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We reformulate the initial data on the characteristic surface for colliding waves in the Einstein-
Maxwell theory. This approach takes into account the superposition principle for gravitational and
electromagnetic waves. Finding exact solutions for colliding superposed waves happens to be a
rather challenging problem.

I. INTRODUCTION

Khan and Penrose' and Szekeres gave the first exact
solutions that describe colliding parallel (collinearly) po-
larized gravitational waves in general relativity. Bell and
Szekeres extended the problem of colliding pure gravita-
tional waves to the case of pure electromagnetic (em)
waves. The em degree of freedom in the latter case natu-
rally creates conformal curvature on the null boundaries,
whereas the interaction region becomes conformally Aat.
From the uniqueness property of the non-null Einstein-
Maxwell (EM) solutions, the Bell-Szekeres (BS) solution is
transformable to the Bertotti-Robinson solution. All the
solutions presented by Khan and Penrose (KP), Szekeres,
and Bell and Szekeres (BS) represent colliding waves with
single polarization, and naturally the next step was to
search for colliding waves with the second polarization.
This task was accomplished first, in the realm of pure im-
pulsive gravitational waves, by the Nutku-Halil ' (NH)
solution. Generalization of the BS solution to the cross
polarized case took a relatively longer period. Shortly
after the publication of the NH solution we attempted to
extend the same procedure to the EM theory. We were
well aware, however, that solutions obtained by imitation
of the stationary axisymmetrical EM fields could serve no
more than as solutions for the sake of solutions and that
they do not represent superposed waves. More
specifically, in the black-hole solutions, one can talk
about a charged hole and study its coupled EM fields, but
in colliding gravitational waves (COW's) the waves are
not charged and therefore introduction of em waves must
follow certain rules. The same criticism applies to gravi-
ty coupled with other fields, such as a perfect Quid and
scalar fields.

Our principal aim in this paper is to concentrate on
this particular point and reformulate the problem of
CGW's under the light of a superposition principle in the
EM theory.

The first published paper on colliding waves in the EM
theory appeared in 1985 by Chandrasekhar and Xantho-
poulos (CX). A series of solutions followed subsequently
with new features. ' ' The timelike nature of the emerg-
ing space-time singularity and the formation of a horizon
prior to the singularity are the distinctive features worth
mentioning. These solutions were obtained by employing

the NH-type Ernst potential within the context of EM
theory. Among these solutions, the more interesting ones
are the ones that admit gravitational and em limits in-
dependently. This is the least requirement (although not
sufrlcient) for a proper superposition principle that leads
to the formulation of colliding wave packets in general
relativity. Collision of waves with single plane-wave
fronts are known to inherit the singularity structure from
the pure gravitational waves. Does a singularity arise in
colliding wave packets formed from properly superposed
wave fronts? Present knowledge that has been acquired
does not suffice to answer this question positively.

In Sec. II we review the method for solving EM equa-
tions used so far. In Sec. III we describe the various su-
perposed wave forms on the initial characteristic surface
and this is followed by the conclusion in Sec. IV.

II. METHOD FOR SOLVING EM EQUATIONS

The most essential equations to the EM theory consist
of the symmetrical pair of Ernst equations'

(g'+qg —1)V $=2Vg(gVg+rlVg),

(g+grl 1)V q=2Vq—((Vg'+rIVg),

where g and q represent the gravitational and elec-
tromagnetic (em) complex potentials, respectively. This
pair of equations can be parameterized alternatively by
introducing new potentials Z and 0 in accordance with

Z=, H=1+&
(2)

1 —g' 1 —g

which transform the above pair of equations into

(ReZ —
~H~ )V Z =(VZ) 2HVZ. VH, —

(ReZ —
~H~ )V H=VH VZ —2H(VH)

Next, two auxiliary real potentials 4 and 4 are intro-
duced for convenience through the relation

(4)

