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We study the quantum tunneling of charged massive vector bosons from a charged static and a
rotating black string. We apply the standard methods, first we use the WKB approximation and the
Hamilton-Jacobi equation, and then we end up with a set of four linear equations. Finally, solving
for the radial part by using the determinant of the metric equals zero, the corresponding tunneling
rate and the Hawking temperature is recovered in both cases. The tunneling rate deviates from
pure thermality and is consistent with an underlying unitary theory.
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I. INTRODUCTION

In his seminal paper [1], Steven Hawking showed that black holes radiate thermally due to the quantum effects
and this radiation is known as Hawking radiation. Thus, for the first time, it has been established a relation between
thermodynamics and space-time geometry. Furthermore, the entropy of the black hole is shown to be proportional to
the surface area of the black hole.
Besides the Hawking’s original method, today there exists a number of different approaches deriving the Hawking

temperature [2–4]. The tunneling method [5–13], has been studied in details and shown to be very successful for
calculating the Hawking temperature for different types of particles emitted from static as well as stationary space-
time metrics [14–18]. Hawking temperature depends on the black hole mass M , charge Q and angular momentum J ,
using the tunneling approach, it is also shown that, the Hawking temperature for a particular black hole configuration
remains unaltered and unaffected by the nature of particles emitted from the black hole. Moreover, the radiation
spectrum is shown to deviate from pure thermality due to the conservation of energy, and hence the theory is consistent
with an underlying unitary theory.
Due to the non-linearity of the Einstein’s field equations it is very difficult to find exact solutions. However, apart

from the standard solutions characterized with spherical symmetry, solutions with cylindrical symmetry have also
been found, such solutions are known as cylindrical black holes or black strings [30, 31]. The tunneling of scalar and
Dirac particles from charged static/rotating black string has been also investigated [26–29]. Recently, the tunneling
of massive spin-1 particles has attracted interest [19–25]. Therefore, in this paper, we aim to study the tunneling of
massive vector bosons W±(spin-1 particles) from the space-time of a charged static and a rotating black string. First,
we derive the field equations by using the Lagrangian given by the Glasgow-Weinberg-Salam model. We then use the
WKB approximation and the separation of variables which results with a set of four linear equations, solving for the
radial part by using the determinant of the metric equals zero, we found the tunneling rate and the corresponding
Hawking temperature in both cases.
The paper is organized as follows. In Sec. II, we investigate the tunneling of massive vector particles from the static

charged black strings and calculate the corresponding tunneling rate and the Hawking temperature. In Sec. III, we
extend our calculations for the case of tunneling of massive vector particles from a rotating charged black string. In
Sec. IV, we comment on our results.
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II. TUNNELING FROM STATIC CHARGED BLACK STRINGS

We can begin by writing the Einstein-Hilbert action with a negative cosmological constant in the presence of an
electromagnetic field given by

S =
1

16πG

∫

d4x
√
−g (R− 2Λ)− 1

16π

∫

d4x
√
−gFµνFµν , (1)

where the Maxwell electromagnetic tensor is given by

Fµν = ∂µAν − ∂νAµ. (2)

If one takes into account the cylindrical symmetries of the space-time, then the line element for a static charged
black string with negative cosmological constant in the presence of electromagnetic fields is shown to be [30, 31]

ds2 = −f(r)dt2 + f(r)−1dr2 + r2dθ2 + α2r2dz2, (3)

where

f(r) = α2r2 − b

αr
+

c2

α2r2
, (4)

and

α2 = −1

3
Λ, b = 4GM, c2 = 4GQ2. (5)

Solving for α2r2 − b
αr

+ c2

α2r2
= 0, one can easily find the outer horizon given by [26]

r+ =
b

1
3

√
s+

√

2
√

s2 − 4p2 − s

2α
, (6)

where

s =





1

2
+

1

2

√

1− 4

(

4p2

3

)3




1
3

+





1

2
− 1

2

√

1− 4

(

4p2

3

)3




1
3

, (7)

p2 =
c2

b
4
3

. (8)

Let us now write the Lagrangian density which describes the W±-bosons in a background electromagnetic field
given by [19]

L = −1

2

(

D+
µW

+
ν −D+

ν W
+
µ

) (

D−µW−ν −D−νW−µ
)

+
m2

W

~2
W+

µ W−µ − i

~
eFµνW+

µ W−
ν , (9)

where D±µ = ∇µ± i
~
eAµ and ∇µ is the covariant geometric derivative. Also, e gives the charge of the W+ boson, Aµ

is the electromagnetic vector potential of the black string given by Aµ = (−h(r), 0, 0, 0), here h(r) = 2Q/αr, where
Q is the charge of the black string. Using the above Lagrangian the equation of motion for the W -boson field reads

1√−g
∂µ

[√
−g

(

D±νW±µ −D±µW±ν
)]

