

Visualization of 3D Object on Planar Screen

Using View Angle

Zuhir Badr A. Badr

Submitted to the

Institute of Graduate Studies and Research

in partial fulfillment of the requirements for the degree of

Master of Science

in

Computer Engineering

Eastern Mediterranean University

July 2015

Gazimağusa, North Cyprus

Approval of the Institute of Graduate Studies and Research

 Prof. Dr. Serhan Çiftçioğlu

 Acting Director

I certify that this thesis satisfies the requirements as a thesis for the degree of Master

of Science in Computer Engineering.

 Prof. Dr. Işık Aybay

 Chair, Department of Computer Engineering

We certify that we have read this thesis and that in our opinion it is fully adequate in

scope and quality as a thesis for the degree of Master of Science in Computer

Engineering.

 Asst. Prof. Dr. Mehmet Bodur

 Supervisor

1. Asst. Prof. Dr. Adnan Acan

2. Asst. Prof. Dr. Mehmet Bodur

3. Asst. Prof. Dr. Ahmet Ünveren

Examining Committee

http://cmpe.emu.edu.tr/unveren/

iii

ABSTRACT

The aim of this thesis is to develop and demonstrate a practical method to support 3D

perception of stationary objects in a virtual space through the motion of a two

dimensional projection image. The structure of a human eye is naturally equipped by

some tools to perceive the depth from several hints such as the size of image

compared to the its expected size, and the sharpness of the image at different focal

lengths of the lens, the parallax difference in the images from the left and right eyes,

and, if the image moves, by comparing the images at different view angles.

In this thesis, the movement of the observer is detected by a software using the video

camera frames, and the expected 2D projection of the virtual objects is transformed

for the detected position of the observer to support a depth feeling of the observer.

The developed program is coded in MATLAB, to determine the position of a red

marker that is attached to the head of the observer, to compose the transformation

matrix that converts 3D corner points of the virtual objects to expected perspective

projection for the determined view-angle, and to draw the projection on the screen

for the observation. The code is written in a flexible form to work with any PC with a

web-cam, and graphical screen. The implemented system is tested successfully

comparing the views of a set of virtual geometric objects on a platform with respect

to the view of similar objects physically on a test platform.

Keywords: Depth perception, Colour detection and tracking, 3D-visualization.

iv

ÖZ

Bu tezin amacı sanal uzaydaki duran nesnelerin 3D algısını iki boyutlu

izdüşümlerindeki hareket aracılığıyla destekleyen bir yöntem geliştirmek ve

göstermektir. Insan gözü doğal olarak görüntünün büyüklüğüyle beklenen

büyüklüğünü karşılaştırmak, görüntünün değişik odak derinliklerindeki keskinlik ve

bulanıklığı, sağ ve sol göz görüntülerindeki fark, ve görüntü hareket ederse değişik

gözlem açılarından görünüşünü analiz gibi derinlik algılamaya elverişli bir takım

araçlarla donatılmıştır.

Bu tezde, gözlemcinin hareketleri bir yazılım sayesinde bir video kameranın

yolladığı çerçevelerden algılanarak sanal nesnelerin belirlenen gözlemci yerine

karşılık beklenen 2D izdüşümlerine dönüştürülerek, bu yolla, gözlemcinin nesneler

hakkında bir derinlik duygusu oluşturulması sağlanmaktadır. MATLAB’da

kodlanmak üzere geliştirilen program gözlemcinin başına iliştirilmiş kırmızı bir

işaretin yerini belirlemekte, ve gözlemcinin bakış açılarını tayin ederek sanal

nesnelerin 3D köşe noktalarının perspektif izdüşümü için gereken dönüştürme

matrisini hesaplayıp ekrana 2D izdüşümünü çizmektedir. Kod, video kamera ve

grafik ekran donanımlı herhangi bir PC de çalışacak esneklikte yazılmıştır.

Uygulanan sistem sanal geometrik nesnelerin görünümlerini benzer nesnelerin

fiziksel bir test platformundaki görüntüsüyle karşılaştırılarak başarıyla sınanmıştır.

Anahtar kelimeler: Derinlik algısı, Renk tespit ve izleme, Üç boyutlu-görüntüleme,

v

DEDICATION

Dedicated to My Family

vi

ACKNOWLEDGMENT

First, I would like to thank ALLAH then my Mother, Brothers and sisters. And I

express my gratitude for every one whom supported me during my education period.

Next I want to say many thanks to Asst. Prof. Dr. Mehmet Bodur, Prof. Dr. Majid

Hashemipour, Asst. Prof. Dr. Adnan Acan, Husseyin Yetiner and Basma Al Gembry

for their support and encouragement during my graduate studies.

I also would like to share my happiness with all my relatives and friends. Last but not

least I dedicate my success to my late father who has been my constant and source of

inspiration.

