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ABSTRACT 

In all the scientific fields, scientist usually deal with big data. Statistical Data 

Analysis is therefore used to manage data. Depending on the nature of the 

experiment, its output can be analyzed using univariate, bivariate or multivariate 

statistics. In the multivariate case when the number of variables is very large, it 

sometime wise to reduce the number of variable to optimize the analysis of the data. 

Dimension reduction is used to reduce the number of variables which is also the size 

of data. In this work, on method of dimension reduction called Principal Component 

Analysis (PCA) is discussed. The PCA is a method which is based mainly on two 

matrices , covariance-variance matrix and correlation coefficient matrix obtained 

from the data. From the mentioned matrices, using the eigenvalues and 

corresponding eigenvectors, linear combination of the variables called principal 

components (PC)  are established.  It is important to mentioned that for the same set 

of data, the PCs computed using the covariance-variance matrix are different from 

those computed using the correlation coefficient matrix. The core topic in this work 

is to studied the conditions under which it is better to use either covariance matrix or 

correlation coefficient matrix for the PCs computation. 

Keywords: Principal Component Analysis (PCA), Principal Components (PCs), 

Dimension Reduction, Variance-covariance matrix, Correlation Coefficient Matrix 
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                                                              ÖZ 

Bilmin hemen her dalında bilim insanları büyük verilerin analizi ile uğraşmak 

durumundadır. İstatistiki veri analizi verilerin değerlendirilmesinde kullanılır. 

Deneyin doasına bağlı olarak, elde edilen veriler, tek veya çok değişkenli istatistik 

yöntemlerle değerledirilebilir. Değişken sayısının çok fazla olduğu durumlarda, daha 

hızlı analiz imkanını elde etmek için boyut indirgemesi yapılabilir. Bu amaçla Temel 

Bileşenler Analizi (TBA) yöntemi kullanılır. TBA metodu verinin kovaryans veya 

korelasyon matrislerine bağımlı bir sistemdir. Bu matrislerin özdeğer ve 

özvektörlerinden yararlanarak, Temel Bileşenler (TB) denen değişkenlerin lineer 

kombinasyonları oluşturulur. Ancak kovaryans ve korelasyon matrisleri kullanılarak 

oluşturulan TB ler, bir birinden farklıdır. Bu çalışmanın temel amacı, hangi şartlar 

altında kovaryans veya korelasyon matrislerinin kullanılabileceğinin incelenmesidir.  

Anahtar kelimeler: Temel bileşenler analizi (TBA), Temel Bileşenler (TB), özdeğer, 

özvektör, tekil değer ayrışımı (TDA), kovaryans, korelasyon. 
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                                        Chapter 1 

1                       INTRODUCTION 

In univariate statistic, inference and analysis are based on a single variable data 

collection. There exits experiment where more than one variable are observed 

simultaneously. Analysis of such data requires the use of multivariate statistic. 

Concepts used in univariate statistical analysis can be extended to the multivariate 

case. The multivariate statistic was historically used for behavioral and biological 

sciences, but nowadays, its application is found in many other fields of science. 

Thereby, the multivariate statistics is used in the fields of broadcasting, linguistics, 

medicine, data mining, mining, psychology and many other areas. In multivariate 

statistics, all variables are observed simultaneously forming a data matrix with n 

rows and p columns. Columns represent the variables. The aim of putting those 

variables together is to enable the processing of such data in a multivariate 

environment. In this thesis, the method called principal component analysis (PCA) is 

used to compute linear combinations of variables of interest. These linear 

combinations are called principal components (PC). The first few (k) PCs represent a 

high percentage of variation in the original data. Then, data analysis can proceed 

using the k PCs. Therefore, a dimension reduction is achieved in data analysis. 

Consider a data matrix of size n p representing n observations of p variables. The 

p p covariance or correlation matrix obtained from the data is then used to 

determine the PCs [7]. Possible number of PC is the same as the number of variable 

of the data set. Using the PCA, only a few of the PCs  k p can be used to 
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adequately explain the total variation in the dataset. It can also help to detect 

variables of low significance to the process under study. Therefore variables with 

very low significance can be neglected. 
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                                          Chapter 2 

2                  LITERATURE REVIEW 

The first idea of PCA comes from Karl Pearson in 1901. He worked on the 

geometrical representation of a multivariate data, in a coordinate system. He has 

established that if the data being processed is univariate, it can be represented in a 

plane. When the number of variables increases, the data can be represented in a 3-

dimensional or even n-dimensional space depending on the number of variables. His 

worked was published in an article named “On Lines and Planes of closet Fit to 

System of Points in Space. By KARL PEARSON, F.R.S., University College 

London.”  The following important result “The line which represented best a system 

of n points in a q-fold space is the line passes through the centroid of the system and 

which coincides in direction with the least axis of ellipsoid of residuals” which is 

mainly used in PCA is found in the mentioned article [2].  

The PCA method was later developed and named in 1933 by Harold Hotelling [3].  

Due to the high dimension of the data processed in PCA, the manual computation is 

difficult. Therefore, the PCA method hasn‟t been used widely from the beginning 

until the appearance of electronics computers and statistical software which can 

enable the processing of high dimensional data within few second.  

From the year 1936 to the year 1946, the American statistician Girshick, Meyer A 

dedicated his work in the fields of multivariate statistic.  His achievement was to 



4 

 

determine the distribution of the squared root as well as characteristic vector which 

are associated to equations used for testing null hypothesis concerning independence 

of two sets of variables. The mentioned achievement concerning multivariate statistic 

and principal components analysis was established in 1939 [4].  

In 1963 Anderson T.W has contributed to the development of the fields of principal 

components analysis. His achievement is the study of the asymptotic properties of 

the characteristic roots. He established from a covariance matrix that, the 

characteristics roots are variances and the coefficient of their corresponding 

characteristic vectors are the principal components coefficients. He also introduced 

the computation of confidence interval and the hypothesis test of equality of two 

population roots which are important in the analysis of the principal component 

significance. He established all the previous results on correlation coefficient matrix 

as well [3]. 

In 1964, Rao.C.R contributed in the fields of principal components analysis. He 

studied the means to introduce more information from the computation of principal 

components [5].  

In 1966, J.C Gower work was based on the study of relation between various 

statistical techniques and the principal component analysis method [12]. 

In 1967, Jeffers contribution in the fields of principal components analysis was 

mainly concerned by the analysis and interpretation of eigenvalues and eigenvectors. 

He also focused on plotting principal components scores for further analysis, stating 

eight practical purposes the principal components analysis is used for. Those are the 
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correlation examination between variables coming from two different sets. The high 

variability dimension reduction from a set. Discard of variables with lower 

contribution in a set. Examination of grouping individual in an n  –dimensional state. 

Determination of variable weights. Allocation of individual to a group. Recognition 

of individual. Regression calculation and orthogonalization [4]. 

In 1974, Baxter showed that computer graphics facilitates the understanding of 

principal components scores [12]. 

In 1982, the regression method was introduced in the fields of principal components 

analysis by Joliffe with the name of principal components regression [3]. 

In1997 , Takane and Shibayama developed the concept of Constrained Principal 

Component Analysis [27].  

In 2002, Fotheringham and his coworkers introduced the concept of locally weighted 

principal components (LWPCA) and the concept of geographically weighted 

principal components (GWPCA) [28].  
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  Chapter 3 

3   ALGEBRA AND STATISTICS CONCEPTS 

The core of our topic is dimension reduction, for a given high dimensional data 

without losing inherent message carried by the data.  Dimension reduction is done by 

combining various concepts of mathematics. This ranges from basic algebra concepts 

and statistical interpretation related with data. In this chapter, algebraic topics related 

with dimension reduction and their implementation to statistics will be discussed.  

3.1 Algebraic Concepts 

Dimension reduction is done using some basic and advanced algebraic concepts. 

This section is a review of fundamental algebraic operations and matrices which are 

useful in data representation and computation [25]. 

3.1.1 Fields 

Definition 3.1:  A Field K  is a set on which we can define the following two 

operations.  (addition)  and     (multiplication)such that the following conditions 

hold for any , ,a b c  given  in K : 

1  and a b b a a b b a      (commutativity ) 

2. ( ) ( ) and ( ) ( )a b c a b c a b c a b c          (associativity of and   ) 

3. Existence of identities elements 0 and 1 for addition and multiplication 

respectively are defined as,if there are two distinct elements in  K  say 0 and 1 such 

that  satisfies 0  and 1a a a a    . 
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 4. For each element a K , and for each element b K , 0b   ;   there exist   and c d  

in K  such that 0 and 1a c b d     (existence of inverses  and c d for addition and 

multiplication respectively  ) 

5.  ( )a b c a b a c      (distributivity of   over  ) 

For example if  is the real numbers set, with the usual addition (+) and the usual 

multiplication ( ), then is a field. 

In what will follow, the most useful field is . Therefore,  -vector space can be 

used instead of K -vector space[11]. 

3.1.2 Vectors 

In multivariate data analysis, there is a collection of n observations of  p variables. 

The observed p variables are represented in an arrangement of p real values forming 

a vector called a trajectory. This vector is also called p-variate response. Let‟s  

denote the i
th
 observation by  xi ,  where i= 1,…,p, then the p1  vector is denoted by 

x  and  represented as follow:  

1

2

p

x

x

x

 
 
 
 
 
  

x


which is a vector of p lines and one column. 

The transpose of x  is denoted by x  and is represented by:  1 2 px x x    x  . 

x is called a column vector, whereas x  is called a row vector. The row vector x  is 

also called the transpose of the column vector x . The index p which represents the 

number of components in the vector x  is called the order or the dimension of the 

vector x .  Geometrically, x  with its p elements is the representation of a point in a p-

dimensional Euclidean space [18]. 

Definition 3.2 An ordered set of p real numbers, representing a position in a  
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p-dimensional Euclidean space
pV  is called a vector and denoted by 1px  . 

3.1.3 Vectors Spaces 

A real vector space is a collection of 1n vectors in a Euclidean space  nV which is 

closed under the following two vector operations, scalar multiplication and addition. 

Definition 3.3 Let K  be a given field. A collection of vectors of a set nV  satisfying 

the following condition is called an-dimensional vector space over the field K =  

[11]. 

1

 n

n

x

V

x

 
 

  
 
  

x 

 , 

1

n

n

y

V

y

 
 

 
 
  

y 
1 1 1

n

n n n

x y z

V

x y z

     
     

     
     
          

x y z  

      (3.1.1) 

 

1 1 1

 ,   ,  n n

n n n

x x x

V V

x x x



  



     
     

       
     
          

x x   

                             (3.1.2) 

Let‟s consider for example,   0,1 ,C  , the set of continuous functions from  0 1

into  .  If f  and g  are two functions from   0,1 ,C  , and assuming that 

      ,   x f g x f x g x        and     f x f x   then   ,     is 

a  -vector space.  

3.1.4 Vectors Subspaces 

Definition 3.4 Consider a vector space nV , a subset  S  of  nV    (i.e. nS V ) is said to 

be a vector subspace of nV  if the following hold [9;11] 

 0 S  

  , ,   S S   x y x y  
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   and ,    S S     x x  

Examples:  

  0 and nV  are subspaces of nV  

 Let  [ ]x  be the set of polynomial with their coefficients in . The 

set  n x  of polynomial with power less or equals to  n  is a 

subspace of   x  

Definition 3.5 LetU  be a -vector space and Let 1 2, ,..., kV V V  be subspaces of U . 

The following statement holds. 

The summation 1 2 ... kV V V    is a subspace of  U . 

3.1.5 Bases 

Definition 3.6 Let V be a  -vector space. Let 1,..., kv v  be a set of vectors fromV . 

The subspace ofV  spanned by 1,..., kv v  is

 1

1

,..., ,  ,  1
k

k i i i

i

span v v i k 


 
     
 
 v 

                                                 

(3.1.3) 

Theorem 3.1  1,..., kspan v v  is a vector subspace ofV . 

Theorem 3.2 Let V  be a  -vector space,  1,..., k V v v  ,                                    

 1,..., kspan v v =    1 kspan span v v
                                                        (3.1.4)

 

Definition 3.7 Let V  be a  -vector space. A set 1,..., kv v  of vectors fromV   is said 

to be linearly independent if and only if:  
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1

0 0,   1
k

i i i

i

i k 


      v

                                                                        (3.1.5) 

Example 3.1:  Consider the following vectors of  3  and check whether they are 

linearly independent or linearly dependent. 1 2 3

1 0 1

1 , 2 ,  0

2 1 1

     
     

   
     
          

u u u . 

Solution: To check whether these vectors are linearly dependent or independent, 

let‟s solve the equation 1 2 3 0    
1 2 3

u u u  for 1 2,    and 3 . 

1 2 3

1 0 1 0

1 + 2 0 0

2 1 1 0

  

       
       
  
       
                

1 3

1 2

1 2 3

0 0

+ 2 0 0

2 1 0

 

 

  

       
       
  
       
                

The previous is a system of three equation in three unknown 1 2,     and 3  

 

 

 

1 3

1 2

1 2 3

     1                 0

     2      2      0

     3        2 0

 

 

  

 

  

  
 

From  (1) : 1 3    ;   (1) in (3) : 2 13   and  from (2) : 2 0   by substitution 

we have 1 3 0    Such that 1 2 3 0    
. This is the unique solution of the 

system.  So the vectors  ,
1 2

u u and 3u are linearly independents 

The previous definitions and theorems lead us to the definition of a base. 
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Definition 3.8 Let V be a  -vector space. Let  1,..., kv v be a subset of vectors of 

the vector space V .  1,..., kv v is a basis of  V if   1,..., kv v  is linearly independent 

and generates  V .  That is if   1,..., kspan Vv v  and   1,..., kv v  is linearly 

independent. Furthermore, the integer k  is called the rank or dimension of the vector 

spaceV [10]. 

Theorem 3.3 

 If  V  is a vector space, then V  has a basis 

 Let V  be a vector space, let  1,..., kv v be a basis of V. Then 

1, ! ( ,..., )kV    u such that 1 ... k   
1 k

u v v
                                

(3.1.6)
 

 Let V  be a vector space, if   and    are two bases ofV , then  and    have 

same number of vectors. 

3.1.6 Vectors Norms 

Multivariate statistics deals with multivariate observation. The knowledge of the 

length of a vector and the angle between two vectors helps determine the relationship 

between the observations. 

Definition 3.9 Let V be an- dimensional vector space, let  

1

k

x

x

 
 


 
  

x   and 

1

k

y

y

 
 


 
  

y   be 

two vectors ofV . The inner product of x  and y is the scalar computed as follow

 
1

1

1

;    
k

k i i

i

k

y

x x x y k n

y


 
    
 
  

x y   ;                                                      (3.1.7) 

The vectors x  and y  must have the same size; i.e. same numbers of elements. 
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In what will follow, the inner product of two vectors  and x y  will be denoted by 

 x,y such that  < x,y >= x y  

Theorem 3.4 Let V  be a vector space over a field  . Let Vx,y,z,w  and let 

,   . The following relationships are satisfied by the inner product 

  x y y x  

 0 x x and 0 x x  if and only if 0x  

 ( ) ( ) ( )   x y x y  

 ( )    x y z x z y z  

 ( ) ( ) ( ) ( )       x y w z x w z y w z  

  Definition 3.10 From the computation formula of inner product given by the 

formula (3.1.7) if x = y then we have 

 
1

2

1

1

k

k i

i

k

x

x x x

x


 
   
 
  

x x                                                                              (3.1.8) 

The scalar  
1/ 2

x x = 2

1

k

i

i

x


  is called the length of the vector  x  or the Euclidean 

vector Norm of  x , and denoted by  || ||x . It follows that 
2|| ||x  is the norm square of x . 

The Euclidean distance or the length between two vectors  and x y from the vector 

space V  is given by  
1/ 2

|| ||= ( ) ( )  x y x y x y
                                                (3.1.9)

 

Let  and x y  be two vectors of a vector space  V  and let   be the angle between

 and x y . The inner product of  and x y is also defined by || || || || cos x y x y .  

Thus cos
|| || || ||





x y

x y
.                                                                                         (3.1.10) 
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Here the angle   is such that 0 180     

Theorem 3.5 Let  and x y be two vectors of a vector spaceV .  and x y are said to be 

orthogonal if their inner product is zero 0 x,y .  

Proof: if  and x y are orthogonal then 90    and cos cos90 0     it follows from 

the formula || || || || cos x y x y  that 0 x y  

Definition 3.11 A vector with length 1 is called a unit vector or a normalized vector. 

Theorem 3.6 In a vector space, any nonzero vector x can be normalized by 

|| ||
unit 

x
x

x
,                                                                                                        (3.1.11) 

where unitx  stands for unit vector or normalized vector obtain from x . 

To prove theorem 3, the following lemma should be considered. 

