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New metrics for spinning spheroids in general relativity 
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(Received 4 March 1992; accepted for publication 23 June 1992) 

The quaternionic version of the Ernst formalism is used to propose an alternative 
generalization of the Zipoy-Voorhees metric that represents spinning spheroids. Rotating 
discs and their superposition that generalize the static Curzon solution arises as a particular 
member of the class. Some features are different from the well-known Kerr and 
Tomimatsu-Sato solutions. 

1. INTRODUCTION 

One of the most important problems in general rela- 
tivity is to find exact solutions that correspond to solid, 
physical sources. For once we sacrifice the physical sig- 
nificance of a source we run up against the well-phrased 
joke which states that any metric is a “solution” to the 
Einstein equations. In the case of material sources with 
exact spherical symmetry, both electrically charged and 
rotating, the problem is well understood and satisfactorily 
solved. Deviation from the spherical symmetry, however, 
cannot be handled at equal ease. Expectedly, the same 
difficulty arises in the classical Newtonian potential the- 
ory in a natural way which inherits general relativity. 
Collapsed stellar objects lose a number of degrees of free- 
dom (i.e., no-hair theorems) to settle down as spherical 
black holes. For this reason going to the black hole limit 
saves us from a number of burdens in general relativity. 
Finding the exact gravitational fields for noncollapsed 
spheroidal objects has not been an easy task at all. Direct 
adaptation of Newtonian potentials into general relativity 
often caused ambiguities. From various considerations 
Zipoy’ and later Voorhees’ constructed metrics that pos- 
sess interesting physical aspects with strange topologies. 
In particular, Zipoy introduced for the first time the pro- 
late (and oblate) spheroidal coordinates to represent the 
gravitational fields of spheroidal objects. Beside other 
characteristics Zipoy-Voorhees (ZV) metric reduces in 
particular limits to the Schwarzchild (for exact spherical 
symmetry) and to the Curzon3 (for flat disc) solutions. 

In this paper we generalize the static spheroidal fields 
of ZV to the stationary ones. This class of metrics is 
different from the Tomimatsu-Sato4 (TS) generalization 
of the Schwarzchild and Kerr’ solutions. Finitely 
bounded spheroids TS gives physically satisfactory solu- 
tions, but as the source extends beyond limits, relatively 
either in radial or azimuthal directions, it remains open to 
describe such fields in closed forms. We cite as an exam- 
ple the gravitational field of a very large (ideally infinite) 
plate of thin matter.6 Gravity of such a plate focuses itself 
at a finite distance and therefore it ceases to behave well 
asymptotically. In this sense our class of solutions has 

different asymptotic features compared to the TS solu- 
tions. For instance, the asymptotic values for mass 
quadropole expression is entirely different from those 
given in the TS solutions. Similar to the TS family, in our 
solutions separability of the Hamilton-Jacobi equation 
also happens to be for the particular value of the distor- 
tion parameter, namely for S = 1, alone. 

Our method makes use of the Ernst’ potential for- 
malism and its particular integrals that depend function- 
ally on the solutions of the Laplace equation. The same 
method has been used in colliding electromagnetic’/ 
gravitational’ waves as well as in the cylindrical waves of 
Einstein and Rosen.” In this formalism all stationary 
metric components are expressed through integrability 
conditions as functions of a single harmonic function and 
its partial derivatives/integrals. Unlike the trainlike ex- 
pressions that arise in the TS solutions, and their further 
generalizations by Cosgrove” and Yamazaki,‘* in a sur- 
prisingly simple mathematical procedure we construct a 
variety of stationary fields. This approach was initiated 
first in 1953 by Papapetrou.i3 The Ernst potential for the 
class of solutions that we find in this paper turn out to 
satisfy a quaternionic Ernst equation. Such a formalism 
was used in general relativity before.i4 Owing to the dif- 
ficulty with asymptotic flatness, however, the Papapetrou 
solutions did not find a warm welcome and the entire 
arena was left to the black hole solutions. We propose 
that this class has promising features and it may serve to 
resurrect the idea of direct adaptation of Newtonian po- 
tentials to general relativity. The organization of the pa- 
per is as follows. We present our methods of solutions in 
Sec. II. We generalize the static Curzon solution and ZV 
metric in Sets. III and IV, respectively. We conclude with 
a brief discussion in Sec. V. 