http://cmpe.emu.edu.tr/mbodur/
http://cmpe.emu.edu.tr/mbodur/

vii

TABLE OF CONTENTS

ABSTRACT .. iii

ÖZ ... iv

DEDICATION ... v

ACKNOWLEDGMENT ... vi

LIST OF FIGURES ... x

LIST OF ABBREVIATIONS .. xii

1 INTRODUCTION .. 1

1.1 3D Perception .. 1

1.2 Object Detection and Tracking .. 3

1.3 Description of Problem .. 3

1.4 Methodology .. 4

1.5 Organization of the Thesis ... 5

2 COLOR DETECTION AND TRACKING PROCESS .. 7

2.1 Introduction .. 7

2.2 Image Acquisition Objects .. 8

2.3 Acquiring the Frames .. 10

2.4 Extracting Red Colour Component as a Grey-Scale Image 12

2.5 Filtering Out Noise in the Image by Median Filter ... 14

2.6 Colour Segmentation ... 15

2.6.1 Segmentation ... 16

2.6.2 Thresholding as a Segmentation ... 16

2.7 Removing the Noise .. 17

2.7.1 Morphological Image Processing .. 18

viii

2.7.2 Binary Dilation and Erosion Operations ... 18

2.7.3 Binary Dilation Operation ... 18

2.7.4 Binary Erosion Operation ... 19

2.7.5 Binary Opening ... 19

2.8 Labeling the Connected Components .. 22

2.8.1 Recursive Labeling Algorithm .. 22

2.8.2 RLA Mode of Operation ... 24

2.9 Centroid ... 25

2.9.1 Mathematics of Moments .. 25

2.9.2 Centroid ... 27

3 VIEWING AND PROJECTION .. 29

3.1 Introduction .. 29

3.2 Planar Geometric Projection .. 30

3.2.1 Parallel Projection ... 30

3.2.1.1 Orthographic Parallel Projections .. 30

3.2.1.2 Axonometric Parallel Projection .. 30

3.2.1.3 Oblique Parallel Projections ... 30

3.2.2 Perspective Projection ... 31

3.3 Homogeneous Coordinates and Matrix Representations 31

3.3.1 Projection Matrices ... 32

3.3.2 Rotation ... 33

3.3.3 Perspective Projection ... 33

4 IMPLEMENTATION, TESTING AND RESULTS .. 35

4.1 Introduction .. 35

4.2 Implementation of User Interface .. 35

ix

4.3 Angle of View .. 39

4.4 Results.. 41

5 CONCLUSION ... 43

5.1 Suggested Works .. 44

x

LIST OF FIGURES

Figure 1. Block Diagram of Colour Detection and Segmentation Process. 8

Figure 2. Video Input Object (From the Mathworks, by Permission) 9

Figure 3. Summary of Video Input Objects. .. 10

Figure 4. Acquired Frame. ... 11

Figure 5. The Relation between the Adaptor Functions and the Acquisition Thread

(From the Mathworks, by Permission). ... 12

Figure 6. Negative Grey-Scale of the Normalized Red Component. 14

Figure 7. Median Filter Mechanism. .. 14

Figure 8. The Negative Normalized Red Component after Median Filter. 15

Figure 9. Negative Binary Image with Threshold 0.35 to Get Red Marker............... 17

Figure 10. Shape of Structuring Element S, (A) 4- Neighbours, (B) 8- Neighbours . 18

Figure 11. Typical Binary Image B. .. 20

Figure 12. Structuring Element 8-Neighbours. .. 20

Figure 13. Binary Dilation B⨁S. ... 20

Figure 14. Binary Erosion B⊖S. ... 21

Figure 15. Binary Opening B∘S= (B⊖S) ⊕S ... 21

Figure 16. Negative Image for the Output of (Bwareaopen) Function 21

Figure 17. Binary Image. ... 23

Figure 18. Connected Components Labeling. .. 23

Figure 19. Binary Image and Labeling, Expanded For Viewing. 23

Figure 20. Four-Neighbourhood. ... 23

Figure 21. Eight-Neighbourhood. .. 24

Figure 22. Negative Binary Image after Removing Noise. .. 24

xi

Figure 23. Binary Image with the Connected Component. .. 25

Figure 24. Center of the Red Color and the Bounding Box. 28

Figure 25. Parallel Projection and Perspective Projection. .. 29

Figure 26. Red Color Flash. ... 35

Figure 27. User Interface of the Implemented System. ... 36

Figure 28.Two Different Cubes. .. 37

Figure 29. Cubes Placed On The Frame. ... 37

Figure 30. Flowchart of Implemented System. .. 39

Figure 31. View Angle Bounds .. 40

Figure 32. Platform Dimensions. ... 41

Figure 33. A Real Platform. ... 41

Figure 34. The Real 3D View. ... 42

Figure 35. 3D View Created by the MATLAB. .. 42

xii

LIST OF ABBREVIATIONS

2D Two Dimensional Image

3D Three Dimensional Image

HSV Hue-Saturation-Value

RGB Red Green Blue

LB Labelled Binary Image

𝑆 Structuring Element

B Binary Image

T Threshold Value

1

Chapter 1

1 INTRODUCTION

1.1 3D Perception

With an aim to accomplish a 3D visual perception of an observer using a graphical

2D computer screen, this thesis starts with a short introduction on the perception of

depth in a human visual system.

Human visual system (HVS) is equipped with several tools and methods to develop a

cue for the perception of depth. In literature the following monocular cues of depth

are commonly listed to contribute in decision of depth perception: i) texture, shading,

and perspective properties are called pictorial depth cues ii) size constancy, iii)

physiological cues of monocular eye structure such as sharpness at focus and blur at

non-focused distances, iii) monocular movement cues also called parallax or kinetic

depth effect [1].

HVS constructs a 3D mapping of the outside world mainly using the 2D images

projected on the retinal surface of the left and right eyes based on binocular and

monocular cues. It uses cues of depth to determine the depth feeling additional to the

2D retinal projection. The binocular cues are obtained from left and right eyes. The

left and right eyes of a human visual system get the image of the same object in

slightly different angles, which provides sufficient data to percept the depth of edges

2

and corners on the object. This feature of the human visual system is known as the

stereopsis, or stereo-vision. Perceiving depth by stereo-vision is called stereo effect.

Along with the stereo vision, there is another component of depth perception, called

the optical vergence. The binocular vergence depends on the angular displacement of

the eyes to see the object at the centre of the retinal region. The diversion angle from

a parallel position is called vergence angle, L. L=0 is obtained at an infinite distance,

and larger L values correspond that the object is nearer [1].

The third major cue of depth is the kinetic depth effect. A rotational motion of the

retinal image of a stationary object provides cues to HVS on the depth of the moving

points. Together with stereopsis and vergence, the kinetic depth effect provides

major information on the reconstruction of 3D mapping in HVS [1].

Among these three natural depth perception tools of HVS, the stereopsis method is

commonly used in the 3D picture, 3D movie and the 3D media industries by using

special eyeglasses that shows different pictures to left and right eyes. However, using

these eyeglasses is not comfortable, and even may cause health problems for the eyes

when they should be used for long hours. The binocular vergence method is not

practical to be applied to available computer screens since the screen stays always at

a constant, mostly about 50 cm distance. The only remaining depth cue is the kinetic

depth cue, which requires rebuilding the image as a function of the relative rotational

movement of the screen consistent to its perspective projection [1].

