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The main objective of this paper is to introduce certain refinements and alternative
formulations, which enhance the applicability and availability of the intrinsic harmonic
balancing technique. This is achieved by considering certain illustrative examples
concerning non-linear oscillations and dynamic bifurcation phenomena. Indeed, the
bifurcation behaviour of a harmonically excited non-autonomous system is analyzed
conveniently, with reference to the corresponding autonomous system, by applying the IHB
technique, which yields the bifurcation equation as an integral part of the perturbation
procedure. A symbolic computer language, namely MAPLE, facilitates the analysis as well
as the verification of the ordered approximations to the solutions. The methodology lends
itself to MAPLE readily, which in turn, enhances the applicability of the IHB technique.
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1. INTRODUCTION

Non-linear oscillations and bifurcation problems can be analyzed via a variety of methods
[1–3] such as averaging techniques, multiple time scaling, harmonic balancing, etc.
Averaging method, for example, yields a lowest order approximation conveniently, but
higher order calculations become lengthy and complicated. The method of harmonic
balancing is conceptually simple and it leads to algebraic equations only; however, the
results may be inconsistent [3].

The intrinsic harmonic balancing technique was introduced earlier [4–6] in order to
overcome certain observed inconsistencies in the application of the conventional harmonic
balancing method. The method has been applied effectively to the analysis of non-linear
vibrations and dynamic bifurcation problems systematically. In addition, the basic
concepts and the methodology of the IHB technique is generalized and adopted for the
analysis of non-linear forced oscillations [7, 8].

Nevertheless, it seems that there are a number of issues regarding the perturbation
procedure that require further clarification and refinement. This is true for non-linear
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oscillations as well as bifurcation problems. In the former case, for example, the evaluation
of perturbation equations for the non-linear system may be referred to the linearized
system or directly to the origin of the system in which case the evaluations of the ordered
perturbation equations can be performed rapidly and conveniently. In this paper,
alternative formulations, certain clarifications, and variations of the methodolgy are
discussed with the aid of illustrative examples. The bifurcation analysis of a
non-autonomous system is performed through the IHB technique and alternative
formulations are discussed. It is observed that the IHB technique, as applied to this
bifurcation problem here, provides a very simple treatment compared to other methods.
It is expected that the exposition presented in this paper will enhance the application of
the IHB technique to a variety of specific problems in many fields.

2. AUTONOMOUS SYTEMS

Consider an autonomous system generally described by

ẍ+ g(x, ẋ, o)=0, (1)

where g is a polynomial function of x, ẋ and o; dots on x indicate differentiation with
respect to time and g(x, ẋ, 0) gives the corresponding linear system. The solution of
equation (1) is sought in a parametric form x= x(t, o) where o is a small parameter.

A series of perturbation equations can be obtained by introducing the assumed solution
x= x(t, o) back into equation (1), differentiating with respect to o successively, and
evaluating these equations at o=0:

o0: ẍ+ g=0,

o1: ẍ'+ gxx'+ gẋẋ'+ go =0,

o2: ẍ0+[gxxx'+ gxẋẋ'+2gxo ]x'+ gxx0+[gẋxx'+ gẋẋẋ'+2gẋo ]ẋ'+ gẋẋ0+ goo =0, (2)

etc.,
where the primes and subscripts on g denote differentiation with respect to o and related
variables, respectively, and all perturbation equations are evaluated at o=0.

