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Exact Faraday rotation in the cylindrical Einstein-Maxwell waves
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We obtain the exact behavior of the cross-polarized cylindrical Einstein-Maxwell waves that gen-
eralizes the well-known Einstein-Rosen waves. In the presence of the second mode of polarization
the outgoing waves interact with the incoming ones to exhibit an analogous effect of the Faraday ro-
tation.

I. INTRODUCTION

Cylindrical gravitational waves were introduced first in
a historical paper' by Einstein and Rosen (ER). In 1957
Weber and Wheeler analyzed their properties and drew
the conclusion that ER waves satisfy the physical reality
requirements. Since then, the cylindrical gravitational
waves of ER have continued to remain an important to-
pic in the physics literature. By this token, in a recent
study ' a connection has been established between the
Faraday rotation of the electromagnetic polarization vec-
tor in a plasma and an analogous effect in the cross-
polarized waves of ER. The authors based their analysis
on numerical integration of the field equations, leaving
the exact correspondence between the two phenomena
open. On this account, in this paper, we provide an exact
solution to the Einstein-Maxwell (EM) equations that ex-
hibits Faraday rotation and which reduce to the ER
waves in a particular limit. Our line element that de-
scribes cross-polarized EM waves,

ds =e r &'(dt dr ) e—&(dz+—wdP) re—
involves the functions g, y, and w to be determined as
functions of t and r, through the EM equations. The EM
equations are well known to reduce to the pair of Ernst
equations

(g+ris) —1)V $=2V( (P'g+s)V'q) ~

(g'+ris) —1}V ri=2Vri (gVg+s)Vs)),

(2)

where g and g represent the gravitational and elec-
tromagnetic complex potentials, respectively. The
differential operators here act on the cylindrically
symmetrical Oat space-time suitable to the description of
the cylindrical-wave problem.

II. THE SOLUTION

Our solution makes use of a functional dependence be-
tween g and q, namely,

g=ago n=(1 —a'}'"go (3)

where a is a real constant satisfying 0~a ~ 1, and go is
the Ernst potential for the vacuum fields.

By this choice, for the sake of an exact solution, we
electrify gravity in such a manner that the total field en-
ergy (C energy) represented by the metric function y
remains the same with the y of the ER waves. We adopt
now the previously known vacuum solution to the prob-
lem in the construction of EM fields.

For the reason, however, connected to the evolution of
the waves, we shall express the solution in a different no-
tation that is more appropriate to the initial-value prob-
lem for the cylindrical waves. Following Piran and
Safier and Piran, Safier, and Stark we introduce the am-
plitudes

I+ =2(of+0.» 0+ =2(et

e 2ttt e2$
(w, +w„), 0&&

= (w, —w„),
T

(4)

which satisfy the following set of first-order equations in
the ingoing u =

—,'(t r) and outgoin—g v =
—,'(t +r) coordi-

nates:

I+ —0+
+, Q

Ix+oxIX)M

I+ —0+
+IxOx 0+ „= +IxOx

2f
(&)

Ix+Ox—I+Ox ~ Ox, U
= —Ix 0+

2T

where we have used the abbreviations

A =J, (r)cost+Jo(r)sint,

B =J, (r)cost —Jo(r)sint,

C =2a cosh[Jo(r)cost]
—(1+a2)(1+sin2a)' sinh[Jo(r)cost]

D =(1+a )(1+sin a)'~ cosh[Jo(r)cost],
—2a si h[Jn(R )ocost]+ I —a

(7)

Here, I+, x] represents the incoming amplitude with
linear (cross) polarization which reflects at r=0 and turns
into the outgoing amplitude 0+[x, . Our exact solution is

AC BC0+—
(6)

I„=——(1+a )sina, 0„=——(1+a )sina,
A 2 . B
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w ich J and J& are Bessel functions of orders 0 and 1,
and a is the cross-polarization angle. No e

litude and the separation constants that
a ear in the original ER solution both to e uni y.

d to the pure electromagnetica==0=a our solution re uces o
il t atwave solution of ER type. It can be checked easi y a

~ ~

in the above solution (6) the boundary conditions at the
symmetry axis (r=0),

I+=0+, Ix= Ox ~

are satis e . u
'

fi d Further our solution satisfies, at t=0,

t
p,8
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o4

I = —0+, Ix =Ox+

and it has the property that for (t ——= r =0), as in the case
of a nodal point, all amplitudes reduce to zero.

III. ROTATION OF THE POLARIZATION VECTOR

Figure s ows1 h s the linearly polarized ER amplitudes
(I+, + w ic, 0 ) h' h corresponds to the values a=,o—

(6). In Fig. 2 (for a=10',a=0.5) and 'g.Fi. 3
=60 a=0.5) we display all the amp i(for a=,a=I,O+, Ix, Ox ) for the indicated ranges of t and r.
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ll s mmetrical soliton solutions
we define the relative polarization angle 8 in accor ance
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FIG. 1. The linearly independent polarized amplitudes
the domain (0(r ~ 10,0{I+,0+ ) of Einstein and Rosen in t e(t &10).

I 0 ) for the particularFIG. 2. The amplitudes (I+,0+,I~, Ox
= 10 nd a=0.5 in the domain (0 + r ( 10,0parameters o.= 10 an a =

(t (10).
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FIG. 4. Th e absolute value
a=10',a=0.5
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respectively. The

x)

energy densit
o these amplitudes by

i y y, is expressed in terms

(z.2 +z2 )li2
X

By studying the ratio

~X = ~tanH, (13)

wherere, the function C is given in

ll m 1g. (4).d i 11o
' F'

nc ion

inally, in order to oer to see the ratio of
e e ne the total lin

r, =(r', +0' )'"2 y (y2 +02 1/2

we conclude that th d
1

e ominant c
ion a ternates betw

e resul-

cross modes.
e ween the linear and the

IV. CONCLUSION

FIG. 3. Thehe amplitudes (I 0he, ,I,O„) fo p
e omain (0 r ~ 10,0 t ~10).
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ty, unbounded amplitudes do not develop in the
cylindrical-wave problem. Instead, the amplitude pat-
terns extend from the symmetry axis to infinity smoothly
and with decreasing magnitudes in asymptotic regions.
Although the labeling may imply the opposite, it can be
observed from the general solution (6) that the linearly

polarized amplitudes (I+,0+ ) are not independent from
the cross-polarization angle e. For this reason the
graphs of (I+,I„,O+, 0„)are not exactly the same as
the numerical graphs of Piran and Safier. We recall that
they had chosen particular input pulses in their analysis.
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