± ieAµ

~

(

D±νW±µ −D±µW±ν
)

+
m2

W

~2
W±ν ± i

~
eFµνW±

µ = 0 (10)

where Fµν = ∇µAν − ∇νAµ. In this work, we will investigate the tunneling of W+ boson, therefore one needs to
solve the following equation

1√−g
∂µ

[√
−ggµαgνβ

(

∂βW
+
α − ∂αW

+
β +

i

~
eAβW

+
α − i

~
eAαW

+
β

)]

(11)

+
ieAµg

µαgνβ

~

(

∂βW
+
α − ∂αW

+
β +

i

~
eAβW

+
α − i

~
eAαW

+
β

)

+
m2

W gνβ

~2
W+

β +
i

~
eF ναW+

α = 0,



3

for ν = 0, 1, 2, 3. Using the WKB approximation

W+
µ (t, r, θ, z) = Cµ(t, r, θ, z) exp

(

i

~
S(t, r, θ, z)

)

, (12)

where the action is given by

S(t, r, θ, z) = S0(t, r, θ, z) + ~S1(t, r, θ, z) + ~
2S2(t, r, θ, z) + ... (13)

We can now use the last three equations and neglect the terms of higher order of ~, then one can find the following
set of four equations:

0 = C0

(

−(∂1S0)
2 − (∂2S0)

2

r2f
− (∂3S0)

2

α2r2f
− m2

f

)

+ C1 ((∂1S0) (eA0 + ∂0S0)) + C2

(

(∂2S0)

r2f
(∂0S0 + eA0)

)

+ C3

(

(∂3S0)

α2r2f
(∂0S0 + eA0)

)

, (14)

0 = C0 (−(∂1S0)(eA0 + ∂0S0)) + C1

(

−f
(∂2S0)

2

r2
− f

(∂3S0)
2

α2r2
+ (∂0S0 + eA0)

2 −m2f

)

+ C2

(

f
(∂1S0)(∂2S0)

r2

)

+ C3

(

f
(∂1S0)(∂3S0)

α2r2

)

, (15)

0 = C0

(

−∂2S0

(

∂0S0 + eA0

f

))

+ C1 (f(∂2S0)(∂1S0)) + C2

(

−f(∂1S0)
2 − (∂3S0)

2

α2r2
+

(∂0S0 + eA0)
2

f
−m2

)

+ C3

(

(∂2S0)(∂3S0)

α2r2

)

, (16)

0 = C0

(

−∂3S0

(

∂0S0 + eA0

f

))

+ C1 (f(∂3S0)(∂1S0)) + C3

(

−f(∂1S0)
2 − (∂2S0)

2

r2
+

(∂0S0 + eA0)
2

f
−m2

)

+ C2

(

(∂2S0)(∂3S0)

r2

)

. (17)

From the metric (3), it is clear that due to the space-time symmetries we can use the following ansatz for the action

S0(t, r, θ, z) = −Et+W (r) + J1θ + J2z + C, (18)

where E, J1, J2 and C are constants. Therefore, the non-zero elements of the coefficient matrix Ξ are given by

Ξ11 = −(W ′)2 − J2
1

r2f
− J2

2

α2r2f
− m2

f

Ξ12 = −Ξ21 = W ′ (eA0 − E)

Ξ13 =
J1
r2f

(eA0 − E)

Ξ14 =
J2

α2r2f
(eA0 − E)

Ξ22 =

(

−f
J2
1

r2
− f

J2
2

α2r2
+ (eA0 − E)2 −m2f

)

Ξ23 = f
W ′J1
r2

Ξ24 = f
W ′J2
α2r2

Ξ31 = −J1
(eA0 − E)

f
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Ξ32 = fJ1W
′

Ξ33 =

(

−f(W ′)2 − J2
2

α2r2
+

(eA0 − E)2

f
−m2

)

Ξ34 =
J1J2
α2r2

Ξ41 = −J2 (eA0 − E)

f

Ξ42 = fJ2W
′

Ξ43 =
J1J2
r2

Ξ44 =

(

−f(W ′)2 − J2
1

r2
+

(eA0 − E)2

f
−m2

)

. (19)

The nontrivial solution of this equation [20]

Ξ(C0, C1, C2, C3)
T = 0, (20)

is obtained by using the determinant of the matrix equals zero, det Ξ = 0, it follows

m2
(

− r2(E − eA0)
2α2 + f2r2α2(W ′)2 +

(

(m2r2 + J2
1 )α

2 + J2
2

)

f
)3

= 0. (21)

Solving this equation for the radial part leads to the following integral

W±(r) = ±
∫

√

(E − eA0)2 − f(r)
(

m2 +
J2
1

r2
+

J2
2

α2r2

)

f(r)
dr. (22)