Literature points that, the kinetic depth effect and the binocular depth effect are

mainly expected to be evaluated by a different mechanism, and a depth effect may be

3

created by any of these cues [1]. This statement encourages the idea of developing a

monocular depth perception cue method without using a special optical apparatus in

between the screen and the eyes.

1.2 Object Detection and Tracking

The implementation of a system for a kinetic depth perception requires detection of

the movement of the eyes of the observer. For this purpose, an image processing

method is necessary to process the images which are captured from a video camera

that is placed on the graphical screen. A real time object detection seeks the image

of a target in the captured video frames. Along with the location of the target object

in a single or a sequence of images, it also determines the changes in the size and

position of the object. A special colour for the target provides easy and accurate

detection of the target object by colour detection, and widely used in various

applications nowadays, yet, it provides still an open research area to improve many

parameters such as the accuracy and the speed of detection algorithms [3].

1.3 Description of Problem

The aim of this thesis is to provide the necessary depth cues by tracking the

observers view angle, and drawing the 2D projections of the virtual objects

accordingly. A literature survey on the kinetic depth perception indicates that

binocular and monocular depth cues are processed separately, and combined in the

Human Visual System to a 3D mapping of the observed objects without domination

of one on the other. Consequently, developing kinetic depth perception by a software

shall successfully create a 3D effect on the observers HVS whenever the observer

changes the view angle of the screen. Along with the developed 3D perception, the

proposed system may be successfully used for the tasks where an observer shall

4

inspect the hidden parts of virtual 3D objects by looking them from different view

angles.

1.4 Methodology

The methodology applied in this thesis is summarized by the following six items.

1. The eyes of the observer are assumed to be monocular for practical purposes. The

literature states that the source of a depth cue has no effect on the depth perception

when building the 3D mapping of the objects. Thus, we expect that the missing

stereo optic depth cue shall not inhibit 3D mapping of HVS.

2. The movement of the object for a kinetic depth perception is necessary. This

movement may be satisfied by the rotation of the objects even when the observer is

stationary. But such a system may not be useful to work on a particular region of the

objects. Another approach may be to determine the movements of the observer, and

update the screen image for the new view angle of the observer. Most of the modern

PC systems are equipped with a video camera system which is definitely suitable for

this purpose.

3. The test of the depth perception requires a set of simple geometric objects. We

prefer white objects to prevent extra depth cues other than kinetic depth cue by

simplicity of the objects with plain white surfaces because any surface texture may

develop texture and parallax based depth cues along with the kinetic depth cue. For

simplicity of the implementation, the objects are described using the homogenous

coordinate system in their own coordinate frames.

5

4. A red light on the cap of the observer provides the red target that is easily located

and tracked at each captured frame of the video stream. The captured image is

evaluated to get the red region in the image. The location of the region is converted

to the view angle of the observer.

5. The view angle of the observer provides sufficient information about how many

degrees of rotation about x and y-axes are necessary to update the 2D projection of

objects. A translation of the 2D projection provides the perception of the placement

of the objects on the virtual workspace.

6. A scene with multiple geometric blocks is composed physically similar to a 3D

computer screen to compare the view of the virtual geometric blocks on the virtual

workspace to avoid any mistakes in the evaluation of transformations corresponding

to the view angle. The final test is carried comparing the depth feeling of the physical

scene to the virtual one.

Comparing the physical kinematic depth perception against the virtual one may

appear unfair because the vision of the physical scene provides a full set of depth

cues including shadows and light conditions on the surfaces. However, if kinetic

depth cue together with perspective appearance is sufficient for depth perception, the

HVS of an observer may construct a 3D world in her or his mind watching the 2D

drawing on the screen.

1.5 Organization of the Thesis

Chapter 1 introduced the perception of depth in a Human Vision System and

proposed a novel method to build the kinetic depth perception on a computer screen

6

observer. It also explained the methodology to composing and to test a kinetic depth

perception mechanism using a typical personal computer screen and a video camera.

The remaining chapters are organized in the following manner:

Chapter 2 discusses the colour detection and tracking process to locate the observer

view angle starting with capturing an image from the video stream. It gives the

details of image processing applied on the captured image to get the position and size

of the red region attached on the hat of the observer.

Chapter 3 explains the process to convert the view angles to the homogenous

transformation that calculates the view of the objects with the rotation of the view

angles. It also provides a perspective scaling that provides extra depth perception

even when the observer does not move.

Chapter 4 gives the details of implementation, testing and results of the tests for the

depth perception by motion. Finally, Chapter 5 contains a discussion and conclusion

about the implemented system.

In addition to the main text, this thesis contains the source code of the implemented

program written in MATLAB.

 7

Chapter 2

2 COLOR DETECTION AND TRACKING PROCESS

2.1 Introduction

This chapter explains the image capture and image processing sections of the

developed system that supplies the location of the red marker attached on the head of

the observer to determine the view angle of the observer. Further chapters give the

details of the representation of the virtual objects, coordinate transformation of the

object position and orientation to the 2D projection on the PC screen.

The proposed system requires capturing images from a video camera to process it for

colour detection on real time. Figure 1 shows the overall block diagram of processes

explained in this chapter.

 8

Figure 1. Block Diagram of Colour Detection and Segmentation Process.

2.2 Image Acquisition Objects

The video stream of a web camera attached on a personal computer is accessed

through the image acquisition object created in Matlab Image Acquisition toolbox.

The Matlab has a large library of video devices, and a function is available to detect

the adaptor name, device ID, and the available video formats of the installed video

camera device.

Start

Get a video stream

Get a frame of image from the video

stream

Subtract the red color component

Remove the noise

Convert grayscale to binary

Stop

Enhance the binary image

Label the detected components

 9

Matlab provides two image acquisition objects which are called video input object

and video source object as seen in Figure 2 [4].

Video input object refers to the connection between the software ‘MATLAB’ and the

hardware will be used, and that works as a container of the video source objects.

Figure 2. Video Input Object (From the Mathworks, by Permission)

Video source object refers to the number of video resources created by the

acquisition toolbox. A video source might provide more than one data source,

depending on the format of the source, but it is considered as a single source. The

format is specified at the creation of video input objects by the sample code shown

below [4].

