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ABSTRACT

In this paper, a method to reduce the error prop-
agation in Decision Feedback Equalizers (DFEs) is
addressed. An M-level staircase nonlinearity is pro-
posed for the feedback chain of the DFE.

Analytical results are presented to show advantages
obtained with increasing M. Finally, the saturation
nonlinearity (the limiting case as M tends to infinity)
is suggested for the DFE. Simulations are provided to
support the proposed DFE. Its performance i1s found
to be better than that of the recently proposed Era-
sure DFE.

I. INTRODUCTION

Communications systems at high bit rates suf-
fer from Inter-Symbol-Interference (IST). Both Lin-
ear Equalization (LE) and Decision Feedback Equal-
ization (DFE) may be used to suppress the IST [1].
However, DFE has received more interest than LE
for its better error rate performance particularly on
channels having spectral nulls (e.g. frequency selec-
tive multipath channels).

The DFE consists of two transversal filters, a feed-
forward filter (FFF) and a feedback filter (FBF). In
DFE, the aim is to cancel ISI due to previously de-
tected symbols by subtracting it at the input of the
decision device (or slicer). The major problem in this
scheme is the so called error propagation; a decision
error propagating through the FBF enhances ISI in-
stead of cancelling it. Thus, a single error may cause
a burst of errors in subsequent decisions. As reported
in [1], the performance loss due to this phenomenon
1s approximately 2dB for some channels.

Recently, a modification has been made in DFE
structure to reduce the effect of error propagation [2].
Instead of using final decisions supplied by the slicer
as the symbols fed back, symbols from a different non-
linearity were used. This modified scheme is depicted
in Figure 1. With the dead-zone limiter nonlinear-
ity proposed in [2], the modified DFE (called Erasure
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Figure 1: The modified DFE.

DFE) operates as follows

sty = { 1)

where a(k) is the traditionally decided symbol. In
this case, an input sample with absolute value below
a certain threshold is assumed unreliable and no de-
cision is fed back; so error propagation is reduced by
avoiding feedback of the less reliable symbols. Ana-
lytical and experimental results have shown that the
approach is promising [2].

In this paper, the dead-zone limiter nonlinearity
is viewed as a 3-level uniform mid-thread quantizer
and the analytical results in [2] are extended to
M-level quantizer characteristics. Analytical results
have shown a significant improvement in performance
as the number of levels, M| is increased. So we sug-
gest a saturation nonlinearity (limiting case as M ap-
proaches infinity) for the feedback chain of the DFE.

The paper is organized as follows. The system
model and the nonlinearities are presented in sec-
tion II. Section III presents analytical results for
one-memory channels. Extension via simulations to
higher memory channels is made in section IV. Con-
clusions, together with possible future work, are made
in the last section.

ly(k)| > A

otherwise

II. SYSTEM MODEL

The combination of the actual channel and the feed-
forward filter shown in Figure 1 is assumed to satisfy

2(k) = a(k) + Z hja(k — j) 4 n(k) (2)
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Figure 2: (a) Dead-zone nonlinearity, (b) 5-level stair-
case nonlinearity, (¢) saturation nonlinearity.

where a(k) is the current symbol to be detected, h;
is the j-th channel response sample, n(k) is the ad-
ditive noise and (k) is the noisy output of the FFF.
Furthermore, a(k)e{4+1, —1} with equal probabilities
and n(k) is zero mean Gaussian with variance o?.
Equation (2) assumes the use of an infinite length
zero-forcing FFF to remove the precursor IST [3].

Some of the several possible nonlinearities that can
be used are illustrated in Figure 2. Figure 2(a) cor-
responds to the dead-zone limiter. Figure 2(b) is its
extension to b-levels. The nonlinearity in the limit-
ing case, as the number of levels approach infinity,
which we call the saturation nonlinearity, is depicted
in Figure 2(c).

Compared to the E-DFE given by (1), the DFE
with saturation nonlinearity operates as follows.

b(k) = {

For obvious reasons, the latter is called the Soft-DFE
(S-DFE).

j=

(k) ly(k)] > A
y(k) otherwise

(3)
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III. ANALYTICAL RESULTS

We consider a 1-bit memory channel, that is, 2y # 0
and h; = 0 for j > 1. In contrast to [2], we provide
analytical results for arbitrary number of levels. Let
us represent the M-level uniform mid-thread quan-
tizer by ¥(.). The output of the nonlinearity, b(k), is
given by

b(k) = Ww(k) — hib(k — 1)] (4)
where
(k) = a(k) + hia(k — 1) + n(k) (5)

Define the error term as

Subtract both sides of (4) from a(k) and use (5) and
(6) to get

(k) = a(k) — W[a(k) + hoe(k— 1) + n(k)]  (7)

Let s(k) = hie(k) be the error state at time & and
rewrite (7) as

s(k) = hifa(k) — V(a(k) + s(k — 1)+ n(k))] (8)

Note that (8) describes a finite state, discrete time
Markov chain. The number of states is determined,
as will be shown, by the number of levels, M| in ¥(.).