Further, the assumed solution x= x(t, o) can be represented by a Fourier series of the
form [4–6]

x(t, o)= s
M

m=0

[pm (o) cos (mv(o)t)+ rm (o) sin (mv(o)t)], (3)

which is substituted back into the perturbation equations sequentially. At each step,
balancing the harmonics, one obtains the derivatives of the amplitudes to construct the
Taylor’s expansion of the amplitudes to a desired order as

pm (o)= p0
m + p'mo+ 1

2p0mo2 +O(o3),

rm (o)= r0
m + r'mo+ 1

2r0mo2 +O(o3),

and the solutions are envisaged as

x(t, o)= x0(t, 0)+ ox'(t, 0)+ . . . , (4)

where x0(t, 0) is the solution of the linearized equation.
However, in some specific problems, evaluating the perturbation equations at the origin

is more convenient than evaluations at the solutions of the linearized systems, although
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this may require a further step in the perturbation process. This can be done by introducing
appropriate scales such that the solution is expressed in the form of

x(t, o)= ox'(t, 0)+
1
2!

o2x0(t, 0)+ · · · , (5)

where o=0 identifies the origin.
Obviously, the non-linear system is now referred to the origin rather than to the solution

of the linearized system since x(t, 0)=0 and one has pm (0)= rm (0)=0 in the Fourier
series (3).

As an example, consider a system described by

dx2/dt2 + x= a+ ox2, (6)

subject to initial conditions x(0)=A, xt (0)=0. Here o is a small positive parameter, o=0
giving the linearized equation. System (6) was solved before [4, 6, 9] on the basis of the
linearized equation.

In order to obtain the solution in the form of equation (5), the perturbation procedure
may be facilitated by introducing certain scaling as

a= ob, A= oB. (7)

Further, one may introduce the time scaling t=v(o)t, in which case equation (6) takes
the form

v2xtt + x= ob+ ox2, (8)

where the subscript t indicates differentiation with respect to t. The periodic solution may
be expressed in a parametric form in terms of o,

x= x(t; o), v=v(o),

and the assumed solution will be in the form of equation (3) with

pm (0)= rm (0)=0, [m,

since x(t, 0)=0.
The solution is now 2p-periodic in t, with v(0)=vc =1. A sequence of perturbation

equations can now be generated by differentiating equation (8) with respect to o and
evaluating the derivatives at o=0. Thus, one obtains

x'tt + x'= b (first order), (9)

4v'x'tt + x0tt + x0=0 (second order), (10)

6v0x'tt +6v'x0tt +6(v')2x'tt + x1tt + x1=6(x')2 (third order), (11)

etc.
Substituting the assumed solution (3) into equation (9), one obtains

s
M

m=0

[(1−m2)p'm cos (mt)+ (1−m2)r'm sin (mt)],

and balancing the harmonics yields the derivatives p'0 = b and p'm = r'm =0, me 2, which
give

x'(t, 0)= p'0 + p'1 cos (t)+ r'1 sin (t).
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Substituting initial conditions x'(0, 0)=B and x't (0, 0)=0 yields p'1 =B− b and r'1 =0.
Using the above information one has

x'(t, 0)= b+(B− b) cos t

and the first order solution can be written as

x(t, o)= ob+ o(B− b) cos t+O(o2).

Similarly, substituting the assumed solution and the first order solution x'(t, 0) into the
second order perturbation equation (10) and balancing all the harmonics, one obtains v'
and all the coefficients except p01 and r01 as zero. Further, using the initial conditions
x0(0, 0)=0 and x0t (0, 0)=0 yields p01 = r01 =0, which results in x0(t, 0)=0.

Keeping in mind the scaling introduced to a and A, for the first order approximation
one should go to the third perturbation. Substituting the assumed solution, first and second
order solutions (x'(t, 0) and x0(t, 0)) once more into the third order perturbation equation
(11) and balancing all the harmonics, one obtains the non-zero coefficients:

p10 =6b2 +3(B− b)2, p12 =−(B− b)2, v0=−2b,

and using the third derivative of amplitudes yields

x1(t, 0)=6b2 +3(B− b)2 + p11 cos (t)+ (B− b)2 cos (2t)+ r11 sin (t),

where p11 and r11 are obtained from the initial conditions x1(0, 0)=0 and x1t (0, 0)=0
as

p11 =−[6b2 +2(B− b)2] and r11 =0,

respectively.
The solution, which is expressed as

x(t, o)= ox'(t; 0)+
1
2!

o2x0(t; 0)+
1
3!

o3x1(t; 0)+O(o4), (12)

now takes the form

x(t, o)= a+(A− a) cos t+ o$(A− a)2

2
+ a2 −0a2 +

1
3

(A− a)21 cos t

−
(A− a)2

6
cos (2t)%+O(o2), (13)

after rescaling (i.e., returning to the original variables). Moreover, approximation to the
v(o) can be written as

v(o)=1− ao+O(o2).