Vid = videoinput ('winvideo', 1,'YUY2_640x480');

Set (vid, 'FramesPerTrigger', INF);

Set (vid, 'ReturnedColorspace', 'rgb')

vid.FrameGrabInterval = 1;

By typing ‘vid’ in MATLAB command window, it is possible to display the format

of the data input as seen in Figure 3.

Video input object

 … Video source

object

Video source

object

Video source

object

Currently

selected

Source

 10

Figure 3. Summary of Video Input Objects.

2.3 Acquiring the Frames

At the colour tracking and detection step of the image processing, we are required to

have a single frame includes the data (Red Colour) that to be processed in further

steps. The actual frames acquired from the camera (device) have been performed by

the acquisition thread function Figure 4. The acquisition starts with getsnapshot

function [5]. It keeps acquiring frames until it reaches the specified number at the

acquisition call.

Data = getsnapshot (vid); where ‘vid’ specifies information related to the

device.

>> vid

Summary of Video Input Object Using 'STARTEC 1.3MP

Webcam'.

Acquisition Source(s): input1 is available.

Acquisition Parameters: 'input1' is the current selected

source.

 Continuous acquisition using the selected source.

 'YUY2_640x480' video data to be logged upon START.

 Grabbing first of every 5 frame(s).

 Log data to 'memory' on trigger.

Trigger Parameters: 1 'immediate' trigger(s) on START.

Status: Waiting for START.

0 frames acquired since starting.

0 frames available for GETDATA.

 11

Figure 4. Acquired Frame.

The acquisition thread function contains two type of loops which are thread message

loop, and frame acquisition loop.

Thread Message Loop is simply defined as main process loop of the acquisition

thread function where the thread created by OpenDevice function followed by

entering the thread message loop, and waiting the frame to be acquired where

StartCapture function giving it right to start acquiring the frames as seen in Figure

5 [5].

http://www.mathworks.com/help/imaq/adaptorkit/implementing-the-acquisition-thread-function.html#f0-100412

 12

Figure 5. The Relation between the Adaptor Functions and the Acquisition Thread

(From the Mathworks, by Permission).

Frame Acquisition Loop can be defined as link station between engine and Thread

Message Loop where it receives the frames and sends them to the engine. It is

responsible for all frames creating operations including status of the acquisition. It

checks the number of frames that already specified has been acquired or not. And, it

collects the frames from the device. It also configures status of the hardware trigger

and controls the frame acquisition loop. In case of it needs to send frame to the

engine, it works to create the frame object, filling the frame object by the acquired

images, and logging the time of the acquisition [5].

2.4 Extracting Red Colour Component as a Grey-Scale Image

Processing a grayscale image is much faster than processing a colour image because

each pixel of a colour image requires three times more information and accessing

http://www.mathworks.com/help/imaq/adaptorkit/implementing-the-acquisition-thread-function.html#f0-100412
http://www.mathworks.com/help/imaq/adaptorkit/implementing-the-acquisition-thread-function.html#f0-100412

 13

each one takes a considerable part of processing time. In the colour detection

process, the red colour image is converted into a grey-scale image to reduce the

information and speed up the processing [8].

The colour image can be easily converted to grey-scale image in MATLAB using

rgb2gray (ColorImage) function which is based on the following transformation

algorithm 1 [8].

 (1)

Where (n, m) refers to output pixels at grey-scale and (n, m, [r, g or b]) refers to the

channel of the pixel’s colour. r, g and b indexed to red, green and blue respectively

[6]. Since the red or any other colour component depends on illumination, they are

normalized in between 0 and 1 by subtracting the luminance of grey-scale image

from the red component as seen negative in Figure 7.

diff_im = imsubtract (data (:,:, 1), rgb2gray (data));

Figure 6. Grey-Scale of the Normalized Red Component.

).,,(),,(),,(),(bmnIgmnIrmnImnI colourcolourcolourscalegray  

 14

Figure 6. Negative Grey-Scale of the Normalized Red Component.

2.5 Filtering Out Noise in the Image by Median Filter

This step of colour detection targets reducing the noise of the raw image by a

process, which is called ‘Median Filter’. It is invoked by ‘medfilt2’ function in

MATLAB. The Median Filter is a nonlinear statistical filter and considered as most

common used filter. Median filter sorts the grey values of a n.m neighbourhood in

natural numerical order, and sets value of the centre-pixel by mid value of the sorted

list of all pixels in the neighbourhood (i.e, (n.m+1)/2th item in sorted list). The mask

is typically a square of odd numbers like 3x3 or 5x5 to balance the upper and lower

part of the list, and for example, for 3x3 median filter, the 5th of sorted 9 neighbour

elements becomes the new centre-pixel value as seen in Figure 8 [7][8].

Figure 7. Median Filter Mechanism.

 15

The output of Median Filter is denoted by:

Where is an input binary image function and is an output binary

image function [7]. The ‘medfilt2’ MATLAB function is able to specify the number

of neighbourhood (mask) parameter. In this thesis, [3x3] neighbourhood is used as

shown in Figure 8. The filtered image is shown in Figure 9.

diff_im = medfilt2 (diff_im, [3 3]);

Figure 8. The Negative Normalized Red Component after Median Filter.

2.6 Colour Segmentation

After removing the noise of the image with a Median Filter, enhanced image is ready

for further operations. The next operation is to strip off all unnecessary colours,

objects and areas from the image. The image is transformed to a binary image by

using “im2bw” MATLAB function, before the location of the red mark is

determined.

}.,),,({),(Wjiiyixfmedyxg 

),(yxf),(yxg

 16

2.6.1 Segmentation

Segmentation is a partitioning operation on a binary digital image to group the

neighbouring pixels of the same kind as the sets of pixels. It works on a greyscale

image and converts the image to a simpler, mostly binary image [12]. There are two

types of segmentation: Complete segmentation that refers to the objects

corresponding to original image objects. Partial segmentation refers to the objects

which are not corresponding to original image objects. Segmentation may be

obtained by different methods such as edge-based methods, and region-based

methods, as well as global approaches.

