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ABSTRACT

In this thesis consist of six chapters. The introduction is given in the first chapter. In the
second chapter, some necessary definitions, preliminaries and theorems are given. In this
chapter, we also give the important theorems; by Korovkin and Volkov, Bernstein
polynomials in one two variables, q-Bernstein, Bernstein-Chlodowsky and g-Bernstein

Chlodowsky polynomials.

In the third chapter, q-Bernstein Schurer operators are defined. Many properties and results of
these polynomials, such as Korovkin type approximation and the rate of convergence of these

operators in terms of Lipschitz class functional are given.

In the fourth chapter g-Bernstein-Schurer-Chlodowsky operators are introduced. Korovkin
type approximation theorem is given and the rate of convergence of this approximation is

obtained by means of modulus of continuity of the function is obtained.

In the fifth chapter, Schurer-type q-Bernstein Kantorovich operators are defined. Moreover
the order of convergence of the operators in terms of modulus of continuity of the derivative

of the function, and elements of Lipschitz classes are discussed.

In the last chapter, Kantorovich type q-Bernstein operators are defined. Furthermore,
Korovkin type approximation theorem is proved and the rate of convergence of this

approximation are given.

Keywords: g-Bernstein Schurer operators, Korovkin theorem, Schurer Type g-Bernstein

Polynomials, Kantorovich type q-Bernstein-Schurer-Chlodovsky operators.
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Bu tez alt1 boliimden olusmaktadir. Birinci boliim giris kismi olarak verilmistir. ikinci
boliimde, tez boyunca ihtiya¢ duyulacak bazi tanimlar, tanimlarla ilgili baz1 temel 6zellikler
ve teoremler verilmistir. Ayrica Korovkin and Volkov Teoremleri, bir ve iki degiskenli
Bernstein Polinomlari, g-Bernstein Polinomlar1 ve Bernstein Chlodowsky and g-Bernstein

Chlodowsky Polinomlar1 incelenmistir.

Uciincii boliimde g-Bernstein Schurer Operatdrleri tanimlanmustir. g-Bernstein Schurer
Operatorlerinin yakinsakligi Korovkin Teoremi yardimiyla ve Liptsitz sinifindaki yakinsakligi

incelenmistir.

Dordiincii boliimde g-Bernstein Schurer-Chlodowsky Operatorii tanimlanmistir. Korovkin
tipli yakinsaklik teoremi, fonksiyonun ve fonksiyonunun tiirevinin siireklilik modiilii

yardimiyla yakinsama hizlar1 hesaplanmstir.

Besinci boliimde Schurer tipli g-Bernstein Kantorovich Operatorleri tanimlanmistir. Bu

operatdrlerin modiillerinin ve tiirevlerinin yakinsakliklar1 hesaplanmaistir.

Altinc1  bolimde  Kantorovich  tipli  g-Bernstein-Schurer-Chlodowsky  Operatorleri
tanimlanmistir. Bununla birlikte Korovkin tipli teorem yaklasimi ispatlanmis ve bu

yakinsamanin yakinsaklik derecesi hesaplanmustir.

Anahtar Kelimeler: g-Bernstein Schurer Operatorleri, Korovkin Teoremi, Schurer Type g-

Bernstein Operatorleri, Kantorovich Type g-Bernstein-Schurer-Chlodovsky operatorleri.
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LIST OF SYMBOLS

the set of naturel number

N

Ny the set of naturel number including zero

R the set of real numbers

(a,b) an open interval

[a,b] a closed interval

C[a,b] the set of all real-valued and continuous
functions defined on the compact interval
[a,b].

(£,6) the first modulus of continuity

L(f;x) linear operator

B, (f;x) Bernstein polynomials

B,(f;q; x) q-Bernstein polynomials

BS(f; x) Bernstein Chlodowsky polynomials

C,(f;%) q-Bernstein Chlodowsky polynomials

BY(f; q; x) g-Bernstein Schurer operators

Cr(f;q:%) q-Bernstein-Schurer- Chlodowsky
polynomials

KY(f; q;x) Schurer type q-Bernstein Kantorovich

operators
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TP (f; q; x) Kantorovich type q-Bernstein-Schurer-

Chlodowsky operators
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Chapter 1

INTRODUCTION

It was S.N. Bernstein, who proposed the operators [15]

i) = 30 ()1 -y

called the Bernstein operators and gave simple proof of the Weierstrass famous the-
orem in 1912: “each continuous real valued function f on [a, b] is uniformly approx-
imable by algebraic polynomials”.

Korovkin (1957) has shown that for a sequence (L,,) of positive linear operators, con-
vergence L, (f) — f in the uniform norm follows for all f € C(A), if it holds for
finitely many “test functions” fi, fa, ... f, from C(A), where C'(A) is the space of
continuous functions defined on the compact domain A.

After the work by Bernstein, Chlodowsky extended the Bernstein polynomials by

defining the operators, which are known as Chlodowsky polynomials, [4]

care=Er (%) () (-2)" oo

where (b,,) is an increasing sequence of positive numbers satisfying the properties,
nh_}rgo b, = 0and nh_>nolo % = 0. We refer the paper by Harun Karsli [13], who overviewed
the results and historical developments on the Chlodowsky operators.

Among all the linear positive operators, the followings are deserved to be listed:

Laguerre type operators: For z € [0, co) the Laguerre type operators are defined in [3],

by

Pufin) = (= oy e () S p ()
k=0



Letting ¢ = 0 in the above operators one gets the modified form of the Meyer-Konig

and Zeller (MKZ) operators where the MKZ operators are defined by [20]

Mn(f;:r)z(l—w)”“]f%f( G !

n+k+1
Szasz-Mirakjan operators: For x € [0, 1], the Szasz-Mirakjan operators are defined by

[24]

n

Sl f5 ) = exp (—na) g;f (5) m,%,)k

It was A.Lupas [16], who first proposed g-based Bernstein operators. For

z € [0,1] and ¢ > 0, he introduced the operators

k(k=1) & (1- x)n—k

Ryq(fix) = kz"% f (%) {Z] § —q;(; j gz) ... (1 — 2g"'z)’

where for n € Ny = {0, 1,2, ...}, the g-integer [n] = [n], is defined by

] i=1+q+...+¢" [0]:=0,
the g-factorial [n]! = [n],! is defined by
]! = (12 [n]: 0]! := 1
and for 0 < k£ < n, the g-binomial is defined by

W

Another g-based Bernstein operator was introduced in 1996 by Phillips [23]. He con-

sidered the operators

where = € [0, 1] and ¢ > 0.
In 2008, Harun Karsli and Vijay Gupta [14] proposed the gq-Chlodowsky Bernstein
operators. For 0 < x < b, they considered the operators

et =32r (o) [ (2) T o-vd

s=0



where (b,,) is a positive increasing sequence satisfying nll_{rolo b, = oo.
On the other hand, in 2011 Carmen-Violeta Muraru [21] introduced and investigated
the g-Bernstein-Schurer operators. These operators are defined for fixed p € Ny and
forall z € [0, 1], by
n n+p—k—1
potran =3 (B) [ e T a-em
k=0 n] k 5=0
Note that the case ¢ = 1 reduces to the operators considered by Schurer [25].

The g-Laguerre type linear positive operators were defined in 2007 by M. A. Ozarslan.

For x € [0,1],t € (—00,0] and ¢ € (0, 1), he considered the operators [18]

RS B K\ 7
Pl )= g 31 () 2700

where L;") (t,q) are the g-Laguerre polynomials,

P (2,4) = (2" ) o ¢ = (1 = g) at]”
Y (#:9) = (4,9),, (¢ 5q),,
(@:9)o = [[(1 = ag’), (e €C)
§=0
and
1 , n=>0
(a;q)n =

(1—a)(l—aq)..(1—aq"'), (neN,acC).

The case t = 0 reduces to the g-Meyer-Konig and Zeller operators [26]

My (f : ) :f[oa —qjx)kio%f ([k[f_]n}) {”Zk]mk 0<z<l.

In the literature, there are two kinds of q-Szasz Mirakjan operators.

The Chlodowsky type q-Szasz Mirakjan operators:

These operators were defined by Aral and Gupta [2]

where



n(n—1)

Bi) =3 L = (Cl )z e R gl < 1

and (b,,) is an increasing sequence of positive real numbers such that lim b, = occ.
n—oo

q-Szasz Mirakjan operators: Let z € [0,00), 0 < ¢ < 1. The g-Szasz Mirakjan
operators were defined in [17] by N.I. Mahmudov as follows:

k- [n]* 2

R S-Sl R g
Siald 2 9) = gy 2 f ()

Note that very recently, the q-Szasz Schurer operators were introduced and investi-
gated by M.A. Ozarslan in [19].

Finally, we should note that several linear positive operators are investigated in [1], [5],
(6], [71,[10],[13].

This thesis organized the as follows:

In chapter 2, we present some preliminaries and auxiliary results, which are needed
throughout the thesis.

In chapter 3, we consider the g-Bernstein Schurer operators. We investigate the shape
properties of these operators. Furthermore, we calculate the rate of convergence of
these operators in terms of Lipschitz class functions.

In chapter 4, we define q-Bernstein-Schurer-Chlodowsky operators. We give a Ko-
rovkin type approximation theorem and calculate the rate of convergence of this ap-
proximation by means of modulus of continuity of the function and the derivative of
the function. Moreover, we compute the rate of convergence for Lipschitz class func-
tionals.

In chapter 5, we introduce Schurer type g-Bernstein Kantorovich operators. We calcu-
late the order of convergence of the operators in terms of modulus of continuity of the
derivative of the function and elements of Lipschitz classes.

In chapter 6, we define Kantorovich type q-Bernstein-Schurer-Chlodowsky operators.
We prove a Korovkin type approximation theorem and calculate the rate of conver-

gence of this approximation.



Chapter 2

PRELIMINARIES AND AUXILIARY RESULTS

2.1 Linear Positive Operators

In this section we give some basic properties, definitions and elementary properties of

the positive linear operators.

Definition 1. Let X and Y be real linear spaces of functions. The mapping

L : X — Y is said to be linear operator if

L(af +Bg) = aL(f) +BL(g)

Vf,g € X andVa, [ € R.

If f > 0 implies that Lf > 0 then L is a positive operator.

If
Xt={feX:f(x)>0}andY" ={ge€ Y :g(x) >0},

L: X" — L(X*)CY" and L is linear, then we call the operator L is linear positive

operator.

Remark 2. The linear positive operators are monotone.