II. A CLASS OF SOLUTIONS 

The general stationary axially symmetric vacuum 
Einstein fields are given by the metric 

ds2=2y(dt-wd~)2-e-2y[e2Y(d?+d2)+r2d~2], 
(1) 
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where the metric functions depend on r and z alone. We 
choose prolate spheroidal coordinates x and y in accor- 
dance with 

r=K(x*- l)“‘( l-y)“*, 

Z=K XJJ, 

(2) 

where K is a positive constant parameter that measures 
the oblateness of the source. Let us note that although 
our discussion will be based on the prolate coordinates, 
with minor modifications it can be extended to cover the 
oblate coordinates as well. The basic pair of vacuum 
equations are expressed as a single complex Ernst equa- 
tion 

(&-- l)V *5=2mg)*, (3) 

where the relation of the complex potential 6 to the met- 
ric functions will be explained later. 

As usual, a supplementary complex potential E is in- 
troduced in accordance with 

l--E 
ME--- 

l+&’ (4) 

The potential E is defined by c=eZV+ i@, where \I, is one 
of the metric functions and Cp is called a twist potential. 
The metric function w is given in terms of 0 through the 
integrability relations 

wz= rem4’Qr, 
(5) 

co,= - re-4y*z. 

In order to find a solution to the Ernst equation (3) we 
assume a functional dependence of 6 on an arbitrary so- 
lution X of the Laplace equation 

X,,+ (l/r)X,+X,=O. (6) 

In the prolate spheroidal coordinates the Laplace equa- 
tion becomes 

We can define now the corresponding Ernst potential 
,$ for the metric functions. For this purpose we introduce 
the quatemionic potential 

e=re-*‘+&, 

[(x2- 1 )X,1,+ [ (1 -v”,X,],=O. (7) 

The solution c(X) of (3) is given by 

(1 +iu)cosh 2X-b sinh 2X- 1 
‘(X)=(1-ia)cosh2X-bsinhW+l (8) 

where a and b are real integration constants that are con- 
strained to satisfy 

b’(l+a’)=l. (9) 
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where gis the quatemionic unit that satisfies g2 = 1. Here, 
re-*’ and w are defined as the scalar and vector parts of 
the quatemion, respectively. We recall that in the stan- 
dard Ernst formalism we have complex E in which $ is 
replaced by the complex unit i. However, it can be 
checked by direct calculation that once we choose a 

We have two choices: (i) b = cos a, a = tan a, or (ii) 6-l 
=cosh a, a=sinh a, where a is another constant param- 
eter. In this paper we shall choose the bounded parame- 
trization and for brevity we prefer to use the notations 
p=cos a and q=sin a, such that p*+d= 1. In the sta- 
tionary axially symmetric field problem it is traditional to 
call p the mass parameter and q the twist parameter. 

The functions e*’ and @ are found by equating (4) 
and (8), while w can be determined from (5) easily. We 
state our equations that give metric functions as follows 
(with a reference to the r, z coordinates for simplicity) : 

e-” = cash 2X-p sinh 2X, 

or= 2qrX, yz= 2rXJ,, 

co,= - 2qrX, yr=r(XF--X2) z 9 
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(10) 

It is readily seen that this class of solutions has the feature 
that it satisfies 

VY*Vo = 0, (11) 

i.e., it is a subclass of the Papapetrou family of solutions. 
The nice feature of this class is that all metric functions 
are determined from a single harmonic function X that 
can be adopted from the classical potential theory. The 
corresponding asymptotic Newtonian potential is defined 
for the static fields by 

o,=; (goo-~oo) =yp+o (a) (R+co), (12) 

where g,, and qoO are the time components of the metric 
tensor for curved and flat metrics, respectively. Obvi- 
ously, q is a measure of rotation in the above class. For 
q=O (p= 1) the solutions reduce to the corresponding 
nonrotating (static) ones, in which Y =X and o=O. For 
p=O (q= 1) we obtain an extreme Kerr-like solution. 
One interesting aspect of the class is that the metric func- 
tion y remains the same in both static and its correspond- 
ing stationary generalization. 