2.6.2 Thresholding as a Segmentation

The simplest method for segmentation is called Thresholding segmentation. It is

based on a threshold value. Thresholding segmentation converts the grey-scale image

into a binary image g(x, y) which is 0 or 1, using algorithm 2.



 


otherwise

Tyxfif
yxg

0

),(1
),((2)

The binary values are assigned depending on the value of the threshold. If the pixels’

value of the grey-scale image is greater than the threshold the pixel will be assigned

to 1 (White), otherwise will be assigned to 0 (Black) the following algorithm shows

Thresholding algorithm [8].

For each pixel of I (i, j) within the image I

If I (i, j) > threshold

I (i, j) = 1

Else

I (i, j) = 0

End if

End for

 17

The Thresholding segmentation has two type of algorithms, global algorithm which

uses only one threshold for all the image pixels which are used in our research

through ‘im2bw’ MATLAB function. An adaptive algorithm which uses a variable

number of thresholds for all the image that used to segment different colours from

the same image. The key of Thresholding segmentation operation is finding the

threshold value of each colour. Figure 10 represents the segmented image.

diff_im = im2bw (diff_im, T);

Figure 9. Negative Binary Image with Threshold 0.35 to Get Red Marker

2.7 Removing the Noise

The output of thresholding process might contain some impurities, in other word

some noisy pixels in unwanted regions. To get rid of those noise pixels, the small

objects or components should be removed from the image using bwareaopen

function.

The bwareaopen function is based on a morphological binary operation which is

called area opening operation. Area opening operation is obtained by specified

 18

number of dilation and erosion operations, which shrinks the region of the object by

a specified number of pixels, and then enlarge it back to its original size. Shrinking a

single pixel region deletes it from the image, so that the noise regions permanently

disappear from the image [9].

2.7.1 Morphological Image Processing

Morphological Image processing methods are nonlinear transformations that can

affect the shape and size of a binary region and reconfigure the structure of regions

based on operations: dilation, erosion and set of compensations opening, closing and

boundary extraction [10] [11]. This thesis uses area opening operation.

2.7.2 Binary Dilation and Erosion Operations

For both dilation and erosion operations, the main idea is sliding the binary image B

on binary structuring element S similar to taking convolution across the image, and

compare each pixel. The binary structuring element might have 4-or 8- active

neighbours as seen in Figure 11 [12].

Figure 10. Shape of Structuring Element S, (A) 4- Neighbours, (B) 8- Neighbours

2.7.3 Binary Dilation Operation

The binary dilation operation is denoted by B S. Where B is a binary image, and S

is a binary structuring element, while sliding the binary structuring element S across

the binary image B, if there is a black pixel in B coinciding with the origin of S, the

 19

pixels in the image which is covered by the structuring element will be ‘black’.

However nothing will change if the origin of S is coinciding with the ‘white’ pixel in

B as seen in Figure [12-14]. In mathematical notation, the operation is expressed by:

2.7.4 Binary Erosion Operation

The binary erosion is denoted by where B is a binary image and S is a binary

structuring element, While sliding the S across B, if there is a black pixel in B

coinciding with the origin of S nothing is done, however if a ‘white’ pixel in B

falling on a black pixel in S, then the ‘black’ pixel in B is changed to white as shown

in Figure (12-15).

In mathematical notation, the binary erosion operation is expressed by:

2.7.5 Binary Opening

The binary opening operation used in our research with the aim to remove unneeded

objects from the binary image which is the small components and pixels in the region

and can be used for enhancing the binary image. The binary opening operation

involves of erosion of the image by S then the output will followed by a dilation. The

Binary Opening operation donated by Figure (12-15).

In mathematical notation, the binary opening operation is expressed by:

}|{ SbabSB Ba  

SB

}|{ SbforeverybxxSB Ba  

.SB 

  .SSBSB 

 20

Figure 11. Typical Binary Image B.

Figure 12. Structuring Element 8-Neighbours.

Figure 13. Binary Dilation B⨁S.

 21

Figure 14. Binary Erosion B⊖S.

Figure 15. Binary Opening B∘S= (B⊖S) ⊕S

The output of bwareaopen function based on the previews operations will be

presented by the Figure 17.

Figure 16. Negative Image for the Output of (Bwareaopen) Function

 22

2.8 Labeling the Connected Components

Each pixel’s value of the labeled binary image LB represent the label connected

components, that’s the simplest definition for the connected component labeling

process. They are using the positive integer values of the pixels to label the connect

components since it’s much more convenient [14] [11].

Many algorithms produced to label connected components depends on the size of the

image and the ability to be stored in memory, since MATLAB stores matrix data in

memory. Some of these algorithms scan the components one by one at a time across

the image from left to right and top to the bottom Figure 19, an another algorithm

designed which scan each two rows at a time also there is another algorithm works in

parallel computing strategy for a big size of images [11]. The Algorithm used in

MATLAB is A Recursive Labeling Algorithm which will be described.

2.8.1 Recursive Labeling Algorithm

RLA algorithm is set of procedures, and seeks to find the connected component (1-

pixels) of an image B with (Maximum Number of Row + 1) and (Maximum Number

of Columns + 1), in order to give an output labeled image LB Figure 20, the returned

binary image based on one of two kind of scan-line orders either (four-

neighbourhood) or (eight-neighbourhood) Figures (21-22) [11].

 23

Figure 17. Binary Image.

Figure 18. Connected Components Labeling.

Figure 19. Binary Image and Labeling, Expanded For Viewing.

Figure 20. Four-Neighbourhood.

 24

 Figure 21. Eight-Neighbourhood.

2.8.2 RLA Mode of Operation

The first step of RLA algorithm is distinguishing the pixels (-1) from the component

label (1) by negating the 1-pixels of a binary image using negate function, where the

input a binary image B and output negated image later will be the labeled binary

image LB. The next step is finding the pixels with value (-1) using same method for

finding the connected components and their neighbours that have same value (-1)

using searching procedure and giving them new label using 8-neighbors definition in

our research, the neighbours (L, P) function used to return the position of all pixels’

neighbours, algorithm 1 [11]. Which is to be represented later on in Figure 23.