Note that equation (12) is the third order solution of the scaled system and after rescaling,
the corresponding solution becomes equation (13).

System (6) is weakly non-linear and a uniformly consistent solution can be obtained by
referring to the origin or to the solution of corresponding linear system. However, if the
system is strongly non-linear, in other words, if o is replaced by c which is not small, further
scaling will be necessary in order to obtain a solution which is referred to the linearized
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system or to the origin. If scalings similar to equations (7) are introduced, the non-linear
system will be referred to the origin. For example consider the system

dx2/dt2 + x= a+ cx2, (14)

subject to initial conditions: x(0)=A, xt (0)=0. Here, c is not small and cannot be treated
as a perturbation parameter. A small unidentified parameter should be introduced in order
to facilitate the perturbation procedure and similar scalings as in equations (7) are
necessary for the application of the IHB technique. Let the unidentified small parameter
be m, and introduce the scaling a= mb, A= mB, together with the time scaling t=v(m)t.
Then equation (14) becomes

v2xtt + x= mb+ cx2. (15)

Upon writing equation (14) in the first order form ẋ= y, ẏ= a− x+ cx2, equilibrium
points can be obtained as y=0 and the roots of cx2 − x+ a=0. Periodic solutions may
exist if the roots of cx2 − x+ a=0 are real. In addition, attention here is focused on small
vibrations in the vicinity of an equilibrium point (centre), so that for an asymptotic
solution A and a can be assumed to be small. Then, the procedure of the IHB technique,
as described above, is followed and the periodic solution of system (14) is obtained as

x(t, m)= [b+(B− b) cos (t)]m+[cb2 + 1
2c(B− b)2 − (cb2 + 1

3c(B− b)2) cos (t)

− (1
6c(B− b)2) cos (2t)]m2 + [2c2b3 + c2b(B− b)2 − c2b2(B− b)− 1

3c
2(B− b)3

+ 1
6(−12c2b3 −4c2b(B− b)2 +4c2b2(B− b)+ 29

24c
2(B− b)3) cos (t)

+ 1
6(−2c2b(B− b)2 +2c2b2(B− b)+ 2

3c
2(B− b)3) cos (2t)

+ 1
48c

2(B− b)3 cos (3t)]m3. (16)

Also, the amplitude–frequency relation can be constructed as

v(m)=1− cbm− 1
2(3c2b2 + 5

6c
2(B− b)2)m2. (17)

Solution (16) may also be obtained by referring the system to the linearized equation
by introducing the additional scaling x:mz, so that system (15) may be written as

v2ztt + z= b+ mcz2, (18)

and the initial conditions become z(0)=B, zt (0)=0. One obtains the solution of system
(18) by substituting the assumed solution (3) sequentially into the zero order, first order,
etc., perturbation equations, and an approximate solution z(t, m) consistent to a desired
order can be constructed. The solution of the original system can be written after back
scaling (returning to the original variables), mz:x, which leads to the same solution (16).

The solution obtained by referring the system to the linearized equation reduces the
number of perturbations and it seems an advantage. However, the former solution
procedure, where the perturbation equations are evaluated at the origin is more convenient
since the solution is referred to the origin as mentioned before.

2.1.   

The solutions obtained above are given in an ordered form of approximations. To verify
the solution, one direct way is to substitute this solution back into the original differential
equation [10]. In general, if the Nth order approximate solution is substituted back into
the original equation and it yields a result in the order O(eN+1), i.e., x=· · ·+O(eN+1),
then the Nth order solution contains all possible contributions to this order. In other
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words, the solution is a consistent approximation. If substitution, which contains lower
order terms than N+1, the approximation is inconsistent.