Expanding the function f(r) in Taylor’s series near the horizon

f(r+) ≈ f ′(r+)(r − r+), (23)

and by integrating around the pole at the outer horizon r+, gives

W±(r) = ± iπ(E − eA0)

f ′(r+)
. (24)

Now we can set the probability of the ingoing particle to 100% (since every outside particle falls into the black
hole), it follows

P− ≃ e−2ImW
− = 1,

which implies ImC = −ImW−. For the outgoing particle we have ImS+ = ImW+ + ImC, and also we make use of
W+ = −W−, which leads to the probability for the outgoing particle given by

P+ = e−2ImS ≃ e−4ImW+ . (25)

In this way the tunneling rate of particles tunneling from inside to outside the horizon is given by

Γ =
P+

P−

≃ e(−4ImW+). (26)

We can find the Hawking temperature simply by compering the last result with the Boltzmann factor Γ = e−βEnet,
where Enet = (E − eA0) and β = 1/TH , yielding

TH =
f ′(r+)

4π
. (27)

Using Eqn.(4), one can recover the Hawking temperature for a static charged black string [26]

TH =
1

4π

(

2α2r+ +
b

αr2+
− 2c2

α2r3+

)

. (28)
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III. TUNNELING FROM ROTATING CHARGED BLACK STRINGS (RCBSS)

Lemos derived a rotating charged cylindrically symmetric exact solution of Einstein equations for a black string
[30]. The line element for a RCBSs is given by [26]

ds2 = −F (r) dt2 +R2(r) (Ndt+ dθ)
2
+

dr2

G(r)
+ α2r2dz2, (29)

where the lapse function F and the shift function N are given as

G =

(

α2r2 − b

αr
+

c2

α2r2

)

, (30)

F = fG, (31)

f =

(

γ2 − ω2

α2

)2
r2

R2
, (32)

N = − γω

α2R2

(

b

αr
− c2

α2r2

)

, (33)

and

R2 = γ2r2 − ω2

α4

(

α2r2 − b

αr
+

c2

α2r2

)

. (34)

Noted that the rotation parameter a = J/M, constant α2 = −Λ/3, where Λ is the cosmological constant, M is the
ADM mass, Q is the charge of the black string, and J is the angular momentum. In addition, b and c are defined as

b = 4M

(

1− 3a2α2

2

)

, (35)

c2 = 4Q2

(

1− 3a2α2/2

1− a2α2/2

)

. (36)

Furthermore, γ2 and ω2/α2 are defined as

γ2 =
2GM

b
± 2G

b

√

M2 − 8Jα2

9
, (37)

ω2

α2
=

4GM

b
∓ 4G

b

√

M2 − 8Jα2

9
, (38)

or

γ =

√

1− a2α2

2

1− 3a2α2

2

,

ω =
aα2

√

1− 3a2α2

2

. (39)
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Let us now introduce the electromagnetic field associated with the vector potential of the RCBSs

Aµ = (A0, 0, A2, 0) (40)

where A0 = −γh(r), A2 = ω
α2h(r), and h(r) is an arbitrary function of r for the line charge density along the z-line

given by Q = Qz

∆z
= γλ. To exactly reveal the massive vector particle’s tunneling radiation, we should solve the Proca

equation in Eqn.(11). Following the standard procedure, we use the WKB approximation Eqn.(12) with the action
Eqn(13) in the background of the RCBSs spacetime and neglect the factors of higher orders of ~. Then using the
following ansatz for the action

S0 = −Et+W (r) + J1θ + J2z + k, (41)

where E, J1, J2 and k are constants, we get four decoupled equations such as:

C0

fG2R2r2α2

[

fG3R2r2α2W ′2 +G
[

((

m2r2α2 + J2
2

)

fG− r2 (eA2 + J1)Nα2 ((eA2 + J1)N − eA0 + E)
)

R2

+r2α2fG (eA2 + J1)
2
]]

− ((eA2 + J1)N − eA0 + E)
W ′

fG
C1 +

(−erA2 − J1r)

fGr
((eA2 + J1)N − eA0 + E)C2

− C3J2
fG

((eA2 + J1)N − eA0 + E) = 0, (42)

C0

fGR2α2r2
(

−α2fG2R2eA0r
2W ′ + α2R2fG2W ′r2E

)

+ 2
[

α2
(((

−N2A2 +NA0

)

R2 + fGA2

)

e−R2NE
)

r2J1

+
1

2
α2r2

(

−R2N2 + fG
)

J2
1 − α2R2e (NA2 −A0) r

2E

−1

2
R2α2r2E2 + α2r2

(

1

2

(

m2fG− e2 (NA2 −A0)
2
)

R2 +
1

2
fGe2A2

2

)

+
1

2
R2fGJ2

2

] C1

fGR2α2r2

+
[

− α2fG2R2A2er
2W ′ − α2G2fR2W ′r2J1

] C2

fGR2α2r2
−GJ2W

′C3 = 0, (43)