Lemma Let V  be a vector space over the field K  .  Let Vu and   . The 

following relation holds || || | | . || || u u                                                           (3.1.12) 

Proof of Lemma     2 2 2|| || | | || ||       u u u u u u                            (3.1.13) 

Considering the square root of the formula (3.1.13), we find  || || | | || ||  u u  

Proof:  Let 

1

k

x

x

 
 


 
  

x   be a vector of the vector spaceV . The Euclidean distance or 

the length or the norm of  x is 2

1

|| ||=
k

i

i

x


x .  Let‟s denoted by  unitx  the normalized 
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vector computed from  x  and prove that unitx  has the length 1.  

1

2

1

1

|| ||
unit

k

ki

i

x

xx


 
 

 
 
  

x
x

x
 it follows that  

2

1

2 2

1 1

1
|| ||= || ||= 1

k

i

i

unit
k k

i i

i i

x

x x



 





 

x x  

Example 3.2  Let„s consider the following two vectors 

1

1

2

 
 

 
 
  

u  and 

3

0

1

 
 


 
  

v of a  

3-dimensional vector space over the field . Then let‟s compute the following. 

The length of the vectors   and u v  

2 2 2|| || 1 ( 1) 2 6u      and
2 2 2|| || 3 0 1 10v      

The distance between  and u v  

         
1/ 2

2 2 2
|| || 1 3 1 0 2 1 6u v u v u v            

    

The inner product of   and u v  

 

3

1 1 2 0 1 3 1 0 2 1 5

1

u v

 
          
 
    

The angle between   and u v  

Let    be that angle. 
5

cos 0.645
|| |||| || 6 10




  
u v

u v
thus 1cos 50     

3.1.7 Orthogonal Basis 

Let‟s consider the usual inner product defined on the canonical basis of 2 ,  1 2,e e

or  even defined on the canonical usual basis of n ,  1,..., ne e . The following 

relations hold from those bases: 
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 1 1 1 e e ,  1 2 2 10 and 0  e e e e hold in 2                                 (3.1.14) 

 
1 if 

0 else
i j

i j 
   

 
e e hold in n                                                     (3.1.15) 

 1 2,e e of 2  and  1,..., ne e  of n  are called orthogonal bases in this case. 

Furthermore, since each vector in the bases   1 2,e e  or  1,..., ne e  has the norm 1, 

there are called orthonormal bases [10]. 

The idea  behind orthogonal basis is to be able for a given n- dimensional vector 

space V  and any abstract inner product defined on V , to build a basis of V  with 

vectors of V  which has same properties with the foregoing basis   1,..., ne e  of n  

[13]. 

Definition 3.12 Let  V  be an- dimensional vector space. Let  1,..., n  v v  be a 

basis of V .  is an orthogonal basis if 
0 if 

0 if =  

i j

i j

i j

i j

    
 

   

v v

v v
 ,                          (3.1.16)            

furthermore, if  
0 if 

1 if 

i j

i j

i j

i j

    
 

    

v v

v v
                                                                

 (3.1.17) 

then   is said to be an Orthonormal basis of  V .  

Theorem 3.7 (Pythagorean Theorem) Let V  be a vector space over a field  K  on 

which an inner product is defined. , V u v Such that  and u v  are orthogonal, the 

following formula holds
2 2 2|| || || || || ||  u v u v .                                           (3.1.18) 

Proof : 

2

2 2

|| || , , , , ,

                                     = || || 0 0 || ||

              

  

u v u v u v u u u v v u v v

u v  



16 

 

Where , , 0  u v v u because   and u v  are orthogonal.  Thus

2 2 2|| || || || || ||  u v u v  

Reminder A n-dimensional vector space V over a field  K  on which an inner 

product is defined, is called an Euclidean Vector space if and only if  the dimension 

n   and K  . 

Theorem 3.8 If V is an Euclidean vector space, then V has an orthonormal basis. 

Theorem3.8 tells us about the existence of an orthonormal basis for any Euclidean 

vector space. The next theorem is the procedure to obtain an orthonormal basis from 

any basis of the Euclidean vector space. 

Theorem 3.9 (Gram – Schmidt process): Let V  be an-dimensional Euclidean 

vector space and let  1,..., nv v  be a basis ofV [10]. An orthogonal basis  1,..., nε ε  

of  V  is obtained from  1,..., nv v  by the following process: 

 

1 1

2 1
2 2 1

1 1

1 1
1 1

1 1 1 1

,

,

, ,
,   2

, ,

i i i
i i i

i i

i n


 



 
 

 

   
     

   

ε v

v ε
ε v ε

ε ε

v ε v ε
ε v ε ε

ε ε ε ε


 

Example 3.3 Let 1 2 3

1 0 1

1 , 1  and 0

0 1 1

     
     

  
     
          

u u u .  Be vectors in 3 . The question 

here is to find if   1 2 3, ,u u u  form a basis of 3 .  It means finding the orthogonal 

basis of 3 from  1 2 3, ,u u u  by the Gram-schmidt process. 

Solution:  

Let‟s consider  1 2 3,  and    in   and solve the system 1 1 2 2 3 3 0    u u u
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1 2 3 1 2 3

1 3

1 2

2 3

1 0 1 0

0 1 + 1 0 0

0 1 1 0

0 0

                                   + 0 0   

0 0

     

 

 

 

       
       

     
       
              

       
       

  
       
              

1 2 3u u u

 

The above leads us to

 

 

 

1 3

1 2

2 3

     1               0

     2              0

     3               0

 

 

 

 

 

 

 

From (1): 1 3   ,  (1) in (2) and from (3) give 1 2 3 0     , which is the 

unique solution of the previous  system. This means   1 2 3, ,u u u  is a linearly 

independent system of 3  , thus   1 2 3, ,u u u  is a basis of  3 . Let‟s compute the 

orthogonal basis  , ,
1 2 3
ε ε ε of  3 from   1 2 3, ,u u u using Gram Schmidt process.  

   

(1,1,0)

 where 1,  2

1 1 1
0,1,1 1,1,0 , ,1

2 2 2

1 3
, where 1,  ,  

2 2

2 2 2
, ,

3 3 3

    

    



  

 
    

 

  

 
  
 

1 1

2 1
2 2 1 2 1 1 1

1 1

2

3 1 3 2
3 3 1 2 3 1 3 2 2 2

1 1 2 2

3

ε = u

< u ,ε >
ε = u - ε , < u ,ε > ε ,ε >

< ε ,ε >

ε

< u ,ε > < u ,ε >
ε = u - ε - ε < u ,ε > < u ,ε > < ε ,ε >

< ε ,ε > < ε ,ε >

ε

                              

It can easily be checked out that  1 2 3
ε ,ε ,ε  is an orthogonal basis by computing  the 

inner product  of each pair of  these vectors

1/ 2 2 / 3 2 / 3
1 1

(1,1,0) 1/ 2 0,  (1,1,0) 2 / 3 0,  , ,1 2 / 3 0
2 2

1 2 / 3 2 / 3

     
      

                     
     

1 2 1 3 2 3
ε ,ε > < ε ,ε > ε ,ε  
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An orthonormal basis  1 2 3
v , v , v  can be computed from the previous orthogonal 

basis  1 2 3
ε ,ε ,ε , by normalizing the vectors of the basis  1 2 3

ε ,ε ,ε .  We have 

6 2
|| || 2,  || || ,  || ||

2 3
  

1 2 3
ε ε ε It follows that

1 1 1 1 2 1 1 1
, ,0 ,  , , ,  , ,

|| || 2 2 6 6 6 3 3 3

     
         

     

31 2
1 2 3

1 2 3

εε ε
v v v

ε || ε || || ε ||
 

The basis  1 2 3
v , v , v is an orthonormal basis. It is proved by the verification of 

formula (3.1.17) as follow 

2 2

2

1

2 2 2

2

2 2 2

3

1 1
0 1

2 2

1 1 2
1

6 6 6

1 1 1
1

3 3 3


   

       
    

      

         
     


     

        
     

v

v

v

 

1 2

1 3

2 3

1 1 1 1 2
, , ,0 , , 0

2 2 6 6 6

1 1 1 1 1
, , ,0 , , 0

2 2 3 3 3

1 1 2 1 1 1
, , , , , 0

6 6 6 3 3 3

       
   


   
    
  

           


v v

v v

v v

 

3.1.8 Orthogonal Space 

Some vectors space has particular properties which are important in multivariate 

statistics. Orthogonal space is a requirement for principal components analysis. 

Definition 3.13 Let V be an-dimensional vector space over the field K  on which an 

inner product is defined. Let S  be a subspace of  V this means  S V . The 
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orthocomplement subspace of S  in V is a subspace of V  denoted by  S   and 

defined by  / 0,S V S      v v,u u . This means any vector of S is 

orthogonal to any vector of its orthocomplement subspace S  . Then write 

V S S  which means the vector space V is a direct sum of its subspaces S and

S  . The relation V S S   is equivalent to the following two conditions when 

there are observed together dim( ) dim( ) dim( )V S S  and  0S S  . 

Example 3.4 Consider the Euclidean vector space 3  with its orthogonal basis 

 1 2 3
e ,e ,e , on which the usual inner product is defined. Let‟s consider 3S   

defined by  3 | ,  S     
1

v v e  , the question is to compute the 

orthocomplement subspace of  S  

Solution Let  3 | ,  ,F        
2 3

u u e e  . Let 1 Sx and 2 Fx . By the 

definition of the sets  S and F , 1  1x e  and 2   
2 3

x e e  where , ,   .  

,

                 = , ,

                 =  

                =

  

   

 

   

    

    

1 2 1 2 3

1 2 1 3

1 2 1 3

x ,x e e e

e e e e

e ,e e ,e

0
 

From a random 1 Sx  and a random 2 Fx , we found that 0 1 2x ,x  this means 

 3 | ,  ,F        
2 3

u u e e  is the orthocomplement of  

 3 | ,  S     
1

v v e   ie :   3 / ,  ,S         
2 3

u u e e  . 

Furthermore 
3dim( ) 3;  dim( ) 1 ; dim( ) 2S S    which leads us to 

3dim( ) dim( ) dim( )S S   it is also obvious that   0S S   ; actually let‟s 

assume that 
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   

                      and 

                     

                     0

                     

S S S S

  

  

  

      

   

  

   

 

1 2 3

1 2 3

0 u

u e u e e

e e e

u 0  

3.1.9 Orthogonal Projection 

Theorem 3.10 (Orthogonal Projection) Let V  be an n-dimensional vector space 

over a field K . Let  E  be a finite dimensional subspace of V .  The following holds

 ,  !  | || || , || ||
E

V E d E Inf


       
z

u v u v u u z .                                      (3.1.19) 

Here vector v is unique in E  such that Eu - v .  

The vector v is called the orthogonal projection of the vector u over E . 

3.1.1 Matrix 

Multivariate data are usually observed in a form of a rectangular arrangement. The 

arrangement is of the size  n p  , where n is the number of observation in each of  

the p variables . 

Definition 3.14 A matrix of size  n p with coefficients in   is an arrangement of 

elements of K in a form of n rows and p columns. A matrix of size  n p  is 

represented by 

11 1

1

  where ,  ,

p

ij

n np

a a

a i j

a a

 
 

    
 
 

A



    



 

The elementary arithmetic of    is also applicable on matrices such that we can 

define equality of two matrices, addition of two matrices, and multiplication of two 

matrices. 

Definition 3.15 A matrix A is said to be a square matrix if it is of size  n n , this 

means if it has same number of rows and columns.  
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Let‟s consider the matrices 

11 1 11 1 11 1

1 1 1

 ,  ,  

p p p

n np n np n np

a a b b c c

a a b b c c

     
     

       
     
     

A B C

  

        

  

 

The equality between A and B  is defined by , ,  ij iji j a b   A B  . 

The addition of two matrices A and B  is possible if and only if there are of same 

size. It is defined by 

11 1 11 1 11 11 1 1

1 1 1 1

p p p p

n np n np n n np np

a a b b a b a b

a a b b a b a b

      
     

        
           

A B

  

        

  
             (3.1.20)

 

The multiplication or inner product of two matrices A and B  is possible if and only 

if there are of size  n p and  p m respectively. This means the product A B

where A and B are of sizes  n p and  p m  respectively is possible if the 

number p of columns of the matrix A  is equals to the number pof rows of the matrix

B . For given 

11 1 11 1

1 1

 and  

p m

n np p pm

a a b b

a a b b

   
   

    
   
   

A B

 

     

 

the product A B is 

defined by  

11 1

1

1

  where = ,  1 ,  1

m p

ij ik kj

k

n nm

c c

c a b i n j m

c c


 
 

       
 
 

A B C



  


               (3.1.21) 

Remark Generally   A B B A . 

The square of a square matrix A is defined by 2  A A A . The matrix A  is 

idempotent if 2 A A . 
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Theorem 3.11 Consider the matrices A,B,C,D and the scalars  and   . The 

following properties hold for matrix multiplication and addition  

 A +B = B+ A  

 
     A + B C A + B C

 

     A + B A B  

       A A A  

    AB C A BC  

    A B +C AB AC  

    A B C AC BC  

 
  0  A A

 

 0 A A  

                A B C D A C D B C D AC AD BC BD  

Definition 3.16 Consider a matrix 

11 12 1

221 22

1 2

p

p

n n np

a a a

aa a

a a a

 
 
 

  
 
 
 

A





  
, the transpose of  the 

matrix A  is the matrix obtained by changing rows of A into its columns or vice 

versa. It is denoted A or 
T

A . In this case, 

11 21 1

212 22

1 2

n

n

p p np

a a a

aa a

a a a

 
 
  
 
 
 
 

A





  
. 

Definition 3.17 A square matrix of size n is said to be  

 Symmetric if  A A .  

 Skew-symmetric if   A A  
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Consider ( )nM  to be the vector space of square matrices over the field  . Let 

 ( ) ( ) | n nS M   A A A  be the subset of symmetric matrix of ( )nM  and let

 ( ) ( ) | n nA M    A A A   be the subset of skew-symmetric matrix of ( )nM   

Theorem 3.12 ( )nS  and ( )nA  are subspaces of ( )nM  . Furthermore;  

2dim( ( ))nM n ,  
2

dim( ( ))
2

n

n n
S


 and 

2

dim( ( ))
2

n

n n
A


 . 

dim( ( )) dim( ( )) dim( ( ))n n nM S A   
; 

Theorem 3.13 Consider the matrices A,B,C and the scalars  and   . The following 

hold for transposition 

    AB B A  

      A B A B  

   A A  

    A A  

     ABC C B A  

         A B A B  

Definition 3.18 Let 

11 1

1

n

n nn

a a

a a

 
 

  
 
 

A



  



be a square matrix of size n. The matrix A  is 

said to be a diagonal matrix if and only if  0ija  if i j , where 1 ,i j n 

Furthermore, the set ij i j
a


 is called the diagonal of the matrix A .  
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Definition 3.19 For a given square matrix A  , the trace of A is the scalar obtained 

by the summation of all its diagonal elements. If the trace of A is denoted ( )tr A and 

computed by
1

tr( )
n

ii

i

a


A . 

Theorem 3.14 Consider two square matrices

11 1

1

n

n nn

a a

a a

 
 

  
 
 

A



  



and

11 1

1

m

m mm

a a

a a

 
 

  
 
 

B



  



. Let  and  be two scalars. The following properties holds 

when there are applied on trace operation. 

             1 tr( ) tr( ) tr( )  A B A B if  and A B  are of the same size. Ie: if n=m 

2  tr( ) tr( ) tr( )     A B A B  

3  tr( ) tr( )AB BA  

4  tr( ) tr( ) A A  

5  2

,

tr( ) tr( ) ij

i j n

a


   A A AA and tr( ) A A 0  if and only if A 0 . 

From property (5) which computes the trace of the product of a matrix with its 

transpose, the Euclidean matrix norm is defined. 

Definition 3.20 Let 

11 1

1

n

n nn

a a

a a

 
 

  
 
 

A



  



be a square matrix. The Euclidean squared 

norm of A  is the scalar obtained from the computation of the trace of A A . It is 

computed and denoted as follow 2 2|| || tr( ) tr( ) ij

i n j n

a
 

   A A A AA .Such that the 

Euclidean norm of the matrix A  is simply
2|| || || ||A A . 
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To evaluate the closeness of two square matrices of same size 

11 1

1

n

n nn

a a

a a

 
 

  
 
 

A



  



and 

11 1

1

n

n nn

b b

b b

 
 

  
 
 

B



  



  the concept of Euclidean squared norm of matrix difference 

is introduced and computed by      
2

2

,

|| || tr ij ij

i j n

a b


      
  

A B A B A B ; 

such that  the “distance” between matrices A and B  is 
2|| || || ||  A B A B .  