The third order asymptotic solution (12) is verified by substituting the solution into
equation (8) with the aid of MAPLE, which yields a result of O(o4). Similarly, the first order
solution (13), obtained after returning to the original variables (rescaling) is substituted
into the original equation (6) and a result of O(o2) is obtained. The approximate solution
(16) of the system (15) is verified by substituting the solution (16) and v(m) back into
equation (15) and a result of O(m4) is obtained, confirming the consistency of the
approximation (16).

3. NON-AUTONOMOUS SYSTEMS

The IHB technique has been adapted for the analysis of non-linear forced oscillations
[7, 8, 11]. Here, the technique will be applied to a bifurcation problem under external
harmonic excitation. The analysis will be carried out without the aid of multiple time
scaling [11], and a number of important aspects of the procedure will be pointed out.
Consider a specific, harmonically excited (non-autonomous) bifurcation problem given by

ẍ+v2
c x− o(h− x2)ẋ=F sin (Vt), (19a)

where oq 0 is a small parameter. It is assumed that natural frequency vc and external
frequency V satisfy the non-resonance relationship l1vc + l2V$ 0 where l1, l2 are any
positive or negative integers. This system exhibits bifurcations from a periodic solution to
a two-frequency quasi-periodic solution. The system is weakly non-linear and the solutions
can be obtained without introducing scaling, by referring the non-linear system to the
linearized one. If one uses the scale F:oC, the solution will be referred to the origin.
However, the application here will be carried out by referring the system to the linearized
equation without introducing any scaling.

Obviously, F=0 gives the corresponding autonomous system and x=0 is the
equilibrium position. System (19a) with F=0 exhibits Hopf bifurcation as h passes
through zero. In order to demonstrate this one can write the above second order system
as the first order one

ẋ1 = x2, ẋ2 =−v2
c x1 + o(h− x2

1 )x2 +F sin (Vt). (19b)

The state defined by the origin, x1 = x2 =0, is now identified as an equilibrium state of
the F=0 system. The Jacobian is evaluated at the origin, and its eigenvalues are given
by

A=$ 0
−v2

c

1
oh%

and

l1,2 =
oh2zo2h2 −4v2

c

2
,

respectively.
Clearly, hQ 0 gives complex conjugate eigenvalues with negative real part and when h

is greater than zero real part of eigenvalues become positive. At h= hc =0 the pair of
complex conjugate eigenvalues becomes an imaginary pair and Hopf bifurcation occurs.

The family of periodic or quasi-periodic solutions is expressed in the parametric form

x= x(t1, t2, o), h= h(o), v=v(o), (20)
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where t1 =Vt and t2 =v(o)t are introduced so that equation (19a) becomes

V2x11 +2Vvx12 +v2x22 +v2
c x− o(h− x2)(vx2 +Vx1)=F sin t1. (21)

Subscripts 1 and 2 on x indicate differentiation with respect to t1 and t2, respectively.
Further, one may assume a solution in the form of a generalized Fourier series (with two
frequencies),

x(t1, t2; o)= s
M

m=0

m1 +m2 =m

pm1,m2(o) cos (m1t1 +m2t2)+ rm1,m2(o) sin (m1t1 +m2t2), (22)

where m1 and m2 may be chosen positive or negative; and M is an arbitrary positive integer.
It is noted that equation (22) reduces to the ordinary Fourier series in the case of m1 0 0
or m2 0 0. m1 0 0 describes periodic solutions of the associated autonomous system while
m2 0 0 denotes periodic solutions which are purely excited by the external force F sin (Vt).
As a matter of fact, assumption (22) embraces equilibrium, and periodic solutions as well
as quasi-periodic motions, thus enabling one to identify bifurcations from one solution to
the other.

