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ABSTRACT

In this paper, a method to reduce the error prop-
agation in Decision Feedback Equalizers (DFEs) is
addressed. An M -level staircase nonlinearity is pro-
posed for the feedback chain of the DFE.

Analytical results are presented to show advantages
obtained with increasing M . Finally, the saturation
nonlinearity (the limiting case as M tends to in�nity)
is suggested for the DFE. Simulations are provided to
support the proposed DFE. Its performance is found
to be better than that of the recently proposed Era-
sure DFE.

I. INTRODUCTION

Communications systems at high bit rates suf-
fer from Inter-Symbol-Interference (ISI). Both Lin-
ear Equalization (LE) and Decision Feedback Equal-
ization (DFE) may be used to suppress the ISI [1].
However, DFE has received more interest than LE
for its better error rate performance particularly on
channels having spectral nulls (e.g. frequency selec-
tive multipath channels).

The DFE consists of two transversal �lters, a feed-
forward �lter (FFF) and a feedback �lter (FBF). In
DFE, the aim is to cancel ISI due to previously de-
tected symbols by subtracting it at the input of the
decision device (or slicer). The major problem in this
scheme is the so called error propagation; a decision
error propagating through the FBF enhances ISI in-
stead of cancelling it. Thus, a single error may cause
a burst of errors in subsequent decisions. As reported
in [1], the performance loss due to this phenomenon
is approximately 2dB for some channels.

Recently, a modi�cation has been made in DFE
structure to reduce the e�ect of error propagation [2].
Instead of using �nal decisions supplied by the slicer
as the symbols fed back, symbols from a di�erent non-
linearity were used. This modi�ed scheme is depicted
in Figure 1. With the dead-zone limiter nonlinear-
ity proposed in [2], the modi�ed DFE (called Erasure

+
+

–

FFF

x(k) y(k)

SLICER

NON-
LINEARITY

FBF

b(k)

)(ˆ ka

From
Channel

Figure 1: The modi�ed DFE.

DFE) operates as follows

b(k) =

�
â(k) jy(k)j > A
0 otherwise

(1)

where â(k) is the traditionally decided symbol. In
this case, an input sample with absolute value below
a certain threshold is assumed unreliable and no de-
cision is fed back; so error propagation is reduced by
avoiding feedback of the less reliable symbols. Ana-
lytical and experimental results have shown that the
approach is promising [2].
In this paper, the dead-zone limiter nonlinearity

is viewed as a 3-level uniform mid-thread quantizer
and the analytical results in [2] are extended to
M -level quantizer characteristics. Analytical results
have shown a signi�cant improvement in performance
as the number of levels, M , is increased. So we sug-
gest a saturation nonlinearity (limiting case as M ap-
proaches in�nity) for the feedback chain of the DFE.
The paper is organized as follows. The system

model and the nonlinearities are presented in sec-
tion II. Section III presents analytical results for
one-memory channels. Extension via simulations to
higher memory channels is made in section IV. Con-
clusions, together with possible future work, are made
in the last section.

II. SYSTEM MODEL

The combination of the actual channel and the feed-
forward �lter shown in Figure 1 is assumed to satisfy

x(k) = a(k) +
1X
j=1

hja(k � j) + n(k) (2)
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Figure 2: (a) Dead-zone nonlinearity, (b) 5-level stair-
case nonlinearity, (c) saturation nonlinearity.

where a(k) is the current symbol to be detected, hj
is the j-th channel response sample, n(k) is the ad-
ditive noise and x(k) is the noisy output of the FFF.
Furthermore, a(k)�f+1;�1g with equal probabilities
and n(k) is zero mean Gaussian with variance �2.
Equation (2) assumes the use of an in�nite length
zero-forcing FFF to remove the precursor ISI [3].
Some of the several possible nonlinearities that can

be used are illustrated in Figure 2. Figure 2(a) cor-
responds to the dead-zone limiter. Figure 2(b) is its
extension to 5-levels. The nonlinearity in the limit-
ing case, as the number of levels approach in�nity,
which we call the saturation nonlinearity, is depicted
in Figure 2(c).
Compared to the E-DFE given by (1), the DFE

with saturation nonlinearity operates as follows.

b(k) =

�
â(k) jy(k)j > A
1

A
y(k) otherwise

(3)

For obvious reasons, the latter is called the Soft-DFE
(S-DFE).

III. ANALYTICAL RESULTS

We consider a 1-bit memory channel, that is, h1 6= 0
and hj = 0 for j > 1. In contrast to [2], we provide
analytical results for arbitrary number of levels. Let
us represent the M -level uniform mid-thread quan-
tizer by 	(:). The output of the nonlinearity, b(k), is
given by

b(k) = 	[x(k)� h1b(k � 1)] (4)

where

x(k) = a(k) + h1a(k � 1) + n(k) (5)

De�ne the error term as

e(k) = a(k)� b(k) (6)

Subtract both sides of (4) from a(k) and use (5) and
(6) to get

e(k) = a(k)� 	[a(k) + h1e(k � 1) + n(k)] (7)

Let s(k) = h1e(k) be the error state at time k and
rewrite (7) as

s(k) = h1[a(k)�	(a(k) + s(k � 1) + n(k))] (8)

Note that (8) describes a �nite state, discrete time
Markov chain. The number of states is determined,
as will be shown, by the number of levels, M , in 	(:).