Proof. Let f(x) < g(z) then it implies that g () — f () > 0 and if L is linear

positive operator then L (g — f; ) > 0. Hence L (g;x) > L (f;x). In other words, if

5



frg e X with f < gthen Lf < Lg. O

Example 3. Assume that py(x) is a positive real valued polynomials,

k=0,1,2,--- nand x € I CR, then the sequence of operators

An (f2) = Zf () pr()

are linear and positive, where oy, € I forall k = 0,1, - - -, n. To prove this,

n

An(af +bg;x) =) (af (ar) + by (o) )pi()

k=0
= a) [ () pe(@) + by g () pi(a)

=aA, (f;x) +bA, (g;2).

In addition, if f (o) > Oforall oy, € I (k=0,1,---,n) then

n

An(fiz) =Y f(on) pila) > 0.

k=0

Example 4. The following operator

L(fix) = / Kt x)dt

is linear and positive iff K(t,xz) > 0 for all t,z € [a, b, where the continuous function
K(t,x) is the kernel of the operator. We show that the condition K (t,x) > 0 for all
t,x € |a,b] is necessary. If K(t,z9) < O at the point t = x, then there exists an

interval [o, B] C [a, b] such that K (to, x) is negative on [, . Then for function

0, t €la,b] /o, B
, t € a,p]
we have

B
L(f:z) = / K(t, 20)dt < 0.

Therefore, the condition K (t,z) > 0 for all t, x € [a,b] is necessary.

The norm of the operator L is defined by



|L(f;2)]
IIL|| = ||L]|(xoy) = sup ————.
A0 fllx

The equivalent definition as:

ILI[ = sup [[L(f;2)lly -
Illx=1

Definition 5. Assume that L : X — Y be linear operator. L(f;x) is called bounded

if there exists a positive number C' such that

IL(f; @)l < ClIfllx-

From the monotonicity of the linear positive operator L,

implies

|L{f5 )| < L(|f]; %)
Each point of space C' [a, b] is a continuous real-valued function on [a, b] and ||L|] is

norm of a linear bounded operator.

Lemma6. If X =Y = C[a, ], then

[ L]lctap oot = [1L(L2)||clay)-

Proof. By the definition (2.1.4), it is straight forward to show that:

| Lllclapocap =  sup = ||L{fi2)||clap <L 2)||cfa,y- (2.1.1)
[ fllca,p=1
On the other hand
| Llclapscap =  sup = ||L{fi2)||clap <L 2)||cfa,y- (2.1.2)
1 fllca,p=1
The proof is (2.1.1) and (2.1.2). OJ



2.2 Korovkin’s Theorem and Volkov’s Theorem

In this section we give the Korovkin’s Theorem for one and two variables.

Theorem 7. (Korovkin’s Theorem) Let L,, : C [a,b] — C [a, b

forn € N ={1,2,...}. If the sequence of operators L,, satisfy

L.(l;2) = 1 (2.2.1)
L,(t;x) =3 x (2.2.2)
L, (t*;2) = 2* (2.2.3)

then for all f € C |a,b], we have

L,(f;z) = f(z) asn — oo.

Proof. Since f € C [a, b], then it is bounded, 3M € R such that | f(z)| < M. Because
of the fact that f € C'[a, b] then for all € > 0 there exist a real number 6 > 0 such that

forall z,t € [a,b], [t — x| < ¢ implies
f(t) = flz)] <e.
Therefore, for ., ¢ € [a, b], we have
1f(t) — f(z)] < e+ ﬂ(t — )% (2.2.4)
On the other hand,

ILn(f52) = F (@)l cpayy

= [La(f(@); 2) = F(@)l oy

= [La(f () = f(2);2) + f(2) (La(L52) = 1) [y

< Ln(1f() = f@)5 )|+ L (L5 2) = LA (2.2.5)



From (2.2.4)

L (1F®) — F(@);2) < Lu(e + 2L ((t - 2)%2)

52
— el (1;2) + QCS—AZLn((t — )% 1)
=e(Ln(l;2) — 1) +¢€

n 25_]\24@"@2; x) — 2xLy(t; ) + 2°Ly(1; 7))
= e(Lo(L;x) — 1) + e+ 25_]‘24[@”(#; z) = %)

—22(Lp(t, ) — ) + 2*(Ln(1;2) — 1)].
Therefore

Lo(lf(t) = f(@)];2) < e+ Chl|Ln(1;2) — 1|, (2.2.6)

+ Gy Ln(t; ) — xHC[a,b] + C3HLn(t2§ ) — x2HC[a,b]7
where ('}, C5 and (' are positive constants. From (2.2.5) and (2.2.6), we have
[Ln(f;2) = f(@)]| < e+ CT|La(L;2) — 1|y,
+ G| La(t; ) = 2l oy + O3 | Lot 2) — 27|

a,b]?

where C}, C5 and C are positive constants. Thus for n — oo we have || L, (f;x) —

F@)llon = 0. O

Corollary 8. If the sequence of operators { L, } satisfy L,(1;x) = 1 and
L,((t — z)*x) = O thenfor all f € C [a,b] we have L, (f;z) = f(x).

The Korovkin’s theorem in two variables is known as Volkov’s theorem in the literature

which is stated as follows:

Theorem 9. (Volkov’s Theorem) Let L,, ,,, : C ([a,b] X [c,d]) — C ([a,b] X [c,d]) for

n, m € N. If the double sequence of linear positive operators L, ,,, satisfy
Lym(Liz,y) =1

Lym(tiz,y) = @

9



me(s;x,y) j y
Lo (t® + % 2,y) = 27 + 3

then for all f € C ([a,b] X [c,d]) — C ([a,b] X [c,d]), we have

Ln,m<f7x7y> jf(l’,y) asn,m—>oo.

Proof. Since f € C ([a,b] x [c,d]) then IM € R such that | f (x,y)| < M. Further-
more, for all ¢ > 0 there exists a real number 6 > 0 such that for all x,¢ € [a,b] and

y,s € [c,d],

V-2 4 (y—s)? <6
then
|f(t,s) — f(z,y)| <e.

Accordingly, for all z,t € [a,b] and y, s € [c, d|, we have

50,9 = f )] < 2+ (e =20+ (g = 97 27)

On the other hand

HLn,m(fu z, y) - f(x7 y)”C([a,b]x[c,d])
= ||Ln,m<f(t7 8)7 Z, y) - f(.f, y)”C([a,b}X[c,d])
= [ Lom(f(t,8) = flz,9)i2,y) + f(@,9) (Lnm(L; 2, y) — Dlleabx(e.a)

< ||Lnm(1 £ (s 8) = f(z,9)]; 2, v)|oqamxtedy + 11 (Lnm (L 2) = D)l o(ab)x(e.d-
(2.2.8)

Using (2.2.7), we get that

Lom(1f(t,8) = f(z,9)];2, )

< Lum(e+ (6= 2 + (= 9,0

2M
S ELn,m(l; l’,y) + _2Ln,m ((t - x)Z + (y - 8)2; x??/)

J

10



2M
=e(Lpm(Liz,y) — 1) +e+ WL”’m ((£* + %)
—2xt — 2ys + (2% + 9?); x, y)
2M 9 9
= E(Ln,m(l;x>y) - 1) +e+ 5_2 [{Ln,m ((t + s ) ;x,y)}
—2x {Ln,m (t; :c,y) - .T}

—2y{Lym(s;2,y) =y} + (2° + ¥*){ Lo (L5 2, y) — 1}]

thus

L (| £(t,8) = f(2,9) | 2, )| o(ab x o) (2.2.9)
< e+ Cil|[Lnm(L2,y) — 1| + Col|Lnm (52, y) — Tl[o(abx[cd)
+ C5)| L (8: 2, Y) — Yllcapx(ed) T Cal|Lom(t + % 2,y) — 2 + )| capx[ed)

where C, Cy, C'3 and C; are positive constants. Combining (2.2.8) and (2.2.9), we

have

Lo (f32,9) — F(@, 9)lo(abx ()
< e+ Cl|Lnm(L, 2,y) — Yleonx(ea
+ Ol L (87, Y) — ] |o((ab]x )
+ O3 L (852, 9) — yllo(as)x[e.)

+ Cul| Ly (£ + s 2,y — (2% + v°) || o < o)

where C7, Cy, C5 and Cy. Therefore

|| Lo (f52,9) = f(2,9)||c(apixed) = O-

11



2.3 Bernstein Polynomials in One and Two Variables

Definition 10. Ler = € [0, 1), the Bernstein polynomials (operators) B, (f;x) are de-

fined as follows:
"k
Bufio) =30 15 () - oyt
k=0

They are positive linear operators, since

First few Bernstein polynomials of degree one, two and three are given as follows:

Bi(f;ix) = if(%) (llﬂ)xk(l — )k

= JO)(1 =2 + 3 (5)al1 — ) +3f(5)*(1 — )

+ f()a®.

12



The Bernstein operator is clearly linear, since

B, (\f + pg) = AB.f + uBug, (2.3.1)

for all functions f and g on [0, 1] and all real numbers A and f.

It is known that ([15]) the Bernstein polynomials satisfy,

B.(L;x) =1, B,(t;x) ==
1—
Bu(0) = o2 + T

and

Since, the conditions of Korovkin’s theorem are satified, then
1Bn(f;2) = f(2)llcro — 0
forall f € C'[0,1].
Definition 11. (/22]) A function f is convex on |a, b] if for any x1, x5 € |a, b],
Af(@1) + (1= A) f(z2) > f Az + (1= A)x2) (23.2)

forany X € |0, 1]. Geometrically, we can say that a chord connecting of any two points

on the convex curve y = f(x) is never below the curve.

In order to investigate the derivative properties of Bernstein polynomials we need some
definitions and propositions. Let f : [0, 1] — R, the divided difference of function f

is defined as follows:

Aif(z) = f(z+1t) — f(z)
and

13



Aif(x) = AAuf () = A(f(z +1) = f(2) = Ae(f(z +1)) — Aef(2)
=[fle+2t) = fla+8)] = [f(x +1) = f(z)]
= flx+2t)=2f(x +1t)+ f(x).

A7 f(z) = A(AFf)
= f(z + kt) — (llc)f(:c +(k=1Dt)+...+ (-1 f ().
Note that, if A, f(x) > 0 for all z € [0, 1] then f is non-decreasing.

