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ABSTRACT 

Discrete time-cost-quality trade-off problems (DTCQTPs) are a branch of project 

scheduling problem which deals with establishing a compromise between time, cost 

and quality. In this thesis, multi-objective optimization models, namely, genetic 

algorithm (GA) and improved harmony search (IHS), integrated with multiple criteria 

decision making (MCDM) methods are developed to solve the DTCQTPs with the aim 

to find the best optimal project scheduling alternative. Three different MCDM 

methods, e.g., evidential reasoning (ER), PROMETHEE, and TOPSIS are used to rank 

the Pareto-optimal solutions obtained through GA and IHS. The proposed 

methodology is applied to a benchmark construction project scheduling problem to 

investigate the efficiency of the proposed methods. The obtained results revealed that 

the ER approach which is a more complex MCDM methods when compared with 

PROMETHEE and TOPSIS can provide the DMs with a transparent view of each 

project scheduling alternative. Thus, detailed investigations is possible for the ER 

approach, while the PROMETHEE approach with a similar ranking of the solutions 

can be a useful substitution for the ER approach. The performance analysis showed 

that IHS algorithm is more efficient than GA while the former has a higher 

computational time. 

Keywords: discrete time-cost-quality trade-off problem (DTCQTP), multi-objective 

optimization models, genetic algorithm (GA), improved harmony search (IHS), 

multiple criteria decision making models, evidential reasoning (ER), PROMETHEE, 

TOPSIS. 
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ÖZ 

Ayrık zaman-maliyet-kalite ilişkileri problemleri (AZMKP), zaman, maliyet ve kalite 

arasında bir uzlaşma kurulması ile ilgili proje planlama problemi dalından biridir. Bu 

tezde, çok amaçlı optimizasyon modelleri, yani genetik algoritma (GA) ve geliştirilmiş 

uyum arama (GUA), çok kriterli karar verme (ÇKKV) yöntemleri ile entegre olarak 

en iyi optimum proje planlama alternatifini bulmak amacıyla ZKMP’ni çözmek için 

geliştirilmiştir. Üç farklı ÇKKV, örneğin kanıta dayanan muhakeme (KDM), 

PROMETHEE ve TOPSIS, GA ve GUA ile elde edilen Pareto-optimal çözümlerini 

sıralamak için kullanılır. Önerilen metodoloji, yöntemlerin etkinliğini araştırmak için 

bir kıyas inşaat projesi planlama sorunu üzerine uygulanır. Elde edilen sonuçlar, 

PROMETHEE ve TOPSIS’e kıyasla daha karmaşık bir ZKMP yöntemi olan KDM’nin 

karar vericilere (KV) her bir proje planlaması alternatifinin şeffaf görünümünü 

sağladığını ortaya çıkarmıştır. Böylece, PROMETHEE yaklaşımı, benzer bir sıralama 

çözümleri ile KDM yaklaşımı için yararlı bir ikame olabilir iken, GUA yaklaşımı için 

detaylı incelemeler mümkündür. Performans analizi, eskisinin daha yüksek hesaplama 

süresine sahip iken, GUA algoritmasının GA’dan daha verimli olduğunu göstermiştir.  

Anahtar kelimeler: Ayrık zaman-maliyet-kalite ilişkileri problemleri (AZMKP), çok 

amaçlı optimizasyon modelleri, genetik algoritma (GA), geliştirilmiş uyum arama 

(GUA), çok kriterli karar verme modelleri, kanıta dayanan muhakeme (KDM), 

PROMETHEE, TOPSIS. 
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Chapter 1 

1 INTRODUCTION 

1.1 Background of the Study  

Project can be defined as a temporary endeavor being essayed, and it culminates in 

development of a unique product or service. Projects are done by people, constrained 

by limited resources, and moreover they need to be planned, executed and controlled. 

Projects can be expressed as a means of achieving an organization’s strategic plans 

(PMI, 2001). Construction projects are no exception to the aforementioned definition 

owing to the feature of uniqueness in their nature. This refers to the fact that each 

construction project has its own site characteristics, weather condition, and crew of 

labor, and fleet of equipment. During the planning phase, an array of conditions such 

as technological and organizational methods, and constraints in addition to the 

availability of resources, must be taken into consideration to ensure that the 

requirements of the clients are fulfilled in terms of time, cost, and quality (Zhou, Love, 

Wang, Teo, & Irani, 2013). 

In every construction project, one of the primary difficulties is scheduling the 

execution process during the planning phase which necessitates the deployment of 

broad and multi-criteria approaches to achieve a compromise between various and 

occasionally conflicting objectives, e.g., time, cost, quality, and etc. Most frequently, 

construction projects are entangled with circumstances in which decision makers 

(DMs) need to narrow down potential alternatives, and decide on an optimal solution 



 

2 

 

which is a compromise between conflicting objectives. Nowadays, the competitive 

business environment of construction industry forces the contractors to schedule the 

project in an efficient manner. Regarding this, the project scheduling problems plays 

a vital role in the overall project success, especially in managing the organizational 

resources (Tavana, Abtahi, & Khalili-Damghani, 2014). Due to all the aforementioned 

reasons, project scheduling problems have been the subject of many research studies 

in operations research, meanwhile have been known as a popular playground in which 

a plethora of optimization techniques have been employed (Baptiste & Demassey, 

2004; Ghoddousi, Eshtehardian, Jooybanpour, & Javanmardi, 2013; Monghasemi, 

Nikoo, Fasaee, & Adamowski, 2014; Mungle, Benyoucef, Son, & Tiwari, 2013). 

1.2 Discrete Time-Cost-Quality Trade-Off Problems 

Discrete time-cost-quality trade-off problems (DTCQTPs) constitute a branch of 

project scheduling problems, which involve multiple activity performing modes. In 

contrast to problems with continuous time-cost-quality trade-offs, the correlation 

between the time, cost, and quality of each mode of activity is expressed through a 

point-by-point definition. This discrete interaction defines the durations of the 

activities which are chosen from a set of finite number of alternatives. The discrete 

relationship is more favorable since for an activity, a set of feasible synthesis of 

resources and alternatives might be inaccessible (Eshtehardian, Afshar, & Abbasnia, 

2009). For instance, for the excavation activity which might rely on heavy equipment 

such as bucket loader, there exist some constraints such as the limited available number 

of bucket loader, impractical usage of fractional number of bucket loaders i.e., 1.36 

bucket loader is not sensible in real practice, and etc. The activities in the project 

schedule network are constrained by preceding/succeeding relationships, implying that 
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an activity cannot be executed until all its preceding activities are accomplished 

(Sonmez & Bettemir, 2012; J. Xu, Zheng, Zeng, Wu, & Shen, 2012). 

In general, time, cost, and quality are known as conflicting objectives in DTCQTPs 

with significant interdependencies and multiple trade-off sets (Eshtehardian et al., 

2009). As a rule of thumb, activities’ durations often can be reduced to expedite the 

project with some additional cost, and/or increase the duration of an activity to ensure 

the maintenance of quality. In this regard, DTCQTPs are appropriate for application 

of different multi-objective optimization techniques to make the best decisions with 

respect to the existing trade-offs. 

In comparison with the project evaluation and review technique (PERT), which is a 

statistical tool to be used in project management context, DTCQTPs do not take into 

consideration the probability. More specifically, in PERT analysis the time, cost and 

quality are defined as the most pessimistic, optimistic, and most probable options. 

Thus, in PERT analysis, for each activity three different modes of execution are 

defined based on probability theory. The DM should determine the three modes in 

PERT by considering what are the worst, best and most probable options which are 

going to occur in real practice based on his own judgement, records, and predictions. 

However, in DTCQTPs, each activity can take any number of execution modes 

including the ones defined through PERT analysis. Hence, the DTCQTPs are more 

generalized form of PERT analysis which do not only rely on the probability but also 

considers the existing limitations and constraints in a common construction project. 
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1.3 Multiple Criteria Decision Making (MCDM) Problem 

DTCQTP deals with allocating the available resources, time, cost, and quality, in an 

efficient manner with respect to the trade-offs between the objectives. Owing to the 

multidisciplinary nature of scheduling problems which are closely entwined with 

various non-commensurable multiple criteria, establishing which solution is the best 

choice to be implemented can be a difficult task (Monghasemi et al., 2014). Multiple 

criteria decision making (MCDM) methods provide an efficient means for supporting 

the choice of the preferred Pareto optimum (Mela, Tiainen, Heinisuo, & Baptiste, 

2012). Also, MCDM methods help finding the Pareto-optimal solutions, also known 

as the social planner solution (Madani, Sheikhmohammady, Mokhtari, Moradi, & 

Xanthopoulos, 2014; Mela et al., 2012), in the case of multiple criteria with one 

decision maker or when there is perfect cooperation among the DMs (Madani & Lund, 

2011). The main advantage of MCDM methods is their information handling 

capabilities, which facilitate the process of organizing and synthesizing the required 

information throughout an assessment (Løken, 2007). The aim of MCDM methods is 

to assist the DMs in order to facilitate the process of organizing and synthesizing the 

required information in an assessment, so that DMs are satisfied and confident with 

their decision (Løken, 2007). 

1.4 Multi-Objective Optimization 

The multi-objective optimization usually does not lead into a unique optimal solution, 

more specifically a set of Pareto-optimal solutions can be achieved. The Pareto fronts 

defines a set of solutions in which no solution can be improved unless sacrificing at 

least one of the other objectives. Each Pareto-optimal solution represents a 

compromise between different objectives, and generally comparing two solutions in 

multi-objective optimization is much more complicated than in the single-objective 
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optimization (Mungle et al., 2013). The improved version of non-dominated sorting 

genetic algorithm (NSGA-II) is demonstrated to outperform other approaches, e.g. 

pareto archive evolutionary strategy in converging to near true Pareto front (Deb, 

Pratap, Agarwal, & Meyarivan, 2002). The capability of NSGA-II encourages the 

application of the method to be applied into more complex and real-world multi-

objective optimization problems. 

1.5 Significance of the Study 

There is a lack of studies that have applied MCDM methods in project scheduling 

problems to select the best solution amongst the Pareto solutions, and in such studies 

only the Pareto solutions are obtained, plotted and reported; this was one of the issues 

that motivated the authors of this study to apply MCDM methods in solving DTCQTP 

to aid DMs in selecting the best schedule of the project. Thus, the present study 

attempts to present a comprehensive framework to integrate MCDM methods with 

multi-objective optimization techniques. 

1.6 Aims and Scopes 

The aims and scopes of the present study are as to enhance the procedure in scheduling 

the construction project in order to establish a trade-off between the conflicting 

objectives, e.g., duration of the project (time), project expenses (cost), and the 

attainable overall quality (quality). Here, the aim is to better the existing approaches 

in project scheduling by incorporating MCDM methods into the body of multi-

objective optimization in order to aid the decision makers with appropriate decisions.  

The aim of this study is to integrate MCDM methods into the body of multi-objective 

optimization models in order to improve the decision making process. The proposed 
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method will be applied on a case problem of highway construction project to 

demonstrate the efficacy of the proposed model. 

1.7 Limitations 

As a limitation in this study is that the activities must be expressed through discrete 

time, cost and quality attributes. Regarding this issue, it is still a difficult task to 

quantify these objectives prior to start of that activity and it is entangled with several 

uncertainties. However, the author proposes that in future studies, fuzzy set theory can 

be incorporated to address the uncertainty of the input variables. On the other hand, 

the MCDM methods which are used here consider a single decision maker or a group 

of those with unique attitude towards the importance of the objectives. Therefore, it is 

not possible to assign different weights for each objective simultaneously. To eliminate 

this limitation, the MCDM methods can further be expanded to group decision making 

models which are efficient when the decisions are based on group rationality rather 

than individuality. 

1.8 Questions to be Answered 

The present study will be able to give answers for a few questions which are as 

follows: 

(1)  Is it possible to integrate multi-objective optimization methods with MCDM 

methods? In case of the possibility of this integration, how it can be done and why 

it can be beneficial? 

(2)  Which MCDM method can be more efficient in aiding the DMs in reaching the 

optimal project schedule alternative among possible options? What are the main 

features of great importance to prefer a MCDM method over any other approach? 
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(3)  Which multi-objective optimization model, either GA or is more suitable to be 

used for project scheduling problems? What are the evaluation criteria to judge and 

investigate the difference between the performance of GA and HS? 

1.9 Thesis Structure 

In the following chapters the more details of the proposed methodology will be 

presented. Chapter 2 discusses the literature review of DCTQTPs and MCDM 

methods. Chapter 3 presents the methodology and the developed mathematical model 

to tackle the DTCQTP. Chapter 4 explains the case problem of a highway construction 

project and presents the required data of the benchmark case problem. In chapter 5, the 

proposed model of this study has been applied on the case problem to demonstrate the 

efficacy of the proposed model. The concluding marks are done in chapter 6 which is 

followed with some recommendations for future studies. 
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Chapter 2 

2 LITERATURE REVIEW 

2.1 DTCQTPs Backgrounds 

Every construction project triggers with pre-planning of involving activities with the 

aim to foresee the outcomes and pre-judge about the available schedule alternatives. 

Various possible of schedule alternatives might vary significantly in criteria such as 

time (duration of project), cost (activity-related expenditures), and quality (overall 

satisfactory score in terms of standards). All these issues are studied in project 

scheduling problems to establish a compromise between the objectives to ensure the 

successful usage of resources leading to the overall success of the project. Therefore, 

project scheduling problems are a critical part in the overall success of a project, and 

especially in managing organizational resources (Tavana et al., 2014). 

Discrete time-cost-quality trade-off problems (DTCQTPs) are a branch of project 

scheduling problems which comprise a project network that is represented with 

activities on a node network. Each activity in the project network possesses various 

execution modes while being constrained by preceding/succeeding relations via other 

activities. The correlation between time, cost, and quality for each activity execution 

mode is expressed via a point by point definition (Sonmez & Bettemir, 2012; J. Xu et 

al., 2012). 
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The DTCQTP solution methods can generally be categorized into two groups: 

(a) Exact mathematical programming: such as linear programming, integer 

programming, dynamic programming, and branch and bound algorithms 

(Erenguc, Ahn, & Conway, 2001; Moselhi, 1993);  

(b) Non-exact approaches: such as heuristic algorithms (Vanhoucke, Debels, 

& Sched, 2007) and meta-heuristic algorithms (Afruzi, Najafi, Roghanian, & 

Mazinani, 2014; Afshar, Kaveh, & Shoghli, 2007; Geem, 2010; Mungle et al., 

2013; Tavana et al., 2014; Zhang & Xing, 2010).  

Solving complex project scheduling problems using exact algorithms can be 

computationally costly and time-consuming. Heuristic optimization methods generally 

require less computational effort than conventional optimization methods, but cannot 

guarantee a global optimal solution. Meta-heuristic algorithms have been shown to be 

highly efficient in approximating the optimal solutions of combinatorial optimization 

problems in a relatively short time with a low computational effort (Czyzżak & 

Jaszkiewicz, 1998; Madani, Rouhani, Mirchi, & Gholizadeh, 2014). 

Hapke, Jaszkiewicz, and Słowiński (1998) used Pareto Simulated Annealing to find a 

set of non-dominated solutions to a project scheduling problem with multi-category 

resource constraints. Jaszkiewicz and Słowiński (1997) applied the light beam search-

discrete approach in order to aid the decision makers (DMs) to iteratively look for a 

solution they can agree on. Mungle et al. (2013) integrated the fuzzy clustering 

technique with a  genetic algorithm (GA) approach in order to guide the algorithm to 

preserve the solutions with a higher degree of satisfaction with regards to the 

objectives of the problem. Afruzi et al. (2014) proposed a model for solving the 
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discrete time-cost-quality trade-off problems in the case of limited manpower 

resources in which the selection of the mode of an activity is dependent on the 

availability of its required manpower resource in that specific period of time. Tavana 

et al. (2014) used a non-dominated sorting genetic algorithm (NSGA-II) and ɛ-

constraint to solve a discrete time-cost-quality trade-off problem in which interruptions 

are allowed for the activities in progress and precedence relationships are generalized 

such as a ‘time lag’ between a pair of activities. They concluded that NSGA-II 

outperformed the ɛ-constraint method with regards to all comparison matrices. 

2.2 PERT Analysis 

The PERT analysis is based on three assumptions and facts that influence successful 

achievement of research and development program objectives. These objective are 

time, resources and technical performance specifications. PERT employs time as the 

variable that reflects planned resource-applications and performance specifications. 

With units of time as a common denominator, PERT quantifies knowledge about the 

uncertainties involved in developmental programs requiring effort at the edge of, or 

beyond, current knowledge of the subject. 

Through an electronic computer, the PERT technique processes data representing the 

major, finite accomplishments (events) essential to achieve end-objectives; the inter-

dependence of those events; and estimates of time and range of time necessary to 

complete each activity between two successive events. Such time expectations include 

estimates of "most likely time", "optimistic time", and "pessimistic time" for each 

activity. The technique is a management control tool that sizes up the outlook for 

meeting objectives on time; highlights danger signals requiring management 

decisions; reveals and defines both methodicalness and slack in the flow plan or the 
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network of sequential activities that must be performed to meet objectives; compares 

current expectations with scheduled completion dates and computes the probability for 

meeting scheduled dates; and simulates the effects of options for decision – before 

decision. 