Theorem 3.15 Consider two square matrices A  and B  of size n , the following 

properties applicable on Euclidean matrix norm are true 

 || || 0A and || || 0A if and only if  A 0 . 

 || || | | || ||,       A A  . 

 || || || || || ||  A B A B (Triangular inequality) 

 || || || |||| ||AB A B (Cauchy-Schwarz inequality) 

Example 3.5 Consider the matrices
2 1

1 3

 
  

 
A , 

5 0

2 4

 
  

 
B and compute the 

following operations 2A , sum of A and B , product of A  and B , transpose of A , 

trace of A , norm of A , distance between A  and B  

Solution 

2 1 4 2
2 2

1 3 2 6

   
    

    
A

 

2 1 5 0 7 1

1 3 2 4 3 7

     
        

       
A B

 

2 1 5 0 8 4

1 3 2 4 11 12

    
     

      
AB
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5 0 2 1 10 5
 ;  

2 4 1 3 8 10

    
      

      
BA AB BA

 

2 1

1 3

T
 

    
 

A A

 

tr( ) tr( ) 2 3 5   A A  

2 2 2 2 2 2

,

|| || tr( ) 2 1 ( 1) 3 15  || || 15ij

i j n

a


         A A A A

 

 2|| || tr ( )( ) 12  || || 12       A B A B A B A B
 

3.1.2 Determinant 

Beyond elementary matrix operations discussed in the previous section, there exits a 

second range of operations which are mainly used in principal components analysis. 

This concerns matrix inverse, determinant and diagonalization [17]. 

Definition 3.21 Consider the square 
11 12

21 22

a a

a a

 
  
 

A  matrix of size 2. The scalar 

11 22 21 12a a a a is called the determinant of the matrix A  and denoted det(A) or | |A . 

The determinant is important in the evaluation of covariance and principal 

component computation. When a square matrix A  has an order 3n  , the 

computation of its determinant becomes more difficult than for the case of a matrix 

of size 2. To define the determinant of a higher order matrix, the concept of sub 

matrix is requires. 

Definition 3.22 Consider a matrix A  of size  n m  , a sub matrix B of  size

  p n
q m

p q 


  of the matrix A  is  obtained by taking a block of entries of A of size 

  p n
q m

p q 


 . 
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For example, considering the matrix 

11 12 13

21 22 23

31 32 33

a a a

a a a

a a a

 
 

  
 
 

A , the matrice

11 12

21 22

a a

a a

 
  
 

B  ,  22 23  a aC , 

12 13

22 23

32 33

a a

a a

a a

 
 

  
 
 

D ,are sub matrices of A  of sizes 

 2 2 ,  1 2  and  3 2  respectively. 

Let consider now a square matrix A  of size 3n  , when the row i and the column j 

of the matrix A are virtually deleted together, a sub matrix of size (n-1)  is obtained 

and denoted 
ijA . This sub matrix is used for the determinant computation. 

Remark A constant is considered to be a matrix of size  1 1 . It can then be 

represented by 11a and its determinant is 11 11det( )a a . 

Definition 3.23 Let A be square matrix of size n . The determinant of A is defined 

recursively as follow 

 If n=1 then 11aA and 11 11det( )a a  , else  
1

1 1

1

det( ) 1 det( )

jn

j j

j

a





 A A

    

(3.1.22) 

Where
1 ja  is the entrance at the position  1, j  in the matrix A and

1 jA  is the 

submatrix defined above [19].   

 
1

11 det( )
j

j


 A is called the Cofactor of the entry of the matrix A in the row 1 and 

the column j.   

In (3.1.22), the index 1 indicates that the determinant is computed by the cofactor 

expansion along the first row.  
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Theorem 3.16 For a given square matrix A of size n the determinant can be 

computed by expansion along any row i such a way that the formula (3.1.22) 

becomes  
1

det( ) 1 det( )

i jn

ij ij

j

a





 A A

                                                              

(3.1.23) 

Theorem 3.17 Consider a square matrix of size n, the following properties applied 

on matrix determinant hold. 

 det( ) det( )A A  

 If A  is an upper or lower triangular matrix then 
1

det( )
n

ii

i

a


A  

 det( ) 1n I , where nI  stands for the identity matrix of size n  

 ,  det( ) det( )n    A A  

Matrix determinant is important because it determines the invertibility of a matrix, 

which is useful for diagonalization process.   

Theorem 3.18 Let A  be a square matrix of size n. Then A  is invertible if and only 

if det( ) A 0 , in which case there exists a matrix B of size n called inverse of A  

and denoted 
1

A , such that 1 1

n

  AA A A I  

Theorem 3.19 Consider two square matrices A and B  of size n

det( ) det( ) det( ) AB A B                                                                                    (3.1.24) 

Corollary:  If A is invertible then  1 1det( ) det 1 det( ) det( )n

    AA I A A . It 

follows that
1 1

det( )
det( )

 A
A

.                                                                         (3.1.25) 

Many properties of a given matrix A are defined based on the computation of its 

determinant and inverse. 
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Definition 3.24 A square matrix A  of size n is said to be an orthogonal matrix if

n
 AA I . Furthermore, every orthogonal matrix A  is invertible and its inverse 

equals to its transpose, 
1 A A .  

Theorem 3.20 Consider an orthogonal matrix A  the following properties are correct  

 det( )A is either  -1 or +1 

 The product of two orthogonal matrices is another orthogonal matrix. 

 The inverse of an orthogonal matrix is also an orthogonal matrix. 

 An orthogonal matrix with determinant equals to 1 is called special 

orthogonal matrix. Such an orthogonal matrix is a rotation.  

3.1.3 Eigenvalues, Eigenvectors of a matrix 

Eigenvalues and eigenvectors are some matrix characteristics which help to 

determine whether or not a matrix is diagonalizable. 

Definition 3.25 Consider A  in ( )nM   a scalar   is said to be an eigenvalue of A  if 

the following conditions are satisfied 

  ker( )n A I 0  

 det( )n A I 0  

 ,  n  x x 0 which verifies Ax x  

Here x is called the eigenvector corresponding to the eigenvalue  .  

The subset of   made of all the eigenvalues of the matrix A  is called the spectrum 

of A and is sometime denoted by ( )Sp A or simply ( )Sp A if it is assumed that the 

field over which the matrix A  is defined is known. 
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Theorem 3.21 Consider A  in ( )nM   and let the scalar be an eigenvalue of A . The 

set of all the eigenvectors corresponding to the eigenvalue   is denoted 

  | nE   x Ax x and E  is a vector subspace of 
n . 

Definition 3.26 E is called the eigenspace of the matrix A  corresponding to the 

eigenvalue .  

In practice, for a given matrix A , there exists a standard process to compute 

eigenvalues and eigenvectors which involve a real polynomial called characteristic 

polynomial. 

Definition 3.27 Consider ( )nMA  . The characteristic polynomial of A is the 

polynomial with coefficients over the field   computed and denoted as follow

det( )np x 
A

A I .  

Theorem 3.22 The scalar  is an eigenvalue of the matrix ( )nMA  if and only if 

 is a root of the characteristic polynomial pA . 

Example 3.6 Consider 
1 0

1 2

 
  
 

A  and compute its eigenvalues and eigenvectors. 

Solution The characteristic polynomial of A is 

  2

1 0
det 1 2

1 2
p x x x

   
       

  
A

I , it follows that A has two distinct 

eigenvalues which are 1 1   and 2 2   , the spectrum of A is  ( ) 1;2Sp  A  ,The 

corresponding eigenvectors are computed as follow: Let 
1 2

2

x

x

 
  
 

X  , if 
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theeigenvector corresponding to the eigenvalue 1  is denoted 
1

e then

 

1

1

1 2

2

1 2 1 2

1 2

2

2 2

0 0
0

1 3

                         3 0 ie: 3

3 3
                         

1

3
                         

1

x

x

x x x x

x x
x

x x

e


  

     
  

    

      
       

    

 
   

 

A I X 0

 

As previously, if the eigenvector corresponding to the eigenvalue 2  is denoted 
2

e  

then  

 

2

1

2 2

2

1 1

1

2

2 2

3 0
0

1 0

                         3 0 ie: 0

0 0
                         

1

0
                         

1

x

x

x x

x
x

x x

e


   

     
  

   

     
       

    

 
   

 

A I X 0

 

The eigenspace corresponding to the eigenvalue 1 is 

1

2
3

 | ,  
1

E t t

   
     

  
X X  ,  

The eigenspace corresponding to the eigenvalue 2 is 

2

2
0

 | ,  
1

E t t

  
     

  
X X  , 

3.1.4 Matrix  Diagonalization 

In this section, the aim is to study the procedure to transform a given square matrix 

A into a product of two matrices with simple structure and a diagonal matrix. 
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Definition 3.28 Consider A and B two square matrices of size n. A  is similar to B  

if and only if there exits an invertible matrix P  of size n such that -1
P AP B . The 

statement A  is similar to B is usually denoted by A B  [19]. 

Remark 

Assume that A  is similar to B , it follows that  

( )

                   

  

 

-1 -1 -1 -1

-1

P AP B P P AP P PBP

A PBP
  

 this means B  is similar to A . 

Theorem 3.23 Let A and B be two matrices such that A B , the following 

properties hold 

 det( ) det( )A B  

 A is invertible if and only if B is invertible 

 A and B have same characteristic polynomial and same eigenvalues. 

Definition 3.29 A square matrix A of size n is said to be diagonalizable, if there 

exists a diagonal matrix D  such that A D . 

Theorem 3.24 (Diagonalization theorem) consider a square matrix A of size n 

with distinct eigenvalues are  1 2, ,..., k k n
  


, the following statements are 

equivalent: 

 A is diagonalizable  

 
1

dim
k

i

E n


 iλ
where

i
E  is the eigenspace corresponding to the 

eigenvalue i  ,  

 ,  ii  and its geometric multiplicity equals to its algebraic 

multiplicity. 
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The three points of the theorem 3.24 are important. In practice, the second point or 

the third point helps to determine whether a given matrix A  is diagonalizable. When

A  is diagonalizable, the invertible matrix P in the formula 
1A P DP is computed 

using all the eigenvectors of A  and the diagonal matrix D  is computed using the 

eigenvalues of A . 

Example 3.7 Consider the following matrix

2 0 0

1 2 1

1 0 1

 
 

  
  

A  , check whether A is 

diagonalizable, if so, find the diagonal matrix D  and the invertible matrix P such that

1A P DP  ,  

Solution  

Let first compute the eigenvalues of the matrix A

  2

3

2 0 0

( ) det det 1 2 1 (2 ) (1 )

1 0 1

x

p x x x x x

x

 
 

       
   

A
A I .  

It follows that A has two eigenvalues 1 2   with algebraic multiplicity equals to 2 

and 2 1  with algebraic multiplicity equals to 1.  

Let‟s compute the eigenvectors and eigenspace corresponding to the  

previous eigenvalues. Consider in 
3 a vector 

1

2

3

x

x

x

 
 

  
 
 

x . 

For 1 2  , solving the equation 1 3( ) A I x 0  gives the following eigenvector

0

1

0

 
 

  
 
 

1e and 2

1

0

1

 
 

  
 
 

e , the corresponding eigenspace is 
1

0 1

1 , 0

0 1

E

     
    

     
    
    

, 
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For 2 1  , solving the equation 2 3( ) A I x 0  gives the following eigenvector

3

0

1

1

 
 

  
 
 

e  the corresponding eigenspace is 
2

0

1

1

E

  
  

   
  
  

, 

1 2

2

1

dim dim dim 2 1 3
i

E E E


     iλ λ λ
, furthermore, the algebraic  

Multiplicity of each eigenvector corresponds to its geometric multiplicity; this means 

the matrix A is diagonalizable. The diagonal matrix is

2 0 0

0 2 0

0 0 1

 
 

  
 
 

D , and the 

invertible matrix

0 0 1

1 1 0

1 0 1

 
 

  
 
 

P , its inverse is 
1

1 0 1

1 1 1

1 0 0



 
 

  
  

P , such that  

1

2 0 0 1 0 1 2 0 0 0 0 1

1 2 1 1 1 1 0 2 0 1 1 0

1 0 1 1 0 0 0 0 1 1 0 1



       
       

            
               

A P DP

. 

If A is diagonalizable, then it is easy to compute
n

A . Actually 

 

   

1 1

1 1

1 1 1

1

                             = ...

                             = ...

                             =

n
n

n

 

 

  



  

 

A P DP A P DP

P DP P DP

P DPP DP P DP

P D P

 

In example 3.7, 

1

2 0 0 1 0 1 2 0 0 0 0 1

1 2 1 1 1 1 0 2 0 1 1 0

1 0 1 1 0 0 0 0 1 1 0 1

n n

n n n

n



       
      

           
             

A P D P

. 
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3.1.5 Singular Value Decomposition 

A matrix A can be written in some easy way to explain more clearly the data it 

represents. This involves the decomposition of the data matrix. In this section two 

methods used in the decomposition of a matrix are introduced. These are the spectral 

decomposition (SD) and singular value decomposition (SVD). 

Theorem 3.25 Let A be a symmetric matrix of size n. Then A  can be expressed in 

terms of its eigenvalues and eigenvectors. This expression is called the spectral 

decomposition of A . If we denoted by the pair  ,i i
e the i

th
 eigenvalue of A  with 

its corresponding eigenvector, then the spectral decomposition of A is computed by 

the following formula
1

n

i

i




 i i
A e e .  

Example 3.1.2 Let consider the symmetric matrix
1 0

0 2

 
  
 

A , its eigenvalues and 

eigenvectors are represented by the pairs 
1

1,
0

  
  

  
and

0
2,

1

  
  

  
, such that

   
1 0 1 0 0 0

1 1 0 2 0 1
0 1 0 0 0 2

       
          

       
A . 

The idea of the spectral decomposition can be extended for a rectangular matrix A  of 

size  n m , the eigenvalues and eigenvectors in this case are computed from the 

square matrices AA and A A . In this case the procedure is called singular value 

decomposition. 

Theorem 3.26 Consider a rectangular matrix A  of size  n m over the field , then 

there exits two square orthogonal matrices say U and V of sizes  m m and  n n

respectively such that A UΛV , where Λ is a diagonal matrix. The elements ofΛ
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are 
1 0p    , where  min ,p m n . The positive real values i  are the 

singular values of the matrix A .  

The vectors U , V and Λ are computed as follow 

 The singular values 
1 0p    are the squawroots of the 

common eigenvalues of both AA  and A A  matrices. 

 The matrix U is made from the eigenvectors of the matrix A A . 

 The matrix V is made from the eigenvectors of the matrix AA . 

Example 3.1.3 Consider the  3 2 matrix

1 2

2 2

2 1

 
 


 
  

A , its singular value 

decomposition is computed as follow 

9 8

8 9

 
   

 
A A , its eigenvalues and its corresponding eigenvectors are 

1
17,

1

  
  

  
and

1
1,

1

  
  

  
 . Normalization of the eigenvectors yields the matrix

1 1

2 2

1 1

2 2

 
 
 
 

 
 

V  . 

5 6 4

6 8 6

4 6 5

 
  
 
  

AA , similarly to the case of A A  , after computation and 

normalization of eigenvalues and eigenvectors, the matrix 

3 1 2

34 2 17

4 3
0

34 17

3 1 2

34 2 17

 
 
 

 
  
 
 
 
 

U  .  
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The singular values of the matrix A are 
1 17  and 2 1  and 

17 0

0 1

0 0

 
 

  
 
 

Λ . 

Finally 

3 1 2

1 134 2 17
17 0

4 3 2 2
0 0 1

1 134 17
0 0

3 1 2 2 2

34 2 17

 
 

   
   
    
         

 
 

A

. 

The reduced singular value decomposition of the matrix A is also defined and 

computed as follow

3 1

1 134 2

4 17 0 2 2ˆˆ 0
1 134 0 1

3 1 2 2

34 2

 
 

  
   
     
        

 
 

A UΛV . In this case 

the third row of the matrixΛ  which is made of null elements is deleted to build the 

matrix Λ̂ . To keep possible the matrix product, the third column of the matrix U  is 

deleted to build the matrix Û .One important application of the singular value 

decomposition is to map the data represented in a coordinate system, let‟s say the 

orthogonal coordinate system onto a scaled coordinate system under a matrix A  . 

This mapping can help to compress an original image or data such to retain 20% of 

information.   
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3.1 Statistics Concepts 

Multivariate data analysis is based on the usual concepts of univariate and bi-variate 

statistics. The basic concepts studied for univariate and bivariate statistics are 

extended for the case of multivariate statistics. 

3.1.1 Sample Space, Random Variable, Probability Distribution 

Statistics is concerned with evaluation of data, and based on obtained results 

interpretation carried out generally for the purpose of helping in sound decision 

making. Such a study is possible only when it stems from a random variable defined 

on a sample space, and adheres to the rules of a certain probability function. 

Definition 3.30 When a statistical experiment is conducted, the set of all its possible 

outcomes is called the sample space and it is usually denoted by S [9]. 

Remark A sample space with a finite number of possibilities is called a discrete 

otherwise it is called a continuous sample space.  