To specify the problem suitably for the description of
CGW's, we have to define on which coordinates the
operators V and V act. The choice of coordinates is
rather important and plays a significant role in obtaining
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new solutions. Null coordinates u and v form a useful set
in the formulation of the problem, whereas oblate (pro-
late) types of coordinates proved convenient in solving
the equations. The coordinates

r=u&1 —v'+vV'I —u', ~=u V'1 —v' —vV'I —u'

q2, =
z (4 —2 ImHH ),5

q2
=

2 (@,—2 ImHH, ),
CT

2 (v+@3), 2 (v+@3)
I 0 1 —~2

(12)

were defined in the pure gravitational problem by NH.
n&We had shown also that by replacing u ~u ' and v ~v

'
with (n &, n2) arbitrary real parameters, new solutions can
be obtained. ' Similarly, in the generalization of the BS
solution to the noncollinear polarization case, we intro-
duced conveniently the coordinates

r =sin(au +bv ), cr =sin(au bv ) —.
Without loss of generality, we can fix the constants
a = 1 =b and observe that the sets (5) and (6) are related
by the replacements u ~sinu and v~sinv. One impor-
tant point that aids in choosing the (r, cr) set is the fact
that in passing from linear to cross polarized waves, one
of the metric function, namely U, that appears in the
Szekeres metric below is kept unchanged in the (r, o)
coordinates as (in the next section we shall discuss this
point more)

e-'= &1—r'&I —~' .

The space-time line element in the null coordinates (u, v)

was given first by Szekeres,

, (g,g +q2, q2 )+ (H,H +H„H ),

2r(v+@3),+2cr(v+ @3)

1 —o 2
(b,H,H, +5H H )

h5

4=No
g=V 1 —p go (p=real constant, 0~ ~p~ ~1)

(14)

which reduces the Ernst equations (1) to

(koko 1)~ 40=2ko(~Co)

whose solution is readily available. It is well known that
it admits the NH type of solution

, [~(X'.+q~, )+5(X'.+q2,.)] .x'
The usual trend in solving the pair of Ernst equations

(1) or (2) has been to make a suitable choice for g, g in
such a way that the pair reduces to a single vacuum Ernst
equation. One such possible choice is provided by

ds =2e™dudv —e (e coshWdx +e coshWdy go=p +riqcr (p +q =1) . (16)

2
ds'= e "'&b,

1 —7.2
do

1 —o.2

—&b,5 ydx'+ —(dy q,dx)'—
x

where b, = 1 —r, 5 = 1 —cr, and metric functions depend
on (r, cr) alone. We note also that CX's notation is (q, p)
in place of our (r, o ) here.

The base manifold on which the differential operators
of the Ernst equations act is given by

dv do2 2

dso= — +(1—r )(1—cr )dP2 2 2

1 —r 1 —cr
(10)

where P is considered to be a Killing coordinate. Qnce a
set (g, g), or (Z, H), of solutions to the Ernst equations is
known, the metric function g is given by

where '0 is obtained from (4). What remains now is to in-
tegrate q2 and v+p3 from the following coupled equa-
tions:

—2 sinh W dx dy)

in which all metric functions depend on u and v alone.
The metric of CX employs (r, cr) coordinates directly and
their line element is quoted as

The straightforward integration of the quadrature equa-
tions [for the ( —) choice of sign] results in the following
metric functions:

~+@, (1 Ppr) +—q P cr

p(1+P )(1—r )+2Prq (1—cr )

q (1 pr q'c—r')—
X=. . .[(1 Ppr)'+q'P'—~'] .&~5

1 p2 qcr— —
This solution has the feature that in the limits p=0 and 1

it reduces to em and gravitational limits, respectively.
We have analyzed this solution independently' from CX
and obtained the Weyl curvature components to satisfy

9%'2=%,%4,

i.e., the space-time belongs to a particular type-D class.
This solution (and all the others obtained by CX) has the
property that em and gravitational waves overlap on the
initial characteristic surface. In the next section we shall
show that this property does not imply that the different
types of waves were superposed in the initial data.