Corollary 12. Let f : [0,1] — R. Then

. nl R k
Bn (f, .Z‘) = m kzo Al/nf (ﬁ) P'n,—m,k (ZL‘), m = O, ]., ., n, (233)

n—m

where Py,_p, 1, () = ( ! )xk (1—a)" ™k,

Remark 13. Corollary 2.3.3 shows that, if f is monotonically increasing, then so is

By (f; ).
Taking r = 0 in (2.3.3), we obtain that

|
BI(S0) = oo Al (0) = (= 1) (n —m + DAY, (0).  234)

(n

On the other hand, since the Maclaurin series of any function is given by

then the Maclaurin expansion of the Bernstein polynomials is represented by
n . .’L'm
m=0
n . :L‘m
=Y nn-1)-(n-m-1) 1/nf(0)m
m=0

-3 <;> o F(0)a™, (2.3.5)

14



Now consider the polynomial f(x) = pi(x) of degree k, then AY), py(x) = 0 for
k < m. Therefore; B, (pr(t); z) is a polynomial of degree < k.
On the other hand, generally B, (px(t); x) # pr(x).

Theorem 14. If f € C* [0, 1], for some k > 0, then
m < f® () < M, z€(0,1] implies czm < B® (f;2) < e M,
foralln > k. x € [0, 1] where co = ¢, = 1 and
cp = (")k—!: (1—l> (1—2> (1—k_1>, 2<k<n.
k) n* n n n

Remark 15. The coefficients a, ,, = (n)A@n f(0), in the expansion (2.3.3) can be
m

re-given by
B n! " ~nn-1)...(n—m+1) .
Anm = m 1/nf<0> - m! 1/n
1 /n\ [(n-1 n—m-—1) ., "
= ﬁ(ﬁ) ( - ) --~(T) Unf(0)n
1 1 m—1_A"f(0
:_1(1__)"'<1_ ) 1<)
m! n n (=)m
n
fm(
Note that a,, ,,, converges to asn — oo.

Therefore, the right hand side of (2.3.5) is exactly the sum of the first
n + 1 terms of the Taylor’s expansion of the function f(z), with slightly modified

coefficients.

For any polynomial py(z), it is known that

B (pe(t); ) = pr().
Uniformly on [0, 1]. We choose py(x) such a way that

|f — el <e.

Then

15



[Bu(f; ) = Bu(pr; )| = [Bu(f — pr; )| < [Bu(g; 2)|

=leB,(L;z)| =¢

and then

|B,(f; ) — Bu(pr; )| < e.

Thus, for large n,

|f(z) = Bu(f;2)| < |f (@) = pi () | + |p& () — Bu(pr; 2)] + |Bru(pr; ) — Bu(f;2)|

<ete+te =3¢,

which shows that

Bn(f;2) = f (z)

on [0, 1]. This is another proof of Korovkin’s theorem for the Bernstein operators.

Now consider the operators. ([22])

These operators are linear and satisfy

Bn—l(lax):]'
Bn_ tix) =x— —
1(tz) =2 n
~ —1)(n—2) n-1
(t50) n2x? nix ’

forn > 2.

Therefore from Remark 2.3.6 we have that

16



!

Bn—l(f ;T) — B;L(fQ )

_ :Z:f%%) (" e

n—1

-y nAl/nf(g) (n ; 1) 2 (1 — )tk (2.3.6)
k=0
n—1

= Z{f'(g) - nAl/nk:(g)} (n . 1) 21— 2Lk, 2.3.7)
k=0

Now, let’s take into account the curly bracet.

£ = nand 5y = £y = n(r B0 - 15
IR
= f(k/n) — —g—". (2.3.8)

On the other hand, from the mean value theorem, there exists number €, where 0 <

6 < 1, such that
k+1 k

S
12
—

Then, from (2.3.8), we have that

R e A Iy e

).

n

Thus for large n, the above difference tends to zero. So, for all € > 0, there exsists

N > 0, such that, Vn > N.

/

P nar <

Therefore from (2.3.7), we have that
~ n—1 n—1
Busfs2) = Bitgie) <=3 (") et =

The above inequality shows that, given any £ > 0, there exists N = N(¢) such that

~/

|1 Bu-1(f5-) = B,(f; ey < &

17



foralln > N.

Now, for any given ¢ > 0, there exists N = N(¢) such that

B, (f;) = Flleo = [1Bo(fi ) = Bua(f'3) + Bua(f5) = flleon
<||B,(f;) = Bao1(f's)lepny + [ Bai (F52) = £ llcqon

<e+e=2

forall n > N(n € N).

This shows that, B, (f;x) = f'(z) forall f* € C [a,b].

Theorem 16. ([22]) A function f is convex on [a,b] if and only if all second order

divided differences of f are nonnegative.
Theorem 17. ([22]) If f(x) is convex on [0, 1], then
B.(f;z) > f(x), 0<xz<1, (2.3.9)
foralln > 1.
Theorem 18. ([22]) If f(x) is convex on [0, 1],
Bua(f;z) > f(z) 0<z <1, (2.3.10)

for all n > 2. The Bernstein polynomials are equal at x = 0 and x = 1, since
they interpolate f at these points. If f € C'|0,1], the inequality in (2.3.9) is strict

for 0 < z < 1, for a given value of n, unless f is linear in each of the intervals

—1
Ul — 1,&],f0r 1 <r <n—1, when we have simply B, _1(f;x) = B,(f;x).

Theorem 19. ([22]) Let f(x) be bounded on [0,1]. Then for any x € [0, 1] at which

[’ (x) exists,

1

lim n(B,(f;z) — f(z)) = %x (1—2x)f (x). (2.3.11)

n—0o0

Let z,y € [0, 1], the Bernstein polynomials in two variables are defined by
L kK L [n\[(m _ —
Bl e =335 D (1) (1)t ot i m e
k=0 1=0

18



such that B,, ,,, - C' ([0, 1] x [0,1]) — C([0,1] x [0,1]). These polynomials are posi-

tive linear operators.
Furthermore, these polynomials satisfy the conditions of Volkov’s theorem ([7]) since

By (1,z,y) =1

Bn,m (t> x, y) =T

Bpm (s,z,y) =t

1-— 1—
Bn,m(f2+82;x,y)=x2+y2+x( n o), o m )

Therefore, from the Volkov’s theorem, we have

|| Brm (f:2,9) — f(@,9)l|co.1)x[0,1)) = O

Theorem 20. Let

S|

Balfia) = 3 15 (1)1 -

m

Bulfin) =3 (0 0) (T)yzu et

1=0
such that B, : C[0,1] — C0,1] and B,, : C[0,1] — CI0, 1] for all n,m € N. Then

(1) Bu[Bu(f;y);2] = Bum(f;2,9)

(#) B[ Bn(f;2);y] = Bam(f;2,9).

Proof. Consider

Bu(Bulf,0):0) = 3 Buf(~ 5)0) (Z) 251 = gy

19



The proof (7) is completed. Similarly proof of (i7) can be given in a similar way.  [J

2.4 Modulus of Continuity and Lipschitz Class Functions

Definition 21. For § > 0, we define the r — th order modulus of continuity of f on the

interval I, by

w(f;0) = max |Anf(z)] = max |Anf(z +h) = f(z)]
txel txel

or equivalently,

w(f;0) = max [f(t) - f(z)]
t,m€7

Theorem 22. ([8]) Let f,g,h € Cla,b], 6 > 0,05 > 6 > 0, A\ > 1, n > 1bean

integer, o € R. Then
(i) w(f; 8) is nondecreasing in 6.
(i) wlaf +g;0) < |ajw(f;0) +w(g;d)
(id) w(f;nd) < nw(f;9)
(iv) w(f; A0) < (14 ANw(f;9)

(v) w(f;0) < 25—512w(f;51)

(vi) lim () = 0.

20



Proof. (i) Let 0 < 6; < dy, then

w(f;01) = max [f(z +h) — f(2)]

|h|<d1

< max |f(z+h) — f(x)] = w(f;d2).

Hence, w(f; ) is nondecreasing in 4.

(17) Direct computations yield

wlafi + f2;0) = max|(afi + fo)(x + h) — (afi + f2) ()]

|h|<6

< ‘rhn‘zggﬂ(ozfl(:l?—i— h) —afi(@)] + |fo(z + h) = folz)|}

= max |a|(fi(z +h) = fil2)] + max|folz + ) = fo(w)]

|h|<6)

= |alw(f1;0) +w(f2; ).

(7i7) Since

n—1

S OAf(4t) = Af(@) + Af(@+ k) + -+ A f(x + (n— 1)1)

=[flx+1t) = f@)]+ [f(z+2t) — fz+1)]
+ o+ [fx+nt) = flx+ (n—1)t)]

= [z +nt) = f(z) = Anef(2).

h
Therefore, taking nt = h thent = —
n
w(f;nd) ‘g‘lgg nf ()]
n—1 h,

h h
< max {!Ah/nf(x)l FAnmf (@ 4 ) e [ Ay f (24 (0 = 1);|}

= max {‘Ah/nf(x)‘ + max |Apnf (x—k%)‘

|h|/n<é |h|/n<é

Apjnf (x—l——n_lh)‘}.
n

21
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h
Letting — = hy, we get
n

w(f;nd)

< A h
< ﬁl‘gl n f ()] +Hﬁ§lf<| 1

h
< 4§ A — A -1
< 6‘ m f (4 n' + +II£T‘1§X5\ nf (@4 (n—1)hy|

<w(f;0) +w(f;0) + - - - +w(f;0) = nw(f;9).
(1v) Using (7) and (4i7), we obtain that
w(f; A0) < w(f; (|Al +1)0)

< (A + 1w(f39)

< (A + Dw(f;0).

(v) Direct calculations give, since 0 < d; < .

1) 1)
w(f;02) = w(f; 5—?51) <(1+ 5—f>w<f; 81)

Corollary 23. ([8]) If f is continuous on [0, 1] and w( ;) is the modulus of

continuity of f(x), then

n

Bo(f:) — f()] < 2w (f; z(1 = @) |

Definition 24. Let’s call that a function [ € C|0, 1] belongs to Lipys ()

0<a<)
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if the inequality
[F(8) = f(2)] < Mt — [ (t,2 €[0,1])

holds.

Theorem 25. ([8]) Let f € Lipy(«), then

z(1—x)

|B,(f;2) — f(x)] < M( yo/2.

2.5 The g-Integers

This section partially taking by ([12]).

Definition 26. For any real number ¢ > 0 and r > 0, the q-integer of the number r is

defined by

"= (1-¢")/(1—=q), q#1

q-factorial is defined by

and q-binomial coefficient defined by

=

wheren > 0, r > 0.

Definition 27. The following expression

is called the g-derivative of the function f (z).