Definition 3.31 A random variable is a measurable function from the sample space 

that associate each element of the sample space with a real number or any other 

property that characterizes element from the sample space. A random variable is 

usually denoted by X . 

Remark A random variable with a countable set of outcomes is called a discrete 

random variable; otherwise it is called a continuous random variable. 

Definition 3.32 The set of all the ordered pairs   ,x f x  where x  is a possible 

outcome of the random variable X  and  f x is the chance of x  to appear is called 

probability function or probability distribution or probability mass function. 
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3.1.2 Univariate Normal Distribution 

It was previously mentioned that there exits two types of variables, which are 

discrete and continuous variables. Their corresponding distributions functions are 

also discrete and continuous distributions functions. In the case of continuous 

distribution, the most interesting one is the normal distribution. This is due to its 

wide use in many fields of research and application. 

Definition 3.33 In the univariate case considers a random variable X with its mean 

 and its variance 2 . The random variable X  is said to be normally distributed or a 

normal random variable if its graphical representation has a bell-shape as shown on 

the following figure [10]. 

The probability density of is X  computed and denoted by

 
2

2

1
( )

2
1

; , ;  
2

x

n x e x


 


 

      .                                                      (3.2.1) 

 
                               Figure 3.2.1: The normal distribution shape 

In practice, a normal distribution is completely defined when the value of  and  are 

specified. 
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Using the transformation of variable 
X

Z





 , the normal random variable 

becomes  
21

2
1

;0,1
2

z

n z e




 .                                                                           (3.2.2) 

This is a normal distribution with mean 0 and standard deviation 1, also called the 

standard normal probability density function. 

Definition 3.34 A normal random variable, which is distributed with its mean equals 

to 0  and its variance equals to1 is said to be a standard normal distribution. 

3.1.3 Bivariate Normal Distribution 

Consider two normally distributed random variables X andY . The joint distribution 

of the variables X andY is called the bivariate distribution. The variable x and y are 

dependent. The dependence between the variables X andY is defined by the 

correlation coefficient  .Probability density of a bivariate normal distribution is 

given by

 
 

2 2

22

1 1
, exp 2

2 12 1

X X Y Y

X X Y YX Y

x x y y
f x y

   


     

            
           

            

with x   ; y  and  is called population correlation coefficient. 

(3.2.3) 

 
                                Figure 3.2.2: The bivariate normal distribution shape 
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3.1.4 Multivariate Normal Distribution 

A normal distribution with p random variables is generally named as a multivariate 

normal distribution. Consider the p=2 (bivariate) case, where the covariance Σ

between the random variables 
1 2 and X X  can be written in the matrix form

1 1 2 1 2

1 2 1 2 2

2

2

X X X X X

X X X X X

   

   

 
  
 
 

Σ ,                                                                      (3.2.4) 

where
1 2

2 2 and X X  are the variances of 
1 2 and X X  respectively. 

1 2X X is the 

correlation coefficient between 
1 2 and X X .The determinant of the Σ  matrix is

 2 2 21X Y   Σ .                                                                                             (3.2.5) 

The inverse of the covariance matrix is computed and denoted by

 

22

1

222 2 2

2

1

1 1

111

X X YY X Y

X Y XX Y

X Y Y



    

    

  



 
  
   
   
 
 

Σ

           (3.2.6) 

Consider the variables 1 2, X X  and their respective mean deviation in form of a 

matrix 
1 1

2 2

x

x





 
  

 
X . Then 

1 2 XΣ X  which is actually the quadratic form of the 

vector X , is the chi-square random variable. The bivariate normal distribution 

function can now be expressed by    
111

1
22, 2f x y e




XΣ X

Σ .                    (3.2.7) 
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Generally, consider

1

2

p

x

x

x

 
 
 
 
 
  

X


 a random vector of p variables and its vector mean

1

2

p







 
 
 
 
 
  

μ


,the multivariate normal distribution function of X is 

   
111 ( ) ( )

22 22
p

f e
   


X μ Σ X μ

X Σ
.                                                                  (3.2.8)

 

3.1.5 Sample Mean - Vector Mean 

The central tendency of a dataset is usually measured by the computation of its mean.  

Definition 3.35 Let X  be a random variable with its distribution function  f x . The 

expected value of X or the mean of  X is defined by  

  ( )
x

E X xf x  
                                                                                           

(3.2.9) 

if X is a discrete random variable  and 

   E X xf x dx



                                                                                      

(3.2.10) 

if X is a continuous random variable [9]. 

Definition 3.36 Consider a random sample of  n observations  say  1, , nx x , its 

mean or expected value is the scalar
1

1 n

i

i

x x
n 

   .                                           (3.2.11) 

Remark Although definition 3.35 and definition 3.36 expressed the mean concept, 

the computation seems to be different from one definition to another. The difference 

comes from the fact that in definition 3.35, a distribution function  f x is given, 

whereas in definition 3.36, the computation is done from a set of collected data. 
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The mean concept defined for a sample of n observations can be extended for the 

case of multivariate data. The concept of mean vector is then defined. Mean vector 

resulted from the computation of the mean of an extracted vector from a multivariate 

dataset.  

Definition 3.37 Consider the matrix

11 12 1 1

21 22 2 2

1 2

1 2

j p

j p

i i ij ip

n n nj np

x x x x

x x x x

x x x x

x x x x

 
 
 
 

  
 
 
 
 
 

X

 

 



 



 

 that 

representing a dataset of n observations of p  variables. The sample vector mean is 

defined by 
1

n
n

 x 1 X .                                                                               (3.2.12) 

 Where n1 is a column vector of size n , which elements are ones. The sample mean 

vector x is a column vector of size p , such that it is denoted

1

2

p

x

x

x

 
 
 
 
  
 

x


. Where each 

entrance is the mean of its corresponding index column form the data matrix X  .  

If now the sample consideration is extended for a whole population then the 

population mean vector is the expectation of the sample mean vector. It is computed 

and denoted  

1

2

( )

( )

( ) p

E

E
E E

E







     
     
        
     
          
     

1 1

2 2

p p

x x

x x
x μ

x x

  
.                                           (3.2.13) 

Let consider a single random variable 1X with mean 1  . If 1X  is multiplied by a 

constant c  then its mean value or expectation is expressed by  

1 1 1( ) ( )E cX cE X c  .                                                                                     (3.2.14) 
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Furthermore, if a linear combination of two random variables 1X  and 2X with 

respective means 1  and 2  is considered then the mean of its linear combination 

1 1 2 2c X c X is given by 1 1 2 2 1 1 2 2 1 1 2 2( ) ( ) ( )E c X c X c E X c E X c c      ,      (3.2.15) 

which can also be expressed in form of a matrix product as follow 

  1

1 1 2 2 1 2

2

c c


   


 
   

 
C μ . Where 1

2

c

c

 
  
 

C and 1

2





 
  
 

μ  .                  (3.2.16) 

Theorem 3.27 Consider the following q  linear combinations of p random variables

1 11 1 12 2 1

2 21 1 22 2 2

1 1 2 2

                                

p p

p p

q q q qp p

Z c X c X c X

Z c X c X c X

Z c X c X c X

   

   

   





 



, 

it can be represented in term of matrices product as follow

1 11 12 1 1

2 21 22 2 2

1 2

p

p

q q q qp p

Z c c c X

Z c c c X

Z c c c X

     
     
       
     
     
          

Z CX





     



.                                                  (3.2.17) 

It follows that ( ) ( )E E   
Z X

μ Z CX C  .                                                     (3.2.18) 

3.1.6 Variance and Covariance 

It helps to measure the variation from the mean of the random variable. Covariance 

represents the variation between two variables. 

Definition 3.38 Consider a random variable X  with mean  and which has a 

probability distribution  f x . The variance of X  is computed by  

     
222

x

E X x f x      
  

                                                              

(3.2.19) 

if X is a discrete random variable, and  
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     
2 22 E X X f x dx  





    
  

                                                        
(3.2.20) 

if X is a continuous random variable [20;21]. 

The variance of a random variable is denoted by  Var X  or 2

X or simply 2 [9]. 

Definition 3.39 Consider a random sample of  n observations  say  1, , nx x ,with 

mean x . Its variance is computed and denoted by

 
2

2 1

1

n

i

i

x x

s
n









.                (3.2.21) 

Theorem 3.28 Consider a linear combination 
1 1 pc X X   C X   of p random 

variables  1, , pX X . Its variance is ( )Var  C X CΣC .Here cov( )Σ X .      (3.2.22) 

Definition 3.40 If 1X and 2X  are two random variables with a joint distribution 

function  1 2,f x x ,with means
1X  and 

2X respectively, then their covariance is  

       
1 2 1 2 1 2

1 2

1 2 1 2 1 2,X X X X X X

x x

E X X x x f x x          
  

        

(3.2.23) 

if  the variables 1X  and 2X are discrete, and 

       
1 2 1 2 1 21 2 1 2 1 2 1 2,X X X X X XE X X x x f x x dx dx    

 

 

      
     

                                                                                                                         (3.2.24) 

if the variables 1X  and 2X are continuous. 

The covariance of 1X  and 2X  is also denoted  1 2X ,XCov  . 

Definition 3.41 Consider a random sample of two variables X andY with joint 

distribution of  n observations  say  1 1( , ), , ( , )n nx y x y , its covariance is computed 

by 

  
2 1

1

n

i i

i
XY

x x y y

n
 

 





.                                                                   (3.2.25) 
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In the case of a random sample with more than 2 variables, it is suitable to use a 

matrix form to display the computation of the covariance between each pair of 

variables. 

Definition 3.42 Consider p  random variables  1, , pX X . There exist 

   1 ( 2)! 1!

2 2!( 2)! 2!( 2)! 2

p p p p p pp

p p

   
   

  
possible pairs of elements from

 1, , pX X . The covariance between elements of each of those pairs can be 

computed and displayed in form of a symmetric matrix as below

1 1 1 2 1

2 1 2 2 2

1 2

p

p

p p p p

X X X X X X

X X X X X X

X X X X X X

  

  

  

 
 
 

  
 
 
 

Σ





   



 ; 

where the element   
i kX X i i k kE X X       is the covariance between the 

variables iX  and jX  .Σ is a symmetric matrix so
i k k iX X X X   . The entrance 

i iX X

seen as the covariance between a variable and itself is simply the variance of iX . 

Theorem 3.29 If 1X and 2X  are two independent random variables then 
1 2

0X X  . 

The vice versa case of theorem 3.29 is not true in general because there are cases 

where 
1 2

0X X   but that 1X and 2X   are not independent [10]. 

Theorem 3.30 Consider the following q  linear combinations of p random variables

1 11 1 12 2 1

2 21 1 22 2 2

1 1 2 2

                                

p p

p p

q q q qp p

Z c X c X c X

Z c X c X c X

Z c X c X c X

   

   

   





 



,  
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it can be represented in terms of matrix product as follow 

1 11 12 1 1

2 21 22 2 2

1 2

p

p

q q q qp p

Z c c c X

Z c c c X

Z c c c X

     
     
       
     
     
          

Z CX





     



.                                                (3.2.26) 

 It follows that cov( ) cov( )   
Z X

Σ Z CX CΣ C .                                          (3.2.27) 

3.1.7 Correlation Coefficient Matrix 

The covariance matrix S shows the variance values on its diagonal, and the nature of 

the pairwise linear relationship between the variables in the off diagonal elements. 

Range of values of the elements of Sis 
ijs   . However, the strength of the 

linear relationship between the variables is not evident. This handicap is overcome 

by computing the pairwise linear correlation matrix R. Diagonal elements of R is 

equal to 1, since the linear correlation between a variable and itself must be 

100%.Off diagonal elements represents the strength of linear correlation between 

pairs of variables.  

Definition 3.43 Consider two random variables 1X and 2X .  The correlation 

coefficient between them is 
 

   
1 2

1 2

1 2

cov ,
X X

X X

var X var X
    [15].                       (3.2.28) 

Definition 3.44 Consider p  random variables  1, , pX X . There exist 

   1 ( 2)! 1!

2 2!( 2)! 2!( 2)! 2

p p p p p pp

p p

   
   

  
possible pairs of elements from

 1, , pX X . The correlation coefficient between elements of each of those pairs can 
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be computed and displayed in form of a symmetric matrix as follow

1 1 1 2 1

2 1 2 2 2

1 2

p

p

p p p p

X X X X X X

X X X X X X

X X X X X X

  

  

  

 
 
 

  
 
 
 

ρ





   



 ;                                                                (3.2.29) 

where the element i k

i k

i k

X X

X X

X X




 



is the correlation coefficient between the 

variables
1 2, X X  . ρ is a symmetric matrix so

i k k iX X X X   . The entrance 
i iX X seen 

as the correlation between a variable and itself and it equals to 1. 
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  Chapter 4 

4 COMPUTING PRINCIPAL COMPONENTS   

USING COVARIANCE AND CORRELATION                                       

MMMMMMMMATRICES 

Multivariate statistics deal with the case where more than one variable is involved. 

When the number of variables ( p ) is very large, analysis of data coming from these 

variables become very demanding in terms of computational time. Therefore, some 

method has to be developed, that will reduce the number of variables involved in the 

computation. Principal component analysis (PCA) is one such method that generates 

a linear combination of all variables starting with the direction of largest variation in 

the data to the direction where the smallest variation is. Number of principal 

components (PCs) is the same as the number of variables, but only the first few PCs 

can account for more than 90% of total variation in the data. Use of the few PCs 

suffices to produce meaningful and reliable interpretation regarding the data [25;26]. 

4.1 Population and Sample Principal Components 

The principal components of a n p  dataset   representing n observations of p 

variables are some particular linear combinations of those p random variables. 

Geometrically, these linear combinations represent a new system of coordinate‟s 

axes obtained by rotating the original system  1 2,  , , pX X X of the coordinate‟s 

axes.  

In practice, the following steps are used to compute PCs: 

 Computation of  Σ  and /or ρ  matrices 
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 Computation of eigenvalues and eigenvectors or either Σ  and /or ρ  

matrices.  

 The eigenvalues are ordered in descending order. 

 The coefficients of the principal components are the eigenvectors of the 

covariance or correlation matrices   1 . . .i i ipe e e
           

(4.1.1) 

The PCs are computed as follows 

1 1 11 1 12 2 1

1 1 2 2

p p

p p p p pp p

Y e X e X e X

Y e X e X e X

    

    

e X

e X






                                                        (4.1.2)    

Theorem 4.1:  Consider a vector of p  random variables 1 pX X   X  , with 

its associated covariance matrix Σ  , computed from n  observations. Consider the 

eigenvalue – eigenvector pairs 1 1( , ), , ( , )p 
p

e e of the covariance matrix Σ , such 

that 
1 2 0p       and the PCs are 

1 1 11 1 12 2 1

1 1 2 2

p p

p p p p pp p

Y e X e X e X

Y e X e X e X

    

    

e X

e X






 

and the following relationship holds 

   
1 1 2 2 1 2

1 1

var var
p p

p p

X X X X X X i p i

i i

X Y     
 

            [4]      (4.1.3) 

Proof: The scalar  
1 1 2 2 p pX X X X X X tr      Σ . The matrixΣ  is diagonalizable 

and can be represented by Σ PΛP  . Where 2, , , p
   1

P e e e  and
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 1 2, , , pdiag   Λ   . It follows that 

          1 2 ptr tr tr tr tr           Σ PΛP ΛP P ΛI Λ  . Thus 

       
1 1

var var
p p

i i

i i

X tr tr Y
 

   Σ Λ . 

The ratio 
1 2

k

p



    
represents the proportion of variation of the population 

due to the thk principal component.  

The first few components which represent a high percentage (around 90% or more) 

of the variation in the population, can be used to replace the initial p variables 

without losing too much information. 

The contribution of the thk  variable kX in the thi PC iY  can be evaluated from the thi  

eigenvector 1, , , ,i ik ipe e e   i
e    . The importance of the thk  variable kX in the thi

PC iY  is given by the magnitude of ike . 

Theorem 4.2 Consider the PCs 

1 1 11 1 12 2 1

1 1 2 2

p p

p p p p pp p

Y X e X e X e X

Y X e X e X e X

    

    

e

e






 

Computed from the covariance matrix Σ , with the associated eigenvalues-

eigenvectors couples    1, , , ,p 
1 p

e e .  The correlation coefficient between the 

thi PC iY  and the thk  variable kX is computed by 

,i k

k k

ik i

Y X

X X

e 



 , where1 ,i k p      [19]                                                          (4.1.4) 
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4.2 Geometric Representation of  PCs 

Geometrically, PCs represent a new system of coordinate built from an existing one. 

Furthermore its axes show direction in which there is high variation or where there is 

accumulation of data for a given dataset. Consider the normally distributed variables

 1, , pX XX  , with mean vector μ  and covariance matrixΣ .   ,pN μ Σ  Let

,i i e be the eigenvalue-eigenvector pairs of the covariance matrix on the μ centered 

ellipsoids defined by    1 2c  x μ Σ x μ  with axes ( ;  1,2, ,p)i ic i e  . 