III. COLLISION OF SUPERPOSED WAVES
IN GENERAL RELATIVITY

On account of being a highly- nonlinear theory, super-
position of waves in general relativity works only in a
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particular coordinate system. This coordinate system is
known to be the harmonic, or Brinkmann, ' system, in
which the line element can be expressed by

ds 2 =2 d U d V dX—dY— 2H—( U, X, Y)dU, (19)

ao
F(u) =cos[au 8(u)] — sin[au 8(u)],

ao6(u)=cos[au8(u)]+ sin[au8(u)],
(24)

where H( U, X, Y) contains the only available information
that provides a nonAat metric. The Riemann tensor com-
ponents of this line element are nontrivial only in the
direction of motion and for this reason the metric
represents longitudinal waves. The type of the waves
(i.e., gravitational, em, scalar, etc.) can be characterized
by specifying the function H(U, X, Y). In the following
we consider a number of particular cases.

where the constants are related by

ao= ~o a =&o2=

We can check that our line element represents the correct
initial data for superposed impulse gravitational and the
shock em waves. For this purpose, we observe that in the
limit a —+0 (and let ao = 1) we obtain

F(u)=1 —u8(u), 6(u)=1+u8(u) (25)

A. Superposition of impulsive gravitational wave
with a shock em wave

The choice for H ( U, X, Y) in this case is given by

H(U, X, Y) =-,' A, ( Y' —X')5(U) —
—,'B,(X'+ Y')8(U),

(20)

where A o and Bo are amplitude constants and 5( U) and
8(U) represent the usual Dirac delta function and the
unit step function, respectively. We would like to add
that we restrict ourselves exclusively to the case of linear-
ly polarized waves. To extend the discussion to cover
also the cross-polarized waves, it sufBces to include addi-
tional terms in H(U, X, Y). It is evident that the first
term represents the impulsive gravitational wave, while
the second stands for the shock em wave, and by super-
position, we mean their addition in this sense. Once we
define superposition, we have to seek a new coordinate
system in which we can discuss the collision of such su-
perposed waves. The harmonic coordinate system
( U, V, X, Y) is not a good choice for the discussion of col-
lision. A useful coordinate system (u, v, x,y), in which
collision of waves can suitably be formulated is known as
the Rosen form. ' The line element in the Rosen form
that represents linearly polarized waves is given by

ds =2du dv —F (u)dx —G (u)dy (21)

U=u, X=xF,
V=v + ,'(x FF„+y GG„)—, Y =yG .

(22)

Direct substitution of these coordinates into (19) gives us
the conditions that the Rosen metric functions F and 6
must satisfy. These are the differential equations

F„„=—[305(u)+B08(u)]F,

6„„=[ A 05(u) —BO8(u) ]6,
whose solutions are

where F and 6 depend only on the null coordinate u. Let
us add that the nontrivial Riemann tensor components
occur in the x,y directions, therefore, this form of the
metric represents transverse waves. The transformation
that brings our line element (19) into the Rosen form (21)
is given by

which are the incoming (region-II) metric functions for
the KP solution for the impulsive waves. Similarly, in
the limit ao~0 we obtain

F(u) =6 (u) =cos[au 8(u)] (26)

which are the incoming (region-II) metric functions for
the BS solution for the em shocks.