Definition 28. The g-analogue of the integration is defined as follows

b

/f(t)dth(l—Q)be(qu)qj 0<g<l,

0

where t € [0,b] and [ (x) is continuous on [0, b].
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Theorem 29. (¢-binomial theorem) For (0 < r < n, {Z] is a coefficient of of q—binomial,

then we have
n

H (1 i qkqx) _ iqk(kl)/Q Bﬂ 2
k=0

k=1
and for q = 1, the above relation gives

(1+z)" = kio (Z) .

2.6 ¢-Bernstein Polynomials

In this section we give the generalization of Bernstein polynomials ([22]) based on the

g-integers. Let us

7]

B (fi) = :fcﬂ>ﬁkfr;ﬂ—f® 26.1)

r= S=

n} denotes a g-binomial coefficient. In

for each positive integer n, ¢ is fixed and [
r

particular setting ¢ = 1 in equation (2.6.1), gives Bernstein polynomials. It is clear

that
By (f;0)=f(0)  Bi(f:1) = f(1). (2.6.2)
On the other hand B{, defined by (2.6.1), is a linear positive operator for

0<qg<l1.

Theorem 30. (/22])The generalized Bernstein polynomial can be stated in the form

n

BY(fix) =) m AL for”, (2.6.3)

r=0

where

Alfi=A" i — AT e >

with A0f; = f; = f ([j] / )

Note that ¢-differences of the monomial z* of order greater than k is zero, and we

know that for alln > k, B, (xk; x) is a polynomial of degree k.
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Furthermore, g-Bernstein polynomial satisfy

Bi(1;z) = 1. (2.6.4)
Bl (t;x) = x. (2.6.5)
Bl (t%z) = 2" + % (2.6.6)

The above expressions for B, (1;z), B, (t; z), and B, (t*; ) generalize their counter-

parts given earlier for the case ¢ = 1.
Theorem 31. ([22]) If f(z) is convex on [0, 1], then

By (fix) = f(x), 0<z<l, (2.6.7)
foralln > 1andfor(0 < q < 1.

Theorem 32. ([22]) If f(x) is convex on [0, 1],
By (f;z) > Bl (f;z), 0<ax<1, (2.6.8)

foralln > 2, where B! | (f;x) and Bl (f;x) are computed using the same value of
the parameter q.

If f € C]0,1), the inequality in (2.6.8) is strict for 0 < x < 1 unless, for a given

-1 ]
=1 - 1J’f”

value of n, the function f is linear in each of the intervals [

1<r<n-—1and Bl_,(f;x) = BL(f;x).

2.7 Bernstein Chlodowsky and ¢-Bernstein Chlodowsky Polyno-

mials

The classical Bernstein-Chlodowsky polynomials are defined by ([4])

By (f,x) = 2:; f (%m) (Z) (%) (1 — %)n_ (2.7.1)

where 0 < x < b, and b, is the sequence of positive numbers such that
br,

lim b, = oo, lim — = 0.
n—00 n—oo N

These operators are also studied in ([9]) and ([11]).
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Lemma 33. For the Bernstein-Chlodowsky polynomials, we have
(i) Be (1,2) = 1.

(17) BE (t,z) = x.
x (b, — :1:)

(i11) BS (12, 2) = 22 +
n

Proof. (i) Direct calculation yields

soa-2 () ) (-5)

(71) We have

S G (E) (2)

26



(i) Finally,
B, (¥, x)
S ()6 (-5)
-3 () o ()
o Zr_l e (b_) (-5)
|

* x_? 2.7 —(711)!_(;); o (i) )

Whence the result. [

Remark 34. It is obvious that

BS ((t—2)*;2) = BS(t%2) — 22(BS(t ) + 2*(BS(1; 2))

z (b, — ) — 942 4 g2

H. Karsli and V. Grupta ([14]) introduced the q—Bernstein Chlodowsky polynomials

as follow:

oS () ()T (1-r2). 0=

k=0

27



where b, is a positive increasing sequence with the property lim b, = oco. It is easily
n—oo

verified that C,, (f; q; x) are linear and positive operators for 0 < q < 1.

Lemma 35. (i) C, (1;q;2) = 1.

(17) Cy, (t; q; ) = .
x (b, — )
]

(ii1) Cy, (% q; ) = 2* +

Proof. (i) Itis clear that

n n T kn—k—1 T
Cn(Lyq52) = M (E) (1 —q E)
k=0 =0
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(7i) Finally we have

Cy (1% ;)
= () [ G) T0 ()
gl ) 1L (o)

n

bn

[n] [n]

2, T (bn - I)
]

This completes the proof.

Lemma 36. For the q-Bernstein Chlodowsky polynomials, we have

Co((t—2x);¢;2) = Cy (g ) — 2Cy, (155 )
=r—x

=0

29
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and

Co ((t—2)"5q;7) = Cu(t? 1) — 20(Co(t; s ) + 2%(C(1; g5 )
z (b, — )

[]
_ x (b, — x)

]

=2+ — 227 + 2°
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Chapter 3

(Q-BERNSTEIN SCHURER OPERATORS

3.1 Construction of the Operators

In this section we discuss the g-Bernstein Schurer operators defined by Muraru C. M.

([21]); and given by

n+p r n+ D Tn—i—p—r—l .
n(fiq7) Zf(n>[ }:c [T a-g2) (3.1.1)

s=0

foreachn € N, f € C'([0,p + 1]), p s fixed positive integer and 0 < ¢ < 1. Itis clear
that this operators are linear and positive.

Note that in the special case p = 0, we have the ¢-Bernstein operator

By (fiq;x) = By (fiq:2) .
Lemma 37. Let B (f; q; x) be given in (3.1.1). Then

(1) By (L;¢;2) = 1.

(1) B (t;q;2) = [n[z]p]”
(i) B (5 q; ) = "2 In]lz] 8y [n[?;l]—f]

Proof. (i) Using the binomial identity, we have

zn: m (1 —a)"F =1

k=0
Hence

31



(17) Tt is easy to show that

BY (t;q;7) = {n—i_p}xr H (1_qsx)mm+p]

2|, " 7] [+ 2]
B [n+p] n+p—1 [n+p—1] Tn+p r—2 .
O Ry e iin A | SR

_x[n—irp]nﬂafl n+p—1 xrmp _— s
=) 2;[ '] 1=
_ntpl

[n]

Whence the result.

(ii7) Finally we calculate B? (¢ ¢; )

n+p n+ » n+p—r—1 [T]Q
B (tQ;q;x) :Z { }xr (1—¢°z) —

zzmm [n+p]! " Hi (1_qsx)

—~ [n][n] [n+p—r]lr]!
[n+ pl”

and then, multiplying by et p]2

, we get

B (t*; ¢; x)
P n+p—r—1

n+
B n+p qlr—1j n+p—1]$7, H (1= ¢°)
—~ [r=1!'[n+p—r]

s=0
n+p—r—1

n+p
+[n+p]z [n+p—1]! ]xr H (1_qsx>

[n)” r=1 [r=1'[n+p—r]!

_p-Yntp] NS ntp-2 LT

N [n)? q; ' +p—r—2]! 1}) (1 =a2)
9" tp-1 T

MR TR D e rme T § AR

B 0 e J O U o

ST TP

This completes the proof.
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3.2 Shape Properties

In this subsection we investigate the shape preserving properties of ¢g-Bernstein Schurer

operators.

Theorem 38. The generalized q-Bernstein Schurer operator can be stated in the form

n-+p
BY(fiqiw) =) {n ;L p] Agfox", (3.1.2)

r=0

where

Alfi=A" i — AT e >

with AYf; = f; = f ([l / [n + p))-

Proof. Consider the identity ([22])

n+p—r—1 n+p—r nt+p—r
[T a-¢2=> (—1>8q5<5‘1>/2{ P }x (3.13)
S
5=0 s=0

Note that for the case ¢ = 1, it is equivalent to binomial expansion. Considering (3.1.3)
in the definition (3.1.1), we get
n—+p n+p—r
n+p s _ n+p—r
BP (f:q: — r -1 s(s—1)/2 s
GRS S NEIED SEEHY P

Let us sett = r + s. Then, since
n+plin+tp—r| |n+p||t
T S n t rl’

n-+p t n
n-—+p _r ) (b—p— t n-+p
Z |: :|.il?t (_1)t q(t )(t 1)/2|: :|fr _ |: :|A2fol't
r=0 0

t=0 t

we get

This completes the proof. O
Theorem 39. If f(x) is convex and nondecreasing on [0, 1], then

B (fiqix) > f(x), 0<z<1, (3.1.4)
foralln +p>1andfor0 < q<1.
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Proof. For each = € [0, 1], let us define

n+p

" 1-¢z),0<r< .
B H (1-¢°z),0<r<n+p

:| n+p—r—+1
s=0

o= Danas, = |

where z,. is the quotient of the g-integers [r] and [n], and {n —I—p] denotes the g-
r
binomial coefficients. Also, it is clear that A, > 0.
It is known that
By (Ligx) = 1.
So

Mo+ A1+ + Angp = L.

Also, it is proved that

[n + p
Bl (tyq;x) = z,
[n]
SO
_|_
AoTo + MT1+ -+ ApgpTngp = %x

Therefore, since f(z) is a convex function, we have the following inequlity

n—+p n+p
B (f;q7) = Z Aof (x0) > f (Z )\rxr>

r=0 r=0
_ (In D]
[
Theorem 40. If f(x) is convex on [0, 1],
By (figx) 2 B (fiqsw), 0<wz<1, (3.1.5)

foralln > 2, where BY_, (f;q;x) and BE (f; q; x) are estimated using the same value

of the parameter q.