In PERT analysis, the activities corresponding time, cost and quality are estimated 

through a probabilistic method of beta-distribution with the aid of mean and variance 

of the activity time, cost and quality. To meet this end, the pessimistic, optimistic and 

most likely completion time, cost and quality are identified. Several disadvantages are 

identified throughout the literature for the PERT analysis which are as follows: 

quantifying the time, cost and quality with the limited theoretical justifications and 

unavoidable defects of PERT analysis is still a time-consuming and in some case 

impossible (Grubbs, 1962).  

There is the tendency to select the most likely activity time, cost and quality closer to 

the optimistic values, since the latter is often difficult to be predicted so it is chosen 

conservatively closer to the optimistic value. Most often the most likely activity time, 

cost and quality has the same relative location point in the interval of [𝑎, 𝑏]. Although 

this provides the opportunity to simplify the PERT anaylsis it is rather followed by 

some assumptions which are not in-line with real practice. The PERT analysis is error-

prone basically to its accompanying assumptions which can reaches up to 33% 

(MacCrimmon & Ryavec, 1964). So many improvements for the PERT analysis has 

been proposed by the researchers throughout the literature, however, to the extent of 

the author’s knowledge, none of the proposed modification was successful in real 

practice since the modifications made the distribution law rather uncertain and/or made 

it difficult to simulate the activity network (Golenko, 1968). 
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However, in DTCQTPs, the difficulties in determining the PERT three options do not 

exist since in the former approach the time, cost and quality objectives are determined 

according to the contractors’ prequalification process. Different time, cost and quality 

options for each activity, also being known as execution modes of activities are 

determined for each contractor. On the other hand, the data of the DTCQTPs do exist 

in the literature and they can be used as the benchmark for future studies without any 

additional time-consuming analyses. 

2.3 MCDM Backgrounds 

There exist a multitude of MCDM methods that have differences in terms of theoretical 

background, formulation, questions, and types of input and/or output (Hobbs & Meier, 

1994). Numerous studies have investigated the practical applications of various 

MCDM methods in different areas such as sustainable energy planning (Hadian & 

Madani, 2015; Madani & Lund, 2011; Pohekar & Ramachandran, 2004; Laura Read, 

Mokhtari, Madani, Maimoun, & Hanks, 2013), water resource planning (Hajkowicz 

& Collins, 2007; Mirchi, Watkins Jr, & Madani, 2010; L. Read, Inanloo, & Madani), 

conflict resolution (Madani, Sheikhmohammady, et al., 2014; Mokhtari, Madani, & 

Chang, 2012), sustainable forest management (Wolfslehner, Vacik, & Lexer, 2005), 

environmental management (Huang, Keisler, & Linkov, 2011; Igor Linkov & Moberg, 

2011), and in the  design of power generation systems (Alsayed, Cacciato, Scarcella, 

& Scelba, 2014; Aragonés-Beltrán, Chaparro-González, Pastor-Ferrando, & Pla-

Rubio, 2014). 

According to Belton and Stewart (2002), MCDM methods can be classified into three 

main categories:  

a) value measurement methods;  
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b) goal, aspiration, and reference level methods; and  

c) outranking methods; 

In the value measurement method, each alternative is given a numerical value which 

indicates the solution rank in comparison with the others. Different criteria are 

weighted according to the accepted level of DMs in trading off between multiple 

criteria. Multi-attribute utility theory, proposed by Keeney and Raiffa (1976), and 

analytical hierarchy process (AHP), proposed by Saaty (1980), are examples of this 

category. Other iterative procedures that emphasize solutions which are closest to a 

determined goal or an aspiration level fall into the second category (e.g., TOPSIS). In 

general, these approaches are focused on filtering the most unsuitable alternatives 

during the first phase of the multi-criteria assessment process (Løken, 2007).  

In the outranking methods, the alternatives are ranked according to a pairwise 

comparison, and if enough evidence exists to judge if alternative 𝑎 is more preferable 

than alternative 𝑏, then it is said that alternative 𝑎 outranks the b. ELECTRE (Roy, 

1991) and PROMETHEE (J. P. Brans, P. Vincke, & B. Mareschal, 1986) are based on 

this approach of ranking. 

There exists no direct approach to declare which type of MCDM method is superior 

since different types of inputs and outputs are generated by each method, which makes 

such comparisons invalid. However, it can be stated that the approach that satisfies the 

DMs best, and which has a user friendly interface, and can provide the DMs with 

sufficient confidence to translate their decisions into actions, is one that is useful 

(Løken, 2007). Numerous studies have been conducted to investigate the usability, and 

enumerate the fundamental dissimilarities, between different MCDM methods (Løken, 
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2007; Mela et al., 2012; Opricovic & Tzeng, 2004). In general, most studies have 

avoided comparing the usefulness of different approaches, and have solved particular 

case studies using different MCDM approaches without making any comment on the 

performance of the different methods. This is due to limitations stemming from limited 

test problems; any judgment needs rational justification to make such comparisons 

valid (Mela et al., 2012). 

2.3.1 MCDM Methods 

2.3.1.1 Evidential Reasoning 

Evidential reasoning (ER) (J.-B. Yang & Singh Madan, 1994) is a generic evidence-

based MCDM approach, which owes its popularity to its ability to handle problems 

having both qualitative and quantitative criteria and performance values associated 

with uncertainties due to ignorance and imperfect assessment. The ER approach has 

been widely applied in various areas, such as prequalifying construction contracts 

(Sönmez, Holt, Yang, & Graham, 2002), safety analysis of engineering systems 

(Wang, Yang, & Sen, 1995), drinking water distribution monitoring and fault detection 

(Bazargan-Lari, 2014), environmental impact assessment (Gilbuena, Kawamura, 

Medina, Nakagawa, & Amaguchi, 2013; Y.-M. Wang, J.-B. Yang, & D.-L. Xu, 2006), 

and risk analysis and assessment (Chen, Shu, & Burbey, 2014; Deng, Sadiq, Jiang, & 

Tesfamariam, 2011). 

The ER approach uses belief structures, belief matrices, and rule/utility-based grading 

techniques to aggregate the input information. The main advantage of ER is that it can 

consistently model various types of data, e.g., quantitative (cardinal), qualitative 

(ordinal), certain (deterministic), and uncertain (stochastic), within a unified 

framework; a feature that prevents the inadvertent damage of data through the analysis 
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process (J.-B. Yang, Wang, Xu, & Chin, 2006). ER uses a hierarchical structure 

consisting of attributes, and aggregated information from the bottom to the top level 

of the hierarchical structure based on the evidence combination rule rooted in the 

Dempster-Shafer theory of evidence (Shafer, 1976).  

In the context of DTCQTP, time, cost, and quality are considered as three quantitative 

attributes in assessing the alternatives.  

2.3.1.2 PROMETHEE 

The underlying concept of the Preference Ranking Organization METHod for 

Enrichment Evaluation (PROMETHEE) approach was first introduced by J.-P. Brans, 

P. Vincke, and B. Mareschal (1986) and since then it has been widely used in various 

fields such as environment and waste management (Ia Linkov et al., 2006; Queiruga, 

Walther, Gonzalez-Benito, & Spengler, 2008), hydrology and water management 

(Hyde & Maier, 2006), energy management (Diakoulaki & Karangelis, 2007), 

business and financial management (Albadvi, Chaharsooghi, & Esfahanipour, 2007), 

and etc. Behzadian, Kazemzadeh, Albadvi, and Aghdasi (2010) have done an 

exhaustive study to uncover, classify, and interpret the current research on 

PROMETHEE methodologies and applications. They provided a comprehensive and 

rational framework for structuring a decision problem, identifying and quantifying its 

conflicts and synergies, clusters of actions, and highlight the main alternatives and the 

structured reasoning behind (Rahnama, 2014).  

The advantage of the PROMETHEE decision making method is that it provides the 

decision makers with both complete and partial rankings of the actions, and it is well-

suited for complex problems, especially those with several multi-criteria, involving a 
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lot of human perceptions and judgments, whose decisions have long-term impact 

(Tuzkaya, Ozgen, Ozgen, & Tuzkaya, 2009). 

The PROMETHEE-based decision making models comprises several versions such as 

PROMETHEE I for partial ranking of the alternatives and PROMETHEE II for 

complete ranking of the alternatives (Behzadian et al., 2010; Brans & Vincke, 1985). 

Following, several modified versions have been proposed such as PROMETHEE III 

suitable for interval-based ranking (Cavalcante & De Almeida, 2007; Fernández-

Castro & Jiménez, 2005), PROMETHEE IV for partial/complete assessment of 

alternatives when the set of viable solutions is continuous, PROMETHEE V for 

problems with segmentation constraints (Mareschal & Brans, 1992), and so many 

other extensions have been proposed. In this study, PROMETHE II which is intended 

to provide a complete ranking of the finite set of project scheduling alternatives for 

DTCQTPs is used and is discussed in the following sections.  

2.3.1.3 TOPSIS 

The Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) is a 

very common technique in the field of MCDM which was first proposed by Hwang 

and Yoon (1981). The TOPSIS technique attempts to rank the alternatives based on 

two parameters; (a) minimum distance from the positive ideal solution; (b) farthest 

distance from the negative ideal solution (Dymova, Sevastjanov, & Tikhonenko, 

2013). In simple words, the best solution is the one with lowest distance from the ideal 

solution while being as far as possible from the worst solution in that case. the TOPSIS 

technique has been widely used in many fields, e.g., management of supply chain (K. 

Govindan, Khodaverdi, & Jafarian, 2013), industrial robotic system selection 
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(Chaghooshi, Fathi, & Kashef, 2012), the optimal green supplier selection procedure 

(Kannan, Khodaverdi, Olfat, Jafarian, & Diabat, 2013). 

2.4 Multi-Objective Optimization of DTCQTPs Backgrounds 

2.4.1 Genetic Algorithm 

Genetic algorithm (GA) is a stochastic search method applicable to optimization 

problems which is founded on biological behavior (Wilson, 1997b). The GA seeks to 

improve performance by sampling areas of the parameters space that are more likely 

to lead to better solution (Goldberg, 1989; Holland, 1975). All solutions should comply 

with three important characteristics.  

(1)  Feasibility which means that each decoded solution should lie within feasible 

region; 

(2)  Legality implying that decoded solutions should be in the solution space; 

(3)  Uniqueness by the means of not more than one solution can be obtained by 

decoding of each chromosome and vice versa (J Xu & Zhou, 2011). 

Applying various approaches, numerous attempts have been made to solve the 

DTCQTPs (Afshar et al., 2007; El-Rayes & Kandil, 2005; Mungle et al., 2013; Tavana 

et al., 2014). The genetic algorithm (GA) is a stochastic search method applicable to 

optimization problems, and is based on natural selection (Wilson, 1997a). For instance, 

Feng, Liu, and Burns (1997) used multi-objective genetic algorithm to deal with the 

DTCQTP. Due to space limitations, and since the GA procedures are widely known, 

the steps are only briefly discussed in the following subsections. 

2.4.2 Improved Harmony Search 

Harmony search (HS) is a relatively newly-inspired algorithm which has been 

developed based on the observation that music tends to seek a perfect state of harmony. 
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It was first proposed by Geem, Kim, and Loganathan (2001). Since then its 

effectiveness and advantages have been demonstrated in various applications, and in 

most cases it has been shown to outperform other meta-heuristics algorithms such as 

GA and ant colony optimization (Geem, 2010; X. S. Yang, 2009).  

The HS algorithm seeks solutions in problem search space with the aid of a 

phenomenon-mimicking algorithm based on the musical improvisation process which 

looks for harmonies with more pleasing sounds in terms of aesthetic quality. 

Furthermore, HS is more powerful and flexible when identifying the high performance 

regions of the solution space. In order to reinforce the capability of the HS algorithm 

in performing local searches an improved harmony search (IHS) has since been 

proposed to enhance the fine-tuning characteristics of the algorithm (Mahdavi, 

Fesanghary, & Damangir, 2007). The population-based characteristic of IHS 

facilitates the multiple harmonic groups to be used in parallel, which adds more 

efficiency in comparison with other non-population based meta-heuristic algorithms 

(X. S. Yang, 2009). 

2.5 Combination of Optimization and MCDM Methods 

Multi-objective optimization can be coupled with MCDM methods to solve multi-

criteria multiple-decision-maker problems in which each decision maker has different 

objectives and/or assigns different weights to her decision criteria. To this end, two 

general approaches have been pursued in the literature (Chaudhuri & Deb, 2010). In 

the first approach (Bazargan-Lari, 2014; Monghasemi et al., 2014; Perera, Attalage, 

Perera, & Dassanayake, 2013; Tanaka, Watanabe, Furukawa, & Tanino, 1995) multi-

objective optimization is first used to obtain the set of Pareto-optimal solutions and 

then MCDM methods are used to select the compromise solution. This approach 
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oversimplifies the problem and fails to establish a proper linkage between multi-

objective optimization and MCDM. In this case, the preferences of the decision makers 

are not considered at the optimization stage. Thus, some of the generated solutions 

might be strongly undesirable to some decision makers. 

To address the above-mentioned problem, the second approach integrates MCDM 

methods and multi-objective optimization, resulting in a concentrated search in a 

region where there is a higher chance of finding solutions that are Pareto-optimal and 

acceptable by the decision makers. Chaudhuri and Deb (2010) proposed a novel 

approach to combine MCDM and multi-objective optimization that allows 

investigation of the different regions of the Pareto-optimal frontier first and then 

searching through these regions as many times as required to satisfy the decision 

makers. Their suggested approach, however, does not consider the non-cooperative 

tendencies among the decision makers (Madani, 2010). Therefore, if each decision-

maker wants to select her own desirable region(s) on the Pareto-optimal frontier and 

seek for optimal solutions in an iterative procedure, the overall process can be very 

time-consuming. In some cases, finding an optimal solution that satisfies all decision 

makers is even impossible. 
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Chapter 3 

3 METHODOLOGY 

3.1 Mathematical Model to Solve DTCQTPs 

The cost component for each activity can be an agglomeration of various factors which 

are required to complete the activities successfully. Generally, direct and indirect costs 

are the two main elements that constitute the overall cost of each activity. The direct 

cost is the overall cost spent directly in order to successfully accomplish the activities, 

and is directly related to the execution phase. In other terms, the direct cost is any 

expenditure which can be directly assigned for completing an activity, while the 

indirect cost can be allocated for a single activity. The direct cost of 𝑗th option of 𝑖th 

activity is denoted by �̃�𝑖𝑗. The cost might also consist of indirect costs (�̃�𝑑), which 

originate from the managerial cost of a construction organization and any other indirect 

costs which can be measured in cost per day. In this study, the indirect cost is assumed 

to be a fixed amount, and its amount varies with project duration.  

Different types of construction contracting methods may also impose other types of 

costs, namely, tardiness penalty (�̃�𝑝) and incentive cost (�̃�𝑖𝑛), both of which can be 

measured in cost per day. For any delay occurring in total project time in comparison 

with the DMs’ desired time (�̃�𝑑), the main contractor(s) might be charged a tardiness 

fine on a daily basis, usually at a fixed price per day. In contrast, for any early 

completion, they might be rewarded for each day of this early completion period.  
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A thorough model to solve the DTCQTP can be expressed as: 

Minimize 𝑓1 = max
∀𝑝∈𝑃

{�̃�1, �̃�2, … , �̃�𝑛} (1) 

Minimize 𝑓2 = ∑ �̃�𝑖𝑗 + 𝑓1. �̃�𝑑 + �̅�(𝑓1 − �̃�𝑑). (�̃�𝑑 − 𝑓1). �̃�𝑝 +𝑁
𝑖=1

�̅�(�̃�𝑑 − 𝑓1). (�̃�𝑑 − 𝑓1). �̃�𝑖𝑛 
(2) 

Maximize 𝑓3 = 𝛼𝑄𝑚𝑖𝑛 + (1 − 𝛼)𝑄𝑎𝑣𝑒 (3) 

𝑄𝑚𝑖𝑛 = 𝑚𝑖𝑛{�̃�𝑖𝑗: 𝑥𝑖𝑗 = 1} (4) 

𝑄𝑎𝑣𝑒 =
∑ ∑ 𝑞𝑖𝑗 ∙ 𝑥𝑖𝑗

𝑚
𝑗=1

𝑁
𝑖=1

𝑁
 (5) 

 

The set of 𝑃 = {𝑝|𝑝 = 1,2, … , 𝑛} is used to represent all the paths of the activity 

network. 𝑖𝑝 is the 𝑖th activity on path 𝑝, and 𝑛𝑝 is the number of activities on path 𝑝. 