Considered that PCs are computed from the covariance matrix Σ and represented by

1 1 , , p pY Y  e x e x and assuming that μ 0 , it follows that 

     
22 22 1 2 2 2

1 2 1 2

1 2 1 2

1 1 1 1 1 1
p p

p p

c y y y
     

           xΣ x e x e x e x  .  

                                                                                                                             (4.2.1)       

Since the eigenvalues are positive, this equation is the definition of an ellipsoid in the 

coordinate system
1 2, , , pY Y Y , its axis being the eigenvectors

1 2, , , pe e e . The major 

axis is given by the eigenvector belonging to the highest eigenvalue 1 and the 

remaining following in sequence of the eigenvalues
2 , , p  . 

 
                           Figure 4.2.1: Geometric illustration of PCs 
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Figure4.2.1 represents a situation where from the scatter plot of a dataset in the 

coordinate system  ,x x
1 2

 . The PCs are computed and the first two are chosen to be 

enough to represent the data in a new coordinate system  ,
1 2

y y where the new 

coordinate system fits well to the data. 

4.3 Number of PCs Sufficient to Represent the Population Variation 

It is mentioned previously that for a dataset of n observation of p random variables, 

the number of PCs computed is the same as the number of variables. Determination 

of the number of PCs that can represent the process under study adequately is as 

follows.  

Definition 4.1 Consider the covariance matrixΣ  with associated eigenvalue-

eigenvector pairs    1, , , ,p 
1 p

e e .The ratio 
1 2

k

p



    
represents the 

proportion of variation in the population due to the thk principal component [21]. 

Furthermore, the variation of the population due to the first q  PCs is computed b

1

1

q

p

k

k

 




 
 




                                                                                                (4.3.1) 

The first q  PCs that represent a high percentage of total variation without a great loss 

of information is preferred. A value of 90%  is considered very satisfactory for 

many practical purposes [23]. Another way to choose the number of eigenvalues 

sufficient to represent the population variation without loss of information is based 

on a graphical observation of a scree plot. A scree plot is a two-dimensional graph 

where the eigenvalues of the covariance matrix are represented on the y-axis and 

their corresponding index on the x-axis. The eigenvalues are ordered in descending 
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order, before plotting. The elbow bend of the scree plot show the number of PCs to 

be considered.  

 
                                          Figure 4.3.1: Illustration of scree plot 

Figure 4.3.1 is an illustration of a situation where 7p  random variables are 

observed. Here, the elbow is observed at the index 3, thus the first 3 PCs are enough 

to represent the variation of the whole population without loose of information. 

4.4 Standardized PCs 

The PCs can also be computed from standardized variables. The need of using such 

variables for PCs computation will be discussed in the upcoming session.  

Consider a vector of p  random variables  1, , pX X X  , with mean vector 

 1 2, , , p   μ  and standard deviation matrix

 1 1 2 2

1/2 , , ,
p pX X X X X Xdiag   V  ,                                                          (4.4.1) 
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a new vector of p random variables  1, , pZ ZZ   can be defined from

 1, , pX X X  , where
 

i i

i i

i

X X

X
Z






 .                                                            (4.4.2) 

Definition 4.2 The variables  1, , pZ Z Z  where
 

i i

i i

i

X X

X
Z






  are called 

standardized variables [6]. 

Using the new variables  1, , pZ Z Z  , PCs and all its related concepts can still be 

computed without loss of information. 

The random variable vector  1, , pZ Z Z  can be expressed in terms of the standard 

deviation matrix 1/2
V  and the covariance matrixΣ as follow. 

 

 

 

 
   

1 1 1 1

1 1

1 1
1

1/ 2

1
0

1
0

p p
p p

X X X X

p p p p

X X
X X

X

X

X X



 

 

 



  
  

                         
   
   

V X μ Z



    



(4.4.3) 

Furthermore, the following relations hold 

            
 

 
 

 

 
 

1 1 1 1 1 1
1 1 1 1 1

1/2 1/2 1/2 1/2 1/2  

p pp p p p

E X E X

E E E

E X E X

   

  

    

       
     

            
              

Z V X μ V X μ V V V 0  

 

                                                                                                                              (4.4.4) 

and 

               
1 1 1 1 1

1/2 1/2 1/2 1/2 1/2( )Cov Cov Cov
    

     Z V X μ V X μ V V Σ V ρ

                                                                                                                              (4.4.5) 
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Theorem 4.3 The PCs can be computed from the standardized variables

 1, , pZ Z Z  where
 

i i

i i

i

X X

X
Z






 , with the covariance matrix cov( ) Z ρwhich 

is actually the correlation matrix. Consider the eigenvalue-eigenvector pairs  ,i i
e

computed from the correlation matrixρ . The PCs are then defined by

   
 1

1
2

i i

i i

i i i i i i

X X

X
Y X






 
     e Z e V e  .                                                      (4.4.6) 

The variables  1, , pZ Z Z   being standardized, the variance of each iZ is unity, 

this means 1,  1, ,
i iZ Z i p    .                                                                        (4.4.7) 

It follows that the correlation coefficient between the thi PC iY  and the thk  variable 

kZ is computed by ,i k

k k

ik i

Y Z ik i

Z Z

e
e


 


  . With 1 ,i k p  .                         (4.4.8) 

 Moreover, the total variation of the p  variables equals to p . Actually, 

   
1 1 2 2

1 1

var var 1 1 1
p p

p p

i i Z Z Z Z Z Z

i i

Y Z p  
 

            
.                (4.4.9) 

Similar to the case where computation of PCs is done using the covariance matrix, 

one can compute the population variation explained by the thk PC by  

k

p


 

                                                                                                               

(4.4.10) 

or the population variation explained by the first q PCs by 

1 q

q
p

  
 


.                                                                                              (4.4.11) 
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4.5 Use of Covariance or Correlation Matrices for PC Computation 

In the previous sections, it was mentioned that PCs can be computed from both 

covariance and correlation matrices.  

Theorem 4.4 The PCs computed from the covariance matrix are in general not equal 

to those computed from the correlation matrix [8, 9]. 

Consider for instance the following set of data where 5 variables are observed and 

defined as follow. 1X : Height of an individual in centimeter, 2X : weight of 

individual in kg 3X : shoes size of individual in centimeter 4X
 
: age of individual  in 

years and 5X : monthly expenditure of individual in dollar. 

Table 4.5.1: Data of individual parameters 

1X
 2X

 3X
 4X

 5X
 

170 90 27 28 400 

160 60 27 90 1000 

180 80 30 21 500 

155 70 25 15 150 

165 75 28 20 700 

130 50 23 11 200 

140 30 24 13 100 

125 20 19 7 300 

190 70 31 30 1500 

150 40 26 17 300 

 

The following computations based on covariance matrix and correlation matrix give 

an illustration of the difference between the PCs computed using one or another of 

those matrices. 
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The mean vector of the data is  156.5 58.5 26 25.2 515x .                (4.5.1) 

 It is also known that  Eμ x . 

Computation based on covariance matrix and using table 4.5.1 

The covariance matrix is 

5

0.0044    0.0039    0.0007    0.0017    0.0648

0.0039    0.0052    0.0006    0.0014    0.0375

10 0.0007    0.0006    0.0001    0.0003    0.0103

0.0017    0.0014    0.0003    0.0057    0.0599

0.0648    0

S

.0375    0.0103    0.0599    1.9447

 
 
 
 
 
 
 
 

                                     (4.5.2) 

The eigenvalues and eigenvectors of S  are; 

5

1.9495 0 0 0 0

0 0.0063 0 0 0

10 0 0 0.0039 0 0

0 0 0 0.0005 0

0 0 0 0 0.0000

S

 
 
 
 
 
 
 
 

Λ                                     (4.5.3)       

and  

0.0333 -0.5457 -0.1080 0.8126 0.1707

0.0193 -0.8326 0.0568 -0.5505 -0.0092

0.0053 -0.0869 -0.0086 0.1472 -0.9852

0.0308 -0.0115 0.9921 0.1207 0.0105

0.9988 0.0351 -0.0280 -0.0209 -0.0006 

 
 
 
 
 
 
 
 

S
E                                     (4.5.4) 

The PCs computed from this covariance matrix are then 

1 1 2 3 4 5

2 1 2 3 4 5

3 1 2 3 4 5

4 1 2 3 4 5

5

0.0333 0.0193 0.0053 0.0308 0.9988

0.5457 0.8326 0.0869 0.0115 0.0351

0.1080 0.0568 0.0086 0.9921 0.0280

0.8126 0.5505 0.1472 0.1207 0.0209

0.

S

S

S

S

S

Y X X X X X

Y X X X X X

Y X X X X X

Y X X X X X

Y

    

     

     

    

 1 2 3 4 51707 0.0092 0.9852 0.0105 0.0006X X X X X   

.                     (4.5.5)        
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              Figure 4.5.1: scree plot of table 4.5.1 from covariance matrix 

Figure 4.5.1 represents the scree plot of the eigenvalues computed from the 

covariance matrix. The elbow bends at 2i  leads to the conclusion that only the first 

eigenvalue (the first PC) is enough to represent the total variation of the sample 

without loss of information.   

The variation represented by the first PC is
5

1 5

10 1.9495
0.9945

10 1.9602

S 
  


.            (4.5.6) 

For instance the correlation coefficients between the first PC and the variables are 

1 1
0.7009Y X  ,

1 2
0.3727Y X  ,

1 3
0.7400Y X  ,

1 4
0.5696Y X  and 

1 5
1.0000Y X  . 

According to these results, the variable 5X  has the highest impact in the first PC, 1Y . 

Because it has a correlation coefficient equals to 1. In other word is 100% correlated 

to 1Y  .  This means if the variable 5X  is omitted within the PC computation, then it 

will considerably affected the first PC, 1Y  . On the other hand, the variable 2X with 

very low correlation to 1Y , would mean an insignificant effect on 1Y . Computation of 

the first PC, 1Y  with omission of 2X ,will make a marked difference in 1Y  . 

The computation based on correlation coefficient matrix and using data 4.5.1 are the 

following 
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The correlation coefficient matrix is 

1.0000    0.8055    0.9555    0.3336    0.7006

0.8055    1.0000    0.7647    0.2582    0.3717

0.9555    0.7647    1.0000    0.3582    0.6666

0.3336    0.2582    0.3582    1.0000    0.5686

0.7006    0.37

R

17    0.6666    0.5686    1.0000

 
 
 
 
 
 
 
 

                                          (4.5.7) 

The eigenvalues and eigenvectors of are; 

3.3960 0 0 0 0

0 0.9670 0 0 0

0 0 0.4569 0 0

0 0 0 0.1466 0

0 0 0 0 0.0335

R

 
 
 
 
 
 
 
 

Λ                                         (4.5.8)     

and 

-0.5194 -0.2226 0.1481 -0.1820 0.7909

-0.4374 -0.4186 -0.5429 0.5548 -0.1757

-0.5119 -0.1988 0.1191 -0.6130 -0.5555

-0.2988 0.7577 -0.5476 -0.1745 0.0794

-0.4331 0.4020 0.6077 0.5029 -0.1694

R

 
 
 
 
 
 
 
 

E .                                   (4.5.9) 

Recall the formula (4.4.2) and the variances
1 1

510 0.0044 20.9762X X    , 

2 2

510 0.0052 22.8583X X    ,
3 3

510 0.0001 3.1623X X    ,

4 4

510 0.0057 23.8747X X    and 
5 5

510 1.9447 440.9875X X    the new 

variables are defined by 1
1

156.5

20.9762

X
Z


  ; 2

2

58.5

22.8583

X
Z


 ;

3
3

26

3.1623

X
Z


 ; 

4
4

25.2

23.8747

X
Z


 ; 

5
5

515

440.9875

X
Z


 ; 
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The PCs computed from the correlation coefficient matrix are then defined by

1 1 2 3 4 5

2 1 2 3 4 5

3 1 2 3 4 5

4 1 2 3

0.5194 0.4374 0.5119 0.2988 0.4331         

0.2226 0.4186 0.1988 0.7577 0.4020       

0.1481 0.5429 0.1191 0.5476 0.6077     

0.1820 0.5548 0.6130 0.17

R

R

R

R

Y Z Z Z Z Z

Y Z Z Z Z Z

Y Z Z Z Z Z

Y Z Z Z

     

     

    

     4 5

5 1 2 3 4 5

45 0.5029

0.7909 0.1757 0.5555 0.0794 0.1694R

Z Z

Y Z Z Z Z Z



                    

(4.5.10) 

After expanding this expression in term of the variable 
 

i i

i i

i

X X

X
Z






 , the equation 

(4.5.10) becomes 

1 1 2 3 4 5 1

2 1 2 3 4 5 2

3 1 2 3 4 5 3

4 1 2 3

0.0248 0.0191 0.1619 0.0125 0.0009

0.0106 0.0183 0.0629 0.0317 0.0009

0.0070 0.0236 0.0377 0.0229 0.0014

0.0087 0.0243 0.1938 0.0073

R

R

R

R

Y X X X X X cte

Y X X X X X cte

Y X X X X X cte

Y X X X X

      

      

     

     4 5 4

5 1 2 3 4 5 5

0.0011

0.0377 0.0077 0.1757 0.0033 0.0003R

X cte

Y X X X X X cte

 

     

,         (4.5.11) 

 
                Figure 4.5.2: scree plot of table 4.5.1 from correlation matrix 

The variation represented by the first PC is 1

3.3960
0.6792

5

R   , and the variation 

represented by the first two PCs is 2

3.3960 0.967
0.8726

5

R 
    . So the first two  
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PCs are enough in this case for the representation of the whole data variation without 

loss of information. For instance the correlation coefficients between the first PC and 

the variables are 

1 1
0.9572Y Z   ,

1 2
0.8060Y Z   ,

1 3
0.9433Y Z   ,

1 4
0.5506Y Z   and

1 5
0.7981Y Z    

Based on all the computation done so far, the PCs computed from the covariance 

matrix are different from the PCs computed from the correlation matrix. The relation 

or the significance of variables in PCs computed using covariance or correlation 

matrix is different from one case to another. Furthermore, there is neither linear 

relation nor logarithmic relation between the PCs computed using one or another 

matrix. This leads to the conclusion that the standardizing of variables has an effect 

on the PCs‟ computation. The standardizing of variables is usually required for 

inhomogeneous variables or for variables which have very high range of variation.  

Theorem 4.5 The correlation coefficient matrix is suitable for PCs computation 

when there are large variations between the data values among the variables and/or 

when it is an inhomogeneous data [12].  

Consider for instance the following set of data representing the measurement of three 

parameters of an individual, with the variables 1 2,X X and 3X being respectively 

Number of working hours/day, Monthly salary(in Euro) and Years of experience. 

Table 4.5.2:  Salary 
Fields  Number of 

working hour / day 

( 1X ) 

Monthly salary 

(in Euro) 

( 2X ) 

Years of experience 

( 3X ) 

Civil Engineer  7 1000  8 
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Computer Engineer  10 1500 12 

Farmer 6 1000 17 

Goods deliverer 8 1500 15 

Baker 9 1700 11 

University lecturer 7 1500 10 

High school teacher 6 1500 13 

Shop keeper  15 1000 13 

Hotel manager 10 1700 19 

Waitress  12 1800 10 

 

Table 4.5.2 represents the monthly salaries of ten employees from different sectors, 

number of working hours per day and number ofyears of experience. Difference 

between the values of variable 2X  and the other two variables is clearly evident. The 

PCs will be computed using both covariance and correlation matrix and a conclusion 

will be drawn. 

Mean of three variables are  9;  1420;  12.8x . It is also known that  Eμ x .  