Proof. For 0 < q < 1, let us write

n+p—1

(BL_, (fig;z) — B (Fiq2) [] (01—a'2)™

s=0
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:nélf ([n[i] 1]> {n+f_ 1}ﬂ g (1-q°x) 81:[0 (1—¢)"
_ jz_:ﬂ:f (%) [n jpl z" "+1:)“‘1 (1—q°z) ”ﬁl (1—¢)"
-3 () {+1]H<> :
ST 0
Now, let - . o
I =)™ = (@) + 4" (),
where - .
Yy (2) = 2" :]j (1—q¢'2)"". (3.1.6)

Restating results in terms of ¢ (z) and v, (x) yields

n+p—1 n+p—1

(B (fr) - B2 i) TT 0= = 30 [T a0, @)

s=0 r=1

where

o=t () o e (o) 7 () oo

It is clear from (3.1.7) that each ¢, (x) is nonnegative on [0, 1] for 0 < ¢ < 1, and thus

from (3.1.8), it will suffice to show that a, is nonnegative. Let us state

_[n—7] S [r] x:[r—l]

MR T T ey P o)
It follows that

- —”*”man x — x:m

R — m dAzy + (1= A)xo ]’

and we see immediately, on comparing (3.1.7) and (3.1.8), that

ar = Af (1) + (1= A) f(22) = f (Az1 + (1= A) [ (22)) 2 0,

and so BY | (f;q;z) > BP (f;q;x). The inequality will be strict for 0 < 2z < 1 unless
every a, is zero; this can happpen only when f is linear in each of the intervals between
consecutive points [r] / [n+p —1],0 <r < n-+p—1, then we have B-_, (f;¢;z) =

BP(f;q;x) for 0 < x < 1. This completes the proof. [
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3.3 Rate of Convergence

Theorem 41. ([14]) If f (z) is continuous on [0,1] and w (f;0) is the modulus of

continuity of f (), then

B (fiq:@) = f (@) < 20 (f; VA (2))

where )\, (z) = z* ([n%—p—l} n+p) _2[n+p] +1) + [n—i—p]x‘

W T

Proof. Using linearity and monotonicity of the operator BE, we get

1BY(f;q;2) — f(x)]

sG] N E | ICEF RN B
15w - s@n|" e T a-ew
<3 1=t e I o

r= n s=0
n %_ ‘ n+p n+p—r—1
=D wlfi—; 5){ . ] S | )
=0 s=0
n+p m—l‘ n+p—r—1
Z!(H o )w(f;5>] e T e
r=0 s=0
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Then using Cauchy-Schwarz Bunyakowsky inequality, we have

B (f;q;2) — f(z)
]

Si ((1+ mé_m‘)w(f; 5)) {n:p]xrn+ﬁ_l<1 —q'7)

:wum>rﬂ[njﬂfﬁﬂ44u—q%>
|

1 n-+p [7‘ B n _|_p Tn—i—p—r—l .
+S 7":0|7] ’|: r :| s=0 (1_qx)
n+p n+p—r—1
:w(f;é) 1+%Z{([[T]]_ )2|:nj:p:| r H (1—qsa:)}1/2
{ {ni‘p} 2 H (1 qsx)}l/Ql
Hence
|Bh(fiq;2) — f(2)]
n+p n+p—r—1
<wtfiol+ (- T - o
y [z_; [n‘:pl " lj[) (1 i qsx)]1/2

= w(f50)[1 + 55/ Balt — 7P ;)] (3.19)
On the other hand, since
Bb(t —x)* q;x) = BL(t ;) — 20 B (t; g5 ) + 2° Bh (15 ¢; )
_ 2 ([n+p1n]1§ ntol, Q[n[;r]p] N 1) N [n[;%p]%
By (3.1.9), we get
B2(f ) — F@) S w(f30)(1+ 55v/A ()

where

A = 2 ([n+p_ Ulntpl oo, 1) Lol (3.1.10)

q
[n)? [n]
Choosing 6 = /A, (x), we find

1B (f;q;7) — f(2)| < 2w(f5 v/ A (7).
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Theorem 42. Let f € Lipy (), then

n —ijn n n a/2
|B£(f§Q;$)—f(m)|§M[x2([ tp [n]ll[ Y [;:]p]Jrl)Jr[ +p]x}

where A, (z) is given by (3.1.10).

Proof. Considering the monotonicity and the lineariy of the operators, and taking into

account that f € Lipy () (0 < a < 1)

|BL(f;q0) — f(z)]

1> U - e T a- el
< zw%) ~ f(@) [”;”’]w’” [I a-a»
§M2|%—x|a{n—:ﬂmr ﬁ_ (1—-¢°z).

Using Holder’s inequality, we get
1By (fq;2) — f(2)]
n-+p [T‘] n+p n+p—r—1 . n+p n+p—r—1 -
75 (1 RO N S | (RCEY0 TN P | (R
r=0

r

< [{ij“(% —a" ] (1 - ¢} :
x {:i:[["fp] o H<1 - qs:x)])%“‘}]

= M[BE((t — )% q;2)]2

= M[(BE(t*; q; ) — 22(BE(t; ¢; x) + 2°(BL(1; ¢; 2)) 2

R

= M(\, (7))
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Chapter 4

(Q-BERNSTEIN-SCHURER-CHLODOWSKY
POLYNOMIALS

4.1 Construction of the Operators

We introduce the ¢-Bernstein-Schurer-Chlodowsky Polynomials by

n+p [T’ n+p " r n+p—r—1 "
e =3 () [ ()T (o) e

s=0

where p € Ny, (b,) is a positive increasing sequence and 0 < = < b,,. These operators
are linear and positive provided that 0 < ¢ < 1.

This operator satisfy Korovkin’s Theorem conditions as follows:

Lemma 43. For the q-Bernstein-Schurer-Chlodowsky Polynomials we have

(1) Ch(Ligx)=1.

(@) i) = 20
i) Oy i) = P g 2 )

Proof. (i) Consider the Binomial identity

n+p—r—1
(1 . x)n+p*1" — H (1 . qsx) ;
s=0

then we have

n+p n4+p T r n+p—r—1 T
Cﬁ(l;q;x)IZ[ . } (b—) I1 (1—qsb—)
— n =0 n
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(17) Direct calculations yield,

S B ()T ()
e ol (T O I | B (B
S ()T ()
:xM&M7

which completes the proof of (ii).

(7i1) We have

o) T2 T ()

r=0

=b%f2+f%{"ile}<%>” )

glr—1][n+p—1 T n+ﬁ1 .
7"1 n+ p r—1 b, pobs q b,
N b2 fn—kp—l x Tn+pr 1 ﬁ
[n+p] r=1 r—1 bn bn

s=

then we get

_ by [[Zj—ri]— 1] [n;rfgz] <%)Tn+lﬁ_l (1 _qs%)

s=0
e
[n + p r
+

&) (o
r=0 bn s=0 bn
_giln+p—1] [z anpr n+p—2] [z T”J”ﬁ_Q e
B [n] by, r—2 b, 5

”+p 1 n+p—1 r n+p—r—1 s;
N N (5 R VG
_qm+p—ﬂg . b o (Looa
[n +p] O (Ligio) + [n +pl, Crr (Ligs)
m+p—1[n+p , x(b,—2z)
TP T



Thus the proof is completed.

For the first two central moments, we have the following:

Lemma 44. Let p € Ny, (b,) is a increasing sequence of positive real numbers. Then

for the q-Bernstein-Schurer-Chlodowsky operators we have
(i) Cal(e o)) = (2D 1)),

i) €2 (= 2 i) = o ([nerIn]ll [n+p]q_2[n[:]p] +1) +%,

Proof. (i) Using the linearity of the operators and taking into account lemma (4.0.11),

we have

(77) Consider

C?((t—2)%;q52) = CP (% ¢;2) — 22CP (t; ¢ %) + 2°CP (1; ¢; )

R R T BN R B
I e T
(4.1.2)
then we have
D ((h— Vg g) = g2 (P Untp] [t ) z (b, — )
(" saia) =t (LTt ot ) 4 2B
Whence the result. ]

Lemma 45. For the second central moment we have the following inequality:

sup CP ((t—2)*;qix) < i”z (W + %) :

0<z<by, [n]
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Proof. We can write

(=25 (n—l—p—l n—l—p]q_Q[n[;Ll—]p}+1)+x(b7[1n]—:c)
x (b, — x)
( )* o
Ea g, T(bn —2)
- mQ " [p] i
x_Q g, T(bn — 1)
< [n]2 [p]” + 7] (4.1.3)

Now taking supremum over the inteval z € [0,b,] on both sides of the inequality

(4.1.3), we get

sup CP ((t—2)*:q;7) < sup {562 [p]2+1‘(bn—x)}

2
0<a<by, 0<a<b, \ [N]

- ().

4.2 Korovkin Type Approximation Theorem

In this subsection we prove a Korovkin type approximation theorem for the g-Bernstein-

Schurer-Chlodowsky operators

Lemma 46. Let A be a positive real number independent of n and f be a continuous
function which vanishes on [A, 00). Assume that q = q,, with

by,
0<qg<land lim — = 0, then we have

e ]

lim sup |C%(f;q;x)— f(x)] =0.

n—o0 nggbn

Proof. By hypothesis, f is bounded say |f (z)| < M (M > 0). For arbitrary small

(i) s <eo %5 (fe)
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where x € [0,b,,] and § = § (¢) are independent of n. Thus,

S (L) [ () (-0

R [ R Y PN 2 (b, — )
- ( R “)* o

Therefore by Lemma 4.1.3

~ b2
sup |CF (fiq;x) — f(2)| =e+2M—75 <[p]2 n M) .
0<z<bn [n] A
Since —[ n] — 0 as n — oo, the proof is completed. n
n

Theorem 47. Let f be a continuous function on the semiaxis [0, c0) and

lim f(z) = kf < 0.

T—00

bn
Assume that q :== q,, with0 < ¢ <1, lim ¢, = 1 and lim — = 0. Then

lim sup |C%(f;q;x)— f(x)] =0.

n—oo 0<z<b,

Proof. For any € > 0 we can find a point x such that

f (@) <& x>, (4.1.4)
Define a function g as follows
f(m) 5 O S X S Zo
g(x) =19 y=2f (o) (x — x0) + f (x0), x0§x§x0+%
0 , T > 2+ 3.

Then
sup |f(z) —g(2)| < sup [f(z) —g(@)[+ sup |f(2).
0s2<bn wo<z<wo+y T>z0+5

Since

max g (z)| = [f (zo)]

zo<z<zo+3

43



we have, from (4.1.4) that

sup | f (2) — g (2)] < 3e.

0<2<by,

Now we can write

sup ‘C*ﬁ (f;qn;x)—f(fﬂ)‘

0<x<by,

< sup CP(|f —gl;qn;x) + sup ’éﬁ(g;qn;:r)—g(flf) + sup |f(z)—g(2)]
0<z<b, 0<z<b, 0<z<by,

< 6e+ sup ‘@5’ (95 Gn; ) —g(w)‘-

0<z<b,

1
where ¢ (z) = 0 for 2o + 3 <z < b,. By the lemma 4.2.1, we obtain the result. [

4.3 Order of Convergence

In this subsection we obtain the rate of convergence of the approximation, given in the
previous subsection, by means of modulus of continuity of the function, elements of

the Lipschits classes and the modulus of continuity of the derivative of the function.