A series of perturbation equations is obtained by substituting equation (20) into
equation (21), differentiating with respect to o and evaluating at o=0. It is noted that o=0
is the corresponding linear system so that one obtains zeroth, first, second, etc., order
perturbation equations as

V2x11 +2Vvcx12 +v2
c x22 +v2

c x=F sin (t1) (0th order), (23)

V2x'11 +2Vv'x12 +2Vvcx'12 +2vcv'x22 +v2
c x'22 +v2

c x'

− (h− x2)(vcx2 +Vx1)=0 (1st order), (24)

etc.,
where primes indicate differentiation with respect to o evaluated at o=0.

Substituting the series solution (22) into equation (23) and balancing the harmonics
yields the non-zero coefficients as

p0
01 = p01(0)$ 0, r0

01 = r01(0)$ 0, r0
10 = r10(0)=F/(v2

c −V2),

which yield

x0(t1, t2; 0)= p0
01 cos t2 + r0

01 sin t2 +
F

(v2
c −V2)

sin t1.

Here, it is understood that the solution is envisaged as

x(t1, t2, o)= x0(t1, t2, 0)+ ox'(t1, t2, 0)+O(o2).

Similarly, substituting the assumed solution and the zeroth order solution x0(t1, t2, 0)
into the first order perturbation equation (24) and balancing the harmonics one obtains
the following non-zero coefficients.

cos (2t1 − t2)c p'2−1 =
F2r0

01(vc −2V)
4(v2

c −V2)2(4Vvc −4V2)
,

sin (2t1 − t2)c r'2−1 =
F2p0

01(vc −2V)
4(v2

c −V2)2(4Vvc −4V2)
,

cos (−t1 +2t2)c p'−12 =
F[(p0

01)2 − (r0
01)2](2vc −V)

4(v2
c −V2)(4vcV−V2 −3v2

c )
,
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sin (−t1 +2t2)c r'−12 =
2Fp0

01r0
01(2vc −V)

4(v2
c −V2)(4vcV−V2 −3v2

c )
,

cos (t1)c p'10 =
hVF

(v2
c −V2)2 −

F3V

4(v2
c −V2)4 −

[(p0
01)2 + (r0

01)2]VF
2(v2

c −V2)2 ,

cos (2t1 + t2)c p'21 =
F2r0

01(2V+vc )
4(v2

c −V2)2(−4V2 −4Vvc )
,

sin (2t1 + t2)c r'21 =
−F2p0

01(2V+vc )
4(v2

c −V2)2(−4V2 −4Vvc )
,

cos (t1 +2t2)c p'12 =
F[−(p0

01)2 + (r0
01)2](2vc +V)

4(v2
c −V2)(−4vcV−V2 −3v2

c )
,

sin (t1 +2t2)c r'12 =
−2Fp0

01r0
01(2vc +V)

4(v2
c −V2)(−4vcV−V2 −3v2

c )
,

cos (3t1)c p'30 =
V

4(v2
c −9V2) 0 F

(v2
c −V2)1

3

,

cos (3t2)c p'03 =
−(r0

01)3 +3(p0
01)2r0

01

32vc
,

sin (3t2)c r'03 =
−(p0

01)3 +3p0
01(r0

01)2

32vc
.

Note that, amplitudes p01(o) and r01(o) are envisaged in the form of Taylor’s expansions
given by

p01(o)= p0
01 + p'01o+

1
2!

p001o
2 +O(o3), r01(o)= r0

01 + r'01o+
1
2!

r001o
2 +O(o3).

Depending on the ordered form of the results, p01(o) and as r01(o) may be represented by
the first, second, etc., order terms in the above expansions. The important point here is
to keep the consistency of approximations with regard to the ordered form of the solutions.