Considering all these notations the total implementation time of 𝑝th path ( �̃�𝑝) is the 

summation of the durations of all the activities on path 𝑝, which can be mathematically 

calculated as  �̃�𝑝 = ∑ �̃�𝑖𝑗
𝑛𝑝

𝑖𝑝
. Therefore, the first objective function (𝑓1) refers to the total 

project duration which is obtained by considering the maximum implementation time, 

�̃� = {�̃�1, �̃�2, … , �̃�𝑛}, where �̃� represents all paths of the project network (Eq. 1).  

The second objective function (𝑓2) represents the total project cost which is the 

summation of each activity cost (�̃�𝑖𝑗) denoting the direct cost. It is later added to the 

indirect cost calculated by multiplying the fixed cost of the indirect cost (�̃�𝑑) with the 

project duration (𝑓1). The direct cost is any expenditure which can be directly assigned 

for completing an activity, while the indirect cost can be allocated for a single activity. 

Other cost components such as the project tardiness penalty and incentive costs are 

also considered. The unit step function, �̅�(𝑥), is either one or zero for non-negative 

and negative values of 𝑥, respectively. Then, the total project cost can be 
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mathematically computed as shown in Eq. 2. 𝑥𝑖𝑗 is the index variable of 𝑖th activity 

when performed in 𝑗th option. If 𝑥𝑖𝑗 = 1 then the 𝑗th option for 𝑖th activity is selected 

and when 𝑥𝑖𝑗 = 0 it means that the 𝑗th option of 𝑖th activity is not selected.  

The next objective function (𝑓3) estimates the project quality through Eq. 3. If the 

quality of the 𝑖th activity of 𝑗th option is shown by �̃�𝑖𝑗 the estimation of the project 

overall quality is a linear relationship between the minimum quality of all the selected 

alternatives (𝑄𝑚𝑖𝑛), which is calculated according to Eq. 4, and the average quality of 

all the chosen alternatives (𝑄𝑎𝑣𝑒) which is calculated using Eq. 5. A higher value of 𝛼 

means a greater emphasis on the fact that the quality of no activity in the schedule is 

too low, while a lower value ensures that the overall project quality is aimed at not 

lying too far away from the average quality (𝑄𝑎𝑣𝑒).  

Using the 𝛼 parameter ensures that the third objective (𝑓3) represents a close estimation 

of the overall project quality since only the average value might not be a good 

measurement of the total obtainable project quality. Therefore, if an activity with a 

very low quality is selected, it lowers 𝑓3 more significantly than in the case where only 

average value is considered, thus automatically, throughout the optimization 

algorithm, an attempt is made so that not only the average quality is at a high standard, 

but also no activity with a very poor quality to be selected. Using the step function 

ensures that either the tardiness penalty or the incentive cost is added to the total cost. 

It must be noted that the total cost is from the viewpoint of the project’s main 

contractor and that of the owner, meaning that incentive and tardiness costs are 

summed negatively and positively with the total cost, respectively. If we consider the 

cost from the owner’s viewpoint, then the incentive cost would be negative but the 
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tardiness cost would be positive. To take into account all the expenditures in relation 

to the project the first case is considered (i.e., the contractors’ viewpoint), which is the 

more common approach in DTCQTPs. 

3.2 Assumptions 

Throughout this thesis a few simplifying assumptions have been considered which are 

as follows: 

(1) The indirect cost of the activities is assumed to be a fixed value per day. 

(2) The relationship between the activities in the project scheduling network is 

only finish to start type of relationship. This means that the preceding activity 

should be completed prior to the start of its succeeding activities. 

(3) The qualities are only the expected quality from that specific activity. Thus, it 

may not represent the attained quality of the project after it has been 

completed. 

(4) It is assumed that there is no lead and/or lag time between the activities. This 

implies that soon after the preceding activity is done, the succeeding activities 

should be started. 

3.3 Multi-Objective Optimization Techniques 

3.3.1 Genetic Algorithm Framework 

Applying various approaches, numerous attempts have been made to solve the 

DTCQTPs (Afshar et al., 2007; El-Rayes & Kandil, 2005; Mungle et al., 2013; Tavana 

et al., 2014). The GA is a stochastic search method applicable to optimization 

problems, and is based on natural selection (Wilson, 1997a). For instance, Feng et al. 

(1997) used multi-objective genetic algorithm to deal with the DTCQTP. Due to space 

limitations, and since the GA procedures are widely known, the steps are only briefly 

discussed in the following subsections. 
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3.3.1.1 Initial Population and Chromosome Representation  

GA is a chromosome-based evolutionary algorithm, and as with its nature, the GA tries 

to seek better offspring from the population during each generation of evolution, as 

first proposed by Holland (1975). The chromosome consists of cells which are known 

as genes. In this study, the position of the genes indicates the number of activities, and 

the value of each gene represents the option which is assigned for the activity execution 

mode. Table 1 shows a sample of a chromosome with 6 activities. 

Table 1. Structure of a chromosome 

Activity Number: 1 2 3 4 5 6 

Execution Mode: 3 2 4 3 2 1 

 

The initial population of the algorithm is generated randomly, allowing the entire range 

of possible solutions. Here, the population size is set to 400 which is selected based on 

preliminary model run and it must be sufficiently large to ensure convergence to the 

optimal solutions. The GA has the capability to be seeded with additional set of 

chromosomes in the areas where optimal solutions are more likely to be found. The 

additional set of chromosomes are generated through running the algorithm for several 

times with the purpose to seed each run of the algorithm with the obtained set of 

chromosomes from the previous run in the last generation. The gene values can only 

take values which do not violate the number of options available for that activity (the 

upper limit). For example, if activity number 3 has only 4 options, then the gene value 

of the third position cannot take any value more than 4, and the values must be limited 

to integers in the interval of [1,4]. This representation of the chromosome ensures that 

no chromosome leads into infeasible solution which avoids unnecessary computational 

effort and results into saving time.  
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3.3.1.2 Crossover and Mutation Operator 

During each generation, similar to the natural evolution process, a pair of ‘parent’ 

solutions is selected for breeding and producing a pair of ‘child’. The crossover 

operator attempts to reproduce a pair of ‘child’ which typically shares many of the 

characteristics of its ‘parents’. There exist various crossover operators, among which 

are the two point crossovers as used by Mungle et al. (2013) which was shown to be 

efficient in solving DTCQTPs optimization. Therefore, the two point crossover is 

selected as the crossover operator. 

In order to preserve the diversity within the newly generated population there is the 

need to generate a number of solutions which are entirely different from the previous 

solutions. Analogous to biological mutation, the mutation operator alters only one gene 

in a chromosome to generate a non-identical ‘child’. Swap mutation is used for the 

mutation operator alter the chromosomes (Cicirello & Cernera, 2013). Swap mutation 

operator simply changes the values of two randomly selected genes in a chromosome. 

In this case, the upper limit for the values of the gens is the only constraint which must 

be checked during the alteration of each chromosome otherwise infeasible 

chromosomes are produced. In the case when any value of a gene violates the upper 

limit, the maximum allowable value for that specific gene is replaced to ensure no 

‘child’ leads into infeasible solution. Obviously, since the lower limit value for all the 

genes is 1, there is no need to check whether or not there is any value lower than 1.  

3.3.1.3 Selection Procedure 

GA is based on nature’s survival of the fittest mechanism. The best solutions survive, 

while the weaker solutions perish. In order to simulate the natural selection procedure, 

the solution with best performance, according to its fitness function, survives and 



 

26 

 

produces offspring for the next generation (Mawdesley, Al-jibouri, & Yang, 2002). 

The Roulette Wheel technique (Goldberg, 1989) is used in this study, which is widely 

used in the selection procedure of GA algorithm.  

According to Roulette Wheel technique, the selection is basically done stochastically 

to form the basis of the next generation. For each chromosome the fitness value, which 

is the average utility score (𝑢𝑎𝑣𝑒
(𝑓1,𝑓2)

) is obtained. Furthermore, each fitness value is 

divided by the summation of all the fitness values of the chromosomes of the existing 

the population. This procedure assigns the percentage of the total fitness function for 

each chromosome which is a measure of the strength of each chromosome. Thus, the 

chromosome with higher fitness percentage, has more chance to be selected. 

Table 2. An example showing the Roulette Wheel selection procedure 

Chromosome 

number 
𝑢𝑎𝑣𝑒

(𝑓1,𝑓2)
 Percentage of fitness 

function (%) 

Share of each chromosome 

from the roulette wheel 

1 0.11 4.15 5 

2 0.43 16.22 17 

3 0.95 35.84 36 

4 0.63 23.77 24 

5 0.53 20.00 20 

summation 2.65 100 102 

 

In order to explain the procedure of selection in roulette wheel, assume a population 

with only 5 chromosomes as listed in Table 2. The second column shows the fitness 

function value (𝑢𝑎𝑣𝑒
(𝑓1,𝑓2)

) for each chromosome. As it can be observed, the chromosome 

number 1 and 3 are the weakest and strongest individuals respectively, based on their 

fitness function, therefore the chromosome number 1 has lowest chance to be selected 
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with only 4.15% of the total fitness function; however the chromosome number 3 has 

the highest chance with 35.84% share of the total fitness function. The last column 

shows the share of each chromosome from the roulette wheel which is calculated by 

rounding the data of the third column to the nearest integer greater than or equal to the 

data. The summation of the shares of the chromosomes from the roulette wheel is equal 

to 102.  

Figure 1 illustrates the roulette wheel which is divided into 102 red and black pockets. 

For each chromosome a number of pockets are assigned based on its share of the 

roulette wheel. In order to select a chromosome for the next generation a random 

integer is generated in the interval of [1,102], if the random number belongs to interval 

[1,5] then the chromosome number 1 is selected, and if the random number lies 

between the interval of [6,22] then the chromosome number 2 is selected, and so on. 

Although this procedure considers higher chance of selection for the strongest 

chromosome, it allows the weakest chromosomes to be selected as well with a lower 

probability. 
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Figure 1. Roulette wheel selection procedure 

3.3.1.4 Termination Criterion 

In order to stop the algorithm, the termination criterion of the maximum number of 

generations is selected to force the algorithm to seek superior solutions continuously. 

The higher the maximum number of generation, the more computational effort is 

required; however a very low value prevents the algorithm to converge the optimal 

solution. Thus, based on preliminary model run the maximum number of generation is 

set to 500. The higher values were also tested but no improvement could be attained. 

3.3.2 Improved Harmony Search Algorithm 

Harmony search (HS) is a relatively newly-inspired algorithm which has been 

developed based on the observation that music tends to seek a perfect state of harmony. 

It was first proposed by Geem et al. (2001). Since then its effectiveness and advantages 

have been demonstrated in various applications, and in most cases it has been shown 

to outperform other meta-heuristics algorithms such as GA and ACO (Geem, 2010; X. 

S. Yang, 2009). The HS algorithm seeks solutions in problem search space with the 

aid of a phenomenon-mimicking algorithm based on the musical improvisation 
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process which looks for harmonies with more pleasing sounds in terms of aesthetic 

quality. Furthermore, HS is more powerful and flexible when identifying the high 

performance regions of the solution space. In order to reinforce the capability of the 

HS algorithm in performing local searches an improved harmony search (IHS) has 

since been proposed to enhance the fine-tuning characteristics of the algorithm 

(Mahdavi et al., 2007). The population-based characteristic of IHS facilitates the 

multiple harmonic groups to be used in parallel, which adds more efficiency in 

comparison with other non-population based meta-heuristic algorithms (X. S. Yang, 

2009).  

Musicians have three choices when improvising harmony (Kaveh & Ahangaran, 

2012): 

(1) Playing a note exactly from his or her memory;  

(2) Playing a note in the vicinity of the previously selected note;  

(3) Selecting a note randomly; 

 

The HS algorithm selects the value of decision variables with similar rules. In order to 

present the detailed procedure of IHS and its application in the DTCQTPs some 

notations are needed, which are as follows: 

Notations: 

𝐻𝑀 Harmony memory. 

𝐻𝑀𝑆 Harmony memory size. 

𝐻𝑀𝐶𝑅 Harmony memory consideration rate. 

𝑃𝐴𝑅(𝑔𝑛) Pitch adjustment rate in generation 𝑔𝑛. 
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𝑃𝐴𝑅𝑚𝑖𝑛, 𝑃𝐴𝑅𝑚𝑎𝑥 Minimum and maximum pitch adjustment rate 

respectively.  

𝑁𝐼 Number of improvisation or new solution vector 

generation. 

𝑆𝑡 Number of no observed improvement in solutions. 

𝑔𝑛 Generation number, 𝑔𝑛 ∈ {1,2, … ,𝑁𝐼}. 

𝑁𝐻𝑉 New harmony vector. 

𝑃𝑉𝐵𝑙𝑜𝑤𝑒𝑟(𝑖), 𝑃𝑉𝐵𝑢𝑝𝑝𝑒𝑟(𝑖) Lower and upper possible values for 𝑖th decision 

variable. 

𝑁 Number of decision variables.  

𝑥𝑗 , 𝑦𝑗 , �́�𝑗 Two different solution vectors and new solution vector, 

respectively.  

�́�𝑖 𝑖th decision variable value in 𝑁𝐻𝑉. 

 

In a way that is conceptually similar to that of GA, the HS algorithm improves the 

solution vectors iteratively based on the existing solutions the harmony memory. The 

harmony memory is a matrix as shown below that comprises solution vectors which 

are randomly generated in the initial step of the algorithm and modified to increase fit 

as measured by a fitness function. The random generation of vectors enables the 

algorithm to search the solution space more efficiently. Each row of the harmony 

memory is a solution vector, 𝑥𝑗 = (𝑥1
𝑗
, 𝑥2

𝑗
, … , 𝑥𝑁

𝑗
) which consists of 𝑁 decision 

variables, set randomly initially.  

𝐻𝑀 =

[
 
 
 

     𝑥1
1        𝑥2

1   …      𝑥𝑁−1
1 𝑥𝑁

1      

     𝑥1
2       𝑥2

2   …     𝑥𝑁−1 
2 𝑥𝑁

2      
      ⋮           ⋮     ⋮         ⋮        ⋮     

     𝑥1
𝐻𝑀𝑆   𝑥2

𝐻𝑀𝑆 ⋯      𝑥𝑁−1
𝐻𝑀𝑆 𝑥𝑁

𝐻𝑀𝑆   ]
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The next steps are as follows: 

3.3.2.1 Initialize the Problem and Algorithm Parameters  

There are some parameters that need to be set, namely harmony memory size, harmony 

memory considering rate (HMCR), pitch adjustment rate, and number of 

improvisations (which is the stopping criterion). There is some evidence that IHS is 

less sensitive than other parameters in terms of the chosen parameters values, which 

alleviates the process of fine-tuning to attain quality solutions (X. S. Yang, 2009).  

3.3.2.2 Initialize the Harmony Memory 

Initially, the solution vectors in the harmony memory are generated randomly. In this 

study, each solution vector shows the sequence ordering of service requests, as 

explained above. 

3.3.2.3 Improvise a New Harmony  

New solution vectors,  𝑥𝑗́ = (�́�1, �́�2, … , �́�𝑁) will be generated through the 

improvisation step. Improvisation procedures are triggered by considering three 

conditions, which are as follows:  

(1) Memory consideration;  

(2) Pitch adjustment;  

(3) Random selection; 

Each of these rules are associated with different criteria which must be met in choosing 

a value for any decision variable. 

The power of the IHS algorithm originates from the way the intensification and 

diversification are handled (X. S. Yang, 2009). In order to mimic the aforementioned 

rules in improvising a new harmony, two parameters, HMCR and pitch adjustment 

rate, are used with values ranging from 0.7~0.95 and 0.1~0.5 respectively. In the HS 
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algorithm proposed by Geem, et al (Geem et al., 2001) these parameters are fixed 

throughout the algorithm improvisations steps, but in IHS the pitch adjustment rate 

value changes dynamically according to Eq.6. HMCR indicates the degree of elitism, 

which is the likelihood of a decision variable being selected among the existing values 

in the harmony memory. It reflects the intensification handling procedure through the 

algorithm. For instance, HMCR of 0.9 says that there will be a 90% chance of the 

decision variable being selected from the historically stored harmony memory and 

10% chance from the entire possible range. The lower the value the slower the 

solutions tend to converge. Each decision variable being chosen from the harmony 

memory must be checked for whether or not it needs the pitch adjusted. In fact, the 

diversification is controlled by the usage of the pitch adjustment rate parameter 

through which the variable will be randomly increased or decreased if it does not 

violate the acceptable values. This procedure will be done for each decision variable 

until a new solution vector is obtained. 

𝑃𝐴𝑅(𝑔𝑛) = 𝑃𝐴𝑅𝑚𝑖𝑛 +
𝑃𝐴𝑅𝑚𝑎𝑥 − 𝑃𝐴𝑅𝑚𝑖𝑛

𝑁𝐼 − 1
× (𝑔𝑛 − 1) (6) 

3.3.2.4 Update Harmony Memory  

Every new solution vector should be evaluated in order to verify whether it dominates 

the worst solution vector among the harmony memory. If the new solution vector is 

better than the worst then it will be included in the harmony memory and then the 

worst one excluded. However, the determination of the worst solution in the harmony 

memory is done through the NSGA-II procedure which will be discussed in detail in 

the following parts. 