(13) 
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quatemionic potential the correct Einstein field equations 
become satisfied. The equation satisfied by E now is 

(&+&*)v 2E=2VE’VE, (14) 

where * denotes the quatemionic conjugation (i.e., 
E*= re-“-&). Similar to the Ernst’s complex formu- 
lation we can introduce another potential by 

l--E 
c=- 

l+E’ 
(15) 

which satisfies the quatemionic Ernst equation 

KP- 1)V 25=eYv~~2. (16) 

In brief, the Ernst potential corresponding to our class of 
solutions is a quatemionic function instead of complex. 
In the sequel we apply our method to particular prob- 
lems. 

III. THE ROTATING CURZON SOLUTION 

By separating the solution of Laplace equation in the 
variables r and z and integrating over all continuum val- 
ues of the separation constant k we obtain the following 
particular solution for X: 

2X= -m * emkZJ,(kr)dk= 
s 0 

(17) 

In this solution m is a constant that is interpreted as the 
mass of the source. By applying the method of Sec. II we 
obtain the following metric functions for the rotating 
Curzon solution: 

e-” =cosh 2X-p sinh 2X, 

-qmz -m212 
w=qq7’ y=iipgy7 

(18) 

where 2X is to be substituted from ( 17). As we stated 
before the Ernst potential for the Curzon solution is a 
quatemion that is given by 

E=Rsin6[cosh(g)-psinh(z)]-(mqcosB)i (19) 

where we have introduced the coordinates (R, 19) by 

r=R sin 8, z=R cos 8. (20) 

In the extreme Curzon limit E takes the form 

E=R sin 8 cosh(m/R) -e^m cos 8. (21) 

Letting X-+flX, with p=const, leads to the changes 
o -/30 and y-@y ; therefore the mass may be consid- 

ered as resulting from a scale change of the function X. 
Let us note that we can add a second arbitrary integration 
constant in the general integral (8) as a scale factor of X. 
However, we shall omit such a constant. The asymptotic 
flatness of the Curzon solution is to be understood for 
r+ co (z < 00 ) and z--, f 00, accompanied with a redefi- 
nition of the time. As it can be seen from the asymptotic 
metric 

d?=(l-O( l/R))(dt+qm cos t9d#)2 

-(l--0( 1/R))[dR2+R2(d62+sin2 f3d+2)], 
(22) 

there is an ambiguity in its asymptotic behavior. The 
cross term in this metric is reminiscent of the Taub- 
NUT” metric. The determinant of the metric and the 
curvature components reveal that there are essential sin- 
gularities for r=O and z=O. Possible extensions of the 
static Curzon metric were done by Szekeres and Mor- 
gan,16 and a similar analysis can be extended to the 
present case. 

The Hamilton-Jacobi (HJ) equation for the Curzon 
metric does not separate. To see this, we express the HJ 
functional in the following form: 

S=p2A+Ef+L&+Z(r, z), (23) 

where E and L, are the constants due to the (t,#) sym- 
metries, p is the rest mass of the test particle, and 2 is an 
affine parameter. By a change of variables according to 
(20) the HJ equation becomes 

R2(e-2yE2-~2)e-2y- ( l/sin2 0) (L,+mqE cos f3)2 

-e-m2Si”2e/R2(~22~+~2e)=o, (24) 

where em2’ ’ IS given in ( 18) and is a function of R alone. 
We see that due to the e2y( = emmsin e’R) term the HJ 
functional does not separate in R and 8. Even the static 
Curzon solution, for which q = 0, does not separate due to 
the same term. If we make the concession that e2y= 1 
+0( l/R) and we keep terms up to the order 0( l/R), it 
can be seen that Z(R,8), and therefore S becomes sepa- 
rable. 

Next, we can apply the principle of superposition to 
the Curzon solution. An interesting property of this class 
of solutions is that since the Laplace equation is linear, 
different solutions can be superimposed in a simple man- 
ner. Let 

(25) 

be a solution of the Laplace equation. This may be inter- 
preted as N number of planes (or discs), each one located 
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at Zi=Ui. Then, the superimposed metric functions corre- 
sponding to this configuration can be obtained in the fol- 
lowing closed form: 

em2’=cosh 2X-p sinh 2X, 

w= -q f( mi(Z-Ui) 

2 4 [3+Czmui) 1 ’ 

y=2r ’ 
s 

r X,X, dz+ 
s 

r(XF-Xt)dr, 

where X is to be substituted from (25). 