Theorem 48. Let (q,,) be a sequence of real numbers such that ¢ := q,; 0 < ¢, < 1

and [n] := [n| . If f € Cp[0,00), we have

C2 (i) £ @) < 20 (/o))

where w (f,.) is modulus of continuity of f and

_ 2 (lntp—1n+p] 0+ 2 (bn — )
Snqg(x) = ( P q—2 ] +1)+ :

Proof. By using the positivity and linearity of the operators, we have
ICh(fiq:2) — f(2)]

= Igf(%bn) {":ﬂ (%)Mﬂﬁ_l (1 - q%) @)

< gw%bﬂ) s (b—)n (1-02).



Now using the properties of the modulus of continuity, we can write

Ch (fiq:7) — f ()]
S5 (%bn M( >”*f;1<1—f%>—f<w>
<Z %bn

)
)-
Ei ) G ()

fla

r=0 s=0
rn-l—p r— 1
B n+p T T
~ouay [ [G) I (o)
r=0 s=
w(f,cS) | ]

PO [T ﬂ(%)’"””“@—”)
s ) o)

4]
w0+ A o gy,

5 n
e O ((f— 2V aig) = g2 (P =t p] [0+ z (b, — )
wheeCn((t ),q,) [( 1][7[1]2 ] q[2 []n] —|—1)—:b [n]) )
. o n—+p— n-+p B n-+p x (0, — T we
Now choosing d,, , (x) = ( e q—2 ] —1—1)—1— O
have
Ch (fi @) — f(@)] < 2w/ 0ng (2).
Whence the result. L]

Theorem 49. Let (q,,) be a sequence of real numbers such that 0 < ¢, < 1 and

lim ¢, = 1. If f € Lipy (o) and x € [0, A] > 0,
n—0o0

N1}

ICE (f1q:7) = fll s, < M {ACE ((t—2)*;q;2) } 2.

Proof. Consider

n+p

C2 (fqg2) — f ()] <D

3 () =7l 7] <b—>’”"”ng (=)
{16 (-08)

<MZ :L
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1
then — + — = 1. We can write

-« P1 D2
rn+p—r—1 2
r n—+p x T
= 1—g%52=
e [T (o)

n+p
Ch (fi42) !<Z{

AL (o))

Using Holder inequlity, we get

ctwan-ron (Sl () T 0-05)

From (4.1.2) we can write

2
Choosing p; = — and p; =
«

@

[N]1)

Ch (fsqm) — [ (2)] < M{Cﬁ ((t—:ﬂ)Q;q;x)}

This implies that

NI}

ICE (f5q:2) = f (@)l o, < M {ACE ((t —2)*;q;2) }
where x € [0, Al. O

Theorem 50. Let (q,) be a sequence of real numbers such that q == q,, 0 < @, <
1 and lim q, = 1. If f(x) have continuous derivative f (z) and w (f’,é) is the
n—o0

modulus of continuity of f (x) in [0, A), then

|f(x) = CF (f5q;2)]

gMA@+2 A2 A—z[p]Q—i—% .
] [n]? ]
) < M (

where M is a positive constant such that | f'(x

|/\
"
=

Proof. Using the mean value theorem we have

f (%bn) —fla) = (%bn —x) £ (6)
(g0 =2) £ @+ (g0 —) (5 © =7 @),
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[r]

where x < £ < —b,,. By using last equality we can write the following inequality,

[n]
ICP (f;q;2) — f ()]

—f (x)jzj (%bn—x) {njp} (%)T”it[(jl (1—qs%)

since

[r]

€ —a| < ‘_bn_x

7]

Therefore, we can write the following inequality

ICE(frq;2) — f(2)]
ub —x'
b | X ] ™"
<MAM+;w<f,5>( ; +1)

(- P T (e

47

l_lﬁ




Using the Cauchy-Schwarz inequality for the first term we get

IC? (f;q:2) — f (2)]
e F Al 6T ()
SR )T )

anf) o0 (S () [T 0-e)
IS () TP (o)

:MA%+w<f,5>\/Cﬁ (t — ) Jq; ) + w(J; 5) Cr((t - z)? Lq; )

On the other hand, using (4.1.3), we get

Iy
Dk

s O (=) < sup (5t S
< A pp g A
= [n)? [n]

Consequently

Ch (frq50) — f (2)]
M w ' A_2 2 Aby 1 A_2 2 Abn
= MRt (fﬁ){\/[nf o + 35+ 5 (o 7+ M)}'

: A2, Ab,
Putting § = \/ P [p]” + ]

Ch (fsq;2) = f ()]

el A Abn N ) [ A e Abe A Ab
<MA[ e (f \/[n]2 [p)* + i > {\/W [p]” + B +\/[n]2 [p]” + [n]}
= ﬂ A_2 2 %w ! ﬁ 2 %
= MAC +2\/[n]2 [p]” + l (f,\/[n]z [p]” + o )

Whence the result. ]
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Chapter 5

SCHURER TYPE Q-BERNSTEIN KANTOROVICH
OPERATORS

5.1 Construction of the Operators

In this chapter we introduce Schurer type g-Bernstein Kantorovich operators by

CATEES ol ftre / (i + ) e

r=0 s=0

where 0 < ¢ < 1 and p € N is fixed.

Lemma 51. For the Schurer type q-Bernstein Kantorovich operators we have

(1) KE(Lqx) =1.

I 1
(“)Kn(uaqwf)—m(m—i-[n—f-p}qx).
(iii) K (u? ¢;x) = [nil]Q (é‘F Q[n[gp]qx%—[n%—p— 1] [n+p]q3x2+[n+p]q2x>.

Proof. (i) From the definition of the ¢-integral and Zqﬂ =1 we have
—q
s=0

1
[ai-a-0 ¢
0 J=0

1
(1-4q)

=(1—¢q)

=1
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As aresult

(77) Again using the definition of the ¢-integral we can calculate

O/I([niu * [sk]u) dat

1 - 2j qlr]

_[n+1](1“”;q Tt

_ 1 1 q|r]

_[n—l—l]( _q>1 ¢ [n+1]
11 q[r]

n+1]1+¢q [n+1]'
Hence we have

st =3[ T 0 (i + )

r=0 s=0

n+p n+p—r—1
1 1 n-+p H
= [ T 1 _ A4S

[n+1]1+qT0{ r }E ( q')

+q;{"-:p]xr HO “‘q%)[n[ﬁu%

_ 1 aln] oy
_[n+1]1+q+[n+1]Bn(t’q’x)

1 1 qn] n+p 1 1
TThtrlite [+l W ¢ s <1+q+[n+p]qx>'

(7i1) From the definition of the ¢-integral, we get

1
/t2dqt =(1—q)> ¢¢
0

=0
1
—(1—
B 1
Cl4g+ ¢
1



‘We have

h t qlr] \?
0/([n+11+[n+11) Aot

N tqlb] |, @bP
O/([n+1]2+2[n+1][n+1]+[n+1]2

= ﬁ (/ t2d,t + 2q [r] /ltdqt + ¢ [T]Q/ldqt)

0

_ ( ! +2qm+q2[r]2>-

m+ 1P \1+g+¢ 14¢
Thus
+p n+p—r—1
1 n+p 1
K? (u?;q; 1) = { ] ' L=q
W56 =5y {Z r O
n+p n+p n+p—r—1 q 7“]
T 1— S 2
+§;{ . }x 11 A-q'o) 2y
n+p n+p n+p—r—1
T —_ S 2 2
+Z[ . }x (1 q:L’)q[T]}
r=0 s=0
n+p ntp—r—1
1 1 n-+p
— x" 1 —¢°x
n+p n+p—r—1
1 2 n+p [r] [n]
+ - zr 1— 533 T 1
[n+1]1+q { r ] H) (1=q )[n—i—l][n]
n+p n+p—r—1 27..12 2
n—i—p} . sy " [n]
+ 1—-¢q¢°z —3
] N | R
B 1 1
[n+1] 14+q+¢?
+p n+p—r—1
n—l—p] [r]
- 1—-¢'z) 5
(1+q n+1 2;{ 1;[0 n]
2 2 n+tp n+p—r—1 2
q [n] |:7”L+p:| r s T]
+ x 1—-¢q¢z) —
rrayD ) R L | SRS
1 1

n+1°1+q+¢?

2q [n] P (t: e qQ[n]g P (12 a: 1
METIEES s T
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Finally we get

K? (u*;q; 2)

_—[nil]Q <é+2[ [;]p]qx—l—[n—i-p—l] [n+p]q3$2+[n+p]q2x)’

where B? (f;q;x) is the g-Bernstein Schurer operator. ]

Remark 52. Taking limits in Lemma 5.1.1, when ¢ — 17, we get

KP(1;2) =1,
n+p 1
KP? (w 1) —
e e mart
1 —Dz?2+2
Kﬁ(uQ;x): . (n+p)(n+p Q)x + x]
3(n+1) (n+1)

Lemma 53. For the operator K* (f;q;x), we have

o], 1
el = ([ 0" 1)+W
K? ((u—x q; T ( n+p]q3—2{21ﬂq+l)
x [n—l—} (n+ 1]
PR @ g 1T rAe =2y )
1
+ —[3] i 1]2‘ (5.1.1)

Proof. 1t is obvious that
K} ((u—z);q0) = KY, (u;q; ) — 2K (1; ¢; @)

1
Q‘Q*wﬂm+u'
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Direct calculations yield,

K? ((u—2)*;¢;2)
= K? (u* q; ) — 22KE (u; q; ) + 2 K2 (15 ¢; @)

1 (1 [n + p]

TESTANE ) qxﬂ”ﬂ’—1][n+p]q3$2+[71+p]q296)

20— ! + [n+plgz | + 2
— 2z n €T T
n+1] \1+¢ b

_ 2 ([n+p—1] [n+p] 4 2[n+p]q+1)

ne1? L Tt
T [n + p) 9 [n+ 1]
‘+m+¢F(Q[m atinteld =2y )
1
TR

By the Korovkin’s theorem, we can state the following theorem:

Theorem 54. Forall f € C'[0,p+ 1], we have

nh_{glo HKZ (fsqn,x) = f (x)”c[o,erl] =0

1
provided that q :== q, with lim g, = 1 and that lim — = 0.