The nonvanishing Newman-Penrose quantities for the
line element are

% 4= 205(u) C 22=BO8(u) (27)

Solutions for colliding EM waves that are obtained so far
by the method of the previous section have, in region II,
the general behaviors

Re+4=const X5(u)+P(u)8(u),

1m', =const X 5(u)+ g (u)5(u),

4zz=R (u)8(u),

(28)

where P, Q, and R are functions of u. By an inverse
transformation to the harmonic coordinates such a
metric cannot be reduced to a simple superposition of
gravitational and em waves. (Note that due to the cross
polarization, it gives 1m+4&0, in the latter case. )

Interchanging now u and U, we can write the incoming
Rosen line element for region III:

2

ds =2du dv — cos[bv8(v)] — sin[bv8(v)] dx2 &o 2

b
r 2

bo
cos[bv8(v)]+ sin[bv8(v)] dy

b
(29)

where the constants (bo, b) are similar to the constants
(ao, a) of region II. What remains now is to find the in-
teraction region (region IV) such that for u &0 we shall
recover the line element (29). None of the solutions ob-
tained by CX has the simultaneous boundary conditions
of KP and BS. The reason for this is connected with the
improper choice of the ( r, cr ) coordinates. One may
choose the gravitational coordinates (5) so that one may
reduce to the KP limit without the BS limit. The choice
of em coordinates (6) gives us an opposite situation,
namely, BS limit without the KP limit. It is therefore im-
portant to discover a set of (~,0. ) coordinates which will
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ds =2du du —e (e dx +e dy ), (30)

where

play the dual role simultaneously. Finding of such coor-
dinates goes as follows.

The Rosen form of region II is given in Szekeres form
by

( U —V)/21
0 ~2 U

(38)

The basic EM equations to be solved for A and Vare

such that the em null tetrad components are expressed by

e( U —V)/21
2 Q2 El

—U v F
e =FG, e

G

e is given explicitly by

(31) ' 1/2
1 —r

e
1 —o.

—ve
2

1/2
1 —a

A =0,

0a
e =cos [au8(u)] — sin [au8(u)]

a
2ap=1— 1+ sin [au0(u)] .

a
(32)

[(1—2)V, ],—[(1—o') V ]
1/2

-v= —ke
1 —a

A 2
7

' 1/2
1 0

A

(39)

(e )„,=0.
We obtain

(33)

a
e =1— 1+ sin [au8(u)]0

a

In region III we have the same expression with u~v,
ap~b 0, and a ~b. We can extrapolate the metric func-
tion e into the interaction region without much effort,
such that it satisfies the equation

The BS solution corresponds to
1/2

1 —cr

1 —2 A =&2/k o,

while the KP solution is given by

e'=, A =0.1+v
1 —7-'

(40)

(41)

(42)

1+ sin [bUH(U)],
bp

b2
(34)

Such a possible (w, o ) set is given by
2 1/2

1w= —sinau 1— sinbv

+, sinbv 1—1

P

10 =—sinau 1—

sinau

sinbv

' 2 1/2

2 1/2 (35)

which is required to be expressed in the coordinates (~,o )

by

e
—U +1 ~2+1 o2

A =&2/k sinbve (43)

e =cosbv
1 Qpu

1/2

cos bv —apu

It would be rather interesting to find the solution that de-
scribes both KP and BS solutions simultaneously.

Finally we want to discuss a particular case of the
problem that we have just formulated. Let us suppress
the em field from region II and the gravitational field
from region III. The problem reduces then to the case of
collision of an impulse gravitational wave with an em
shock wave. This problem is relatively much simpler and
its solution is available in the literature. ' It is given in
terms of the Szekeres metric functions by

1+apu
V

1 —apu

where

1
, sinbv 1— sinau

This problem has been solved without reference to the
(~,o.) coordinates, but once we attempt to extend the
waves to the cross polarized cases we realize the difBculty
in working with the null coordinates.

' 1/2
ap1+
a

1/2

', =1+ '
p' b2

(36)

A„=A (u, U)5", (37)

It can be checked that in the simultaneous limits a~0
and b ~0 this set of (~, o)reduces to (5), wh. ereas to ob-
tain (6), it suffices to set a0~0 and b0~0.