Let the entire real line, over which ¥(.) is defined,
be partitioned into M regions as Ry = (—o0,r1], Ry =
(r1,7ra), ..., Rar = (rar—1,00).  All finite length re-
gions, except the one centered at the origin, Rar+1,
are of equal length, which is denoted by A,. Each
region has the corresponding level denoted by v;. For

symmetry we set r; = —ry—; and v; = —vpr41-4,
= 1,2,...,Mz_1 and vmsr = 0. We limit the
ranges for r; and v; setting r1 = —rpy_1; = —A and
vy = —vpy = —1. So, for the uniform characteristics
we have
M+1
== (ce DA, =12, 2L (9)
and
20— M —1

; = =12, ..M 10

! M—1 (10)
where A, = A;—él.

The possible values of e(k) in (7) are given
by {£1 — v} ,. Particularly, for M = 3, we
have error values {2,1,0,—1,—2} and the states
{2h1,h1,0,—hy,—2h1}, since v1 = —1,v5 = 0 and
vz = 1. Thus, the number of states is 5. In general,
this number is given by N = 2M — 1. Let S be the
state space of the Markov chain. Note that S is a dis-
crete set with elements {s1, ss,...,s5}. The ordering
of states is assumed to be as sy = 2hy, ..., 53 = —2h1.
The state diagram for M =5 is illustrated in Figure
3. Note that each state can be reached from all states.

In the following we define p;;(k) as the transition
probability from the j-th state, s;, to the :-th state,
s;, at time k. The set of all states can be divided
into two subsets. One subset is the set of states that
can be reached by a(k) = +1 and the other subset is
the set of states that can be reached by a(k) = —1.
We denote the former by S} and the latter by S_. It
should be noted that both have the zero state as the
common element. Specifically, Sy = {2hy,hy,0} =
{51, 89, 53} and S_ = {0, —hl, —2]7,1} = {53, S84, 55}
for M = 3. In general, s;;2 = 1,2,..., M — 1, are
elements of S, — {0} and s;,¢ = M + 1,.., N are
elements of S_ — {0}. The zero state spreS; NS_.



Figure 3: State diagram for the 5-level staircase non-
linearity.

It can easily be shown that

pPril+s; + n(k) eR;} 1=1,2,... . M-1
pPril+s; + n(k) eRar }+
gPr{—1+s; +n(k) eR1}
1=M
gPr{—1+s; + n(k) eRi_ar}
t=M+1,...,N

pij(k) =

for y = 1,2,..., N, or equivalently,

pPriri_1 <1l4s; +n(k) <r}
i=1.9.. M—1
pPrira—1 <1+s; +nlk) <rat+
gPrirg < =1+ s; + n(k) <ri}
1=M
gPriri_m < —14s; +n(k) <ri_pg1}
t=M+1,...,N

(11)
Note that rg = —oo and rpy = oco. In terms of the
Cumulative Distribution Function (CDF) of the noise
term n(k), say F'(n), we may express (11) as

plF(ri =1 =5;) = F(riey — 1 = s;)]
i=1,2,... . M-1
pll — F(rar—1 — 1 —s5)]+
gF(ri +1—s5)]
1=M
gFricpgr +1—55)—
Flriom +1—sj)]
t=M+1,...,N
(12)
using F'(o0) = 1 and F(—o0) = 0. Note that k is
dropped since the CDF does not depend on time. For
example, the above equation for case M = 5 gives the
following list of transition probabilities;
pij =pF(=A—1-3;)
p2j = p[F(=A/2—1—5j) = F(=A—1—3s;)]
pay = PLP(A/2— 1= s5) = P(=A/2— 1 - 5,)]

pij(k) =

[
paj = p[I(A—1-s;) = F(A/2—1-s;)]
psj = p[l = F(A—1=s;)]+ ¢ (-A+1-s;)]
pej = ¢ (—=A/2+1—s;) = F(=A+1-s;)]

prj = q[F(A24+1=5;) = F(=A/2+ 1 — ;)]
pe; = alP(A+1—5;) = F(A/24 1~ 5)
poj = q[l = F(A+1—s;)]

where j =1,2,...,9.

Define P, with elements p;;, as the one-step transi-
tion matrix of the Markov chain. The dimensionality
of the matrix depends on the cardinality of the state
space S. Thus, it is an N x N matrix.