3.3.2.5 Stopping Criterion  

The stopping criterion is generally chosen as the maximum number of improvisations. 

Additionally, the maximum number of iteration where no improvement in solutions is 
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obtained, might be combined with the previous approach. In the current research study, 

we used the combined approach to enable the algorithm to search for better solutions 

if there seems to be the chance of finding better solutions. The maximum number of 

improvisations should be determined based on sensitivity analysis and preliminary 

model runs; a higher value will increase the computational effort. 

3.3.2.6 Pseudo-code for improved harmony search 

The pseudo-code of IHS is elaborated as follows: 

𝐼𝐻𝑆 algorithm procedure: 

For 𝑖 = 1 𝑡𝑜 𝐻𝑀𝑆  Initialize the 𝐻𝑀 

 Randomly generate solution vectors, 𝑥𝑗  

 Evaluate 𝑓1 and 𝑓2  

For 𝑖 = 1 𝑡𝑜 𝑁 Improvise a new harmony 

 𝑃𝐴𝑅 = 𝑃𝐴𝑅(𝑔𝑛);  

 If rand() > 𝐻𝑀𝐶𝑅  Memory consideration 

  𝑁𝐻𝑉(𝑖) = 

randval(𝑃𝑉𝐵𝑙𝑜𝑤𝑒𝑟(𝑖), 𝑃𝑉𝐵𝑢𝑝𝑝𝑒𝑟(𝑖)) 

 

 Else  

  𝐷1 = int(rand()× 𝐻𝑀𝑆) + 1  

  𝐷2 = 𝐻𝑀(𝐷1, 𝑖); 𝑁𝐻𝑉(𝑖) = 𝐷2;  

  If rand() < 𝑃𝐴𝑅  Pitch adjustment  

   If rand() < 0.5   

    𝐷3 = 𝑁𝐻𝑉(𝑖) + 

rand()×(𝑃𝑉𝐵𝑢𝑝𝑝𝑒𝑟 − 𝑁𝐻𝑉(𝑖)); 

 

   Else   

    𝐷3 = 𝑁𝐻𝑉(𝑖) − rand()×(𝑁𝐻𝑉(𝑖) −
𝑃𝑉𝐵𝑙𝑜𝑤𝑒𝑟); 

 

Evaluate 𝑓1 and 𝑓2 for the 𝑁𝐻𝑉;  

If 𝑁𝐻𝑉 dominates the worst solution vector in 

𝐻𝑀 

Update 𝐻𝑀 

 Replace worst solution vector with 𝑁𝐻𝑉  

 𝑆𝑡 = 0;  

Otherwise 𝑆𝑡 = 𝑆𝑡 + 1;  

If 𝑔𝑛 ≤ NI  Check stopping criterion 

 Repeat the procedures; 𝑔𝑛 = 𝑔𝑛 + 1;  

If 𝑔𝑛 > NI  

 Stop the algorithm  

If 𝑆𝑡 ≥ maximum number of no improvement 

observation 

 

 Stop the algorithm  
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3.3.3 NSGA-II Framework 

Improved non-dominated sorting genetic algorithm (NSGA-II) is an evolutionary 

algorithm which is used to generate sets of Pareto-optimal solutions which is 

demonstrated to outperform other approaches, e.g., Pareto archive evolutionary 

strategy in converging to near true Pareto front (Deb et al., 2002). In this thesis, the 

proposed methodology of NSGA-II by Deb, et al. (Deb et al., 2002) has been tailored 

and customized to solve DTCQTP by converging to near optimal solutions. The 

capability of NSGA-II encourages the application of the method to be applied into 

more complex and real-world multi-objective optimization problems.  

In the designed GA and IHS algorithms the concept of NSGA-II is used in which the 

fitness assignment to each solution comprises both the rank of the corresponding 

solution in terms of the front it belongs into and also the crowding distance parameter 

(𝐼[𝑥𝑗]𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒) which indicates the density of solutions in its vicinity.  

In order to identify the first non-dominated front, �̅�1, each solution needs to be 

compared with every other solution in the population to find if no other solution 

dominates the chosen one. In order to find the solutions belong to the next non-

dominated fronts,𝑄, (2nd, 3rd and so on), the solutions of the previous fronts are 

discounted temporarily and the above procedure is then repeated. To elaborate the 

basic concept of NSGA-II better to mention that fast non-dominated sorting, sorts the 

solutions to form the non-dominated fronts and then another criterion, namely, the 

crowding distance is calculated. Furthermore, between two solutions of different fronts 

the solution within lower front is more preferable and if the fronts are identical then 

the one with lower crowding distance is judged to be superior. This procedure in 
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comparing two solutions is called crowded comparison operator denoted by ≺𝑛 (Deb 

et al., 2002).  

The crowding distance operator acts as an estimate of the density of solutions 

surrounding a particular solution in the population which is the average distance of the 

two solutions lies on both sides of the chosen point along each of the objectives. More 

simply, this distance is approximately equal to the perimeter of the cuboid formed by 

using the vertices of the nearest neighbors. Firstly, the population needs to be sorted 

in ascending order with respect to each objective function. The boundary solutions in 

each front (the solutions with smallest and highest objective function in each case) are 

assigned an infinite crowding distance value (𝐼[1]𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 𝐼[𝑙]𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = ∞). In order 

to present the procedure of NSGA-II the required notations are as follows: 

Notations: 

𝑆𝑝 set of solutions that 𝑥𝑗 dominates 

𝑛𝑥, 𝑛𝑦 

domination count indicating the number of solutions which dominate 

the solution 𝑥𝑗 or 𝑦𝑗 

�̅�𝑖 front 𝑖th which consists of non-dominated solutions 

𝑄 set of solutions of (𝑖 + 1)th front 

𝐼 set of all non-dominated solutions where |𝐼| = 𝑙 

𝐼[𝑥𝑗]𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 crowding distance of solution 𝑥𝑗, 𝑥𝑗 ∈ 𝐼 

𝑚 number of objectives, here 𝑚 = 4 

𝑓𝑚
𝑚𝑎𝑥, 𝑓𝑚

𝑚𝑖𝑛 

maximum and minimum values of the 𝑚th objective function 

respectively 
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The pseudo-code will then be as mentioned below: 

Fast non-dominated sorting procedure:  

For each 𝑥𝑗 ∈ [ 𝐻𝑀, �́�𝑗  ]; set 𝑆𝑃 = ∅ and 

𝑛𝑥 = 0; 
 

 For each 𝑦𝑗 ∈ [ 𝐻𝑀, �́�𝑗  ];  

 
If (𝑥𝑗 ≺ 𝑦𝑗) then 𝑆𝑃 = 𝑆𝑃 ∪ {𝑥𝑗} if 𝑥𝑗 dominates 𝑦𝑗, then add 𝑦𝑗to the set 

of solutions dominated by 𝑥𝑗. 

 
Else if (𝑦𝑗 ≻ 𝑥𝑗) then 𝑛𝑥 = 𝑛𝑥 + 1 if 𝑦𝑗 dominates 𝑥𝑗, then increment the 

domination counter of 𝑥𝑗. 

 If 𝑛𝑥 = 0 then �̅�1 = �̅�1 ∪ {𝑥𝑗} 𝑥𝑗  belongs to the first front. 

𝑖 = 1 initialize the front counter. 

While �̅�𝑖 ≠ ∅; 𝑄 = ∅ 
𝑄 is used to store the members of next 

front. 

 For each 𝑥𝑗 ∈ �̅�𝑖  

 For each 𝑦𝑗 ∈ 𝑆𝑃; 𝑛𝑥 = 𝑛𝑥 − 1  

  
If 𝑛𝑦 = 0 then 𝑄 = 𝑄 ∪

{𝑦𝑗} 
𝑦𝑗 belongs to the next front. 

𝑖 = 𝑖 + 1; �̅�𝑖 = 𝑄  

 

By fast non-dominated sorting the fronts are identified and for the second comparison 

criterion the procedure is as follows: 

Crowding distance assignment procedure: 

𝑙 = |𝐼| 
number of solutions 

in 𝐼. 

For each  𝑥𝑗, 𝐼[ 𝑥𝑗]𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 0 initialize the distance. 

For each objective 𝑚 sort using each 

objective value and set 

the distance of first and 

last points equal to 

infinity. 

 𝐼 = 𝑠𝑜𝑟𝑡(𝐼,𝑚); 𝐼[1]𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 𝐼[𝑙]𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = ∞ 

 For  each 𝑥𝑗 where 𝑗 = 2 to (𝑙 − 1) for all remaining points 

distance will be 

calculated. 
 

𝐼[ 𝑥𝑗]𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 𝐼[ 𝑥𝑗]𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 + (𝐼[ 𝑥𝑗+1],𝑚

− 𝐼[ 𝑥𝑗−1],𝑚)/(𝑓𝑚
𝑚𝑎𝑥 − 𝑓𝑚

𝑚𝑖𝑛) 

 

By obtaining the two comparison criteria the new harmony vector is compared by the 

comparison operator (≺𝑛) to check if it is better than the worst solution vector exists 
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in the harmony memory. In multi-objective optimization where there exists conflict 

among the objectives the Pareto-optimal solutions can be extremely numerous 

meanwhile it might be tedious for the decision makers in order to attain at last one 

compromise solution. 

3.4 Multiple Criteria Decision Making Models 

3.4.1 Evidential Reasoning Framework 

MCDM methods are an efficient means of handling the information which facilitates 

the simultaneous consideration of multiple criteria to assess potential alternatives; this 

eliminates the time-consuming and costly iterative procedures of reviews and feedback 

during the planning phase of a construction project. Numerous methods have been 

developed and utilized to deal with the MCDM problems such as additive utility 

(value) function methods (Keeney & Raiffa, 1976), outranking methods (Guitouni, 

Martel, Bélanger, & Hunter, 2008), and Evidential Reasoning (ER) (Bazargan-Lari, 

2014). 

In the ER approach, alternatives are subdivided into attributes which are influential in 

assessing the overall performance of those alternatives. The attributes use belief 

structures and belief matrices; this enables the ER approach to deal with different types 

of attributes, e.g., qualitative, uncertain etc. The attributes form a hierarchical structure 

in which the top level is the overall performance of each alternative. In order to 

evaluate the overall performance, the ER approach begins by aggregating the 

information from the bottom level of the hierarchical structure, based on the rule and 

utility information transformation techniques for each level. The levels are defined 

through the hierarchical structure of the attributes. 
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D. L. Xu (2012) outlined four general steps in applying the ER approach: 

(1)  A comprehensive understanding of the MCDM problem is attained to identify 

and determine the multiple attributes which can be conflicting;  

(2)  The belief structure of the attributes are transformed into a unified belief 

structure according to the weight of each attribute. This procedure utilizes the 

rule or utility technique in aggregating the information; 

(3)  Based on the aggregated information, the average utility score of each 

alternative is calculated. The alternative with the highest average utility score 

is defined as the best solution; and 

(4)  Distributed assessment outcomes, utility scores, or utility intervals, if some 

information is missing, are generated. In this step, the solution with the highest 

utility score is preferred over the solutions with lower corresponding values.  

 

In general, the output of any multi-objective optimization technique is a collection of 

non-dominated solutions which are called the Pareto-optimal solutions. The Pareto 

solutions share one common characteristic: no improvement in any objective can be 

obtained without sacrificing at least one of the other objectives (Eshtehardian et al., 

2009). On the other hand, in problems with conflicting objectives, there might be 

numerous Pareto-optimal solutions.  In this case it is extremely tedious for the DMs to 

investigate each solution one by one to agree on one optimal solution without using 

any systematic multi-criteria assessment technique. 

Mungle et al. (2013) employed a fuzzy clustering technique to find the best alternative, 

which is near the best value in each objective, while being far away from the worst 

possible values to establish a compromise between the conflicting objectives. This is 
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a very simple procedure to determine the most appropriate alternative. However, the 

DMs are not able to cooperate with each other, nor can they express their own unique 

weights for each objective. Another limitation of this approach is that it cannot deal 

with various types of criteria via qualitative and uncertain attributes. Hence, it is 

believed that by using the ER approach the solution space of the problem can be 

ranked, and the highest ranked solutions can be investigated for the potential of being 

accepted. However, it must be noted that the solution with the highest rank according 

to one DM might not have a strong chance of being accepted as the optimal solution if 

the other DMs assess the same solution with a much lower rank. Therefore, there is a 

need to establish a balance between the powers of the DMs in selecting the optimal 

solution. 

Various quantitative and/or qualitative attributes must be identified by the DMs to 

form the hierarchical structure of the overall performance. The attributes can simply 

be the problem objectives; in this case time, cost, and quality are the attributes. 

However, other types of attributes can be incorporated into the problem, such as the 

compatibility of the alternative with the company’s strategic and management plan, 

the health and safety issue of the alternative etc. Another capability of the ER approach 

is to consider ignorance as a type of uncertainty which originates from the situation in 

which some participants (DMs) do not give any response to a specific attribute, for 

reasons such as having no knowledge about that specific subject (D. L. Xu, 2012). 

The ER approach is based on the Dempster-Shafer theory of evidence (Shafer, 1976), 

and the decision theory for dealing with various types of criteria of both a quantitative 

and qualitative nature in decision making (Bazargan-Lari, 2014). The ER approach has 

also been applied in research areas such as regional hospital solid waste assessment 



 

40 

 

(Abed-Elmdoust & Kerachian, 2012), and determining the best layout of water quality 

monitoring stations (Bazargan-Lari, 2014). In order to implement the ER approach, 

the following steps must be followed: 

(1)  The expectations and requirements of the stakeholders and DMs should be 

investigated to identify the multiple assessment criteria of the MCDM problem. 

This preliminary step is vital in order to assure that the influential factors are 

identified for the specific problem under consideration. This procedure 

necessitates a full comprehension of the DMs preferences, which are reflected 

in the weights of each attribute. In addition, various types of contributing 

attributes (e.g., quantitative, qualitative, precise numbers, fuzziness, 

uncertainty, belief structures and comparison numbers) are gathered. For 

example, the cost of construction equipment might be precise while the cost of 

the excavation might be expressed within a range. The technical ability of a 

subcontractor might be expressed as a belief structure for which it might be 

‘Good’ to a degree of belief of 34%, and simultaneously be ‘Very Good’ with 

a degree of belief of 63%, which is expressed as {(Good, 0.34), (Very Good, 

0.63)}. The summation of both degrees of belief is equal to 97% (0.34% +

0.63%) with 3% as ignorance. Due to lack of knowledge about the technical 

capability of a subcontractor, some might prefer not to assess that criterion, 

which is called ‘lack of evidence’, in which case the summation of probability 

does reach to one.  

The belief structure of each attribute is determined in this step. Implementing the rule 

or utility techniques of information aggregation, the belief structure of the attributes is 

transformed into a unified belief structure. As in Figure 2, the ‘Very Good’ and ‘Very 
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Bad’ are assigned one and zero respectively, and the other grades may/may not be 

evenly distributed. 

0 0.3 0.55 0.84 1.0 

 

Very Bad Bad Moderate Good Very 

Good 

Figure 2. Utility-based preference function 

(2)  The assessment information of various types of criteria is aggregated to obtain 

the total assessment for each alternative based on the ER framework and 

formulations. 

(3)  The utility scores, or utility intervals in the case of missing information, are 

developed. Utility based ranking can judge the overall performance of each 

alternative by considering the influential attributes simultaneously through a 

systematic and rational prioritizing methodology. The procedure identifies the 

best schedule alternative for the project, which is the most favored overall by 

the DMs, as the final acceptable solution is a trade-off between the preferences 

of the DMs. 