(26) 

IV. THE GENERALIZED ZV METRIC 

The procedure that aided in obtaining the rotating 
Curzon solution can be generalized to the whole class of 
ZV metric, which is given by 

d?=(~)6dthr2(;) 

x [ (xv)(g!)~z(&+~) 

+(x2-l)(l-y++2 . 1 (27) 

The prolate spheroidal coordinates x, y in this metric 
are connected to the spherical Schwarzchild coordinates 
(R, 0) as follows. Take 

Z=mUv=K xy, (28) 

where (u,v) is a special set of prolate coordinates that is 
related to the Schwarzchild coordinates (R, 0) by 

u=R/m-1, V=COS 8. (29) 

If we solve x and y in terms of u and v the result is 

x s 

1 1 

l--s2 
y =qj u2+u2+7 

f [( $+v2+!$2-!$]“2]“2, (30) 

where 6=m/rc is the distortion parameter and f corre- 
spond to x or y. The physical meaning of the coordinates 
(u,v) is that they are special coordinates for which 6= 1 
(or m = K) . The coordinates (x,y ) are a Set of new prolate 

coordinates for an arbitrary source configuration charac- 
terized by the parameter 6. For S= 1, the ZV metric re- 

duces to the Schwarzchild solution. For S> 1 (64 1) it 
represents discs (rods) that are the extreme cases of the 
spheroids. 

In the limit K -+O (or 6 -+ 00 with m = finite) the same 
metric reduces to the Curzon solution. The proper usage 
of the metric should be in the following manner: substi- 
tute (x,y) in terms of (u,v) which are to be substituted 
further in terms of the Schwarzchild coordinates. 

The integrability equations for the metric functions y 
and w in terms of (x,y) take the following forms 

l-3 yx=g-q -%x2- 1,x: 

-x( 1 -3)X2y-2y(x2- l)XJ& 

x2-l yy=x2_y2 J&x2- 1 >x: 
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(31) 

and 

(32) 
WV= -2 qK(X2- 1)x,. 

Using the ZV metric as seed, in which 

(33) 

we obtain the following rotating metric functions: 

e-” = cash 2 X-p sinh 2 X, 

(34) 

Cd = - 2qK6y. 

We show now that for 6 = 1 (i.e., exact spherical symme- 
try) we obtain a HJ separable metric. Letting 

s=~2;1+Ef+LA+z,(x)+zz(~) 

leads to 

2(x2- l)e-2y(E2e22y-~2) -(x2- l)Z;’ 

(35) 
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where A0 is a separation constant. Solutions for 8t and x2 
are obtained as follows: 

l/2 

I;,(x) = f K 2e-2y(E2e-2y-p2) -A 
I 

dx, 

(36) 

B,(Y) = * 

For S#l, similar to the case of Curzon solution, we face 
difficulty in the separation of HJ equation. The same 
property is shared also by the TS family, where separa- 
bility occurs only for 6= 1 (the Kerr solution). 

Using the ZV metric we can obtain superimposed 
solution of a spherical source (Schwarzchild) and a disc 
(Curzon) in an easy process. To this end, choose 

(37) 

to represent a solution of the Laplace equation. Note that 
the exponential factor represents the Curzon term, be- 
cause x2+3- l=?+z (for K= 1). The first factor ob- 
viously represents for 6= 1 the Schwarzchild term and 
what we are doing physically is to add a Curzon term to 
a Schwarzchild term. In this process we preserve the 
Schwarzchild solution by taking the limit, m-0, for the 
disk. The remaining metric functions \Ir, y, and w are 
given as follows: 

es2’ =cosh 2X-p sinh 2X 

e2r= 2-I 62 
( ) X2 
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e2Y, (x2- l)s12( 1 -y2)s22(x+y)-(61-h)2 

W=2K q(X&-YC?,), 

which have a more symmetric appearance with respect to 
the coordinates x and y. It reduces to (34) by choosing 
6t =6 and 6, = 0, and in the limit q=O we recover the 
spheroidally symmetric static solution of ZV. The metric 
functions (40), however, must be devoid of a physical 
content, because, as it can easily be seen, o diverges for 
X+UJ. (Note that e2’-+1, and e2r+1 as x+00.) In the 
problem of colliding gravitational waves where asymp- 
totic flatness is not a requirement this latter class proved 
to result in a significant family of solutions. 