Let the entire real line, over which 	(:) is de�ned,
be partitioned intoM regions as R1 = (�1; r1]; R2 =
(r1; r2]; :::; RM = (rM�1;1). All �nite length re-
gions, except the one centered at the origin, RM+1

2

,

are of equal length, which is denoted by �r. Each
region has the corresponding level denoted by vi. For
symmetry we set ri = �rM�i and vi = �vM+1�i,
i = 1; 2; :::;M�1

2
and vM+1

2

= 0. We limit the

ranges for ri and vi setting r1 = �rM�1 = �A and
v1 = �vM = �1. So, for the uniform characteristics
we have

ri = �rM�i = (�
M + 1

2
+ i)�r i=1,2,...,M�1

2
(9)

and

vi =
2i�M � 1

M � 1
i=1,2, ...,M (10)

where �r =
2A
M�1

.

The possible values of e(k) in (7) are given
by f�1 � vig

M
i=1. Particularly, for M = 3, we

have error values f2; 1; 0;�1;�2g and the states
f2h1; h1; 0;�h1;�2h1g, since v1 = �1; v2 = 0 and
v3 = 1. Thus, the number of states is 5. In general,
this number is given by N = 2M � 1. Let S be the
state space of the Markov chain. Note that S is a dis-
crete set with elements fs1; s2; :::; sNg. The ordering
of states is assumed to be as s1 = 2h1; :::; sM = �2h1.
The state diagram for M = 5 is illustrated in Figure
3. Note that each state can be reached from all states.

In the following we de�ne pij(k) as the transition
probability from the j-th state, sj , to the i-th state,
si, at time k. The set of all states can be divided
into two subsets. One subset is the set of states that
can be reached by a(k) = +1 and the other subset is
the set of states that can be reached by a(k) = �1.
We denote the former by S+ and the latter by S�. It
should be noted that both have the zero state as the
common element. Speci�cally, S+ = f2h1; h1; 0g =
fs1; s2; s3g and S� = f0;�h1;�2h1g = fs3; s4; s5g
for M = 3. In general, si; i = 1; 2; :::;M � 1, are
elements of S+ � f0g and si; i = M + 1; :::; N are
elements of S� � f0g. The zero state sM �S+ \ S�.
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Figure 3: State diagram for the 5-level staircase non-
linearity.

It can easily be shown that

pij(k) =

8>>>>>><
>>>>>>:

pPrf1 + sj + n(k) �Rig i=1,2,...,M -1
pPrf1 + sj + n(k) �RMg+

qPrf�1 + sj + n(k) �R1g
i = M

qPrf�1 + sj + n(k) �Ri�Mg
i = M + 1; :::; N

for j = 1; 2; :::; N , or equivalently,

pij(k) =

8>>>>>>>>>><
>>>>>>>>>>:

pPrfri�1 < 1 + sj + n(k) � rig
i = 1; 2; :::;M � 1

pPrfrM�1 < 1 + sj + n(k) � rMg+
qPrfr0 < �1 + sj + n(k) � r1g

i = M
qPrfri�M < �1 + sj + n(k) � ri�M+1g

i = M + 1; :::; N

(11)
Note that r0 = �1 and rM = 1. In terms of the
Cumulative Distribution Function (CDF) of the noise
term n(k), say F (n), we may express (11) as

pij(k) =

8>>>>>>>>>><
>>>>>>>>>>:

p[F (ri � 1� sj)� F (ri�1 � 1� sj)]
i = 1; 2; :::;M � 1

p[1� F (rM�1 � 1� sj)]+
qF (r1 + 1� sj)]

i = M
qF [ri�M+1 + 1� sj)�

F (ri�M + 1� sj)]
i = M + 1; :::; N

(12)
using F (1) = 1 and F (�1) = 0. Note that k is
dropped since the CDF does not depend on time. For
example, the above equation for case M = 5 gives the
following list of transition probabilities;
p1j = pF (�A� 1� sj)
p2j = p[F (�A=2� 1� sj) � F (�A� 1� sj)]
p3j = p[F (A=2� 1� sj)� F (�A=2� 1� sj)]
p4j = p[F (A� 1� sj)� F (A=2� 1� sj)]
p5j = p[1� F (A� 1� sj)] + qF (�A + 1� sj)]
p6j = q[F (�A=2 + 1� sj) � F (�A + 1� sj)]

p7j = q[F (A=2 + 1� sj) � F (�A=2 + 1� sj)]
p8j = q[F (A+ 1� sj)� F (A=2 + 1� sj)]
p9j = q[1� F (A+ 1� sj)]
where j = 1; 2; :::;9.
De�ne P , with elements pij, as the one-step transi-

tion matrix of the Markov chain. The dimensionality
of the matrix depends on the cardinality of the state
space S. Thus, it is an N � N matrix.
The chain is homogenous since the probabilities do

not depend on k; is irreducible since every state is
accessible from every other state in one step; is aperi-
odic since a self loop with nonzero probability exist in
every state and is trivially recurrent [4]. Then, there
exists a limiting probability of states that satisfy