The bottom level attributes are called basic attributes. The weight assigned to the 𝑖th 

basic criterion (𝑊𝑖) reflects the importance of that criterion in the assessment of the 

general criterion. 𝑊𝑖 can be determined by different approaches (e.g., pair-wise 

comparison, directly by the decision makers, Entropy, etc.). Since the weights express 

the relative importance, the normalized values are more useful than the absolute values 

(D. L. Xu, 2012). The normalized weight of 𝑖th basic attribute, 𝜔𝑖, is calculated using 

Eq.7: 
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 𝜔𝑖 =
𝑊𝑖

∑ 𝑊𝑖
𝐿
𝑖=1

    ,     𝑖 ∈ {1,2, … , 𝐿} (7) 

S.T. 0 ≤ 𝜔𝑖 ≤ 1    ,       ∑ 𝜔𝑖
𝐿
𝑖=1 = 1 

 

 

The linguistic terms such as ‘worst’, ‘good’, and so on are called grades where the 

whole set of grades is defined as 𝐻 = {𝐻𝑛, 𝑛 = 1,2, … , 𝑁}. The analytical format of 

the ER algorithm has been demonstrated by Guo, Yang, Chin, and Wang (2007) and 

Y. M. Wang, J. B. Yang, and D. L. Xu (2006) to be able to calculate the combined 

degrees of belief namely, 𝛽𝑛 and 𝛽𝐻 without using the recursive ER algorithm, which 

increases computational time and effort. The proposed method uses the analytical 

format of the ER algorithm to calculate the combined degree of belief, 𝛽𝑛 of the 𝑛th 

grade, where 𝑛 ∈ {1,2, … ,𝑁} and 𝛽𝐻 represents the incompleteness assessment of the 

whole set of 𝐻. 𝛽𝑛 and 𝛽𝐻 can be calculated using Eqs.8 and 9, respectively: 

𝛽𝑛

=
∏ (1 − 𝜔𝑖 ∑ 𝛽𝑖,𝑗

𝑁
𝑗=1,𝑗≠𝑛 ) − ∏ (1 − 𝜔𝑖 ∑ 𝛽𝑖,𝑗

𝑁
𝑗=1 )𝐿

𝑖=1
𝐿
𝑖=1

∑ ∏ (1 − 𝜔𝑖 ∑ 𝛽𝑖,𝑗
𝑁
𝑗=1,𝑗≠𝑛 )𝐿

𝑖=1
𝑁
𝑛=1 − (𝑁 − 1)∏ (1 − 𝜔𝑖 ∑ 𝛽𝑖,𝑗

𝑁
𝑗=1 )𝐿

𝑖=1 − ∏ (1 − 𝜔𝑖)
𝐿
𝑖=1

 

(8) 

𝛽𝐻

=
∏ (1 − 𝜔𝑖 ∑ 𝛽𝑖,𝑗

𝑁
𝑗=1 ) − ∏ (1 − 𝜔𝑙)

𝐿
𝑙=1

𝐿
𝑙=1

∑ ∏ (1 − 𝜔𝑖 ∑ 𝛽𝑖,𝑗
𝑁
𝑗=1,𝑗≠𝑛 )𝐿

𝑖=1
𝑁
𝑛=1 − (𝑁 − 1)∏ (1 − 𝜔𝑖 ∑ 𝛽𝑖,𝑗

𝑁
𝑗=1 )𝐿

𝑖=1 − ∏ (1 − 𝜔𝑖)
𝐿
𝑖=1

 

(9) 

 

The degree of belief of the 𝑖th basic criterion for the 𝑗th grade is denoted by 𝛽𝑖,𝑗, and 

𝑁 is the number of grades of set 𝐻. In order to rank the alternatives, it is necessary to 

translate the combined degrees of belief and the incomplete assessment (𝛽𝑛 and 𝛽𝐻) 
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into one single utility score. Hence, it is necessary to generate numerical values 

equivalent to the belief structure: 

 

𝑢𝑚𝑎𝑥 = ∑ 𝛽𝑛𝑢(𝐻𝑛) + (𝛽𝑛 + 𝛽𝐻)𝑢(𝐻𝑁)

𝑁−1

𝑛=1

 

(10)  

𝑢𝑚𝑖𝑛 = (𝛽1 + 𝛽𝐻)𝑢(𝐻1) + ∑ 𝛽𝑛𝑢(𝐻𝑛)

𝑁

𝑛=2

 

 
𝑢𝑎𝑣𝑒 =

𝑢𝑚𝑎𝑥 + 𝑢𝑚𝑖𝑛

2
 

where 𝑢𝑚𝑎𝑥, 𝑢𝑚𝑖𝑛 , and 𝑢𝑎𝑣𝑒 are the maximum, minimum, and the average utility score. 

𝑢(𝐻𝑛) is a function showing the utility score of the 𝑛th grade. For example, if 𝑛 = 5, 

and all the grades are spaced equally in the interval of [0,1], then 𝑢(𝐻𝑛) =

{0, 0.25, 0.5, 0.75, 1. It is noticeable from Equation (10) that if there is no incomplete 

assessment (𝛽𝐻 = 0), all three cases of maximum, minimum, and average utility scores 

are exactly the same and can be determined by using the following equation: 

 

𝑢𝑚𝑎𝑥 = 𝑢𝑚𝑖𝑛 = 𝑢𝑎𝑣𝑒 = ∑ 𝛽𝑛 ∙ 𝑢(𝐻𝑛)

𝑁

𝑛=1

 (11) 

 

Since the ER approach might seem rather too complex for non-specialists, in Table 3 

a stepwise example showing the procedures of the ER approach in evaluating a 

solution is solved. In this example, a solution with the time and cost value of 155 days, 

and $140,000 respectively is shown to have a contribution of 32.2% to the overall 

performance of the solution when both attributes are considered simultaneously. 
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Table 3. ER evaluation procedure to rank the Pareto-optimal solutions 
The ER approach evaluates a solution with the corresponding values for the objectives 

as follows: 

 
Objectives: Time (day) Cost ($) Quality (%) 

Values: 125 139,000 70.40 

Step 1. Identify the worst and best possible values for the attributes (e.g., time, cost, 

and quality). 

 Time (day) Cost ($) Quality (%) 

Best: 104 112,500 96.43 

Worst: 135 171,980 65.50 

Step 2. Assign normalized weights for each attribute. 

Attributes: Time Cost Quality 

𝜔𝑖: 0.3128 0.3806 0.3048 

Step 3. Calculate the belief structure for each attribute as shown in Figure 3. The x-axis 

indicates the grades, e.g., ‘Worst’, ‘Poor’, ‘Average’, ‘Good’, ‘Best’ and the 

corresponding values for each attribute. The quality of 94% lies between ‘Good’ 

and ‘Best’ grades with the quality values of 88.7% and 96.43%, respectively. 

This attribute belongs to ‘Best’ grade with 68% belief, and with 32% degree of 

belief belongs to grade ‘Good’. The same procedure is done for the time and 

cost attributes. The belief structures for each attribute are as below: 

 Belief structures of the attributes. 

Grades: Worst Poor Average Good Best 

Time 0 84 16 0 0 

Cost 0 0 78 22 0 

Quality 0 0 0 32 68 

Step 4. Calculate the combined degree of belief 𝛽𝑛 based on Eq.10, since there is no 

incomplete assessment 𝛽𝐻 = 0. 

 Grades: Worst Poor Average Good Best 

𝛽𝑛: 0.0 0.244 0.377 0.186 0.193 

Step 5. Calculate the utility scores according to Eq.11.  

𝑢𝑚𝑎𝑥 = 𝑢𝑚𝑖𝑛 = 𝑢𝑎𝑣𝑒 = 0.402 

The average utility score indicates that the solution satisfies DMs to an extent of 40.2% 

when considering all the attributes simultaneously. 
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Figure 3. Transferring each attribute to belief structure 

3.4.2 PROMETHEE Decision Making Model 

Decision making techniques are very useful in all facets of engineering such as 

economic (Turskis & Zavadskas, 2011), environmental management (Gregory et al., 

2012), green supplier evaluation (Kannan Govindan, Rajendran, Sarkis, & Murugesan, 

2013), system engineering and management (Parnell, Driscoll, & Henderson, 2011), 

and etc. Following the pioneering research done by Brans and Vincke (1985) 

PROMETHEE-based decision making models have successfully been applied in many 

fields and several researchers have used them decision making problems (Behzadian 

et al., 2010). 

The basic principle of PROMETHEE II is based on a pairwise comparison of 

alternatives along each recognized criterion. Alternatives are evaluated according to 

different criteria, which have to be maximized or minimized. The steps in developing 

a PROMETHEE II-based decision making model are as follows: 

3.4.2.1 Weights of the Influential Criteria 

As mentioned earlier, the DTCQTP is an interdisciplinary subject involving various 

and occasionally conflicting objectives, e.g., time, cost, and cost which need to be 
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simultaneously optimized. The involving DMs might express their expected 

importance towards each objective by assigning normalized weight to each objective.  

Based on the importance of time, cost, and quality of the construction project, and the 

decision makers’ levels of importance for each criterion, the weights can be specified 

to be used in the model to select the best project scheduling alternative. Here, the 

benchmark case problem of DTCQTP adapted from Feng et al. (1997) is selected. 

According to Monghasemi et al. (2014) the following weights for the objectives are 

considered. 

Table 4. Normalized weights of the objectives 

Objectives: Time Cost Quality 

Normalized weights: 0.3128 0.3806 0.3048 

 

3.4.2.2 Preference Function 

In the process of MCDM problem, occasionally the DM needs to provide his/her 

preferences over a set of n decision alternatives via pairwise comparison of the 

alternatives with respect to a single criterion. The preferences relations are a useful 

means of expressing the DM’s preference information (Chakeri, Dariani, & Lucas, 

2008), due to their simplicity as they only require comparison of two alternatives with 

respect to a single criterion.  

Several different preference functions have been defined with different characteristics 

(Figueira, Greco, & Ehrgott, 2005; Podvezko & Podviezko, 2011) which are:  



 

47 

 

(1) Usual criterion which is used when the decision maker cannot allocate importance 

for the differences between criteria values and only seems to know the formula “the 

more the better” (Podvezko & Podviezko, 2010); 

(2) U-shape function which is suitable for strict comparison of any two alternative 

(among two criteria the one with better value has complete preference which is 1, while 

the other one is assigned 0 preference); 

(3) V-shape/linear function which accounts for moderate comparison and in contrary 

with U-shape function it establishes a linear correlation between the point of 

indifference, 0, and the point of strict preference, 1; 

(4) Level criterion; 

(5) V-shape with indifference preference, and; 

(6) Gaussian criterion.  

The concepts and characteristics of these preference functions can be found in 

Podvezko and Podviezko (2010). Here, the V-shape with indifference preference 

function is chosen since in addition to moderate comparison, it also defines a range of 

indifference for comparison and due to all these reasons, it is the most valuable 

preference function which has attracted the largest number of theoretical and practical 

applications for evaluations carried out by PROMETHEE methods (Podvezko & 

Podviezko, 2010). Following, these features will be explained and explicitly described. 
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The range of values of preference functions 𝑃𝑖(𝑑) = 𝑃𝑖(𝑑𝑖(𝑎 , 𝑏)) falls between zero 

and one. Values of the functions reveal the level of preference of one alternative over 

another. Shapes of functions depend on boundary parameters 𝑞 and 𝑠, which are 

chosen by a decision-maker for each criterion 𝑖, namely 𝑞𝑖 for the lower and 𝑠𝑖 for the 

upper boundary of the argument thus making two alternatives 𝑎 and 𝑏 indifferent in 

respect of the criteria 𝑅𝑖 when the difference between values of criteria 𝑟𝑖𝑎 and 𝑟𝑖𝑏 for 

these alternatives 𝑑𝑖(𝑎 , 𝑏) =  𝑟𝑖𝑎 − 𝑟𝑖𝑏 is smaller than the boundary parameter 𝑞𝑖 and 

thus making the alternative 𝑎 of the strict preference in favour of the alternative 𝑏 

when the difference between criteria values 𝑟𝑖𝑎 and 𝑟𝑖𝑏 for these alternatives 

𝑑𝑖(𝑎 , 𝑏) =  𝑟𝑖𝑎 − 𝑟𝑖𝑏 is greater than the boundary parameter 𝑠𝑖 . When the difference 

falls between 𝑞𝑖 and 𝑠𝑖 preference criterion of the alternative 𝑎 in respect of the 

alternative 𝑏 varies between zero and one. Figure 4 shows the V-shape with 

indifference preference function.  

 
Figure 4. V-shape with indifference pereference function 

3.4.2.3 Calculation of the Global Preference Index 

For each pair of alternatives 𝑎 and 𝑏, the pair-wised comparison, 𝜋(𝑎, 𝑏), is calculated 

as follows: 
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∀𝑎, 𝑏 ∈ 𝐴 𝜋(𝑎, 𝑏) = ∑𝜔𝑖 ∙

𝑚

𝑖=1

𝑃𝑖(𝑑𝑖(𝑎 , 𝑏)) (12) 

Where 𝐴 is the finite set of existing alternatives, and 𝜋(𝑎, 𝑏) denotes the preference of 

𝑎 over 𝑏 and is simply a weighted sum of 𝑃𝑖(𝑑𝑖(𝑎 , 𝑏)) values for each criterion. The 

greater the 𝜋(𝑎, 𝑏) value, the more preference alternative 𝑎 has in comparison with 𝑏. 

3.4.2.4 Calculation of the Outranking Flows 

In the next step, rank of the alternative 𝑎 among a finite set of other alternatives is 

based on calculating the value of preference of 𝑎 over the other alternatives, and also 

the value for not preferring 𝑎 over the other ones. These are called positive outranking 

flow, 𝜑+(𝑎), and negative outranking flow, 𝜑−(𝑎), respectively. The net outranking 

flow, 𝜑(𝑎), is then calculated as shown in Equation (15) which shows the overall/net 

preference of alternative 𝑎 over all the other existing alternatives. These are calculated 

as follows: 

𝜑+(𝑎) =
1

𝑛 − 1
∑ 𝜋(𝑎, 𝑥)

𝑥∈𝐴

 
(13) 

𝜑−(𝑎) =
1

𝑛 − 1
∑ 𝜋(𝑥, 𝑎)

𝑥∈𝐴

 
(14) 

𝜑(𝑎) = 𝜑+(𝑎) − 𝜑−(𝑎) (15) 

 

3.4.3 TOPSIS Ranking Model 

TOPSIS is a very common technique in the field of multi-criteria decision making 

which was first proposed by Hwang and Yoon (1981). The TOPSIS technique attempts 

to rank the alternatives based on two parameters; (a) minimum distance from the 

positive ideal solution; (b) farthest distance from the negative ideal solution (Dymova 

et al., 2013). In simple words, the best solution is the one with lowest distance from 

the ideal solution while being as far as possible from the worst solution in that case. 
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the TOPSIS technique has been widely used in many fields, e.g., management of 

supply chain (K. Govindan et al., 2013), industrial robotic system selection 

(Chaghooshi et al., 2012), the optimal green supplier selection procedure (Kannan et 

al., 2013). In this study, the TOPSIS technique is integrated to the body of GA and 

IHS algorithm in order to rank the Pareto-optimal solutions obtained from multi-

objective optimization techniques. The procedure of TOPSIS in evaluating 𝑛 number 

of alternatives against 𝑚 number of objectives is described as below: 

Step 1: Assign normalized weights 𝑤𝑗 to the 𝑗th objective, where ∑ 𝑤𝑗
𝑚
𝑗=1 . 

Step 2: Normalize the 𝑗th objective of the 𝑖th solution (𝑓𝑖𝑗), where the normalized 

value is obtained through Eq.16: 

 
𝑛𝑖𝑗 =

𝑓𝑖𝑗

√∑ 𝑓𝑖𝑗
2𝑛

𝑖=1

     𝑖 = 1,2, … , 𝑛   and   𝑗 =
1,2, … ,𝑚 

(16) 

 

Step 3: Calculate the weighted normalized value of each objective for the solutions 

using Eq.17: 

 𝑣𝑖𝑗 = 𝑤𝑗 ∙ 𝑛𝑖𝑗  ,   𝑖 = 1,2, … , 𝑛     and    𝑗 = 1,2, … ,𝑚 (17) 

 

Step 4: Sort the weighted normalized values for each criterion to determine the 

positive ideal solution, 𝑉+ = {𝑣𝑗
+|𝑣1

+, 𝑣2
+, … , 𝑣𝑚

+}, and the negative ideal solution, 

𝑉− = {𝑣𝑗
−|𝑣1

−, 𝑣2
−, … , 𝑣𝑚

−}𝑣. 

Step 5: Calculate the distance of each solution from the positive ideal solution (𝑉+), 

and negative ideal solution (𝑉−) according to Eq.18: 
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 𝑑𝑖
+ = √∑(𝑣𝑖𝑗 − 𝑣𝑗

+)
2

𝑚

𝑗=1

 

𝑖 = 1,2, … , n (18) 

 𝑑𝑖
− = √∑(𝑣𝑖𝑗 − 𝑣𝑗

−)
2

𝑚

𝑗=1

 

 

Step 6: calculate the relative closeness coefficient for the 𝑖the solution (𝐶𝐶𝑖) using 

Eq.19: 

 0 ≤ 𝐶𝐶𝑖 =
𝑑𝑖

+

𝑑𝑖
+ + 𝑑𝑖

− ≤ 1 𝑖 = 1,2, … , n (19) 

 

The closeness coefficient determines which solution has the highest rank on the basis 

that the 𝑙th solution is better than the 𝑘th solution if and only if 𝐶𝐶𝑙 > 𝐶𝐶𝑘.  
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Chapter 4 

4 CASE PROBLEM 

4.1 Description of the Benchmark Case Problem 

To verify and demonstrate the efficacy of the proposed model to integrate the MCDM 

methods, namely, ER, PROMEHTHEE, and TOPSIS, into DTCQTPs, a highway 

construction project activity network consisting of 18 activities, first proposed by Feng 

et al. (1997), was adapted. The activity on the node network diagram of the case study 

is illustrated in Figure 5. Mungle et al. (2013) modified the data to account for the 

quality associated with each of the options of the activities. The corresponding time, 

cost, and quality for each mode of activities are listed in Table 5. The indirect cost is 

assumed to be 50$ per day with the due date being taken as 121 days. The incentive 

reward and the tardiness penalty are $120/day and $200/day, respectively. The 

relative importance, 𝛼, between 𝑄𝑚𝑖𝑛 and 𝑄𝑎𝑣𝑒 is taken as 0.4 which ensures that no 

activity in the schedule is preferred that has a quality lower than the average quality of 

all the selected options for the activities. 