Now we return to the metric described by the func- 
tions (34) and we proceed by making an asymptotic ex- 
pansion for component goO. We obtain 

2mp 2m2 3 
e2p= l-- 

r +--g- (P-1)(2p+l)+$ 
[ 
ZP--1) 

(41) 

where P2 (cos 0) =$ cos2 0-f. We make the following 
successive transformations, 

r=pi’-- (m/p) (p- 1) (p+2), 

1) 2 + 2mcw pTj=l} 

‘(38) 

p?=R2-2m2 (l-3 [S-2+( l-f)(~+2)2],~42i 

to obtain the asymptotic expression 

O=-%Y( I+&). 
3 

e2’= 1-$+$- f 4 
3P ( ) 

1 --A P,(COS e) 

where X is given in (37). It can easily be checked that in 
the limits m=O, 6=1 (and q=O) we recover the 
Schwarzchild metric and in the limit 6=0, we obtain the 
Curzon solution. The ZV metric can be generalized fur- 
ther by making the choice 

(43) 

Recall that for the TS metrics the asymptotic expansion 
of e2’ is given by 

ew= (~)*‘(~)629 (39) 
2m 2m3 

e2’=1-F+ -p2bw[f (i-+2+si] 

where St and 6, may be interpreted as arbitrary distortion 
parameters for the different coordinate lines. The rotating 
version of this metric has the following metric functions: 

e-” =cosh 2.X-p sinh 2X, 
where p2+q2= 1. We see the striking difference between 
our expression (43) and this one. In the latter, for S= 1 
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there is still a nonzero quadrupole term, namely Q 
=m3d, whereas in our case Q=O. This result arises from 
the fact that in our solution g,, is only a function of x and 
it doesn’t depend on y. This situation compells us to 
adopt the interpretation that 6= 1 corresponds to a spin- 
ning point mass. Since a point mass (or mass monopole) 
has no quadrupole term and it does not differ whether 
such a mass is rotating or not, this interpretation seems 
plausible. For S#l, no such ambiguity arises, and as in 
the TS family we have Q(S,) > Q(&>, whenever S,> St. 
As 6 --) co the expression (43 ) may be compared with the 
asymptotic expression for a Newtonian potential for a 
disc: 

-m m3 
+N- R -+3F2R3p2bm+o (45) 

where the parameter E becomes equal to p. 
Following the analysis by Voorhees we can study the 

intrinsic geometry of the surfaces Y=const, in order to 
explore the source configuration. This implies x=a 
=const, and results in the same equipotential surface for 
the static case, namely 

u2-l++2sin28 II2 
a2-c0s2e ) ] , (46) 

in the spherical coordinates (R,O). The horizon, g,,=O 
implies that a= 1, which gives R =2m, irrespective of the 
distortion parameter. This result also is in contrast to the 
TS family where the horizon becomes automatically mod- 
ified by the rotation of the gravitating sources. 

V. DISCUSSION 

We have presented an alternative class within the 
Papapetrou family of solutions to describe spinning sphe- 

roids. Our solutions can be obtained directly from har- 
monic functions which abound in the classical potential 
theory. Asymptotically this class does not behave well, 
therefore we interpret them to represent very large de- 
formed spheroids (i.e., rods and discs). The particular 
case S= 1 corresponds to a spinning point mass. The so- 
lutions given are valid for arbitrary distortion parameter 
6 > 0, in a closed form. One useful aspect of this class of 
solutions is that different solutions can be superimposed 
easily. In particular, we have given the exact rotating 
solutions that describe superposed Curzon and Schwarz- 
child sources. We remind the reader that in the case of TS 
an exact superimposed solution is a rather difficult task. 
We conclude by stating that electrically charged sphe- 
roids and their topological implication may be the next 
stage of study in this line of work. 
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