5.2 Rate of Convergence

Theorem 55. Let (q,,) be a sequence of real numbers such that q == q,; 0 < ¢ < 1

and lim q, = 1. If f € C[0,p + 1), we have
n—o0

K2 (i) = £ 0] < 20 (10,0,

where w (f,.) is the modulus of continuity of f. Also f is continuos function.
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Proof. Using the linearity and positivity of the operator, the property of the modulus
of continuity and finally the Cauchy-Schwarz Bunyakowsky inequality we can write

that

Szl V] T%ﬁl“qs”o/ld[niu ) -]
L t alr] T +p—r—1
S"::/ [n+1] ([Sn—i—l] 1] wirs [n+p}xr”:i:[0 (1 a)ds

n+p n—l—p n+p—r—1
STAU0) o et E | QREET

r
r=0 s=0

+w<§’5>§§0j [nilﬁ[spﬂ_ip {n:p] Tnitlgl(l_qsx)dqt
= w(f,9)

ntp 1 2 ntpor=l v
+w<§’5){20/([niu+[ﬁ]]x) " L1 (1qsx)} "

1 1
We know that from the Holder’s inequality — + — = 1; ¢ = 2 and p = 2.
P q

Oj’f([nil]+[s£f]1]> — f(z)| dgt
So/[nil] [nqﬂ] ‘”qut




Now we have
n—+p

K2 (figz) — F (@) =Y {ans}? pur (@:2)

n+p—r—1
where p,, (¢;z) = {n —l—p] x” H (1 —¢°x). Again applying the Holder’s in-
r
s=0

equality with; ¢ = 2 and p = 2, we get

= [ (@)
Now we have,
(1.0 + LD 11en 5, (0) )}

Choosing 4, () = K? ((u — x)*; ¢; z), we have

K3 (fsq2) — \<2w( \/K” (u—2z);qx )

Theorem 56. Let f € Lipys («), then

K (f;q;2) — f(2)] < M (K? ((u—2)*; ;1))

where KP ((u—x)2;q;x) = r2 ([n—i—p—l] [n+p]q3_2[n+p]q+1>

e P+?Q [n+1]
T n-+p s n+1 1
nt 17 (2 g ¢t rAe 2Ty >+[3][n+1]2'
Proof. By the linearity and positivity, we have
K3 (frai2) — [ (2)]
T T =N A A 1
X[ I e [l () -
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1 1 2 2
We know that from the Holder’s inequality — + — = 1; ¢ = and p = —.
P q 2 —« «

o/l‘f<[”i11+[ff]u> ~f@)]dt

So/l[niuﬂfﬁ]u e

<{0/1([niu+[ff]1]x)2dqt * jldqt N

e
Now we have

IKP(frqi2) = £ ()] = MY {an,}? por (g57)

H (1 —¢°x). Again applying the Holder’s in-

where p,,, (¢;x) = {
s=0

n+p—r—1
n+p| .,
T
r

2
equality with; ¢ = 5

and p = —, we get
o
K3 (fai2) = f(2)]

<M {Z A rPnr (x)}

r=0

2—a

n—+p 2
{Z L.pnr (x)}
r=0
n—+p

“M ("”‘”/1 (e o) o

r=0

R

[N]])

= M K2 ((u—2)5q:2)]

]

Theorem 57. Let (q,,) be a sequence of real numbers such that q :== q,; 0 < q¢ < 1 and

lim g, = 1. If f (z) have a continuous derivative f (x) and w (f',0) is the modulus
n—oo
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of continuity of f (z) in [0,1], then

|f(z) — K} (f;¢;7)]

[p] 1 2 1 [n + p] . 1 V2
SMA[nHJ”([nHF[p] SR (2 o +p])+[3][n+1]2)

X W / 1 2 1 [n—i—p] n 1 12
<f7([n+1]2[p] +[n+1]2 (2 2] * +p]>+[3][n+1]2) )’

where M is a positive constant such that | f' (z)] < M (0 <z < 1).

Proof. Using the mean value theorem we have

f([n—ti—l] * [fﬂ]) /(@)

:(m+1 n+1 )
(e i) oy - -1,

qlr]

where r < € < + Hence, we have
¢ [n+ 1] [n+u

\KE (fiq52) — f(2)]

~ f (2) : / ([n - D+ [nqﬂ]l] - x) [” “ﬂ . +1:1 (1 - ¢°x) dyt
o> / (o) Comre) [7] T 0
< |f (@) KB ((u— )5 q;2)

1

e e R

gk

T

SMA([ZH‘Q

—
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qlr]

SRS [y Bl ey

—x|.

Therefore we can write the following inequality,

\KP (fiq;2) — f(2)]

[p]
n+1]
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From the Cauchy-Schwarz inequality for the first term we get

K2 (f;q2) — f ()]

[p]
- n+ 1]
/ nip " r n rn+p—r—1 .
—l—w(f,é);/ [n+1]+[rlq—[l—]1]_x { j:p]x 511) (1—q°z)d,t

n+p—r—1

+w<°§75)g/1([niﬂ+[sk]ﬂ_x)Q[njp]xr [ a-aodr

s=0

n + 1n+p 1 2 o n
ot ($] e Y [ T 000
*fﬂgjjT:/(miu*wsfh‘mywnjﬂfﬁﬁiAO_”%ﬁm

!
)
#Kﬁ ((u—2)*;q;).
Therefore using (5.1.1), we see that

2
sup K? ((u—x)%;¢;2) < sup x—z [p]

0<a<1 0<a<1 [n + 1]
x [n 4+ p] 2 [n +1]
+m+u2@ g ¢t InrEle =2 )
1
BETEE:
< 1w
T+
A RS S VRS
+m+u2@ g ¢TIt 2y )
1
BETC:



Thus

K3 (f¢;0) — f()]

[p]
n+1]

: L a1 (o] 2 _glnt1
w(f’5){<[n+1]2[p] +[n+1]2 (2 9 g+n+plg—2 2 )

+—;L—)é
[3] [n + 1]?

Lo 1 o 1 [n + p) . s n+1]
+5([n+1]z[p] +[n+1]2 (2 7] q+[n+plq—2 )

BT

. - 1 2 1 [n + p
Choosing § = ([n T [p]” + e 1P (2

1 1/2
+mm+ua

|K? (f;q2) — f()]
4P

[n+ 1]

/ 1 2 1 [n + p] 2 ln+1]
+w<f’([n+1]2[p] +[n+1]2 (2 2] atintple -2 2] )

1 3
+mm+ua
y 1 2 1 [n + p] N s Snt1] 12
{([n+1]2[p] S (2 g A2y ))
1 3
+mm+ﬁ)>

1 ) 1 ol 2 ont+1] 1 2
+<[n+1]2[p] +[n+1]2 (2 2] atintrle -2 2] )+[3][ 1]2> }
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Chapter 6

KANTOROVICH TYPE
Q-BERNSTEIN-SCHURER-CHLODOWSKY
OPERATORS

6.1 Construction of the Operators

In this chapter we introduce the Kantorovich Type ¢-Bernstein-Schurer-Chlodowsky

Operators. It is defined as follows

n+p n4p - rntp—r—1 .
T2 (fiqx) =) { . } (b—) 1T (1—(156—)
n s=0

r=0 n

/ t qlr]
x O/f ([n+ 1]bn + o 1]bn) dyt, 6.1.1)

where ¢ € (0,1),n € Nand f € C ([0,p+ 1]), here p € Ny is fixed. Also it is clear

that this operator is linear and positive.

Lemma 58. Let T? (f; q; x) be given by (6.1.1) we can write the following properties
(1) T¢ (1, ¢;7) = L.

o1 (b,
) T2 i) = - (1 e ).
(idi) TP (u?; q; x) = [nil]Q (% + 2%@% [n+p—1][n+ p| ¢*a?

+ (bp — ) ) .

Proof. (i) We know that [22]

ﬁ 1 + q Xn:qs(sl)/2 [Z] 8



and

Therefore

S (i)

r=0

(12) First of all we must calculate

o/ (et ) = / o+ L / “

[n + 1] = [n+ 1]
b q[r]bn
_[n+1]( Q)l q2+[n+1]

by 1 qlr]bn

S n+1l+q  [n+1]

b q[r]bn
2] [n+1]  [n+1]

Now we calculate the 77 (u; ¢; x) ,

=3 [njp} (;)hl (1 _q%) ([2] T T K]l]b”>

s [T T ()
*i {Hp] (;)H (1 - qbi) [an]nb"%

_ b” q [n] D (4 r-

a1 o e
b aln) p)

2l[n+1]  [n+1] [n]

=;(b—"+[n+p]qx),

n+1] \ [2]

where C? (t; ¢; x) is g-Bernstein-Schurer-Chlodowsky operator defined in Chapter 4.
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(ii7) Finally let’s calculate TP (u?; q; ),

O/ ([niub“* [nqk]l]b"ydqt

1

1 1
b2 21,.12
__ % Q/tqut—i—Q—q[T] Qbi/tdqt+—q ] _b?
it 17 n+1] n+ 1]

On the other hand,

Hence,
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2 2 2
byl @l bz>

(3] [n + 1]2 2] [n + 1]2 " I+ 1]2 "

"3 [f+ 72 [nﬂ (;)H (1 - b)
>’"’”’ﬁ (=)l
rn+p r-1 (1 bi) W@bz

[n]Q n
bi bn[n]q RN ol L NP
3] [n+ 1)° +2[2] n+ 1]20” o)+ o p (*4:2)

R, bl ot
Blln+1°  [2Mn+1 [l
L b ([n+p—1] [n + p| x2+x(bn—fc))
[+ 1P P P
1 <@+2[n+p]bn
[n+1]* \[3] 2]

This completes the proof.

+
)
E
)—l
1
S
_|_
-]
| |
\/ /‘\

Remark 59. Taking limits in Lemma (6.1.1) as ¢ — 1=, we have

TP (1;x) = 1.

Tﬁ(u;x)—n_li_1<%n+(n+p)x).

P (2 ——1 @ n T n - n 2?4+ -
Tn(u,x)—(n+1)2(3+( +p)ab,+ (n+p—1)(n+p)z*+z (b, )).