Figure 22. Negative Binary Image after Removing Noise.

 25

2.9 Centroid

In last step, we have to obtain the (X, Y) coordinates from the region of the

connected component of the binary image Figure 24, using “regionprops” MATLAB

function. This region should be a numeric value which will be used in further

processes. This process called (Moment and Algebraic Invariants), this approach has

been improved since long time ago and used before introducing the first computer by

(Ming Kuei Hu) in “1962”, and the Algebraic Invariants theory has been introduced

by a mathematician called (David Hilbert) this theory used in many different image

processing areas [15] [16].

Figure 23. Binary Image with the Connected Component.

2.9.1 Mathematics of Moments

In Mathematics of Moment the image function known as f(x, y) . And the general

order moment function represented by equation 3, this equation solves the functions

which have only one variable [15] [16] [17].

 (3)

.)()(dxxfcx n











 26

However in our interested case we are using the two-dimension (x, y) images which

require to have two independent variables. The order of moment will be (m+n),

where (m, n) are non-negative integer values (0, 1, 2…) and represented by equation

4 [15] [16] [17].

 (4)

The central moment µm,n will be represented by equation 5, where c represent the

point which is the order moment about it, and f(cx, cy) indicates the centroid of the

image function f(x, y).

 (5)

The equation 3 can be represented by equation 6, in this equation they replaced the

integration with summation to calculate the area of the binary image about point c

which is (0, 0) [17].

 (6)

Since the point, we used to calculate the moment about it is (0, 0) we can remove

each of (cx, cy) variables from the equation to be as equation 7 [15] [17].

 (7)

After substituting for each of m, n by zero the equation will be as equation 8 [15]

[17].

 (8)

  .,, dydxyxfyx nm

nm  









  .,)()(, dydxyxfcycx n

y

m

xnm   









 .,)()(
0 0,  










x y

n

y

m

xnm yxfcycx

 .,
0 0,  










x y

nm

nm yxfyx

 .,
0 0

00

0,0  
w h

yxfyx

 27

For x0, y0 can be removed from the equation because doesn’t have any affection for

the result since will be multiplied by either 0 or 1 which is the value of the image

pixel. So the value of the pixel will be added to the moment equation 9 [17].

 (9)

2.9.2 Centroid

To find the centroid coordinates (x, y) for the calculated binary image area they using

equation 10 [17].

 (10)

However to simplified this formula they find each coordinate of (x, y) separately,

where f(x, y) = 1 which means for all white pixels equations (11) (12) respectively.

 (11)

 (12)

Finally to find the average of each coordinate they divide each of coordinate’s

summation by the number of pixels equation (8). This methods has an advantage

which is not sensitive to the image noise and disadvantage the centroid point might

be not exact and shifted a little [17].

Stats = regionprops (BW, 'BoundingBox', 'Centroid');

The numerical outputs of color detection are in (x, y) format and it’s obtained from

the output binary image of the previews stage, that by applying the previews

algorithms and mathematics formulas. Which represent the two coordinates of the

observer’s location. Where the centroid value are [428.09, 163.09], and the size of

 .,
0 00,0  
w h

yxf

.
1,0

,centroid
0,00,0

0,1
























 ., yxxfsumx

 ., yxyfsumy

 28

the bounding Box is [398.5, 147.5, 54, 23] figure 25, represents the center of the red

color and the bounding box.

Figure 24. Center of the Red Color and the Bounding Box.

[428.09, 163.09]

[398.5, 147.5, 54, 23]

 29

Chapter 3

3 VIEWING AND PROJECTION

3.1 Introduction

The three-dimension (3D) scenes based on two-dimension (2D) image plane uses

projective geometry extensively and called planar geometric projection Where, the

projective geometry of any object formed by the projectors ‘Lines’. These projectors

obtained when the projectors passed all the object’s points. And getting the image

will be formed by the intersection of these projectors, these projectors emitting from

the center of projection ‘single point’. There are two kind of projections called

perspective projection and parallel projection Figure 26 [18] [19].

A) Orthographic Projection, B) Perspective Drawing.

Figure 25. Parallel Projection and Perspective Projection.

To

horizon

point A

To

horizon

point B

To point C

 30

3.2 Planar Geometric Projection

3.2.1 Parallel Projection

Called parallel projection since all the projectors are parallel to each other, which

means has an infinite center of projections. And the multi projections can illustrate

the shape of the object Figure.20 B. The parallel projection produce unrealistic image

since its preserves the length of the lines as well as it gives a uniform foreshortening.

That’s why the parallel projection extensively used in engineering drawing. The

parallel projection can be divided into three types as following. [19].

3.2.1.1 Orthographic Parallel Projections

The orthographic parallel projection provide a realistic shape for an object. However,

needs different views to describe any object, that depending on the complexity of the

object. Orthographic parallel projection commonly used in engineering drawing [18].

3.2.1.2 Axonometric Parallel Projection

The axonometric parallel projection provides three-dimensional representation by

viewing the three adjacent faces of any object in one view. However in the

axonometric projection the distant and the close parts are represented at the same

scale that affects the three-dimension representation view of axonometric projections

and become distorted. As well as the axonometric parallel projection can’t represent

irregular, circles and complex shapes [18].

3.2.1.3 Oblique Parallel Projections

The oblique parallel projection combines each of orthographic and axonometric

projections properties. The oblique projection solves the cylindrical and irregular

shapes on the contrary of axonometric projection. Also, the oblique projections

provide the observer three-dimensional representation by illustrating two adjacent

faces of the object as well as representing the shape of any object as its [18].

 31

3.2.2 Perspective Projection

The projection called perspective projection when the center of projection ‘point’ is

finite, the perspective projection able to create an image equivalent to the image that

created by eyes, since it represents any object as its can be seen by the observer.

However it distorts the lines’ length and intersection angle, that’s why it’s not

suitable for engineering drawing. The intersected coordinate axis’s classifies the

perspective projection that might be one, two or three points of perspective Figure 28

[18] [19].