The chain is homogenous since the probabilities do
not depend on k; is irreducible since every state is
accessible from every other state in one step; is aperi-
odic since a self loop with nonzero probability exist in
every state and is trivially recurrent [4]. Then, there
exists a limiting probability of states that satisfy

I =PI (13)

where the elements of vector Il = [p1, p2, ..., pn]* and
pi = limg o Pr{s(k) = s;}. The probability of error
at equilibrium is given by

P, ='W (14)

where W = [wy,ws,...,wn] is the vector with ele-
ments that correspond to the error probabilities at
each state.

The decision variable for symbol a(k) at state s; is

y(k) = a(k) + s + n(k) (15)
and the slicer operates as follows:

a(k) = sign(y(k)) (16)
Here, the probability of error is given by

w; = pPr{y(k) <O0la(k)=+1}+ (17)
qPriy(k) > Ola(k) = -1}
= pF(=1=sj)+¢q[l = F(+1 - s;)]

forj=1,2,...,.N

IV. NUMERICAL RESULTS AND
SIMULATIONS

A. Short-Memory Case

This section presents numerical results for one
memory channel with respect to the threshold value
A, the channel coefficient hq, the Signal-to-Noise ra-
tio SN R, and the number of levels M. The SNR is
defined as 1010g#.

In Figure 4, we present the results for P.(A)
normalized by P.(0)|a=o, which is represented as
P.(A)/P.(0), with respect to A for several values of
M. The other parameters are fixed as h; = —0.7,
SNR = 6dB and p = ¢ = 0.5. The case A = 0
corresponds to the traditional DFE. So, values of
P.(A)/P.(0) lower than unity indicate improvement
relative to DFE. Two observations are made as we
increase M ;
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Figure 4: The P.(A)/P.(0) with respect to A for E-
DFE (hy = —0.7,SNR = 6 dB) for various number
of levels; 1) 3, ii) b, iii) 9, iv) 33, v) 65, vi) 129, vii)
257 and viii) 513.
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Figure 5: The P.(A)/P.(0) with respect to A (h; =
—0.7, M = 513) for several SN R values.
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Figure 6: The P.(A)/P.(0) with respect to A

(SNR = 9dB, M = 513) for values of hy =-0.6, -0.7
and -0.8.
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Figure 7: The burst percentage versus burst length
histogram for DFE, E-DFE and S-DFE for different
values of A with SN R = 9dB and channel coefficients
h=[-06 —03 —02 —0.2 —0.1].

1. The range of A, for which the method
improves the performance, increases
2. The optimum performance gets better

It can be easily seen that the optimum value of A
depends on the number of levels and it increases as
M increases. As Figure 4 indicates, safer choice of A
is possible for larger values of M. As M approaches
infinity the nonlinearity ¥(.) approaches to the sat-
uration nonlinearity shown in Figure 2(c). Thus,
we suggest to use this nonlinearity in the modified
DFE structure because of its better performance for
a wide range of A and ease of practical implementa-
tion. Hereafter, the DFE with this nonlinearity will
be referred to as the Soft DFE (S-DFE).

The optimum value of A also depends on noise vari-
ance and channel coefficient. This can be easily ob-
served from Figure 5 and Figure 6.

In Figure 5, we fixed M = 513 and presented re-
sults for SNR =0, 3, 6, 9 and 12 dB. The results ex-
hibited in Figure 6 are for hy = —0.8, —0.7 and —0.6
with M = 513 and SN R = 9dB. The strong depen-
dence of the optimum value of A on the corresponding
system parameters is evident from the figures.

B. Long-Memory Case

The exact analysis of S-DFE, even for one-memory
channel is difficult, if not impossible. So, in this
section we evaluate the performance of the proposed
DFE and compare with the DFE and E-DFE through
Monte Carlo simulations for a channel memory higher
than 1. The simulated channel 18 h; = —0.6,hy =
—0.3,h3 = —0.2,h4 = =0.2,h5 = —=0.1 and h; = 0 for
j > 5. The SNR was set to 9dB. Figure 7 presents
the histogram of the length of burst errors for DFE
(A = 0), E-DFE (A = 0.1 and 0.25) and S-DFE
(A = 0.1 and 0.25). The best result is obtained by
S-DFE with A = 0.25. Although the number of burst
errors of length 1 bit is still higher than that of the



DFE but smaller than that of the E-DFE, the burst
errors of length greater than 1 are significantly re-
duced in comparison to both DFE and E-DFE.

V. CONCLUSION

In this paper, steps towards the proposal of a soft
DFE has been introduced. It has been shown that
it is possible to reduce the effect of error propaga-
tion in DFE, which i1s a long standing problem. It
has been demonstrated that the threshold A strongly
dependent on the channel coefficients and the noise
level. In the companion paper [5], a method has been
suggested to determine the optmum value of A using
a quite different point of view based on fuzzy logic.
In addition, extension of the S-DFE to higher signal
constellations is currently under considerations.
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