 
Figure 5. 18-activity on node network representation of the case example 
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As indicated in Table 5, each activity in DTCQTPs are associated with multiple 

execution modes, where time, cost, and quality for each activities’ options are 

identified. The costs of the activities include only the direct cost. In DTCQTP the 

solution space increases exponentially for medium and large size problems as the 

options for the activities increase (Tavana et al., 2014). In this case example, each 

activity possesses approximately 3.4 alternatives, leading to 3.6 billion possible 

activity schedules for the entire project. Hence, the solution space is extremely large 

so that exact mathematical optimization models might be time-consuming, while the 

meta-heuristic approaches such as GA and IHS can be more efficient in terms of time 

saving. 

Table 5. Data of the 18-activity network case example 

# 
Preceding 

activities 

Options-(time (day), cost ($), quality (%)) 

1 2 3 4 5 

1 - (14,2400,100) (15,2150,90) (16,1900,86) (21,1500,77) (24,1200,63) 

2 - (15,3000,98) (18,2400,87) (20,1800,81) (23,1500,77) (25,1000,60) 

3 - (15,4500,100) (22,4000,80) (33,3200,62) - - 

4 - (12,45000,99) (16,35000,74) (20,30000,59) - - 

5 1 (22,20000,100) (24,17500,93) (28,15000,77) (30,10000,61) - 

6 1 (14,40000,95) (18,32000,76) (24,18000,59) - - 

7 5 (9,30000,97) (15,24000,70) (18,22000,61) - - 

8 6 (14,220,95) (15,215,83) (16,200,75) (21,208,68) (24,120,61) 

9 6 (15,300,100) (18,240,97) (20,180,81) (23,150,71) (25,100,63) 

10 2,6 (15,450,94) (220,400,79) (33,320,63) - - 

11 7,8 (12,450,96) (16,350,72) (20,300,61) - - 

12 5,9,10 (22,2000,99) (24,1750,89) (28,1500,70) (30,1000,62) - 

13 3 (14,4000,99) (18,3200,73) (24,1800,60) - - 

14 4,10 (9,3000,100) (15,2400,79) (18,2200,63) - - 

15 12 (16,3500,100) - - - - 

16 13,14 (20,3000,97) (22,2000,89) (24,1750,81) (28,1500,72) (30,1000,67) 

17 11,14,15 (14,4000,98) (18,3200,73) (24,1800,62) - - 

18 16,17 (9,3000,98) (15,2400,75) (18,2200,63) - - 

 

To seek for the Pareto-optimal solutions two multi-objective optimization techniques, 

namely, GA and IHS, based on the powerful NSGA-II procedure are developed. 

Although the two approaches should be able to converge the near true Pareto-optimal 
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front, GA and IHS have different performance criteria in terms of speed of 

convergence, and etc. Thus, to draw a comparison between GA and IHS, both of these 

techniques are utilized. The performance analysis of GA and IHS are done by 

calculating factors such as computational time (CT), generational distance (GD), and 

range variance (RV) (Zitzler, Deb, & Thiele, 2000). These quantitative metrics address 

speed of convergence, convergence degree, and sparse-degree of the non-dominated 

solutions respectively. Mungle et al. (2013) have investigated the performance of 

multi-objective genetic algorithm, fuzzy clustering based genetic algorithm, and 

combined scheme-based multi-objective particle swarm optimization, concluding that 

the fuzzy clustering based genetic algorithm outperforms the other two methods with 

respect to both GD and RV; however the CT is approximately 4 times greater in fuzzy 

clustering based genetic algorithm. Therefore, in this thesis, these performance 

analysis factors are calculated for both GA and IHS, separately. The results indicate 

that IHS algorithm is more efficient in converging the Pareto-optimal front when 

compared with GA. The results are presented in the following chapter. 

4.2 Measuring the Quality 

Mungle et al. (2013) proposed the methodology to quantify the expected quality from 

an activity. The quality is taken as a measurable factor, which can be quantified by 

decomposing the overall quality objectives into its main attributes and criteria relating 

to the project activities. To quantify the expected quality of an activity after it has been 

completed, some quality indicators should be first defined and identified. Since, the 

case problem is related to highway construction, some quality based contractor pre-

qualification factors can be introduced. As an example, a few of these quality 

measurements and their quality indicators are listed in Table 6. 
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Some quality indicators have been determined in a few studies in the context of 

contractor prequalification system as proposed by Anderson and Russell (2001). They 

proposed a framework through which the long term performance of the outcome of the 

project is linked to its quality indicators. This quality indicators can be determined 

based on expert judgments, stakeholders’ expectations and project specifications. 

Subsequently, the identification of the quality indicators should be followed by some 

measurement procedures. The measurement procedure can consists of some 

performance tests and laboratory or on-site experiments. Accordingly, the obtained 

results from these quality measurement approaches can be stored and recorded in a 

similar procedure with time and cost analysis from past construction projects of 

identical nature (Mungle et al., 2013). In order to handle these quality indicators the 

collected quality measurements are then used in AHP method to determine the quality 

of each subcontracting alternative to perform the construction activity as shown in 

Figure 6. 

Table 6. Quality measurement and its indicators 

Construction activity Quality measurement Measurement methods of 

indicators 

Bituminous pavement 

Asphalt content 
Measure through ignition 

oven 

Air void 
Super-pave gyratory 

compactor test 

Void in mineral aggregate 
Super-pave gyratory 

compactor test 

Ride quality Measure by profilometer 

In-place air void 
Measure through use of 

cores 

   

Concrete pavement 

Compressive strength Compression test 

Flexural strength Split cylindrical test 

Ride quality Measure by profilometer 

Thickness 
Measure through use of 

cores 
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Figure 6 proposes the framework to measure the expected quality of a contractor which 

is assigned for an activity. The framework measure the quality based on the previously 

recorded data of project done by the assigned contractor for projects with identical 

nature. For each specific activity, the quality indicators and its measurement methods 

are identified as mentioned earlier. Then by using the AHP method as proposed by  

Mungle et al. (2013) the expected quality of that activity is measured. The AHP is able 

to identify the importance weights for each quality indicator (Aragonés-Beltrán et al., 

2014).  

 
Figure 6. Framework of measuring the expected  

quality of contractors 
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Chapter 5 

5 RESULT AND DISCUSSION 

As the next stage in integrating MCDM methods into multi-objective techniques, the 

obtained Pareto-optimal project scheduling alternatives are ranked based on the ER, 

PROMETHEE, and TOPSIS methods. The novelty of employing the aforementioned 

MCDM methods in the context of project scheduling provides more practical 

solutions. Moreover, the DTCQTPs have been shown to have the potential of being 

solved by integrating both multi-objective optimization techniques and MCDM 

methods. 

The proposed GA and IHS multi-objective optimization algorithms with NSAG-II-

based procedure to solve DTCQTPs were coded in MATLAB R2013a. The GA 

algorithm parameters are set as follows: 𝑛𝑃𝑜𝑝 = 300 with 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 = 1,000, 𝑃𝑐 =

0.9, 𝑃𝑚 = 0.1. The mean program running time, without any attempt to improve the 

computational time, was 7.80 minutes on a personal computer (Intel Core i5-3230M 

with CPU 2.6GHz with 4GB memory), which is an acceptable time in comparison with 

the solution space consisting of almost 3.6 billion possible scenarios, and only 

searching 0.0081% of the total number of potential solutions to obtain the Pareto 

solutions. 

The IHS algorithm parameters are determined based on sensitivity analysis and 

preliminary model runs for sufficient iterations are set as follows: 𝐻𝑀𝑆 =
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40,𝐻𝑀𝐶𝑅 = 0.9, 𝑃𝐴𝑅𝑚𝑖𝑛 = 0.1, 𝑃𝐴𝑅𝑚𝑎𝑥 = 0.8, 𝑁𝐼 = 10,000.The mean program 

running time in this case was 17.41 minutes on the same computer platform. In 

comparison with the GA algorithm the IHS is more time-consuming with almost 9.10 

minutes longer computational time. 

The proposed algorithms were able to find the same Pareto solutions in 16 optimization 

trials out of the total 20 that were performed; this implies that the proposed approach 

is able to attain the same global Pareto optimal solutions with 80% accuracy. In the 

remaining four trials, the Pareto solutions were in a maximum of three points which 

were not global optimum points. This arose due to the stochastic nature of the proposed 

multi-objective optimization models. However, in comparison with the low percentage 

of search space and significant solution space, the accuracy of the algorithms is 

noteworthy.  

In every 16 runs of the algorithm, exactly 105 Pareto solutions were identified; due to 

space limitations they are plotted in two sub-figures (a and b) of Figure 7. To simplify 

reading the data from the figures the Pareto solutions are initially sorted according to 

the time objective, and the solutions with identical time objectives are then sorted with 

respect to the cost objective. Figure 7.a shows the cost objective vs. time of the project, 

while in Figure 7.b the same Pareto solutions are shown in terms of quality vs. time 

objective. The Pareto solutions obtained for the 18 activity network benchmark case 

study of DTCQTP are provided in Appendix. A. This can be used for future research 

studies. 
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Figure 7. Pareto-optimal solutions. (a) cost vs. time; (b) quality vs. time 

The weights of the objectives are in-line with those proposed by Monghasemi et al. 

(2014) which are shown in Figure 8. The weights are 0.3128, 0.3806, and 0.3048 for 

time, cost, and quality objectives, respectively. As indicated in Figure 8 the cost 

objective is the highest important criterion while the quality is the lowest one. This is 

also true in real practice where the monetary issues plays a vital role in evaluating and 

accepting the construction project scheduling alternatives, while the lowest attention 

is paid to the overall quality of the project. On the other hand, the duration of the 
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construction projects can directly affect the overall cost, where any delay in the project 

can add indirect cost to the project. With this respect, these weights are assigned for 

the objectives in all the MCDM methods proposed here, namely, ER, PROMETHEE, 

and TOPSIS, in order to preserve the consistency of the results. In addition, these same 

weights can provide the opportunity of comparing the performance of these proposed 

MCDM methods.  

 
Figure 8. Normalized weights of the objectives, namely, time, cost, and quality 

The obtained 105 Pareto-optimal solutions are shown in two sub-figures, a and b, in 

Figure 9. In Figure 9a, the cost objective is plotted against the duration of the project. 

Accordingly, as the project duration increases the cost of the project is reduced. From 

Figure 9a it is noticed that the from the 1st solution up to the 25th solution there is an 

increase in the overall cost of the project; however, it must be noticed that these 25 

project scheduling alternatives have the same 104 days for the duration of the project, 

and the increase in the cost is due to the increase in the quality. The 1st solution with 

the quality of 81.70% has a lower cost when compared with the 25th solution with the 
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quality of 96.43%, although both of these alternatives have the project duration of 104 

days. 

In real practice, if two different project scheduling alternatives have the same duration, 

the one with higher quality is obviously more costly. On the other hand, any increase 

in the project duration leads into the reduction in the construction cost. With this 

respect, as noticed in Figure 9a, a similar behavior should be expected from the quality 

objective, which can be seen as in Figure 9b. Therefore, where there exist an increasing 

trend in the cost objective among the solution, the same trend can be tracked when the 

quality is considered. 
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Figure 9. Pareto-optimal solutions; (a) cost vs. the number of Pareto-optimal 

solutions; (b) quality vs. the number of Pareto-optimal solutions 

 

To rank the Pareto-optimal solution based on the ER approach, the overall 

performance of each project scheduling alternative is calculated, denoting the degree 

to which each alternative is acceptable when considering all the criteria, namely, time, 

cost, and quality, simultaneously. Thereby, to assess the overall performance of each 

solution, one must provide a hierarchical structure to relate the time, cost, and quality 

attributes with their associated normalized weights to the overall performance criterion 
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(Figure 10). The solutions are then ranked according to the utility scores obtained for 

the overall performance. 

 
Figure 10. Hierarchical structure of overall performance assessment criteria 

Based on the ER approach the 105 obtained Pareto-optimal project scheduling 

alternatives are ranked, and their overall ER assessment scores are shown in Figure 

11. The higher the ER assessment score the better the overall performance of the 

alternative. This is quite interesting that from the 67th solution there is a significant 

drop in the overall ER assessment where the 67th solution has 40.05% overall ER score. 

 
Figure 11. ER evaluation results for the Pareto-optimal solutions 
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The 23rd Pareto solution possesses the highest utility score (64.67%; Figure 11), which 

denotes that this alternative for scheduling the project satisfies the overall performance 

considering all the objectives simultaneously within 64.67%. However, this may not 

be sufficient for a final decision to select the best solution, since each solution needs 

to be investigated to identify its weak and strong points regarding each objective. In 

fact, the ER approach has the capacity to provide DMs with a transparent view of the 

performance of each objective in each criterion. Therefore, in the following steps of 

selecting the best solution, one must more deeply investigate the solutions. 

Among the Pareto solutions, the 2nd, 23rd, 37th, and 71st solutions were selected to show 

how the overall assessment is done. The corresponding utility scores with respect to 

each objective in addition to the overall performance of each solution are plotted in 

Figure 12, where it can be seen that the 23rd solution has the highest utility score in 

both time and quality objectives with 100% and 97.96%, respectively. However, the 

cost objective of this solution has the lowest performance in being only 4.2% cost 

objective. Hence, the 23rd solution might not be desirable to be implemented since its 

performance with respect to the cost objective is extremely low. On the other hand, the 

71st solution has an overall utility score of 40.11%, which is also quite low to be 

selected, and the 37th solution does not have an acceptable performance in terms of the 

cost objective (with only 10.34% for the utility score) either. With a thorough 

investigation, the DMs can select the most appropriate solution with a similar approach 

in an iterative attempt to obtain the solution that fits well with the DMs’ expectations 

(e.g., additional data can be gathered to modify the weights of the objectives). This 

procedure can be continued in order to arrive at a consensus on a Pareto solution to be 

selected. 
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The ER approach facilitates the procedure of investigating the overall performance of 

each solution by providing more details of the solution performance with respect to 

each objective. The preconception of DMs about the performance of each solution 

gives more confidence to the DMs to implement their chosen project schedule, and 

thus more efficiently manage organizational resources. 

 
Figure 12. Utility scores for 2nd, 23rd, 37th, and 71st Pareto solutions with respect to 

each objective 

 

As mentioned earlier, the ER approach is able to provide DMs with informative output 

data indicating the weak points of each alternative at any desired level. In this study, 

we divided the overall performance into five grades viz ‘worst’, ‘poor’, ‘average’, 

‘good’, and ‘best’, which are equally spaced in the interval [0,1]. These five grades 

can be used to reflect the combined belief degree 𝛽𝑛 (Figure 13). On this basis, the 

overall performance of the 23rd solution is believed to belong to the ‘best’ grade with 

a degree of 61.56%. On the other hand, the 23rd solution has the highest degree of 

belief of the ‘worst’ grade with 30.22%, in comparison with the 2nd, 37th, and 71st 

solutions with degrees of belief for the ‘worst’ grade of 0.0%, 22.81% and 15.17%, 
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respectively. As a result, the DMs might decide not to select the 23rd solution as the 

best solution although it has the highest utility score. In this case, the DMs can apply 

improvement strategies to better the performance of the 23rd solution or start 

investigating another solution. Figure 12 and Figure 13 show it to be more advisable 

to implement the 2nd solution since it has an acceptable utility score with respect to the 

overall performance (61.19%), and its combined degrees of belief are high in terms of 

the ‘average’ and ‘best’ grades (53.55% and 27.64%, respectively) with a zero value 

for the ‘worst’ grade. Since there is no incomplete assessment, 𝛽𝐻= 0. 

 
Figure 13. Combined degrees of belief (βn) for 2nd, 23rd, 37th, and 71st Pareto 

solutions with respect to the overall performance 

 

To summarize, the ER approach is highly efficient in identifying the performance of 

each alternative, and it enables the DMs to form a transparent and rational judgment 

about the best alternative. Using the ER approach in construction project scheduling 

provides more efficient management strategies, and the DMs can be more confident 

about their selected alternative since the DMs have a clear understanding of the 
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performance of each alternative. In the present case study, we observed that although 

the 23rd solution had the highest utility score, it was not advisable to select it as the 

best solution since it has a very high degree of belief in the ‘worst’ grade. With further 

investigation, the 2nd solution was chosen to be more rational and practicable for the 

DMs. 