3.3 Homogeneous Coordinates and Matrix Representations

In homogeneous coordinates, any point in space with coordinates (x, y, z) can be

represented in 4D to be as (x, y, z, 1), and the point in 4D with (x, y, z, w)

coordinates can be represented in 3D. Where (w 0) which will be in 3D as

(x/w,y/w,z/w,w/w). The planar geometric projection of any point has represented in

homogeneous coordinates can be expressed in a 4X4 matrix. Deriving the planar

geometric projection require rotation, shearing, translation and perspective

transformations. The rotation and shearing can be represented by 3x3 matrix

equation (13). However, the translation and perspective can be presented by 4x4

matrix equation (14) [18].

 (13)





















1000

0

0

0

333231

232221

131211

aaa

aaa

aaa

T

 32

 (14)

Where the (aij) the linear transformation, (ti) represents the translation and (pi)

represents the perspective [18].

3.3.1 Projection Matrices

By reading the introduction of this chapter and understanding the type of projections

and the differences between them in terms of selecting the projection planes as

opposed to the rotations of the object, the projection matrix can be simply derived by

three principle steps rotation, translation and projection [18].

Actually in this thesis we have used ‘viewmtx (az, el, phi)’ MATLAB function, this

function produces the perspective view by applying different equation including

rotation and perspective projection, however produces the perspective without

translation with aim to produce a perspective view.

The ’viewmtx’ MATLAB function can return different type of transformation such

as orthographic transformation or perspective transformation either by specifying the

point of the plot cube or without specifying it.

Where az is the x value, el is the y value and phi is the view angle value and all these

values are in degree which require to converted to radians by multiply each by and

divide it by 180 for each.





















1321

3333231

2232221

1131211

ttt

paaa

paaa

paaa

T

 33

3.3.2 Rotation

The transformation matrix formed by applying two rotations first about z-axis

followed by rotation about x-axis equation 15, 16.

.

 (15)

 (16)

3.3.3 Perspective Projection

Since the graphic system already scaled by w before mapping on the screen in the

view matrix MATLAB function the perspective transformation generated by the

equation 17. However, the perspective doesn’t appear on the frame. Where f is the

distance of the observer from the screen, and phi is the view angle and we selected to

be 8 in degree. The distance defined by .

 (17)

To overcome this problem, the result of transformation after the view matrix

equation 18. Was scaled by the last entry of the output (wi) equation 19.

),(),( xRotzRotT 

















 






















1000

0100

00)cos()sin(

00)sin()cos(

1000

0)cos(sin0

0sin)cos(0

0001








T
























1000

0)sin()cos(*)cos()sin(*)cos(

0)cos()cos(*)sin()sin(*)sin(

00)sin()cos(

elazelazel

elazelazel

azaz

T

)360/tan/(/2/)2( phisqrtf























1/100

0100

0010

0001

f

T

 34

 . (18)

 (19)





















i

i

i

i

w

z

y

x

T

































i

i

i

i

i

i

i

i

w

w

w

z

w

y

w

x

T

 35

Chapter 4

4 IMPLEMENTATION, TESTING AND RESULTS

4.1 Introduction

In this thesis, the system was built with MATLAB using acquisition toolbox. And

since the main task of the proposed system is based on image processing to obtain

the input data from LEDs with red colour Figure 27, it is essential for the designed

system to have a Webcam either internal or external Webcam to be used as sensor to

collect the data.

Figure 26. Red Color Flash.

4.2 Implementation of User Interface

The GUI of the proposed system has been implemented in MATLAB Figure 28,

 36

Figure 27. User Interface of the Implemented System.

As shown, the interface includes two MATLAB axes tools. The first axes is used to

display the sequence of images ‘video’ in real time as acquired into the system by the

webcam while the other axes is used to present the 3D image with rotation,

translation and perspective. Inclusively, the interface contains two pushbuttons (Start

Acquisition and Stop Acquisition), the Start Acquisition pushbutton is employed in

order to start accruing the image data into the system, starting by specifying the

image format which is followed by the acquisition and initialization of the number of

frames and iteration of the process. Each frame is processed with the aim to separate

the red colour from the pure image, if the image does not contain any red object, the

next frame will be acquired until an object to be processed is found, otherwise

system runs a required process to obtain the x, y value of the red object. These values

will be scaled for use in the view matrix to add 3D effect into the 2D images and will

be displayed on the GUI using the Text Boxes, the output of the view matrix will be

displayed on the second axes tool. This process is repeated until the end of the

iteration. The other pushbutton stops the image data acquisition to the system. Figure

31 represent the Flowchart of the data in the system.

 37

The best way to clarify the perspective projection in adding 3D effect onto a 2D

image understandably is through the application of translations, transformations and

perspective projections equations on geometrical shapes, for this purpose we have

designed two cubes with different heights as shown in Figure 29, which we have

placed on a frame with different positions, in the general view at the middle of x, y

coordinates where the first cube placed at points x, y = -1 and z= 0, the other cube

has shifted a little bit for both of x, y coordinates to be x, y =0.2 and z= 0 Figure 30.

Figure 28.Two Different Cubes.

Figure 29. Cubes Placed On The Frame.

 38

The implementation of the proposed system is explained by the following

pseudocode.

1. Initialize color; redr  0.18T  8;

2. Loop for 500; to0 = i

3.   frameyxf , ; acquire frame from video stream

4. if r   , yxf

   c);,,(I),,(I),,(I , color color color bmngmnrmnyxf  

  ),(n, scale-grey nmyxf  ; get gray-scale of red component.

 W};ji,i),-y i,-med{f(x y)g(x,  median filter.

 T y)g(x, if  then 1; y)g(x,  else ; 0 y)g(x, 

 };|{ SB y)g(x, | SbaBBa  

 algorithm; labeling recursive y)g(x, 

 ;
2

)(
,

2

)(
)(




x,yfyx,yfx
x,y (moment)

 ; 35y
480

50
-20,

2

30x
640

60

-45)(



















x,y (scale to view angle)

);y,(x,viewmatrix= w]z,y,[x,  (get the transformation matrix)

];
w

,
z

,
y

,
x

[=]w,z,y,[x
wwww

jjjj
(perspective scaling)

 y);plot(x,

 +;+i

 else go to Line-3 (to acquire a new frame)

5 End Loop

 39

Figure 30. Flowchart of Implemented System.