Thus, upon using the above information, the first perturbation gives

x'(t1, t2; 0)= p'2−1 cos (2t1 − t2)+ r'2−1 sin (2t1 − t2)+ p'−12 cos (−t1 +2t2)

+ r'−12 sin (−t1 +2t2)+ p'10 cos (t1)+ p'21 cos (2t1 + t2)

+ r'21 sin (2t1 + t2)+ p'12 cos (t1 +2t2)+ r'12 sin (t1 +2t2)

+ p'30 cos (3t1)+ p'03 cos (3t2)+ r'03 sin (3t2),

and the first order approximation for the solution of equation (19a) can be expressed as

x(t1, t2; o)= p01 cos (t2)+ r01 sin (t2)+ r0
10 sin (t1)

+ o{p'2−1 cos (2t1 − t2)+ r'2−1 sin (2t1 − t2)+ p'−12 cos (−t1 +2t2)

+ r'−12 sin (−t1 +2t2)+ p'10 cos (t1)+ p'21 cos (2t1 + t2)+ r'21 sin (2t1 + t2)

+ p'12 cos (t1 +2t2)+ r'12 sin (t1 +2t2)+ p'30 cos (3t1)+ p'03 cos (3t2)

+ r'03 sin (3t2). (25)
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On the other hand, comparing the coefficients of cos (t2) and sin (t2) leads to

cos (t2)c
1
2

F2r0
01

(v2
c −V2)2 − hr0

01 +
1
4

(p0
01)2r0

01 +
1
4

(r0
01)3 −2v'p0

01 =0, (26)

sin (t2)c−
1
2

F2p0
01

(v2
c −V2)2 + hp0

01 −
1
4

p0
01(r0

01)2 −
1
4

(p0
01)3 −2v'r0

01 =0, (27)

which can be used to construct

1

2z(p0
01)2 + (r0

01)2
*{−p0

01*[equation (26)]− r0
01*[equation (27)]}=0,

1

2z(p0
01)2 + (r0

01)2
*{−r0

01*[equation (26)]+ p0
01*[equation (27)]}=0.

The first equation above yields

av'=0, (28)

and the second equation gives the important result

a
2 $h−

1
4

a2 −
1
2 0 F

(v2
c −V2)1

2

%=0, (29)

where a=z(p0
01)2 + (r0

01)2.
As noted earlier, here p0

01 and r0
01 represent p01(o) and r01(o), respectively, keeping the

consistency of approximations. Equation (29) yields two distinct, steady state solutions:

Solution (I), a=0

and

Solution (II), h=
1
4

a2 +
1
2 0 F

(v2
c −V2)1

2

.

A careful inspection of equation (25), with the aid of the derivatives of the amplitudes
listed above, reveals that a0 0 represents a periodic solution (with frequency V) and
Solution (II) represents quasi-periodic motions on an invariant torus (with frequencies V

and v). Indeed, Solution (I) is described by

x(t1; o)= r0
10 sin (t1)+ o{p̄'10 cos (t1)+ p'30 cos (3t1)},

where p̄'10 is p'10 with p0
01 = r0

01 =0(a=0) and Solution (II) by equation (25) with a$ 0. On
a plot of a versus h (see Figure 1), one clearly observes a bifurcation phenomenon, Solution
(II) bifurcating from Solution (I) at the critical point

hc =
1
2 0 F

(v2
c −V2)1

2

. (30)

On the other hand, equation (28) yields v'=0 for a$ 0, and one has to carry out higher
order perturbations if v0, v1, etc., are needed in constructing

v(o)=vc +v'o+ 1
2v0o2 +O(o3).
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Figure 1. Plot of a versus h: hc =1/2 (F/(v2
c −V2))2.

It is noted that equation (29) is a bifurcation equation, providing valuable information
about the behaviour of the system, and it has been obtained through the application of
the IHB technique only. A formal stability analysis is not among the objectives of this
paper, but it can be shown (see the Appendix) that Solution (I) is stable for hQ hcr and
unstable for hq hcr . On the other hand, Solution (II), bifurcating from Solution (I) at
h= hcr , represents a stable family of quasi-periodic motions.