Computation based on covariance matrix and using data from Table 4.5.2 is  

8.22 66.67 0.22

66.67 95111 26.67

0.22 26.67 11.51

 
 

  
  

S

                                                                         (4.5.12) 

The eigenvalues matrix and its corresponding eigenvectors matrix are 

4

9.5111         0          0

10 *        0     0.0012       0

       0          0     0.0008

S

 
 

  
 
 

Λ

                                                                (4.5.13) 
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and 

   -0.0007   -0.0718   -0.9974

   -1.0000   -0.0002    0.0007

   -0.0003    0.9974    -0.0718

 
 

  
 
 

S
E                                                                (4.5.14)   

The PCs computed from the covariance matrix are  

1 1 2 3

2 1 2 3

3 1 2 3

0.0007 0.0003

0.0718 0.0002 0.9974

0.9974 0.0007 0.0718

S

S

S

Y X X X

Y X X X

Y X X X

   

   

   
                                                           (4.5.15) 

Computation based on correlation coefficient matrix and using data 4.5.2 

The correlation coefficient matrix is 

  1.0000    0.0754   -0.0228

  0.0754    1.0000    0.0255

 -0.0228    0.0255    1.0000

 
 

  
 
 

R                                                                     (4.5.16) 

its eigenvalues matrix is 

  1.0754      0        0

        0    1.0131    0

        0         0    0.9114

R

 
 

  
 
 

Λ                                                                          (4.5.17) 

The corresponding eigenvectors matrix is 

 -0.7024   -0.2744   0.6568

 -0.7112   0.2348    -0.6626

 -0.0276   0.9325    0.3600

R

 
 

  
 
 

E                                                                    (4.5.18)    

The PCs computed from the correlation coefficient matrix are then defined by 

1 1 2 3

2 1 2 3

3 1 2 3

0.7024 0.7112 0.0276

0.2744 0.2348 0.9325

0.6568 0.6626 0.3600

R

R

R

Y Z Z Z

Y Z Z Z

Y Z Z Z

   

   

  

, where 
 

i i

i i

i

X X

X
Z






 .                     (4.5.19)           
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From the foregoing computation it is observed that, the use of the covariance matrix 

for PCs computation is not efficient enough. Consider for instance the first PC 

computed from the covariance matrix
1 1 2 30.0007 0.0003SY X X X    , the variable

2X is well represented although it is negatively represented, whereas the variables 1X

and 3X are almost insignificant because there are about 10000 times less 

representative in the data variation. Consider the first PC computed from the 

correlation coefficient matrix
1 1 2 30.7024 0.7112 0.0276RY Z Z Z    , the entire 

variables are represented the first two have almost the same range of representation 

whereas the third variable is just about 10 times less representative than other in the 

data variation. This means for a large scale data, Correlation matrix is more efficient 

for PCs computation. Furthermore, consider table 4.5.3for a comparative study 

between the computation of PCs from table 4.5.2 using the covariance on one hand 

and the correlation matrix on other hand. 

Table 4.5.3: ratio between covariance and correlation matrix 
 

1  2  3  

Covariance matrix 9.5111*10
4
 0.0012*10

4 
0.0008*10

4
 

Correlation matrix 1.0754 1.0131 0.9114 

Ratio /S R

i i  ( ix ) 
8.844*10

4
 11.84 8.78 

 

The ratio /S R

i i  fluctuates widely from8.844*10
4 to8.78. This means there is not 

neither a linear relation nor a logarithmic relation between the PCs computed using 

covariance and those computed using correlation coefficient matrix. 
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For more illustration of the concept of large scale data and its effect on PCs 

computation using covariance or correlation matrix, the following data of same 

magnitude representing the marks score by 10 students in four subjects

1 2 3 4, , ,X X X X . The grading system is out of 20, this means the data record has a 

normal scale. 

Table 4.5.4: Students marks 
Student 

1X
 2X

 3X
 4X

 
student 

1X
 2X

 3X
 4X

 

1 12 9 11 16        6 14 15 10 11 

2 12 13 12 10         7 8 11 13 15 

3 18 14 10 9         8 11 15 17 10 

4 10 11 17 15         9 18 17 18 7 

5 13 19 9 15        10 12 16 17 11 

 

This data is homogenous in nature since the grading system here is out of 20, the 

difference or the range between marks can not be more than 20. 

The mean vector of the data is computed as  12.8  14  13.4  11.9x
             

(4.5.20) 

Covariance matrix obtained using data from Table 4.5.3 is 

 10.1778    4.6667   -1.4667   -6.9111

  4.6667    9.3333    0.3333   -4.5556

 -1.4667    0.3333   12.2667   -3.4000

 -6.9111   -4.5556   -3.4000    9.6556

 
 
 
 
 
 

S

                                                     (4.5.21) 

The eigenvalues matrix is  
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20.8197     0         0         0

     0    13.2280     0         0

     0         0   5.5525    0

     0         0         0   1.8331

 
 
 
 
 
 

SΛ

                                                                 (4.5.22) 

Its corresponding eigenvectors matrix is 

-0.5934   -0.3064   -0.3979   0.6290

-0.4905    -0.1194   0.8628   0.0249

-0.1626    0.9334    0.0275   0.3186

0.6171    -0.1435   0.3105    0.7087

 
 
 
 
 
 

SE                                                     (4.5.23)    

The PCs computed from the covariance matrix are 

1 1 2 3 4

2 1 2 3 4

3 1 2 3 4

4 1 2 3 4

0.5934 0.4905 0.1626 0.6171

0.3064 0.1194 0.9334 0.1435

0.3979 0.8628 0.0275 0.3105

0.6290 0.0249 0.3186 0.7087

S

S

S

S

Y X X X X

Y X X X X

Y X X X X

Y X X X X

    

    

    

   

                                    (4.5.24) 

The total variance expressed by the first PC, the first two PCs and the first three PCs 

are respectively 1

20.8197
0.5025

41.4333
  S

, 2

20.8197 13.2280
0.8217

41.4333


  S

and 

3

20.8197 13.2280 5.5525
0.9558

41.4333

 
  S

. 

Computation based on correlation coefficient matrix and using data 4.5.3 

The correlation coefficient matrix is  

 1.0000    0.4788   -0.1313   -0.6972

 0.4788    1.0000    0.0312   -0.4799

-0.1313    0.0312    1.0000   -0.3124

-0.6972   -0.4799   -0.3124    1.0000

 
 
 
 
 
 

R                                                      (4.5.25) 

The eigenvalues matrix computed from the correlation coefficient matrix is 

    2.1256     0         0         0

         0    1.1093     0         0

         0         0    0.5843     0

         0         0         0    0.1808

R

 
 
 
 
 
 

Λ                                                            (4.5.26) 
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Its corresponding eigenvectors matrix is 

 -0.5861   -0.2979    -0.4124   0.6306

 -0.5147   -0.1205    0.8487    0.0197

 -0.1165    0.9234    0.0520    0.3620

  0.6148   -0.2099    0.3271    0.6863

R

 
 
 
 
 
 

E                                                   (4.5.27) 

Recall the formula
 

i i

i i

i

X X

X
Z






  and the variances

1 1
10.1778 3.1903X X   , 

2 2
9.3333 3.055X X   , 

3 3
12.2667 3.5024X X   and 

4 4
9.6556 3.1073X X   the new variables are defined by 

1
1

12.8

3.1903

X
Z


  ; 

2
2

14

3.055

X
Z


 ; 

3
3

13.4

3.5024

X
Z


 ; 

4
4

11.9

3.1073

X
Z


 . 

The PCs computed from the correlation matrix are 

1 1 2 3 4

2 1 2 3 4

3 1 2 3 4

4 1 2 3 4

0.5861 0.5147 0.1165 0.6148

0.2979 0.1205 0.9234 0.2099

0.4124 0.8487 0.0520 0.3271

0.6306 0.0197 0.3620 0.6863

R

R

R

R

Y Z Z Z Z

Y Z Z Z Z

Y Z Z Z Z

Y Z Z Z Z

    

    

    

                                             

(4.5.28). 

After expanding this expression in term of the variable 
 

i i

i i

i

X X

X
Z






 , the equation 

(4.5.28) becomes 

1 1 2 3 4 1

2 1 2 3 4 2

3 1 2 3 4 3

4 1 2 3 4 4

0.1837X 0.2505X 0.0333X 0.1979X

0.0934X 0.0394X 0.2636X 0.0676X

0.1293X 0.2778X 0.0148X 0.1053X

0.1977X 0.0064X 0.1034X 0.2209X

R

R

R

R

Y cte

Y cte

Y cte

Y cte

     

     

     

    

.                            (4.5.29)        
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The total variance expressed by the first PC , the first two PCs and the first three PCs 

are respectively 1

2.1256
0.5314

4

R   , 2

2.1256 1.1093
0.8087

4

R 
   and 

3

2.1256 1.1093 0.5843
0.9548

4

R  
   . 

Consider the following two tables for a comparative study between the computation 

of PCs from table 4.5.4 using the covariance on one hand and the correlation matrix 

on other hand. 

Table 4.5.5: ratio of covariance and correlation matrix 
 

1  2  3  4  

Covariance matrix 20.8197 13.2280 5.5525 1.8331 

Correlation matrix 2.1256 1.1093 0.5843 0.1808 

Ratio /S R

i i    ( ix ) 
9.7947 11.9246 9.5028 10.1388 

 

The mean of the Ratio /S R

i i   is 
4

1

1
10.34

4
i

i

x x


  with a standard deviation of 

 
4

2

1

1
1.0877

3
x i

i

x x


    . It can be concluded that there exists a linear 

correlation between the eigenvalues 
i
S  computed from covariance matrix and those

R

i  computed from correlation coefficient matrix. The eigenvalues computed from 

the covariance matrix are approximately 10 times those computed from the 

correlation matrix , when there are considered in the ascending order. 
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          Figure 4.5.3: Scree plot from table 4.5.4 using covariance & correlation matrix 

Figure 4.5.3 is a join plotting of the covariance matrix eigenvalues and the 

correlation matrix eigenvalues which were multiplied by the estimated correlation 

coefficient 10.34k   . It is clear that both of graphs have same variation. They are 

likely the same. 

Table 4.5.6 : Percentage of variation due to cumulative PCs 
 Variation 

attributable to PC1 

Variation attributable 

to PC1 & PC2 

Variation attributable 

to PC1, PC2 & PC3 

Covariance matrix 0.5025 0.8217 0.9558 

Correlation matrix 0.5314 0.8087 0.9548 

 

From Table 4.5.6 it is evident that when variation between variables is not 

significant, use of the covariance or correlation matrices to generate the PCs does not 

make any significant difference. However, there is significant difference between the 

variation represented by PCs obtained using the covariance and correlation matrices 
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of the data from Table 4.5.2. This is attributable to the significant difference between 

the magnitudes of the variables 
2X  and those of 

1 3 and X X . 

Result 4.2 The correlation coefficient matrix is suitable for the PC computation 

when there is significant difference between the magnitudes of data from different 

variables, or in the case of inhomogeneous data, i.e. different units for each variable. 

In case of a standard normal data, S R , meaning PCs computed from either 

covariance or correlation matrix. Before deciding to standardize the data, it is worth 

computing the PCs from  and S R  matrices. Comparison of the eigenvalues obtained 

from S and R matrices will give an initial idea as to the need for standardization or 

not. A good guide will be the closeness of the eigenvalues obtained from  and S R

matrices. Opinion on the closeness will greatly depend on the nature of the data 

under study. 

4.6 PCA for Outlier Detection and Quality Monitoring 

In data collection process and analysis involving a multivariate process where the 

number of variables may be very large, errors may occur mainly due to human error, 

or computational errors during data validation. On the other hand some extreme 

values may not be due to error, but correct values. Such values are called outliers. 

Detection of outliers is crucial, as they may be treated as a separate subset and 

analyzed separately. Intuitive detection of outliers and suggestion of a solution 

requires a robust knowledge of the process under study. For example if a value of 

93°C is encountered in a variable representing human body temperature, it is an 

obvious human error in entering data, since the average temperature of a healthy 

human body is 37°C.Outliers can also be detected through the inspection of the 

scatter plot of the data. 
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Consider 
1 2( , , , )pX X XX   to be multivariate normally distributed random 

variables with mean μ  and covariance Σ . The centered data is defined as X μ .  

Assume the first two PCs of the centered data
1 1 ( )j jY e  x x  and

2 2 ( )j jY e  x x

represent above 80% of total variation in the data. Then first two PCs can be used to 

draw a control ellipse chart. In cases where more than 2 PCs are needed to represent 

above 80% of total variation in the data, pairwise control ellipses can be generated to 

check anomalies stemming from different variables. Use of the pairwise PCs leads 

to2-dimensional representation which is suitable for visualization. The control ellipse 

chart is defined using the first two PCs by  
2 2

21 2
2

1 2

Y Y
 

 
  [17, 29, 31]. 

Since the considered sample has p  PCs, the remaining 2p  PCs are used to draw a 

T
2
-chart defined by

2 2 2

3 42

3 4

j j jp

j

p

Y Y Y
T

  
    , with an upper control limit (UCL) given 

by  2

2p   . The T
2
-chart is a 2-dimensional graph with index 1 to n  on the x-axis   

( n being the number of observations) and the corresponding computed value 

2 2 2

3 42

3 4

j j jp

j

p

Y Y Y
T

  
     on the y-axis [21]. 

Considering the n  observations of p random variables 1 2, , , pX X X , the quality 

monitoring procedure is done following three steps.  

Step 1: Computation of the p PCs and plotting the scatter diagram of the first two 

PCs 1Y  versus 2Y  . 
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Step 2: Computation and plotting of the control ellipse on the scatter diagram drawn 

in step 1. 

The points from step 1 which fall out of the control ellipse are considered to be 

outliers. Depending on the process from which data comes from, the cause behind 

the detected outliers can intuitively be identified. This may be due to human error 

during data collection, entry, or validation process. Alternately, outliers can be 

correct values, but due to some conditions of the process they are generated and valid 

data values. Dealing with outlier data is handled by a branch of statistics named 

“extreme value analysis”.  

When the first 2 or 3 PCs do not represent a high percentage of total variation ( 60% 

to 80%), then an analysis of the remaining p-2 or p-3 PCs through the T
2
-chart can be 

undertaken. In the T
2
-chartpoints which are over the UCL are considered to be 

outliers and the same explanation offered under step 2 is valid.  

It is sometime suitable and easy to process the quality monitoring procedure based 

only on the T
2
-chart. In which case, the entire p PCs are used to plot the T

2
-chart and 

there is no need to compute and draw the control ellipse chart. 

For experiment which results data oscillate between a positive maximum and a 

negative minimum, there is a need to define also a lower control limit (LCL) as well 

as the UCL. 

Example 4.6.1 Consider the results of 20 students in 4 courses 1 2 3, ,X X X and 4X   

where the grading system is out of 20. The marks are given in the following table. 
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The question here is to use quality monitoring procedure to detect if there are outliers 

in the data. 

Table 4.6.1: Student mark for outliers 
Student 

1X
 2X

 3X
 4X

 
Student 

1X
 2X

 3X
 4X

 

1 12 9 11 16 11 14 15 10 11 

2 12 13 12 10 12 8 11 13 15 

3 18 14 10 9 13 11 15 17 10 

4 10 11 17 15 14 18 17 18 7 

5 13 19 9 15 15 12 16 17 11 

6 11 28 12 4 16 12 13 17 10 

7 12 13 14 17 17 9 11 10 11 

8 40 8 7 10 18 18 10 13 15 

9 10 12 12 13 19 14 11 10 7 

10 6 3 5 4 20 9 5 1 15 

 

Solution: The value 40 for student 8 seems to be an outlier because the grading 

system here is out of 20. The following computation is to check at a certain 

confidence level, whether the value 40 will be detected as an outlier or not. 

Following the establishment of 4 PCs, the corresponding PC values are computed by 

substituting iX  values from Table 4.6.1. Resulting ˆ
iy values are given in Table 4.6.2.  

Table 4.6.2: PCs scores for 20 students marks. 
Period 

1
ˆ

jY
 2

ˆ
jY

 3
ˆ

jY
 4

ˆ
jY

 

1    -1.1500    -4.6242    -3.8316    -1.2371 
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2    -1.4338     0.4210     1.0265     0.7284 

3     4.6635     1.3131     2.6046    -0.5113 

4    -4.0458    -0.0103    -5.9955     2.0254 

5    -0.9659     2.9340    -0.1979    -7.2067 

6    -3.7855    13.8545     8.5094    -3.7460 

7    -2.0130    -0.0158    -5.6560    -2.0675 

8    27.3196    -2.1274     0.4758     0.0636 

9    -3.4343    -1.3182    -1.3323    -0.4585 

10    -5.0844   -10.9982     8.6074     5.1788 

11     0.5204     1.1327     1.5726    -2.1658 

12    -5.5135    -2.3405    -3.4845    -0.4467 

13    -3.2661     4.4646    -1.4359     2.7850 

14     3.4234     8.2689     0.0591     4.0275 

15    -2.4380     5.2256    -2.1388     1.6710 

16    -2.0615     2.9669    -1.8825     3.8368 

17    -3.9645    -2.8897     1.3227    -0.0109 

18     4.4451    -1.6954    -4.5808     0.0099 

19     1.1473    -1.3246     4.0169     2.2608 

20    -2.3630   -13.2370     2.3410    -4.7366 

 

The axes of ellipsoid are computed using the following formula  21 2
2

1 2

ˆ ˆ
0.05

Y Y


 
 

where 1 50.0233  ; 2 35.2862  and  2

2 0.05 5.99  . The major and the minor 

semi-axes of the ellipsoid are therefore  2

2 1M= 0.05 * 17.31   and

 2

2 2= 0.05 * 14.53m    .  
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Scatter diagram of the first 2 PCs 
1 2

ˆ ˆ,  y y and the control ellipse are shown in Figure 

4.6.1. 