4.3 Angle of View

The view angle of the observer has been scaled-down for both of x, y input to be 0 ≤

x ≤ 60 and 0 ≤ y ≤ 60, that by multiplying the pure value by 60 and divided by 640

for x direction equation18. And multiplying by 60 and divided by 480 for y direction

equation 19 Figure 32. Where [640, 480] represents the maximum width and height

values of the input video which has been specified at video source specifications

step, we have been scaled because is the obtained values not suitable for the view

matrix and much higher than what we need.

Yes

No

No

Yes

Start Acquisition

Scaling position value

Stop Acquisition

View matrix

Perspective scaling

Detected color

If i = 500 exit, i++

Display 3D objects

Acquiring frames = i

 i = 1 to 500

 40

640

60


pure

r

x
X . (18)

480

50


purey
Yr . (19)

Actually the rotations that will be generated by the view matrix will be fixed to be

between 30 and 60 degrees for x-axis and between 5 and 55 for y-axis, that to

produce a view which is equivalent to natural and real view with inverse rotation to

the observer movement to show the hidden face. That required us to scale the x and y

values by subtracting the x-value from 30 and divided by 2 the output of this step

will be subtracted from 45 for x-axis equation 20. For y-axis, we have subtracted the

scaled value from 35 and the output of this step again subtracted from 20 equation

21.








 


2

30
45

input

view

X
X (20)

]35[20  inputview YY (21)

Figure 31. View Angle Bounds

 41

The output of Xview and Yview will be used as input to the MATLAB view matrix

function which is we have discussed in the section (3.3.1) in the previous chapter.

4.4 Results

To evaluate the work done in this thesis we have built a real platform using carton

with dimensions (40*40*25) cm, as well as we have built to cubes with different

sizes which are similar to that ones we have built in MATLAB as it is shown in

Figures (33-34), that to compare the real platform view with the MATLAB planar

view.

Figure 32. Platform Dimensions.

 Figure 33. A Real Platform.

 42

The implemented system gives similar view to the real view on the real platform and

shows 3D effect on the 2D image as shown in Figures (35-36).

Figure 34. The Real 3D View.

Figure 35. 3D View Created by the MATLAB.

 43

Chapter 5

5 CONCLUSION

In this thesis, the prototype with aim to add three-dimension (3D) effect on two-

dimension (2D) image has been successfully implemented to detect a red coloured

marker in real time, and redraw the perspective appearance of a 3D object for the

measured view angle of the marker. The implemented system calculates the position

of the red coloured marker on the hat of the observer. Thereafter it uses the position

information to calculate the homogeneous transformation matrix. The coordinates of

the corners of an object is transformed by this transformation matrix to a 2D

perspective view. The evaluation of the implemented system based on the

comparison of the implemented view with a real platform that we have already

constructed. The view of the implementation was exactly same as the real view.

In this thesis, the prototype has been implemented using MATLAB which is the

multi-usage and commonly used software for geometric implementations with

acquisition toolbox and GUI interface. Also, we have used the Webcam to act as a

sensor to collect pure data that will be processed in further steps to obtain the

numerical values.

The negative and positive errors as well as trembling performed by the red color

detection and tracking algorithms caused some weakness and instability in the view,

in addition to the system cannot work properly in case of there are more than one

 44

user ‘observer’, that can be considered as disadvantage in the performance of the

implemented system.

5.1 Suggested Works

We can divide the suggested work into two points as following:

1. The red color detection and tracking based algorithm still in beginning research

stages and needs more works and improvements to get high accuracy and stability.

2. Using an another technique based on biometrics algorithms such as eyes or face

detection and tracking to obtain the view angle might be much better and suitable for

the observer, which does not require holding any red light.

 45

REFERENCES

 [1] Kontsevich, L. L. (1998). Defaults in stereoscopic and kinetic depth

perception. Proceedings of the Royal Society of London B: Biological

Sciences, 265(1406), 1615-1621.

[2] Lages, M., & Heron, S. (2010). On the inverse problem of binocular 3D

motion perception. PLoS computational biology, 6(11), e1000999.

[3] Guo, Z. (2001). Object Detection and Tracking in Video,” Department of

Computer Science, Kent State University.

[4] Avilable at http://www.mathworks.com/help/imaq/creating-image-acquisition-

objects.Html

[5] Available at http://www.mathworks.com/help/imaq/adaptorkit/implementing-

the-acquisition-thread-function.Html.

[6] Avilable at http://stackoverflow.com/questions/20360778/matlab-extracting-

red-color-from-an-image.

[7] Zhu, Y., & Huang, C. (2012). An improved median filtering algorithm for

image noise reduction. Physics Procedia, 25, 609-616.

 46

[8] Solomon, C., & Breckon, T. (2011). Fundamentals of Digital Image

Processing: A practical approach with examples in Matlab. John Wiley &

Sons.

[9] Available at http://www.cacr.caltech.edu/~cunha/bi199/three.html.

[10] Shen, S. (1993). Application of morphological image processing to texture

decomposition.

[11] Shapiro, L., & Stockman, G. C. (2001). Computer Vision. 2001. ed: Prentice

Hall.

[12] Available at http://elearning.vtu.ac.in/17/e-Notes/DIP/segmentation_DIP-

SDG.pdf.

[13] Mai, L. (2010). Introduction to Image Processing and Computer Vision.

[14] Available https://nf.nci.org.au/facilities/software/Matlab/toolbox/images/

bwlabel.html.

[15] Flusser, J. (2006, February). Moment invariants in image analysis. In

proceedings of world academy of science, engineering and technology (Vol.

11, No. 2, pp. 196-201).

 47

[16] Hu, M. K. (1962). Visual pattern recognition by moment

invariants. Information Theory, IRE Transactions on, 8(2), 179-187.

[17] Available at http://www.aishack.in/tutorials/image-moments/.

[18] Carlbom, I., & Paciorek, J. (1978). Planar geometric projections and viewing

transformations. ACM Computing Surveys (CSUR), 10(4), 465-502.

[19] Thomson, R. A. (2006). The Direct3D Graphics Pipeline.