The same procedure for ranking the obtained Pareto-optimal project scheduling 

alternatives have been done based on the PROMETHEE approach. According to 

Figure 14, the 23rd solution has the highest PROMETHEE score, with 0.114 while the 

101st solution has the lowest PROMETHEE score of -0.164. Both ER and 

POROMTHEE approaches selected the 23rd and 101st project scheduling alternatives 

as the best and worst choices. Therefore, since both MCDM methods have led into the 

same solution it is ca be concluded that both of these methods are consistent; however 

the ER approach was able to provide the DMs with exhaustive further evaluation 

results. On the other hand, the ER approach is more complicated than the 

PROMETHEE method where the later one is more user-friendly and is applicable in 

various fields of knowledge. 
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Figure 14. PROMETHEE ranking for the Pareto-optimal project scheduling 

alternatives 

 

The TOPSIS procedure although it is quite more simpler than ER and PROMETHEE 

MCDM methods, the results vary from those two, where the 24th solution is selected 

by the TOPSIS method as the best optimal project scheduling alternative. According 

to Figure 15, as the overall performance of the solutions declines as the number of 

solutions increases. The 24th and 103rd solution with 0.7 and 0.3 calculated TOPSIS 

scores, respectively, are the best and worst project scheduling choices among the 

Pareto-optimal solutions. 
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Figure 15. TOPSIS ranking for the Pareto-optimal project scheduling alternatives 

5.1 Comparing the Three MCDM Methods 

The 23rd, 24th, 22nd, and 41st project scheduling alternatives, as the four best solutions 

selected by the MCDM methods have been compared with each other as shown in 

Table 7. Accordingly, the ER and PROMETHEE methods are seemed to have 

identified 23rd, 24th, 22nd, and 41st solutions as the best solutions, respectively. 

Therefore the ER and PROMETHEE methods are seemed to have similar evaluation 

procedure to rank the alternatives. However, the TOPSIS method, has chosen 24th, 

23rd, 22nd, and 41st as the best solutions, respectively. 
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Table 7. Evaluation results of 23rd, 24th, 22nd and 41st Pareto-optimal solutions which 

are the four best project scheduling alternatives 

 MCDM methods Evaluation of the best 4 solutions (%) 

based on:  ER PROMETHEE TOPSIS 

# Overall Phi CC ER PROMETHEE TOPSIS 

23 64.67 0.113 0.694 100.0 100.0 98.8 

24 64.02 0.108 0.702 99.0 95.2 100.0 

22 62.65 0.102 0.685 96.9 90.3 97.5 

41 62.15 0.093 0.454 96.1 82.1 64.6 

 

In order to graphically illustrate the differences in the evaluation of the ER, 

PROMETHEE, and TOPSIS methods, in Figure 16 the overall assessment score 

obtained from each MCDM method has been plotted for 23rd, 24th, 22nd, and 41st 

solutions, respectively. Referring to Figure 16, the evaluation of the 23rd solution does 

not have too much difference for the ER, PROMETHEE, and TOPSIS methods. 

However, as the solutions’ overall assessment scores fall down, it seems that the 

difference between these MCDM methods assessment scores increase, according to 

the 41st solution. However, in general not a specific trend can be tracked down, for 

example in the 24th and 22nd solutions the ER and TOPSIS evaluation scores do not 

differ significantly, while the PROMETHEE method has lower evaluation scores in 

the both cases. On the other hand, according to 23rd and 41st solutions the ER and 

PROMETHEE evaluation scores are rather too similar, while in these cases the 

TOPSIS is different. Therefore, there is no specific trend to be observed. 
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Figure 16. Comparison of 23rd, 24th, 22nd and 41st Pareto-optimal solutions which are 

the four best project scheduling alternatives 

 

Furthermore, in order to investigate the difference between the analysis procedures of 

the ER, PROMETHEE and TOPSIS, other 4 solutions, 23rd, 48th, 60th, and 105th 

Pareto-optimal solutions, where selected. They are chosen randomly from the whole 

range of the highest and lowest ranked solutions. As listed in Table 8, all the three 

MCDM methods have ranked the 23rd, 48th, 60th, and 105th solutions from the best to 

the worst rank solutions. This concludes that the ER, PROMMETHEE and TOPSIS 

methods have identical overview to identify the whole range of the highest and lowest 

rank possible. 
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Table 8. Evaluation results of 23rd, 48th, 60th and 105th Pareto-optimal solutions 

 MCDM methods Evaluation of the selected 4 solutions 

(%) based on:  ER PROMETHEE TOPSIS 

# Overall Phi CC ER PROMETHEE TOPSIS 

23 64.67 0.113 0.694 100.0 100.0 98.8 

48 61.38 0.087 0.500 94.9 90.6 71.2 

60 60.42 0.073 0.421 93.4 85.6 60.0 

105 37.71 -0.135 0.305 58.3 10.2 43.9 

 

Further investigations show that the PROMETHEE approach has ranked the 105th 

solution with -0.135 with a corresponding value of 10.2%, while the ER and TOPSIS 

methods have evaluated the 48th solution with 58.3% and 43.9%, respectively. 

Therefore, PROMETHEE approach in contrast with the ER and TOPSIS, degrades the 

lower ranked solution more significantly. This means that the DMs might only rely on 

the 105th solution by 10.2% if the PROMETHEE was used, while in contrast the ER 

and TOPSIS methods provide the DMs with 58.3% and 43.9% levels of confidence, 

respectively. This is illustrated in Figure 17 in which there a steep drop in the 

PROMETHEE evaluation score as in the 105th solution. 

In addition, the comparison of the ER and TOPSIS reveals that although 48th, 60th, and 

105th solutions with 94.9%, 93.4%, and 58.3% ER evaluation scores and 71.2%, 60%, 

43.9% TOPSIS evaluation scores, respectively, as in Table 8, the TOPSIS method 

provides a lower level of  confidence for the DMs when the rank of the solutions gets 

poorer. This can be noticed in Figure 17, where in every cases the TOPSIS score is 

lower than the ER evaluation score. 
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Figure 17. Comparison of 23rd, 48th, 60th and 105th Pareto-optimal solutions 

5.2 Comparison of the Multi-Objective Optimization Models 

To compare the efficiency of the multi-objective optimization models of GA and IHS 

a comparison is drawn by obtaining the performance of the proposed method. A 

benchmark example of DTCQTP which is solved by various approaches viz multi-

objective genetic algorithm (Feng et al., 1997), fuzzy clustering based genetic 

algorithm (Mungle et al., 2013), and combined scheme-based multi-objective particle 

swarm optimization (Zhang & Xing, 2010) is considered. The performance analysis 

can be done by investigating the factors such as computational time (CT), generational 

distance (GD), and range variance (RV) (Zitzler et al., 2000). These quantitative 

metrics address speed of convergence, convergence degree, and sparse-degree of the 

non-dominated solutions respectively. Mungle et al. (2013) have investigated the 

performance of multi-objective genetic algorithm, fuzzy clustering based genetic 

algorithm, and combined scheme-based multi-objective particle swarm optimization, 

concluding that the fuzzy clustering based genetic algorithm outperforms the other two 
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methods with respect to both GD and RV; however the CT is approximately 4 times 

greater in fuzzy clustering based genetic algorithm. 

The GD parameter measures the speed of the algorithm in converging the near optimal 

solutions. Based on the definition given by Zitzler et al. (2000) it is defined as in 

Equation (20). The number of solutions in the first front in the 𝑙th generation is denoted 

by |𝐹1
𝑙|. (𝑑𝑒)𝑖 is the minimum 1-norm distance of the 𝑖th solution from the solutions 

in the true pareto solutions (𝐹1
𝑡𝑟𝑢𝑒), where 𝑖 ∈ {1,2, … , |𝐹1

𝑙|}, and it is calculated 

according to Equation (21). The true Pareto solutions are considered to be the same as 

the results reported by Geem (2010) which was also used as the basis of comparison 

by Mungle et al. (2013). 𝑓𝑘
𝑖 and 𝑓𝑘

𝑗
 are the corresponding values for the 𝑘th objective 

function of 𝑖th and 𝑗th solution respectively where 𝑘 ∈ {1,2, … , 𝑜𝑏𝑗}. Here, since only 

two objectives exist, i.e. time and cost, 𝑘 ∈ {1,2}. The RV parameter is calculated 

based on Equation (22) with all the same parameters of the GD except for �̿�𝑒 which is 

simply the average of all (𝑑𝑒)𝑖. A smaller value for both GD and RV indicates a higher 

convergence degree and diversity degree respectively. A zero value for GD means 

absolute convergence and for RV indicates uniform distribution of Pareto solutions 

(Zitzler et al., 2000). The CT parameter is the duration that the algorithm takes to 

obtain the final results. This parameter is sensitive to the computer environment and 

hardware configurations and therefore the comparison needs to be done in the same 

computer environment. 

 

 𝐺𝐷 = √
∑ (𝑑𝑒)𝑖

2|𝐹1
𝑙|

𝑖=1

|𝐹1
𝑙|

2  (20) 

 (𝑑𝑒)𝑖 = {𝑑𝑒| min{∑ |𝑓𝑘
𝑖 − 𝑓𝑘

𝑗
|

𝑜𝑏𝑗
𝑘=1 }  , 𝑗 = 1,2, … , |𝐹1

𝑡𝑟𝑢𝑒|} (21) 
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 𝑅𝑉 = √
∑ (�̿�𝑒 − (𝑑𝑒)𝑖)

2|𝐹1
𝑙|

𝑖=1

|𝐹1
𝑙| − 1

 (22) 

 �̿�𝑒 =
∑ (𝑑𝑒)𝑖

|𝐹1
𝑙|

𝑖=1

|𝐹1
𝑙|

 (23) 

 

By considering the same algorithm parameters by which the previous benchmark in 

DTCQTP was solved the performance analysis parameters are obtained as in Table 9. 

The GD and RV parameters are significantly lower for the GA and IHS used in this 

thesis with an average values of 2.63, 4.13 and 2.04, 3.23, respectively, out of 20 runs 

of the algorithm. With respect to this, both GA and IHS is demonstrated to be highly 

efficient in converging the near optimal solutions and in diversity of the Pareto 

solutions.  

Although the IHS algorithm outperforms the GA, fuzzy clustering based genetic 

algorithm, combined scheme-based multi-objective particle swarm optimization, and 

multi-objective genetic algorithm both GD and RV parameters, its computational time 

is slightly greater than the later algorithms. GA has a greater computational time in 

comparison with combined scheme-based multi-objective particle swarm optimization 

and multi-objective genetic algorithm, and meanwhile it has a lower computational 

time in comparison with IHS, and fuzzy clustering based genetic algorithm. In general, 

both GA and IHS approaches seem to be significantly more efficient in finding the 

optimal solutions based on the performance analysis. 
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Table 9. Performance analysis metrics values 

Algorithm Performance analysis metrics 

Generational 

distance (GD) 

Range 

variance 

(RV) 

Computational time  

(CT, minutes) 

fuzzy clustering based genetic 

algorithm 
3.12 5.72 14.12 

combined scheme-based 

multi-objective particle 

swarm optimization 

4.73 9.58 3.42 

multi-objective genetic 

algorithm 
5.68 10.16 4.43 

IHS* 2.04 3.23 17.41 

GA (NSGA-II)* 2.63 4.13 7.80 

*The proposed methodology of this study. 
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Chapter 6 

6 CONCLUSION AND RECOMMENDATION 

This thesis aims to provide an exhaustive framework to improve the construction 

project scheduling by incorporating multi-objective optimization techniques, e.g., GA 

and IHS, which are integrated with MCDM methods, namely, ER, PROMETHEE, and 

TOPSIS. In order to investigate the viability of all these methods in construction 

project scheduling a benchmark case problem adapted from Feng et al. (1997) was 

solved. 

The obtained results show that, first of all, the MCDM methods are highly efficient in 

ranking the project scheduling alternatives, and the DMs can be provided with higher 

level of confidence to implement the selected solution in real practice. Since, multi-

objective optimization techniques, such as GA and IHS which are used here, are able 

to obtain a set of non-dominated solutions, being called as the Pareto-optimal 

solutions, there is the need to take one more step ahead to select the best optimal 

solution among the achieved Pareto-optimal set of solutions. The obtained results of 

this thesis, demonstrate that the MCDM methods can be highly efficient in ranking the 

Pareto-optimal solutions. 

Secondly, the GA and IHS algorithms are compared against each other to identify 

which multi-objective optimization technique is more efficient to be used in project 

scheduling problem. This comparison revealed that although the IHS algorithm is more 
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time-consuming in converging the true Pareto-optimal solutions, higher performance 

is achieved, when compared with GA. However, both of these techniques were able to 

identify the same 105 Pareto-optimal solutions while GA was faster in terms of 

computational effort. 

Throughout the literature, there exist various optimization algorithms which are all 

efficient in reaching the global Pareto-optimal solutions. Some of these algorithms 

might be more suitable for a solving a case problem while the others might not be 

easily adaptable. Searching through the literature of DTCQTPs reveals that various 

and different types of algorithm have been already used, when GA is the most 

exploited optimization technique. Here, the GA was also shown to be a faster approach 

in comparison with the newly-inspired IHS algorithm. 

Thirdly, the ER approach is rather a complex MCDM method while the TOPSIS is too 

simple in terms of mathematical formulations. On the other hand, the PROMETHEE 

approach which is simpler in comparison with the ER method, has given a similar rank 

for the solutions. Thus, it is proposed that the PROMETHEE approach can be a highly 

efficient approach in evaluating the solutions. Therefore, in DTCQTPs the 

PROMETHEE approach can be efficiently used in comparison with the more complex 

method of ER. The TOPSIS method although it is very simple, still it is not as efficient 

as PROMETHEE and ER approaches. 

Fourthly, the ER approach can evaluate each solution without the need of comparison 

with any other solution. This provides each specific solution with a final score which 

does not depend on the other available solutions. Thus, the DMs are more confident 

with the selected solution of the ER approach rather than those selected by 
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PROMETHEE and TOPSIS. The ER approach although it is more complex, it has 

some advantages over the other techniques as it provides a detailed scoring and ranking 

for each solution in terms of each objective. Thus, the DMs are able to identify the 

weak points of each solution and if possible they can apply some improvement 

strategies. For example, if any solution shows that it has a poor performance in the one 

objective, the DMs can come up with some strategies, e.g., additional resource 

assignment for a specific period of project time to overcome the weak points more 

efficiently. 

In the literature, there exist various optimization algorithms which are or have been 

used already to tackle with DTCQTPs. These techniques might be able to reach the 

global Pareto-optimal solutions, however they can only form the Pareto frontier utmost 

without any further guidance to select the best choice among possible and available 

alternatives. The integration of MCDM methods with multi-objective optimization 

methods has been discussed in other fields such as water resource management, forest 

management, green energy planning, and etc. Hence, this thesis answers specifically 

to the question that why not using MCDM methods in construction project scheduling 

in the context of DTCQTPs. The framework proposed here, is able to establish a 

successful linkage between the optimization algorithms and MCDM methods. This 

enables the DMs to move into a further step where the decision making process of 

selecting the best alternative is done through a comprehensive framework. 

Lastly, the ER approach ranks the solutions with a higher confidence level in 

comparison with both PROMETHEE and TOPSIS methods. Therefore, in the later 

approaches, a poor ranked solution might have a greater chance of being selected in 

comparison with the ER approach. For instance, in all the obtained results, the ER 
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approach has ranked the solutions with a higher value than the other two methods. 

However, this merely due to the fact that the ER approach does not depend on pair-

wise comparison. 

6.1 Recommendations 

Incorporating MCDM methods to more efficiently schedule the construction projects 

can be beneficial, especially in large-scale projects. The author recommend the 

practitioners to improve the quality of their decisions by applying MCDM methods. 

To overcome some limitations of this study, and as future directions for researchers or 

experts, the uncertainties in modeling the project scheduling problems can be 

addressed by using fuzzy-based MCDM methods, such as fuzzy PROMETHEE or 

fuzzy ER. Lastly, computer-aided decision making processes discard the current error-

prone decision making procedures. 

The highly efficient performance in solving DTCQTPs obtained using the ER 

approach provided the authors of this study with the aspiration of developing a 

computer system to emulate the decision-making ability of DMs using the ER 

approach. Another idea is to establish approaches that can help construction 

contractors and decision-makers to develop more efficient subcontracting plans during 

the bidding process via the development of multiple criteria assessment procedures. 