It was demonstrated earlier that the corresponding autonomous system, described by
equation (19a) with F=0, exhibits a Hopf bifurcation as h passes through zero. It is now
observed that, the introduction of the external harmonic excitation results in a shift of
bifurcation point along the h-axis to h= hc defined by equation (30), and the bifurcation
takes place from a family of periodic motions to a family of quasi-periodic motions, as
compared to Hopf bifurcation from an equilibrium path to a family of periodic solutions,
associated with the corresponding autonomous system.

Finally, it is noted that the consistency of solutions (I) and (II) as well as that of the
general solution (25), up to first order approximations, has been verified by substituting
these results into equation (21) and following the procedure described earlier with the aid
of MAPLE.

4. CONCLUSIONS

The intrinsic harmonic balancing technique has been applied successfully to many
bifurcation problems associated with autonomous systems and non-linear oscillations. In
this paper, certain refinements and alternative formulations, enhancing the applicability
and availability of the method, are discussed. It is demonstrated that selecting appropriate
scaling in advance, and evaluating the perturbation equations at the origin may simplify
the analysis considerably. An appropriately modified formulation can also yield ordered
approximate solutions for a strongly non-linear system, as demonstrated in section 2.

The scope of the method is further expanded to embrace bifurcation analyses of
non-autonomous systems. For the Van de Pol oscillator under harmonic forcing, it is
demonstrated that the technique yields a bifurcation equation as an integral part of the
perturbation procedure. This equation shows clearly that a family of quasi-periodic
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motions bifurcates from a family of periodic motions at a critical value of the parameter.
It is also observed that the external harmonic excitation results in a shift of the bifurcation
point along the parameter axis, compared to the Hopf bifurcation associated with the
corresponding autonomous system. A formal stability analysis is not the objective of this
paper; however, a brief discussion concerning the stability properties of the solution is
presented in the Appendix for completeness.

A verification scheme is outlined and applied to ascertain the validity and consistency
of the ordered approximations. A symbolic computer language, namely MAPLE, is used
extensively to obtain and verify various solutions. It is observed that the method lends itself
conveniently to this process.
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APPENDIX

It can be shown that the local dynamics in the vicinity of the critical point is governed
by the first order differential equations

da
dt

=
oa
2 $h−

1
2 0 F

(v2
c −V2)1

2

−
1
4

a2%
and

a
du

dt
= a(vc + ov')= avc , v'=0,

which are based on the perturbation equations.
In order to prove the above relations, one considers perturbing the general solution (25)

(x(t1, t2; o)) in the vicinity of the critical point. All amplitudes in general solution (25) are
in terms of P01 and r01 , as indicated on the list in the text. To this end, consider the first
order system (19b), where the solution of the first order system can be written as

x1 = x(t1, t2; o)
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and

x2 =V
dx(t1, t2; o)

dt1
+vc

dx(t1, t2; o)
dt2

.

Here, for simplicity, r01 can be assumed to be zero, as in reference [11]. Suppose now that
time-invariant constant p01 is a function of time denoted by a. Further, t2 is also assumed
to be u(t). After these transformations, the solution takes the form

xi = fi (a, u, Vt). (A1)

By substituting equation (A1) into equation (19b) and solving for da/dt and du/dt, the
rate equations are obtained after truncating the higher order terms. This procedure has
been described in a number of earlier papers for autonomous systems (see for example,
Appendix D in reference [12]) and now it is applied to the non-autonomous system
considered in this paper.

The stability of the steady states can be examined by considering the Jacobian of da/dt,

J=
d
da 0da

dt1=
o

2 $h−
1
2 0 F

(v2
c −V2)1

2

−
1
4

a2%−
o

4
a2.

Thus, evaluating the Jacobian for Solution (I) (a=0) it is concluded that Solution (I) is
stable (unstable) for hQ hc (hq hc ). Similarly, evaluating the Jacobian for Solution (II)
indicates that this solution is stable for hq hc , which is the case here.