The em vector potential for the present problem can be
chosen by

B. Superposition of impulsive gravitational
waves

In analogy with the superposition of an impulsive grav-
itational and a shock em wave, we can superpose also two
or more gravitational impulse waves. For this purpose
we choose the H( U, X, Y) function by

H(UX, 1')=(X —Y )[a05(U)+b()5(U —Ui )],
where ap and bp are amplitude constants and U, shows
the location of the successive wave front. The metric is
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F„„=[a 05( u) +b05( u —u, )]F,
G„„=—[ao5(u)+b05(u —u, )]G .

Solutions for F and G are given by

F (u) = 1+aou 0(u)

+bo(1+aou, )(u —u, )0(u —u, ),
G(u) = 1 —aou 0(u)

—bo(1 —aou, )(u —u, )0(u —u, ) .

(45)

(46)

In order to find a useful pair of (r, cr) coordinates, we
manipulate the expression e =I'G, in such a way that
it is expressed in the form (7). We observe, after simple
calculation that, if the wave front is chosen to be located
at u, =(2laobo)', then the metric function e is ex-
pressed by

U=l —aou 0(u) —bo(u —ui) 0(u —u, ), (47)

i.e., in the KP form. We have a similar expression in re-
gion III given by

e =1—cou 0(v) —do(u —u, ) 0(v —v, ), (4&)

with different constants c0 and d0. To simplify it more,
we make the choices for the constants

transformed into the Rosen form (21) provided F and G
satisfy in this case

and in the limit u&~0, solution of this problem must
reduce to the solution of KP.

C. Superposition of shock em waves

Another example for colliding superposed waves in
EM theory is when the H ( U, X, Y) function is given by'

H(U, X, Y)=—,'(X + Y ) g 3;0(U —U;), (53)

which represents the superposition of an arbitrary num-
ber of em shock waves. The constants 3, and U,- stand
for the amplitude and location of the ith shock, respec-
tively. The metric is transformed into the Rosen form as
described in Ref. 19. The Riemann tensor for this metric
gives a series of decoupled 5 functions implying that no
interaction occurs between the different shocks. As it has
been shown in Ref. 19, this model is a soluble one—in
fact, the only solved model for colliding superposed
waves so far—and the solution amounts to the replace-
ments

However, since the collision problem of single shocks
has not been solved yet, it will be inconvenient to discuss
the collision of their superposition. By the particular
choices,

1b0= —b =
u,

2a0=1=C b =
0 0~ 0 2~ 0

Q)
2
1

(49)
au 0(u)~ g a, (u —u, )0(u —u, ),

(54)

such that u I and u& remain the only free parameters in
the problem. We define now the suitable (r, o.) coordi-
nates for the problem by

r =r)&1 p, '+p&1—
~ =g&1—p' —@&I —g',

where

(50)

H = —
—,
' (X —Y )[ho 0( U) +b, 0( U —U, ) ] . (52)

g=u+ (u —ui), p=u+ (v —u ) . (51)
1 1

For u (u, and u (u, these coordinates reduce to the
ones (5), introduced by NH. It would be rather interest-
ing to see an exact solution for the collision problem of
superposed impulsive gravitational vyaves as described in
this section. The weak-field approximation of this prob-
lem has already been considered by Szekeres.

We want to point out also that we can superpose the
shock gravitational waves in a similar manner. This
amounts to consider the H( U;X, Y) in the form

bv0(u)~ g b;(v —u;)0(v —u;),

in the BS solution.

IV. CONCLUSION

A single plane wave is an idealized concept that may
hardly exist in nature. The occurrence of singularities
due to their focusing also is attributed to the perfectly
planar property of the plane waves. It is therefore
more realistic to consider such plane waves in succession,
so that we can handle the sum as a wave packet. In this
paper we have formulated the initial characteristic data
for the collision problem of such superposed waves.
Finding an exact solution, however, remains challenging
and we expect that this new approach will guide the
researchers in the field of CGW's.
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