� = P� (13)

where the elements of vector � = [p1; p2; :::; pN]t and
pi = limk!1Prfs(k) = sig. The probability of error
at equilibrium is given by

Pe = �tW (14)

where W = [w1; w2; :::; wN] is the vector with ele-
ments that correspond to the error probabilities at
each state.
The decision variable for symbol a(k) at state sj is

y(k) = a(k) + sj + n(k) (15)

and the slicer operates as follows:

â(k) = sign(y(k)) (16)

Here, the probability of error is given by

wj = pPrfy(k) < 0ja(k) = +1g+ (17)

qPrfy(k) > 0ja(k) = �1g

= pF (�1� sj) + q[1� F (+1� sj)]

for j = 1; 2; :::; N

IV. NUMERICAL RESULTS AND

SIMULATIONS

A. Short-Memory Case

This section presents numerical results for one
memory channel with respect to the threshold value
A, the channel coe�cient h1, the Signal-to-Noise ra-
tio SNR, and the number of levels M . The SNR is
de�ned as 10log 1

2�2
.

In Figure 4, we present the results for Pe(A)
normalized by Pe(0)jA=0, which is represented as
Pe(A)=Pe(0), with respect to A for several values of
M . The other parameters are �xed as h1 = �0:7,
SNR = 6dB and p = q = 0:5. The case A = 0
corresponds to the traditional DFE. So, values of
Pe(A)=Pe(0) lower than unity indicate improvement
relative to DFE. Two observations are made as we
increase M ;
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Figure 4: The Pe(A)=Pe(0) with respect to A for E-
DFE (h1 = �0:7; SNR = 6 dB) for various number
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Figure 5: The Pe(A)=Pe(0) with respect to A (h1 =
�0:7;M = 513) for several SNR values.
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1. The range of A, for which the method

improves the performance, increases

2. The optimum performance gets better

It can be easily seen that the optimum value of A
depends on the number of levels and it increases as
M increases. As Figure 4 indicates, safer choice of A
is possible for larger values of M . As M approaches
in�nity the nonlinearity 	(:) approaches to the sat-
uration nonlinearity shown in Figure 2(c). Thus,
we suggest to use this nonlinearity in the modi�ed
DFE structure because of its better performance for
a wide range of A and ease of practical implementa-
tion. Hereafter, the DFE with this nonlinearity will
be referred to as the Soft DFE (S-DFE).
The optimumvalue of A also depends on noise vari-

ance and channel coe�cient. This can be easily ob-
served from Figure 5 and Figure 6.

In Figure 5, we �xed M = 513 and presented re-
sults for SNR = 0, 3, 6, 9 and 12 dB. The results ex-
hibited in Figure 6 are for h1 = �0:8;�0:7 and �0:6
with M = 513 and SNR = 9dB. The strong depen-
dence of the optimumvalue of A on the corresponding
system parameters is evident from the �gures.

B. Long-Memory Case

The exact analysis of S-DFE, even for one-memory
channel is di�cult, if not impossible. So, in this
section we evaluate the performance of the proposed
DFE and compare with the DFE and E-DFE through
Monte Carlo simulations for a channel memory higher
than 1. The simulated channel is h1 = �0:6; h2 =
�0:3; h3 = �0:2; h4 = �0:2; h5 = �0:1 and hj = 0 for
j > 5. The SNR was set to 9dB. Figure 7 presents
the histogram of the length of burst errors for DFE
(A = 0), E-DFE (A = 0:1 and 0:25) and S-DFE
(A = 0:1 and 0:25). The best result is obtained by
S-DFE with A = 0:25. Although the number of burst
errors of length 1 bit is still higher than that of the



DFE but smaller than that of the E-DFE, the burst
errors of length greater than 1 are signi�cantly re-
duced in comparison to both DFE and E-DFE.

V. CONCLUSION

In this paper, steps towards the proposal of a soft
DFE has been introduced. It has been shown that
it is possible to reduce the e�ect of error propaga-
tion in DFE, which is a long standing problem. It
has been demonstrated that the threshold A strongly
dependent on the channel coe�cients and the noise
level. In the companion paper [5], a method has been
suggested to determine the optmum value of A using
a quite di�erent point of view based on fuzzy logic.
In addition, extension of the S-DFE to higher signal
constellations is currently under considerations.
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