This would be useful because the bidding and evaluation process of a construction 

project can be a tedious and time-consuming process with no well-established criteria 

and approaches. 
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Appendix A: 105 Pareto-optimal solutions obtained from GA and IHS and 

corresponding decison variables 

# 

Objectives Decision Variables 

Time 

(day) 

Cost 

($) 

Quality  

(%) 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

1 104 147230 81.70 1 3 2 2 3 1 2 1 1 1 1 1 2 1 1 3 1 1 

2 104 148080 82.17 1 2 2 2 3 1 2 1 1 1 1 1 2 1 1 2 1 1 

3 104 148525 82.83 1 3 1 2 3 1 2 2 1 1 1 1 1 1 1 3 1 1 

4 104 150980 84.33 1 1 1 2 3 1 2 1 1 1 1 1 1 1 1 1 1 1 

5 104 152480 84.60 1 1 1 2 2 1 2 1 1 1 1 1 1 1 1 2 1 1 

6 104 152480 84.60 1 1 1 2 2 1 2 1 1 1 1 1 1 1 1 2 1 1 

7 104 153480 84.87 1 1 1 2 2 1 2 1 1 1 1 1 1 1 1 1 1 1 

8 104 153480 84.87 1 1 1 2 2 1 2 1 1 1 1 1 1 1 1 1 1 1 

9 104 155130 85.93 1 2 1 2 3 1 1 1 1 1 1 1 1 1 1 3 1 1 

10 104 155380 86.20 1 2 1 2 3 1 1 1 1 1 1 1 1 1 1 2 1 1 

11 104 155980 86.57 1 1 1 2 3 1 1 1 1 1 1 1 1 1 1 2 1 1 

12 104 156980 86.83 1 1 1 2 3 1 1 1 1 1 1 1 1 1 1 1 1 1 

13 104 156980 86.83 1 1 1 2 3 1 1 1 1 1 1 1 1 1 1 1 1 1 

14 104 158480 87.10 1 1 1 2 2 1 1 1 1 1 1 1 1 1 1 2 1 1 

15 104 159480 87.37 1 1 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 

16 104 159480 87.37 1 1 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 

17 104 161980 87.60 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

18 104 164530 87.77 1 3 1 1 3 1 1 1 1 1 1 1 1 1 1 3 1 1 

19 104 164530 87.77 1 3 1 1 3 1 1 1 1 1 1 1 1 1 1 3 1 1 

20 104 165980 88.60 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 2 1 1 

21 104 167280 90.17 1 3 1 1 2 1 1 1 1 1 1 1 1 1 1 2 1 1 

22 104 168480 93.93 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 2 1 1 

23 104 169480 95.80 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 

24 104 171980 96.43 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

25 104 171980 96.43 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

26 105 145880 78.77 2 4 2 2 3 1 2 3 1 1 2 1 2 2 1 4 1 1 

27 105 146550 80.67 2 3 2 2 3 1 2 1 1 1 1 1 2 2 1 3 1 1 

28 105 155900 86.23 2 1 1 2 3 1 1 1 1 1 1 1 1 1 1 2 1 1 

29 105 165300 87.90 2 2 1 1 3 1 1 1 1 1 1 1 1 1 1 2 1 1 

30 105 167795 90.43 2 2 1 1 2 1 1 2 1 1 1 1 1 1 1 2 1 1 

31 105 169400 94.27 2 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 

32 106 145800 78.63 3 4 2 2 3 1 2 3 1 1 2 1 2 2 1 4 1 1 

33 106 145800 78.63 3 4 2 2 3 1 2 3 1 1 2 1 2 2 1 4 1 1 

34 106 145815 78.90 3 4 2 2 3 1 2 2 1 1 2 1 2 2 1 4 1 1 

35 106 154365 84.87 3 3 1 2 3 1 1 2 1 1 1 1 1 1 1 3 1 1 

36 106 166865 89.03 3 3 1 1 2 1 1 2 1 1 1 1 1 1 1 3 1 1 

37 107 165830 88.13 1 2 1 1 3 1 1 1 2 1 1 1 1 1 1 2 1 1 

38 107 168330 92.67 1 2 1 1 2 1 1 1 2 1 1 1 1 1 1 2 1 1 

39 108 140160 81.33 1 3 2 2 3 2 2 1 1 1 1 1 2 1 1 2 1 1 

40 108 140760 81.53 1 2 2 2 3 2 2 1 1 1 1 1 2 1 1 2 1 1 

41 108 141210 82.60 1 3 1 2 3 2 2 1 1 1 1 1 1 1 1 3 1 1 
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# 

Objectives Decision Variables 

Time 

(day) 
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($) 

Quality  

(%) 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

42 108 141810 82.80 1 2 1 2 3 2 2 1 1 1 1 1 1 1 1 3 1 1 

43 108 142060 83.07 1 2 1 2 3 2 2 1 1 1 1 1 1 1 1 2 1 1 

44 108 142660 83.43 1 1 1 2 3 2 2 1 1 1 1 1 1 1 1 2 1 1 

45 108 143660 83.70 1 1 1 2 3 2 2 1 1 1 1 1 1 1 1 1 1 1 

46 108 143660 83.70 1 1 1 2 3 2 2 1 1 1 1 1 1 1 1 1 1 1 

47 108 145160 83.97 1 1 1 2 2 2 2 1 1 1 1 1 1 1 1 2 1 1 

48 108 145160 83.97 1 1 1 2 2 2 2 1 1 1 1 1 1 1 1 2 1 1 

49 108 149060 85.83 1 2 1 2 3 2 1 1 1 1 1 1 1 1 1 1 1 1 

50 108 151160 86.47 1 1 1 2 2 2 1 1 1 1 1 1 1 1 1 2 1 1 

51 108 157810 86.93 1 2 1 1 3 2 1 1 1 1 1 1 1 1 1 3 1 1 

52 108 157810 86.93 1 2 1 1 3 2 1 1 1 1 1 1 1 1 1 3 1 1 

53 108 158660 87.57 1 1 1 1 3 2 1 1 1 1 1 1 1 1 1 2 1 1 

54 108 159660 87.83 1 1 1 1 3 2 1 1 1 1 1 1 1 1 1 1 1 1 

55 108 161160 88.10 1 1 1 1 2 2 1 1 1 1 1 1 1 1 1 2 1 1 

56 108 161160 88.10 1 1 1 1 2 2 1 1 1 1 1 1 1 1 1 2 1 1 

57 108 162160 88.37 1 1 1 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 

58 109 139230 80.03 2 3 2 2 3 2 2 1 1 1 1 1 2 2 1 3 1 1 

59 109 139230 80.03 2 3 2 2 3 2 2 1 1 1 1 1 2 2 1 3 1 1 

60 109 139480 80.30 2 3 2 2 3 2 2 1 1 1 1 1 2 2 1 2 1 1 

61 110 138480 78.00 3 4 2 2 3 2 2 3 1 1 2 1 2 2 1 4 1 1 

62 110 147045 84.23 3 3 1 2 3 2 1 2 1 1 1 1 1 1 1 3 1 1 

63 113 138455 77.57 2 4 2 2 3 2 2 2 1 1 2 1 2 2 1 4 2 1 

64 113 138555 78.37 2 4 2 2 3 2 2 2 1 1 1 1 2 2 1 4 2 1 

65 114 138360 77.17 3 4 2 2 3 2 2 3 1 1 2 1 2 2 1 4 2 1 

66 114 138375 77.43 3 4 2 2 3 2 2 2 1 1 2 1 2 2 1 4 2 1 

67 128 125690 68.13 2 4 3 3 4 2 3 3 2 2 2 2 3 3 1 5 2 2 

68 128 126405 69.10 2 4 3 3 4 2 3 2 2 2 2 2 3 2 1 4 2 2 

69 128 126405 69.10 2 4 3 3 4 2 3 2 2 2 2 2 3 2 1 4 2 2 

70 128 127205 69.70 2 4 2 3 4 2 3 2 2 2 2 2 3 2 1 4 2 2 

71 128 127505 69.83 2 3 2 3 4 2 3 2 2 2 2 2 3 2 1 4 2 2 

72 128 128005 70.40 2 3 2 3 4 2 3 2 2 2 2 2 3 2 1 2 2 2 

73 128 128605 70.60 2 2 2 3 4 2 3 2 2 2 2 2 3 2 1 2 2 2 

74 128 128605 70.60 2 2 2 3 4 2 3 2 2 2 2 2 3 2 1 2 2 2 

75 128 129405 70.83 2 3 2 3 4 2 3 2 2 2 2 2 2 2 1 2 2 2 

76 128 130005 71.03 2 2 2 3 4 2 3 2 2 2 2 2 2 2 1 2 2 2 

77 128 132005 71.33 2 2 2 3 4 2 2 2 2 2 2 2 2 2 1 2 2 2 

78 128 134105 72.00 2 4 2 2 4 2 3 2 2 2 2 2 2 2 1 2 2 2 

79 128 134755 72.07 2 2 2 2 4 2 3 2 2 2 2 2 2 2 1 3 2 2 

80 128 135005 72.33 2 2 2 2 4 2 3 2 2 2 2 2 2 2 1 2 2 2 

81 128 136405 72.43 2 3 2 2 4 2 2 2 2 2 2 2 2 2 1 2 2 2 

82 128 137005 72.63 2 2 2 2 4 2 2 2 2 2 2 2 2 2 1 2 2 2 

83 128 137005 72.63 2 2 2 2 4 2 2 2 2 2 2 2 2 2 1 2 2 2 

84 129 125148 66.83 3 5 3 3 4 2 3 4 2 2 3 2 3 3 1 5 2 2 
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85 129 125148 66.83 3 5 3 3 4 2 3 4 2 2 3 2 3 3 1 5 2 2 

86 134 114705 69.13 2 4 2 3 4 3 3 2 2 2 2 2 3 2 1 4 2 2 

87 134 116105 70.03 2 2 2 3 4 3 3 2 2 2 2 2 3 2 1 2 2 2 

88 134 116905 70.27 2 3 2 3 4 3 3 2 2 2 2 2 2 2 1 2 2 2 

89 134 116905 70.27 2 3 2 3 4 3 3 2 2 2 2 2 2 2 1 2 2 2 

90 134 117505 70.47 2 2 2 3 4 3 3 2 2 2 2 2 2 2 1 2 2 2 

91 134 118905 70.57 2 3 2 3 4 3 2 2 2 2 2 2 2 2 1 2 2 2 

92 134 119505 70.77 2 2 2 3 4 3 2 2 2 2 2 2 2 2 1 2 2 2 

93 134 121905 70.80 2 3 2 3 3 3 3 2 2 2 2 2 2 2 1 2 2 2 

94 134 121905 70.80 2 3 2 3 3 3 3 2 2 2 2 2 2 2 1 2 2 2 

95 134 122505 71.00 2 2 2 3 3 3 3 2 2 2 2 2 2 2 1 2 2 2 

96 134 123605 71.10 2 2 2 3 2 3 3 2 2 2 2 2 3 2 1 2 2 2 

97 134 123605 71.10 2 2 2 3 2 3 3 2 2 2 2 2 3 2 1 2 2 2 

98 134 124405 71.33 2 3 2 3 2 3 3 2 2 2 2 2 2 2 1 2 2 2 

99 134 125005 71.53 2 2 2 3 2 3 3 2 2 2 2 2 2 2 1 2 2 2 

100 134 129505 71.80 2 2 2 2 3 3 2 2 2 2 2 2 2 2 1 2 2 2 

101 134 131155 71.87 2 3 2 2 2 3 2 2 2 2 2 2 2 2 1 3 2 2 

102 135 112500 65.50 3 5 3 3 4 3 3 5 3 2 3 2 3 3 1 5 2 2 

103 135 112500 65.50 3 5 3 3 4 3 3 5 3 2 3 2 3 3 1 5 2 2 

104 135 112580 65.97 3 5 3 3 4 3 3 3 3 2 3 2 3 3 1 5 2 2 

105 135 113640 67.23 3 4 3 3 4 3 3 3 2 2 3 2 3 3 1 4 2 2 
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Appendix B: Ranks of the Pareto-optimal solutions according to the ER, 

PROMETHEE, and TOPSIS methods 
ER PROMETHEE TOPSIS 

# Overall # Phi # CC 

23 64.67 23 0.113309 24 0.702331 

24 64.02 24 0.107841 25 0.702331 

25 64.02 25 0.107841 38 0.700458 

22 62.65 22 0.102292 31 0.696016 

41 62.15 4 0.098213 23 0.694248 

44 62.07 3 0.09639 22 0.68501 

43 62.02 11 0.095275 30 0.673613 

42 61.90 10 0.094802 36 0.668828 

45 61.87 5 0.094051 37 0.665498 

46 61.87 6 0.094051 21 0.663674 

4 61.77 9 0.093659 57 0.655748 

3 61.62 44 0.093606 20 0.649581 

39 61.52 43 0.093215 29 0.648636 

47 61.38 12 0.093153 55 0.648351 

48 61.38 13 0.093153 56 0.648351 

31 61.30 31 0.093021 18 0.638047 

49 61.28 41 0.092986 19 0.638047 

40 61.28 2 0.092892 54 0.637673 

2 61.19 1 0.092664 53 0.629652 

5 61.16 42 0.092072 17 0.624349 

6 61.16 7 0.092011 51 0.619502 

1 61.16 8 0.092011 52 0.619502 

10 60.93 45 0.091566 15 0.609072 

11 60.90 46 0.091566 16 0.609072 

9 60.83 14 0.088991 14 0.601361 

7 60.82 47 0.087404 12 0.590294 

8 60.82 48 0.087404 13 0.590294 

50 60.73 39 0.087078 28 0.584486 

12 60.50 15 0.086951 11 0.582078 

13 60.50 16 0.086951 10 0.575481 

58 60.45 40 0.086164 9 0.571843 

59 60.45 49 0.086033 35 0.568963 

60 60.42 28 0.084698 50 0.568859 

28 59.84 50 0.082344 7 0.552607 

14 59.73 27 0.079002 8 0.552607 

27 59.64 17 0.078219 49 0.547389 

15 59.30 21 0.076701 5 0.54346 

16 59.30 60 0.073416 6 0.54346 

62 59.08 58 0.072274 4 0.530466 

61 58.89 59 0.072274 62 0.527125 

35 58.65 35 0.071971 47 0.499751 

26 58.34 20 0.069406 48 0.499751 

17 57.80 18 0.068785 3 0.499708 

21 57.65 19 0.068785 2 0.490724 

34 57.62 30 0.068495 45 0.48478 

38 57.51 38 0.06822 46 0.48478 

32 57.39 26 0.06634 1 0.480037 

33 57.39 62 0.065243 44 0.473876 

53 57.19 34 0.059535 27 0.46957 

51 57.08 53 0.059494 43 0.465449 

52 57.08 29 0.058437 42 0.460796 
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ER PROMETHEE TOPSIS 

# Overall # Phi # CC 

30 56.86 51 0.057879 41 0.453782 

54 56.82 52 0.057879 34 0.451807 

64 56.30 32 0.057395 32 0.449329 

18 56.21 33 0.057395 33 0.449329 

19 56.21 54 0.057373 26 0.447585 

55 56.13 55 0.053211 40 0.439743 

56 56.13 56 0.053211 39 0.432605 

20 56.00 36 0.052875 82 0.42168 

63 55.82 57 0.051171 83 0.42168 

57 55.77 61 0.050748 60 0.420515 

29 55.14 37 0.04178 58 0.415657 

36 54.71 64 0.029023 59 0.415657 

66 54.71 63 0.022919 81 0.415319 

65 54.53 66 0.013974 64 0.409862 

37 53.75 65 0.011916 101 0.405848 

87 41.37 72 -0.11338 66 0.403574 

88 41.20 73 -0.11429 80 0.403391 

89 41.20 74 -0.11429 63 0.401176 

90 41.09 87 -0.11475 65 0.400942 

86 40.99 70 -0.1157 79 0.399502 

91 40.33 75 -0.11581 100 0.394557 

68 40.29 71 -0.11591 78 0.393887 

69 40.29 86 -0.11616 61 0.39303 

92 40.22 88 -0.11619 77 0.373046 

70 40.21 89 -0.11619 99 0.365656 

72 40.21 76 -0.11672 98 0.361151 

71 40.11 90 -0.1171 76 0.356266 

67 40.05 68 -0.1172 96 0.355518 

73 39.97 69 -0.1172 97 0.355518 

74 39.97 67 -0.12208 75 0.350666 

75 39.63 91 -0.12223 95 0.34926 

76 39.39 77 -0.12276 93 0.345178 

93 38.70 92 -0.12314 94 0.345178 

94 38.70 78 -0.12621 73 0.343576 

95 38.59 80 -0.12733 74 0.343576 

77 38.35 79 -0.12839 72 0.338199 

96 38.01 81 -0.13246 92 0.333911 

97 38.01 93 -0.13308 71 0.331417 

84 38.01 94 -0.13308 91 0.330324 

85 38.01 82 -0.13337 70 0.328669 

98 37.81 83 -0.13337 90 0.324213 

105 37.71 95 -0.13399 88 0.320991 

99 37.70 105 -0.13528 89 0.320991 

78 37.53 96 -0.13785 68 0.320132 

80 37.22 97 -0.13785 69 0.320132 

79 37.18 84 -0.13853 87 0.317011 

104 36.58 85 -0.13853 67 0.310733 

81 36.43 98 -0.13936 84 0.308992 

82 36.20 99 -0.14028 85 0.308992 

83 36.20 104 -0.14107 86 0.308517 

102 35.98 102 -0.14456 105 0.30535 

103 35.98 103 -0.14456 104 0.299038 

100 35.10 100 -0.15717 102 0.297669 
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ER PROMETHEE TOPSIS 

# Overall # Phi # CC 

101 34.11 101 -0.1636 103 0.297669 

 

 