Lemma 60. For the first two moments we have

T ((u—x);q;7) = [nil] (%—i—[n—i—p]qx) o

[n + p] bn
* ([n+1}q‘1)“ 2+ 1
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and

77 ((u—2)*;q;2)

_ oflntp—1n+pl¢® n+p)
=z ( [n+1]2 2[n+1]q+1)

2 [n+p]bn (bn_x) 2 92 bn

+x([ﬂm+u” [n+u” [ﬂm+ﬂ>
by
T T (6.1.2)

Proof. 1tis clear that

Ty ((u—a)sq0) = T3 (w; q; @) — 2T (1, ¢ )

n » n

n+ 1] \ [2]
_ (ol Y, by
_<n+uq1>ﬂmm+u

Also,
77 ((u—2)*; q; @)
= TP (u*; ¢ 2)

— 22T? (u; ¢; ) + TP (15 ¢; )

1 b2 [n + p| by, sy
CESIE <ﬁ+2 2] gr+[n+p—1][n+pl¢s +Qx(bn—x))
1 by, )
_Qx—[n—l—l] (m+[n+p]qx)+x
_ oflntp=1n+pl¢® [n+p]
- ( [n+1)° 2[n+1]q+1>
[n+plb, (b, — ) - b,
+x<2[2”n+1]2 * [n—{—1]2q 2[2][n—|—1]>
by
3] [n + 1%
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Theorem 61. For the second central moment we have the following inequality:

sup T2 ((u—2)?;q;2)
0<z<b,

b2 9 [n + p| by, b,

§m+$@]+%@mm+u”+m+u”)
b2

B

Proof. We can write

77 ((u—12)*;q; )

_ oflntp—Un+pl¢ [n+pl

_$< [+ 1P 2M+Hq+0
x(2[n+p]bn +(bn—:c)2 ) b, >

A+ 12" 2 TRl
b2

n

O

< z? (M—1)2+x<2[[n+p]b” q+ (b”_x>q2—2—b" )

?+u An+17°"  [n+1) 2] [n +1]
(3] [nbiL 17
pfj&“ﬁ+x(ﬂgﬁfﬁﬂ+i?+§%2%mﬁlu)
'ngluz
<mi}2whl(ﬂgﬁfﬁﬂ+$?i?f%ﬂﬁlu)
+ﬁé%ﬂ?

Now taking supremum over the interval = € [0, b,| on both sides of the above inequal-
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ity, we get

2
sup T% ((u—2)*;¢;2) < sup { P
0<z<by, 0<a<b, L[n + 1]

+x(ﬂm+ﬂ“q+““_@f)

Am+17°"  [n+1

+L}
3] [n + 1)°

b2 9 [n + p] by b, )
St ]+%<%am+ufﬁﬁn+uﬂ>
b,

TR

6.2 Korovkin Type Approximation Theorem

In this subsection we prove a Korovkin type approximation theorem for the Kan-

torovich type g-Bernstein-Schurer-Chlodowsky Operators.

Lemma 62. Let A be a positive real number independent of n and f be a continuous
function which vanishes on [A, 00). Assume that q = qy,

with 0 < ¢ < 1and lim -~ = 0, then we have
n—o0 [n]

lim sup |17 (fiq;x) — f(z)| =0.

Proof. By hypothesis since f is bounded we have |f (z)| < M; (M > 0) . For arbi-

trary small € > 0, we have

(e )

n+ 1] n+1]
2M t qr] ?
<5+37<m+u@”ﬁn+u%_x)’
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where x € [0,b,,] and § = § (¢) are independent of n. Thus,

S (pe s ) T () T ()

= ] s=0
- bi 2 [n+p] bn, bn 2
S Lo )
5
NCENR

Therefore by lemma 6.1.4

sup |72 (f1052) — |1 ()]

0<z<by,
—cpom )
1 ”
b2 2 [n + p] bn bn 2
5 [p” + b (2 q+ q
m+u2” 2l n+1" n+1)?
b2
+ —.
(3] [n + 1]
. by .
Since — — 0 as n — oo, the proof is completed. O

[n]

Theorem 63. Let f be a continuous function on the semiaxis |0, 00), for which

lim f(x) =ky < oc.

T—r00

Then

lim sup |T7(f;q;z) — f(x)| =0.

Proof. It is enough to prove the case ky = 0. Then, for any € > 0 we can find a point

o such that

f(x)l<e x>, (6.1.4)
Define a function g as follows
f(z) : 0 <z <
9(@) =1 y=2f(z0) (& —w0) + f (x0), @<z <ao+3
0 ) T > xo+ %
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Then
sup |f(z)—g(x)| < sup  |f(x) —g(x)|+ sup [f(z)].
0=z<bn zo<z<wo+3 T>w0+3

Since

max g ()] = [ (zo)]

zo<z<zo+3

we have from (6.1.4) that

sup |f () — g (2)| < 3e.

0<z<by,

Now we can write

sup
0<x<by,

Tr(fig0) — f ()]

17 (93 qn;x) — g (x)| + sup |f (z) — g (2)|

0<x<by,

< sup TP(|f—gl;q;2) + sup

0<x<by 0<z<by,

TP (g;q;x) — g(m)(

< 6e + sup
0<z<bn

where g (x) = 0 for zg + % < x < b,,. By the lemma 6.2.1, we obtain the result. O

6.3 Order of Convergence

In this subsection we obtain the rate of convergenceof the approximation, given in the
previous subsection, by means of modulus of continuity of the function, elements of

Lipschitz classes and the modulus of continuity of the derivetive of the function.

Theorem 64. Let (q,) be a sequence of real numbers such that q := q,; 0 < q, < 1.

If f € Cg[0,00), we have

12 (fias) — 1 @) < 20 (/50 0))

where 6, (z) = TP ((t — )% q; x) is defined by equation (6.1.2) w (f,.) is modulus

of continuity of f. Also f is continuous function.
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Proof. We can write the following inequality from the 77 (f; ¢; x) operator;

TV (f;q;0) — f ()]

- Z R H“ —0) [ (1 (gt i) =/ ) o
T 0 e ) e
5 ﬁﬁb'
w07 H e d

=w(f,9)

P2l [ (e ) e

1 1
We know that from the Holder’s inequality — + — = 1; ¢ = 2 and p = 2, we get
p q

j’f([niu o) @

d,t

q




Let choosing 6,4 (z) = T? ((u — )% q; x), we have

T2 (fig;0) — f (@) < 200/ TE (¢ — )15 ).

Whence the result. ]

Theorem 65. Let (q,) be a sequence of real numbers such that 0 < ¢, < 1 and

lim g, = 1. If f € Lipy () and x € [0, A] > 0,
n—oo

w[R

IT3 (F:4:2) = Flleropy < MAATE (= 2)sq:)}

Proof. By the linearity and monotonicity of the operators, we have,
T3 (fiq:2) — f (2))]

Mpf(miu@ﬁﬁskhm)_f@)rtwq(%>mﬁi4(l_f%>

<2

r=0
n+p ! a n+ T r n+p—r—1 "

5 PG T oo
r=0 0 n s=0 n

t qlr]
m+u@Hﬁn+u%_

2 2 1 .
Let’s choose p; = — and po = —— then — + — = 1. We can write
Q 2-« P P2

T2 (f;q;2) — f(2)]

n—+p L

<> /
r=0 0
n+p—r—1 T %

X H (1—qsb—>} dgt

s=0

t q[r]
) L s L

5]

2—a

AL ()}

Using Holder’s inequlity, we have

T? (g;q;2) — f ()]
qlr] ,

n+p 1 "
= 2;/im+u TR
=Y

n—l—p T r n+p—r—1 T 3
VG (o)) e

s=0
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From (6.1.2) we can write

[N]1)

T2 (fiq52) = f (@) < MATE ((u—2)*;4;:2) }

This implies that

w[R

1T (fiqi2) = @)l cpop < M {ATE (w—2)*5q52) }
where = € [0, A O

Theorem 66. Let (q,) be a sequence of real numbers such that q := qy,
0 < ¢, < land lim g, = 1. If f (x) have continuous derivative f (x) and w (f',5)
n—oo

is the modulus of continuity of f (z) in [0,1]. Then

f(@) =17 (f; 4 0)]
[

3.

1 2 n+plb, (b, —1) B b, B2 1/2
+2{[n—|—1]2 bl (2[2] [n+1]2 - [n+1]2 2[2] [n—|—1]> + 3] [n+1]2}

Xw<ﬁ{ : @f+(2M+M@1+dM_D—Q b )+

[n+1)° RIn+1° [m+1* 2+

B2 1/2
+mm+w}>

where M is a positive constant such that |f' (z)| < M (0 <z <1).

Proof. From the mean value theorem we have

(gt + 7 ) - 7 @)

[n 4 1] [n 4 1]
B ([niub”* [5-[:]1]1’") 1
= ! alr —z ) f(z t alr] -z ) = f (x
- ([n+1]b"+ CET )f( )+<[n+1]b"+ ik )(f © -1 @),
where © < £ < —[n 1 b, + —[nq—[:]l] b,. By using last equality we can write the
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following inequality,

7 (fiq2) = f ()

z/(
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t qlr]
K_MS‘W:ﬂ@ﬁT;Iﬂ%_x

Therefore, we can write the following inequality

0 (f;q;2) — f()]
[p]

- [n+ 1]

r
n+p 1 n n x
/ n 4+ 1] [n+ 1] ‘
+ [0 +1
;“( )0/( 5 )
r n+p—r—1
n+p T s T
L)L (o)




Using the Cauchy-Schwarz inequality for the first term we get

T80 (f;q;2) — f()]

[T (e
[n[f—] 1]

r=0
n+p—r—1
X H (1—qsb )dqt
s=0 n

76



On the other hand Using the (6.1.3) and for the second term we have

1‘2

sup TP ((u—2)*;¢q;z) < su 2
ogng B L )_ogng [n+ 1] p
[n + p| by, (b, — ) 2)
+x |2 q+ q
< 2] [n+1" [n+1)
by

BET

A2 )
F@]

<o
n + p| by, b, )
A (2[2] e [n—|—1]2q>

b2

n

B

1
[

Consequently

T2 (f; q;2) — f ()]

< MA [p]
[n+ 1]

, o, 4 plbe (ba—1) 4

+“(f’5){[n+1]2 pf (2[2][;{11]2‘“ [n+1]2q)
B2 1/2

+[3][n+1]2}

L B S [t plbn o (a— ) o
i [n+1]2[p] +(2[2][n+1]2q+[n+1]2q)

by
ﬂam+ﬁ}'
Using § = { ! 5 [p]2 + (2[[n—|—p] bn + (b = 1)q2)

2+ 12 1
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2 1/2
+mm+w}

TP (f;q52) — f(2)]

[p]
n+ 1]

/ 1 2 [n+p]bn (bn_l) 2
+w<f7{[n+1]2 Pl + (2[2][n+1]2q+ [n+1]2q)
B2 1/2
ﬂmm+ﬁ} )
1 ) m+plby  (ba—1) b2 1/2
X {[n+1]2 2 +<2[2][n+1]2Q+ [n+1]2q)+[3][n+1]2}

1 2 [n+p] bn, (bn_l) 2
+{[n+1]2 p]"+ (2[2] e [n—|—1]2q>

s (g (e Bt

Whence the result.
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