Kpocc-nonapnzosannbie NHAHAPHYECKHE IPABHTANMONHBIC BOIHBI JiiHmTeiina n Posena.

Pe3tome (*). — Hcrons3yst IMHERHO NOIAPU30BaHHLIE BOJHbLI DMHIITERHA B Po3eHa, Kak
3aTPaBOYHOE PELIEHHE, Mbl BBIBOJIMM MHTEPECHOE pElIeHHE NSl YPaBHEHMH DWHINTCHHA,
KOTOPOE OIMCHIBAET 3IBOJIIOLUIO TAKUX BOJH C BTOPOH MOJISIpH3allUCi.

(*) Ilepesedeno pedaxyueli.