 
                Figure 4.6.1: PC1 versus PC2 from table 4.6.1 

From figure 4.6.1, two outliers are detected. The one on the right hand side has a 

PC1 value well out of the control ellipse with a value around 1
ˆ 25y  . An inspection 

of 1ŷ  values identifies this as the 8
th
 value of PC1. This corresponds to the 8

th
 value 

in 1X  which is the outlier value 40. A similar inspection of the PC2 value around 

1
ˆ 14y   falling out of the control ellipse, points to  2X  variable‟s 6

th
 value 26 28x 

which is also an outlier. 

 
                                     Figure 4.6.2: T2 control chart from table 4.6.1 
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The UCL is computed using the formula  2

, 1,
1

p n p

np
T p n F

n p
 

 
 as result 

UCL=13.98.From figure 4.6.2, there is one value which seems to be an outlier. That 

value is observed at the period 8. It is obvious that this value is the entrance 40, at the 

eighth observation. 

4.7 Controlling Future Values 

In the previous section, from the table 4.6.1, and all the computation done, two 

outliers where detected. Assuming that a process is stable over the time, one can 

delete the outliers and use the remaining data to build a new control ellipsoid. This 

new ellipsoid is use for the prediction of the future PCs. 

Consider for instance the following data comes from the deletion of the outliers 

which were previously observed at the entrance 6 and 8 of data from Table4.6.1. The 

sixth student had a mark of 28 out of 20 and the eighth student had a mark of 40 out 

of 20. The following new table consisted of 18 observations of 4 variables is 

obtained. 

Table 4.7.1: marks of students after outliers are deleted 
Student 

1X
 2X

 3X
 4X

 
Student 

1X
 2X

 3X
 4X

 

1 12 9 11 16 11 14 15 10 11 

2 12 13 12 10 12 8 11 13 15 

3 18 14 10 9 13 11 15 17 10 

4 10 11 17 15 14 18 17 18 7 

5 13 19 9 15 15 12 16 17 11 

6     16 12 13 17 10 

7 12 13 14 17 17 9 11 10 11 
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8     18 18 10 13 15 

9 10 12 12 13 19 14 11 10 7 

10 6 3 5 4 20 9 5 1 15 

 

Using the data from table 4.7.1, the PCs and their scores are computed as follow are 

recapitulated in the following table.  

Table 4.7.2: PC scores from marks without outliers. 
Period 

1
ˆ

jY
 2

ˆ
jY

 3
ˆ

jY
 4

ˆ
jY

 

1     2.5638     4.0800     0.4970    -2.3503 

2    -0.4712    -1.6454    -0.1561     0.9027 

3    -1.9454    -3.9776     5.3890    -1.0051 

4    -2.0509     3.9779    -4.3207    -1.6546 

5    -2.5338     2.9007     5.0506     5.2582 

6    -1.9865     5.3328    -0.0949    -0.5133 

7     0.8427     1.6768    -1.2649     0.9901 

8    12.8893    -6.9319    -3.8473    -0.0593 

9    -1.0826    -1.1938     3.2495     1.8107 

10     1.4809     4.0955    -3.1939     0.8441 

11    -4.7881    -1.0484    -3.4546     1.2600 

12    -9.2983    -5.3043     0.7959    -1.2853 

13    -5.7968    -0.2619    -2.2884     1.3224 

14    -3.9409    -1.2819    -3.3119    -0.7912 

15     3.2576    -0.2313    -1.3577     1.7107 

16    -1.6862     2.0386     3.5174    -5.6132 

17     1.4406    -5.1568     1.3807    -0.7262 
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18    13.1057     2.9311     3.4102    -0.1004 

 

The axes of ellipsoid are computed using the following formula  21 2
2

1 2

ˆ ˆ
0.05

Y Y


 
 

where 1 31.8334  ; 2 13.3678  and  2

2 0.05 5.99  . The major and the minor 

semi-axes of the ellipsoid are therefore  2

2 1M= 0.05 * 13.8088   and

 2

2 2= 0.05 * 8.9484m    (20) 

The control ellipsoid for future values monitoring is the following.  

 
  Figure 4.7.1: Control ellipsoid chart for future values monitoring from table 47.1 

The T
2
 control chart and its UCL are computed and plot based on the following 

computation. 

 2

, 1,
1

p n p

np
T p n F

n p
 

 
with 4p   and 18n   . UCL=11.328  
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                     Figure 4.7.2: T

2
 chart of data mark for prediction without outliers 

From figure 4.7.1 and figure 4.7.2 the process is assumed to be under control because 

there are not outliers. Assuming that the process is stable over the time, this means 

for each period the conditions under which the process is done is the same, the 

bounds of the futures values based are known based on figure 4.7.1 and figure 4.7.2 .   
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    Chapter 5 

5 CASE STUDY : SOLVING PROBLEMS USING 

PRINCIPAL COMPONENTS ANALYSIS 

Having set the framework for PC computation analysis and interpretation in 

Chapter4, the PCA methodology is implemented in two separate fields of 

application. 

5.1 Case Study 1 

 The following dataset comes from population census of 1992 in Cameroon. It 

summarizes the population into 12 subgroups according to age and administrative 

districts. Age groups are defined as random variables and observations from each 

district forms the data. The variables are defined as follow where each variable 

represents a certain age group in years and no overlap between groups [32]. 

Table 5.1: Population census data 
Variable 

1X
 2X  3X  4X  5X  6X  

Years 1  1 4  5 9  10 14  15 19  20 24  

 

Variable 
7X  8X  9X  10X  11X  12X  

Years 25 29  30 34  35 39  40 44  45 49  50  

 

1X
     2X

      3X
       4X

       5X
      6X

       7X
       8X

     9X
      10X

      11X
    12X  

14 65 98 70 78 90 95 53 37 27 16 27 
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17 81 96 111 75 81 101 91 42 23 24 14 

13 94 146 141 134 194 213 171 106 93 77 190 

7 25 53 22 26 44 45 48 25 18 9 12 

76 495 765 574 407 273 228 140 53 34 20 81 

7 30 43 61 60 67 77 58 46 21 10 16 

7 27 32 26 35 30 47 26 14 5 6 8 

2 43 55 54 41 60 43 43 12 16 6 5 

4 22 23 24 9 14 22 5 1 2 1 3 

23 107 142 127 122 173 193 118 63 30 19 34 

7 92 253 201 116 94 77 62 36 12 19 44 

49 330 634 440 434 428 413 288 192 177 125 344 

42 220 267 201 326 451 472 418 337 335 244 840 

19 98 124 157 256 340 271 172 151 73 54 111 

8 88 115 88 125 162 158 98 76 50 21 50 

12 98 131 131 195 276 262 144 102 47 34 50 

6 20 26 20 68 44 47 42 36 24 13 29 

9 49 72 72 110 144 135 100 78 47 33 57 

14 113 154 180 142 149 187 103 47 28 19 25 

0 8 17 8 10 20 24 17 9 6 4 2 

5 50 45 64 54 80 84 53 43 33 20 36 

31 234 392 333 247 190 188 131 67 31 18 29 

40 377 587 572 506 627 679 861 541 628 480     2125 

4 46 70 84 116 141 153 150 135 113 74 103 



83 

 

10 72 91 81 121 167 170 127 102 68 50 142 

14 149 358 347 524 576 719 643 517 509 336     1075 

6 47 66 52 92 128 141 86 61 42 30 42 

31 214 368 267 367 517 542 449 361 309 265 460 

0 6 8 7 12 16 27 6 6 6 2 4 

17 145 242 297 330 393 393 303 213 183 105 258 

6 47 65 72 107 131 132 88 50 36 14 47 

2 34 47 60 60 80 75 75 41 29 13 37 

8 36 62 91 110 149 180 96 49 19 18 16 

28 118 130 176 162 235 263 164 114 76 40 66 

3 16 24 23 33 61 66 60 44 28 15 31 

35 197 282 311 280 347 313 220 150 94 62 156 

12 71 91 77 68 97 94 65 26 20 9 12 

22 92 133 130 94 104 101 88 45 17 13 11 

5 40 40 38 39 30 42 36 19 16 11 6 

4 33 45 42 23 34 34 19 6 4 0 1 

6 14 16 25 20 33 33 18 9 2 3 4 

3 27 30 41 42 75 52 27 8 3 5 2 

From the data, the correlation coefficient matrix and its 3D representation are 

computed and represented as follow 
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    1.0000    0.9733    0.9712    0.9335    0.8147    0.7017    0.6551    0.5992    0.5638    0.5486    0.5491    0.5464

    0.9733    1.0000    0.9994    0.9892    0.9141    0.8309    0.7967    0.76

R

05    0.7288    0.7201    0.7209    0.7217

    0.9712    0.9994    1.0000    0.9908    0.9197    0.8377    0.8039    0.7663    0.7358    0.7261    0.7267    0.7259

    0.9335    0.9892    0.9908    1.0000    0.9621    0.9014    0.8748    0.8440    0.8184    0.8095    0.8097    0.8074

    0.8147    0.9141    0.9197    0.9621    1.0000    0.9844    0.9714    0.9451    0.9344    0.9223    0.9210    0.9086

    0.7017    0.8309    0.8377    0.9014    0.9844    1.0000    0.9977    0.9817    0.9792    0.9686    0.9670    0.9523

    0.6551    0.7967    0.8039    0.8748    0.9714    0.9977    1.0000    0.9908    0.9905    0.9820    0.9805    0.9669

    0.5992    0.7605    0.7663    0.8440    0.9451    0.9817    0.9908    1.0000    0.9981    0.9979    0.9976    0.9925

    0.5638    0.7288    0.7358    0.8184    0.9344    0.9792    0.9905    0.9981    1.0000    0.9980    0.9972    0.9885

    0.5486    0.7201    0.7261    0.8095    0.9223    0.9686    0.9820    0.9979    0.9980    1.0000    0.9999    0.9960

    0.5491    0.7209    0.7267    0.8097    0.9210    0.9670    0.9805    0.9976    0.9972    0.9999    1.0000    0.9969

    0.5464    0.7217    0.7259    0.8074    0.9086    0.9523    0.9669    0.9925    0.9885    0.9960    0.9969    1.0000

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

, 

 
                                 Figure 5.1:  Correlation matrix from table 5.1 

From the correlation coefficient matrix its 3D graph, one can observed that the 

correlation between the twelfth variable and the other variables is in an ascending 

order. It is quite logically because those variables also follow an ascending order. For 

instance, it is clear that the correlation between the classes in year old  50, and 

 45,50 is stronger than the correlation between  50, and  5,10 . From the data 

the covariance matrix and its 3D representation are computed and represented as 

follow 
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5

    0.0024    0.0154    0.0244    0.0192    0.0166    0.0163    0.0158    0.0138    0.0090    0.0088    0.0066    0.0240

    0.0154    0.1092    0.1788    0.1431    0.1247    0.1234    0.1228    0

10S 

.1160    0.0755    0.0781    0.0586    0.2212

    0.0244    0.1788    0.3070    0.2432    0.2154    0.2099    0.2123    0.1999    0.1324    0.1368    0.1020    0.3752

    0.0192    0.1431    0.2432    0.2041    0.1831    0.1851    0.1897    0.1821    0.1209    0.1245    0.0917    0.3451

    0.0166    0.1247    0.2154    0.1831    0.1949    0.2141    0.2253    0.2101    0.1515    0.1518    0.1104    0.3859

    0.0163    0.1234    0.2099    0.1851    0.2141    0.2560    0.2711    0.2558    0.1880    0.1877    0.1379    0.4750

    0.0158    0.1228    0.2123    0.1897    0.2253    0.2711    0.2953    0.2826    0.2086    0.2111    0.1545    0.5338

    0.0138    0.1160    0.1999    0.1821    0.2101    0.2558    0.2826    0.2952    0.2132    0.2256    0.1666    0.6133

    0.0090    0.0755    0.1324    0.1209    0.1515    0.1880    0.2086    0.2132    0.1590    0.1654    0.1216    0.4320

    0.0088    0.0781    0.1368    0.1245    0.1518    0.1877    0.2111    0.2256    0.1654    0.1776    0.1308    0.4827

    0.0066    0.0586    0.1020    0.0917    0.1104    0.1379    0.1545    0.1666    0.1216    0.1308    0.0976    0.3592

    0.0240    0.2212    0.3752    0.3451    0.3859    0.4750    0.5338    0.6133    0.4320    0.4827    0.3592    1.4323

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

, 

 
                                  Figure 5.2: covariance matrix from table 5.1 

Figure 5.2 is the 3D plot of the covariance matrix S . It can be observed that there is 

very high variation between the twelfth variable and others variables. That high 

variation is mainly due to the very wide age interval covering all ages above 49. 

Similarly the variation between the first variable and the others is so low. The low 

variation is because the age interval is very small compared with the rest of the data, 

covering only the fewer than one year olds. The eigenvalues computed from the 

covariance matrix are represented in form of a matrix as follow 
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5

    0.0001         0         0         0         0         0         0         0         0        0         0         0

         0    0.0003         0         0         0         0         0     

10S Λ

    0         0        0         0         0

         0         0    0.0003         0         0         0         0         0         0    0         0         0

         0         0         0    0.0005         0         0         0         0         0         0         0         0

         0         0         0         0    0.0019         0         0         0         0    0         0         0

         0         0         0         0         0    0.0021         0         0         0         0         0         0

         0         0         0         0         0         0    0.0038         0         0         0         0         0

         0         0         0         0         0         0         0    0.0064         0         0         0         0

         0         0         0         0         0         0         0         0    0.0095         0         0         0

         0         0         0         0         0         0         0         0         0      0.1257       0         0

         0         0         0         0         0         0         0         0         0            0       0.3902    0

         0         0         0         0         0         0         0         0         0              0         0    2.9900

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Its corresponding eigenvectors matrix is  

   -0.9345   -0.1327   -0.1986    0.0224   -0.1486   -0.0972    0.0934   -0.1546    0.0346   -0.0249    0.0536    0.0168

    0.2416    0.0714    0.0499    0.0472   -0.3904   -0.4026    0.3666   -0.5

S E

382    0.1086   -0.2334    0.3286    0.1382

   -0.0121   -0.1849   -0.0049    0.1076    0.1999    0.3970   -0.1792   -0.1246   -0.4658   -0.3521    0.5585    0.2364

   -0.0304    0.0230   -0.0723   -0.3660    0.1082   -0.1340    0.2880    0.6267    0.3162    -0.2170    0.4040    0.2090

   -0.0580    0.3655    0.0200    0.2603   -0.2029   -0.3530   -0.6545    0.1760    0.0518     0.1835    0.2846    0.2290

   -0.0336   -0.1252    0.1773   -0.1590    0.5557   -0.0088   -0.0765   -0.3992    0.4118    0.4219    0.1789    0.2700

    0.0618    0.0238   -0.1372   -0.1461   -0.5486    0.5568    0.1121    0.0178    0.0752     0.4752    0.1141    0.2952

   -0.0500    0.0029    0.2251    0.7257    0.1408   -0.0090    0.4574    0.2353   -0.0627     0.1804   -0.0526    0.3106

    0.1928   -0.4311   -0.6115   -0.0387    0.0755   -0.3935    0.0157    0.0536   -0.3282     0.2791   -0.0581    0.2212

   -0.1101   -0.1766    0.6524   -0.3960   -0.1564   -0.2367    0.0064    0.0876   -0.4447     0.1338   -0.1198    0.2367

   -0.0831    0.7580   -0.2146   -0.2283    0.2674   -0.0020    0.2294   -0.1301   -0.3670     0.0738   -0.0921    0.1751

    0.0138   -0.0336   -0.0768   -0.0189   -0.0383    0.0855   -0.1814   -0.0685    0.2192    -0.4500   -0.5089    0.6607

 
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From the eigenvectors matrix, the PCs coefficients are computed and represented as 

follow

12

11

10

9

8

7

6

5

4

3

2

1

   -0.9345    0.2416   -0.0121   -0.0304   -0.0580   -0.0336    0.0618   -0.0500    0.1928   -0.1101   -0.0831    0.0138

   -0.1327    

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

0.0714   -0.1849    0.0230    0.3655   -0.1252    0.0238    0.0029   -0.4311   -0.1766    0.7580   -0.0336

   -0.1986    0.0499   -0.0049   -0.0723    0.0200    0.1773   -0.1372    0.2251   -0.6115    0.6524   -0.2146   -0.0768

    0.0224    0.0472    0.1076   -0.3660    0.2603   -0.1590   -0.1461    0.7257   -0.0387   -0.3960   -0.2283   -0.0189

   -0.1486   -0.3904    0.1999    0.1082   -0.2029    0.5557   -0.5486    0.1408    0.0755   -0.1564    0.2674   -0.0383

   -0.0972   -0.4026    0.3970   -0.1340   -0.3530   -0.0088    0.5568   -0.0090   -0.3935  -0.2367   -0.0020    0.0855

    0.0934    0.3666   -0.1792    0.2880   -0.6545   -0.0765    0.1121    0.4574    0.0157    0.0064    0.2294   -0.1814

   -0.1546   -0.5382   -0.1246    0.6267    0.1760   -0.3992    0.0178    0.2353    0.0536    0.0876   -0.1301   -0.0685

    0.0346    0.1086   -0.4658    0.3162    0.0518    0.4118    0.0752   -0.0627   -0.3282   -0.4447   -0.3670    0.2192

   -0.0249   -0.2334   -0.3521   -0.2170    0.1835    0.4219    0.4752    0.1804    0.2791    0.1338    0.0738   -0.4500

    0.0536    0.3286    0.5585    0.4040    0.2846    0.1789    0.1141   -0.0526   -0.0581   -0.1198   -0.0921   -0.5089

    0.0168    0

1

2

3

4

5

6

7

8

9

10

11

12

*

.1382    0.2364    0.2090    0.2290    0.2700    0.2952    0.3106    0.2212     0.2367    0.1751    0.6607

x

x

x

x

x

x

x

x

x

x

x

x
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. 

Percentage of total variation due to the first eigenvalue is 

5

1

12 5

1

10 2.9900
0.8468

10 3.5308
ii







 


. This means the proportion or percentage of total 

variance accounted for by the first principal component is:  0.8468 or 

84.68%.Similarly the percentage of total variation represented by the first two PCs is

5

1 2

12 5

1

10 (2.9900 0.3902)
0.9573

10 3.5308
ii

 




  
 


or  95.73%. 

It follows that the first two principals components are enough to represent the initial 

12 variable system with little loss of information. 

The first PC is given the following equation 

1 1 2 3 4 5 6

7 8 9 10 11 12

  0.0168   0.1382   0.2364   0.2090   0.2290   0.2700  

 0.2952   0.3106   0.2212   0.2367   0.1751   0.6607

Y X X X X X X

X X X X X X

     

     
 

The second PC is given by the following equation 

2 1 2 3 4 5 6

7 8 9 10 11 12

 0.0536   0.3286   0.5585   0.4040   0.2846   0.1789  

 0.1141  -  0.0526  -  0.0581  -  0.1198  -  0.0921  -  0.5089 

Y X X X X X X

X X X X X X

     


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The following table represent the correlation between the PCs 
1Y and 

2Y  and the 

variables
1 12X , ,X . 

Table 5.2: Correlation between PCs and the variables 
 

1X  
2X  

3X  
4X  

5X  
6X  

7X  
8X  

9X  
10X  

11X  
12X  

1 , iY X  0.593 0.723 0.738 0.8 0.897 0.923 0.94 0.99 0.96 0.97 0.969 0.955 

2 , iY X  0.684 0.621 0.63 0.559 0.403 0.221 0.131 -0.06 -0.091 -0.178 -0.184 -0.266 

 

Coefficients of a PC which are the elements of the eigenvectors, are an indicator of 

the contribution of each variable to the PC. Therefore, there is no direct relation 

between the contribution of a variable to the PC and the correlation between that PC 

and the variable. However, a low contribution coefficient coupled with a low 

correlation can be taken as that variable not being very significant in the computation 

of that PC. One can decide for instance to omit the variable 8X in the second PC 

based on
2 8

0.06
,XY

   and the contribution of this variable to PC2 is very low 

compared with other contributing coefficients of the same PC.  

5.2 Case Study 2: PCA Method for Face Recognition 

Image processing deals with big data. Consider for instance a two-dimensional 

square image of size N
2
, based on the RGB intensity value, 2

3
=8 bits. In this case, a 

typically 256 by 256 bit image can be viewed as a single vector of dimension 65.536 

(256 x 256= 65 536). This image can also be viewed in a 65536-dimensional space 

as a point. A collection of such images constituted a high dimension space data. 

Therefore there is a need of dimension reduction to process them. On the other hand, 

faces have a similar configuration. This mean the distribution of face in a high 

dimension space is not random. The PCA is therefore used to find out vectors that 
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best account for the image distribution within the entire high dimensional 

image/vector space. The subspace built from those vectors is called the “face space 

or eigenspace ”. Each image/vector of the “face space” is a linear combination of 

original faces images, and it is called  “eigenface”. 

In the following example, the theoretical method and a practical application of face 

recognition will be discussed. The key words in this example are eigenfaces, 

eigenspace, orthogonal space, Euclidean distance [1,14,15,16,31]. 

In the following steps the theoretical procedure and the principles of the face 

recognition are described. 

5.2.1 Theoretical Definitions of the Framework 

Step 1:  A set of M images is built and put into a vector s .  Each image being 

transformed into a vector of size N. Then  1 2, , , Ms γ γ γ . 

Step 2: The set s  is now viewed as a vector so the mean vector of s  which is the 

mean image of the set is computed by
1

1 M

i

iM 

 ψ γ . 

Step 3: For further computation, the difference φ between the input image from set s

and the mean image ψ  is computed as i i φ γ ψ . 

Step 4: The covariance matrix C of the system is computed as follow

1

1 M
T T

i i

iM 

 C φ φ AA , with  1 2, , , MA φ φ φ . 
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Step 5: A set of orthonormal vectors, nu  is built. This set should be made of vectors 

which will describe the distribution in the best way. Therefore, the k
th

 vector ku is 

chosen such that  
2

1

1 M
T

k k i

iM




  u φ is maximum. Where k  and ku  are respectively 

eigenvalues and eigenvectors of the covariance matrix.  

Step 6: Computation of the Dirac matrix of the set A  as follow T

ij i jL φ φ .  

Step7:The eigenfaces are then built based on the computed eigenvalues and 

eigenvectors of the covariance matrix. 

The previous seven steps are used to build the experiment system; the following 

steps are the recognition procedure. 

Step 1: Each new face is now transformed into its eigenface components. Then, the 

input image is compared with the mean image and their difference is multiplied by 

each eigenvector of the matrix Dirac matrix L . Resulting vector is denoted by ω

.That is  k k  u γ ψ and  1 2, , , M   ω  . 

Step 2: The class of image which describes the best the input image is determined by 

computing the Euclidean distance
2

k k  ω ω  . 

Step 3: If k is bellow the defined threshold  then the input face is considered to 

belong to a class, and the image is considered to be a known face. A second 

threshold 2  can be defined such a way that if the value k is above the threshold 

but below the threshold 2 then the image is considered as an unknown face. If the 



91 

 

value k  is instead above the second threshold 2 then the image is concluded not to 

be a face. 

5.2.2 Application of the Defined Framework. 

As application the “faces” here are a set of 20 images. Those images are logos which 

have in common the round shape. All the thresholds mentioned above are intuitively 

fixed. Each image from the training set contributes at the same range in the mean 

image computation. This means the Euclidean distance between every image of the 

training set and the mean image is the same. This means, assuming that the training 

set‟s images and the input image are recorded in the same conditions, the threshold 

can be chosen to be the common Euclidean distance between image from training set 

and their mean. In this case for a given input image, if its Euclidean distance equals 

to the threshold, then the image is a known face i.e., the image is in the database. 

One can also assume that the image from the training set and the input image are 

recorded with some little difference in this case, the threshold can be chosen to be a 

little bit greater than the common Euclidean distance between training set‟s images 

and their mean. 

 
                    Figure 5.3: Weight and Euclidean distance of a face from the training set 
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An image from the training set is chose to be an input image. From the figure 5.3, the 

common Euclidean distance between images from the training set is 38283k  . 

Furthermore, the minimum distance between images from the training set is

min 38283   and the maximum distance between images from the training set is

max 55324   .  

The threshold values, 38283k  , min 38283  and max 55324  lead to the 

following conclusion. If an input image has its minimum Euclidian distance equals to

38283k   then it is said to be a recognized image. If its Euclidean distances are 

values between min 38283  and max 55324  then might be an unknown face. But if 

its Euclidean distances are rather bigger than max 55324   then the image is not a 

face. In this case where an image of the training set is used to setup threshold values, 

let  38283;55324tI  , the interval which lower limit is min 38283   and upper limit 

is max 55324  . 

 Let consider now a logo with round which doesn‟t belong to the training set. The 

computation displayed the following results:  
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                       Figure 5.4: weight and Euclidean distance of unknown face. 

The maximum Euclidean distance between the input image and the images from the 

training set is max 50826  and the minimum is min 38635  .  The values 

 50826;38635 38283;55324tI   this means the input image is an unknown face. 

   Let consider an image which is not obviously a logo. This means an image without 

any round shape. The computation displayed the following results: 
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                   Figure 5.5: weight and Euclidean distance of an image else than a face 

The maximum Euclidean distance between the input image and the images from the 

training set is max 56254  and the minimum is min 43502  .  Here at least one value 

which is the maximum value of Euclidean distance  56254 38283;55324tI  . This 

leads to the conclusion that the input image was not a face. 
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                                        Chapter 6 

6                     CONCLUSION 

Multivariate statistics is of great importance because its application is found in many 

fields. Whenever one deal with data that comes from a process with multivariate 

observations, it is wise to reduce the dimension of the dataset to enable the easy 

processing. Dimension reduction using the PCA has been discussed in this work. 

 PCA is viewed over two ways. Algebraically, PCs is some special linear 

combination of variables, built from a multivariate data analysis. Geometrically, the 

PCA is an orthogonal transformation which changes the initial coordinate system in 

which data are scatter into a new orthogonal coordinate system. The axes of the new 

coordinate system are directed by the variation of the scatter data. 

PCs can be computed using either covariance matrix or correlation coefficient 

matrices. For a given data, the PCs computed using covariance matrix and those 

computed using correlation matrix are not generally the same. In general, the 

covariance matrix is used for the computation of PCs. However, when the data is 

inhomogeneous or when the magnitudes of data values for different variables are 

significantly different, the correlation matrix is preferred. 

Consider a dataset of n observations of p  variables. Then p PCs can be computed. 

Only the first few PCs, where the corresponding eigenvalues represent the high 
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percentage of total variation in the data are enough for further processing and 

deriving conclusions on the whole dataset.   

Coefficients in front of each constituent variable of a PC, indicates the level of 

contribution of each variable to the PC. The correlation between a PC and its 

constituent variable show the degree of linear relationship between a variable and the 

PC.   
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Appendix A: Matlab Code of Face Recognition [33] 

% Face recognition by Santiago Serrano 
clearall 
closeall 
clc 
% number of images on your training set. 
M=20; 

 
%Chosen std and mean.  
%It can be any number that it is close to the std and mean of most 

of the images. 
um=100; 
ustd=80; 

 
%read and show images(bmp); 
S=[];   %img matrix 
figure(1); 
for i=1:M 
str=strcat(int2str(i),'.bmp');   %concatenates two strings that form 

the name of the image 
eval('img=imread(str);'); 
subplot(ceil(sqrt(M)),ceil(sqrt(M)),i) 
imshow(img) 
if i==3 
title('Training set','fontsize',18) 
end 
drawnow; 
    [irow icol]=size(img);    % get the number of rows (N1) and 

columns (N2) 
temp=reshape(img',irow*icol,1);     %creates a (N1*N2)x1 matrix 
    S=[S temp];         %X is a N1*N2xM matrix after finishing the 

sequence 
%this is our S 
end 

 

 
%Here we change the mean and std of all images. We normalize all 

images. 
%This is done to reduce the error due to lighting conditions. 
for i=1:size(S,2) 
temp=double(S(:,i)); 
    m=mean(temp); 
st=std(temp); 
S(:,i)=(temp-m)*ustd/st+um; 
end 

 
%show normalized images 
figure(2); 
for i=1:M 
str=strcat(int2str(i),'.jpg'); 
img=reshape(S(:,i),icol,irow); 
img=img'; 
eval('imwrite(img,str)');    
subplot(ceil(sqrt(M)),ceil(sqrt(M)),i) 
imshow(img) 
drawnow; 
if i==3 
title('Normalized Training Set','fontsize',18) 



103 

 

end 
end 

 

 
%mean image; 
m=mean(S,2);   %obtains the mean of each row instead of each column 
tmimg=uint8(m);   %converts to unsigned 8-bit integer. Values range 

from 0 to 255 
img=reshape(tmimg,icol,irow);    %takes the N1*N2x1 vector and 

creates a N2xN1 matrix 
img=img';       %creates a N1xN2 matrix by transposing the image. 
figure(3); 
imshow(img); 
title('Mean Image','fontsize',18) 

 
% Change image for manipulation 
dbx=[];   % A matrix 
for i=1:M 
temp=double(S(:,i)); 
dbx=[dbx temp]; 
end 

 
%Covariance matrix C=A'A, L=AA' 
A=dbx'; 
L=A*A'; 
% vv are the eigenvector for L 
% dd are the eigenvalue for both L=dbx'*dbx and C=dbx*dbx'; 
[vv dd]=eig(L); 
% Sort and eliminate those whose eigenvalue is zero 
v=[]; 
d=[]; 
for i=1:size(vv,2) 
if(dd(i,i)>1e-4) 
        v=[v vv(:,i)]; 
        d=[d dd(i,i)]; 
end 
end 

 
%sort,  will return an ascending sequence 
 [B index]=sort(d); 
ind=zeros(size(index)); 
dtemp=zeros(size(index)); 
vtemp=zeros(size(v)); 
len=length(index); 
for i=1:len 
dtemp(i)=B(len+1-i); 
ind(i)=len+1-index(i); 
    vtemp(:,ind(i))=v(:,i); 
end 
 d=dtemp; 
 v=vtemp; 

 

 
%Normalization of eigenvectors 
for i=1:size(v,2)       %access each column 
kk=v(:,i); 
temp=sqrt(sum(kk.^2)); 
v(:,i)=v(:,i)./temp; 
end 
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%Eigenvectors of C matrix 
u=[]; 
for i=1:size(v,2) 
temp=sqrt(d(i)); 
    u=[u (dbx*v(:,i))./temp]; 
end 

 
%Normalization of eigenvectors 
for i=1:size(u,2) 
kk=u(:,i); 
temp=sqrt(sum(kk.^2)); 
u(:,i)=u(:,i)./temp; 
end 

 

 
% show eigenfaces; 
figure(4); 
for i=1:size(u,2) 
img=reshape(u(:,i),icol,irow); 
img=img'; 
img=histeq(img,255); 
subplot(ceil(sqrt(M)),ceil(sqrt(M)),i) 
imshow(img) 
drawnow; 
if i==3 
title('Eigenfaces','fontsize',18) 
end 
end 

 

 
% Find the weight of each face in the training set. 
omega = []; 
for h=1:size(dbx,2) 
    WW=[];     
for i=1:size(u,2) 
        t = u(:,i)';     
        WeightOfImage = dot(t,dbx(:,h)'); 
        WW = [WW; WeightOfImage]; 
end 
omega = [omega WW]; 
end 

 

 

% Acquire new image 
% Note: the input image must have a bmp or jpg extension.  
%       It should have the same size as the ones in your training 

set.  
%       It should be placed on your desktop  
InputImage = input('Please enter the name of the image and its 

extension \n','s'); 
InputImage = imread(strcat('C:\Users\YAMENI\Desktop\Image 

Test\',InputImage)); 
figure(5) 
subplot(1,2,1) 
imshow(InputImage); colormap('gray');title('Input 

image','fontsize',18) 
InImage=reshape(double(InputImage)',irow*icol,1);   
temp=InImage; 
me=mean(temp); 
st=std(temp); 
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temp=(temp-me)*ustd/st+um; 
NormImage = temp; 
Difference = temp-m; 

 
p = []; 
aa=size(u,2); 
for i = 1:aa 
pare = dot(NormImage,u(:,i)); 
    p = [p; pare]; 
end 
ReshapedImage = m + u(:,1:aa)*p;    %m is the mean image, u is the 

eigenvector 
ReshapedImage = reshape(ReshapedImage,icol,irow); 
ReshapedImage = ReshapedImage'; 
%show the reconstructed image. 
subplot(1,2,2) 
imagesc(ReshapedImage); colormap('gray'); 
title('Reconstructed image','fontsize',18) 

 
InImWeight = []; 
for i=1:size(u,2) 
    t = u(:,i)'; 
    WeightOfInputImage = dot(t,Difference'); 
    InImWeight = [InImWeight; WeightOfInputImage]; 
end 

 
ll = 1:M; 
figure(68) 
subplot(1,2,1) 
stem(ll,InImWeight) 
title('Weight of Input Face','fontsize',14) 

 
% Find Euclidean distance 
e=[]; 
for i=1:size(omega,2) 
    q = omega(:,i); 
    DiffWeight = InImWeight-q; 
mag = norm(DiffWeight); 
    e = [e mag]; 
end 

 
kk = 1:size(e,2); 
subplot(1,2,2) 
stem(kk,e) 
title('Eucledian distance of input image','fontsize',14) 

 
MaximumValue=max(e) 
MinimumValue=min(e) 

 