[

−α2
(

−fG2R
(

−R2N2 + fG
)

rE − fG2
(

N2A0erR
2 − fGA0er

)

R
)

rJ1−α2RfG2
((

reA2N
2 − 2A0erN

)

R2 − fGA2er
)

rE

−α2r2fG2R3NE2+α2fG2
(

e2 (NA2 −A0)A0rNR2 − fGA2A0e
2r
)

Rr
] C0

f2G3R3r2α2
+
[

−α2r2fG2R
(

−R2N2 + fG
)

W ′J1

−2α2fG2R

(

−1

2
erN (NA2 −A0)R

2 +
1

2
fGA2er

)

rW ′ + α2R3fG2Nr2W ′E
] C1

f2G3R3r2α2

+
[

− α2
(

fG2R3NrE − fG2NA0erR
3
)

rJ1 + f2G3R3J2
2 + α2fG2

(

fGrm2 + e2 (NA2 −A0)A0r
)

R3r

−α2R3fG2 (NA2er − 2A0er) rE − α2r2fG2R3E2 + r2α2R3f2G4W ′2
] C2

f2G3R3r2α2
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+
[

− α2r2fG2R
(

−R2N2 + fG
)

J2J1 + α2R3r2fG2NJ2E − α2fG2R
((

−N2A2 +NA0

)

R2 + fGA2

)

er2J2

]

C3 = 0,

(44)

(

−fG2A0erR +RrG2fE
) J2
Rα2r3fG2

C0 −
W ′J2C1

r2α2
+
(

−RfG2A3er − J1RfG2r
) J2
Rα2r3fG2

C2 (45)

−
[

r
(

−R2N2 + fG
)

J2
1 − 2

(((

−N2A2 +NA0

)

R2 + fGA2

)

e−R2NE
)

rJ1 − rR2fG2W ′2 + rR2E2

+2erR2 (NA2 −A0)E −
((

m2fG− e2 (NA2 −A0)
2
)

R2 + fGe2A2
2

)

r
] C3

GrfR2
= 0.

Then the non-zero elements of the coefficient matrix Θ are calculated as following

Θ11 =
[

fG3R2r2α2W ′2 +G
[

((

m2r2α2 + J2
2

)

fG− r2 (eA2 + J1)Nα2 ((eA2 + J1)N − eA0 + E)
)

R2 (46)

+r2α2fG (eA2 + J1)
2
]]

,

Θ12 = − ((eA2 + J1)N − eA0 + E)W ′,

Θ13 = (−erA2 − J1r) ((eA2 + J1)N − eA0 + E) ,

Θ14 = −J2 ((eA2 + J1)N − eA0 + E) ,

Θ21 =
(

−α2fG2R2eA0r
2W ′ + α2R2fG2W ′r2E

)

,

Θ22 = 2
[

α2
(((

−N2A2 +NA0

)

R2 + fGA2

)

e−R2NE
)

r2J1 +
1

2
α2r2

(

−R2N2 + fG
)

J2
1 − α2R2e (NA2 −A0) r

2E

−α2r2fG2R3NE2 + α2r2
(

1

2

(

m2fG− e2 (NA2 −A0)
2
)

R2 +
1

2
fGe2A2

2

)

+
1

2
R2fGJ2

2

]

,

Θ23 =
[

−α2fG2R2A2er
2W ′ − α2G2fR2W ′r2J1

]

,

Θ24 = −GJ2W
′,

Θ31 =
[

− α2
(

−fG2R
(

−R2N2 + fG
)

rE − fG2
(

N2A0erR
2 − fGA0er

)

R
)

rJ1

−α2RfG2
((

reA2N
2 − 2A0erN

)

R2 − fGA2er
)

rE − α2r2fG2R3NE2 + α2fG2

+
(

e2 (NA2 −A0)A0rNR2 − fGA2A0e
2r
)

Rr
]

,

Θ32 =
[

− α2r2fG2R
(

−R2N2 + fG
)

W ′J1 − 2α2fG2R

(

−1

2
erN (NA2 −A0)R

2 +
1

2
fGA2er

)

rW ′

+α2R3fG2Nr2W ′E
]

,

Θ33 =
[

− α2
(

fG2R3NrE − fG2NA0erR
3
)

rJ1 + f2G3R3J2
2 + α2fG2

(

fGrm2 + e2 (NA2 −A0)A0r
)

R3r

−α2R3fG2 (NA2er − 2A0er) rE − α2r2fG2R3E2 + r2α2R3f2G4W ′2
]

,

Θ34 =
[

− α2r2fG2R
(

−R2N2 + fG
)

J2J1 + α2R3r2fG2NJ2E − α2fG2R
((

−N2A2 +NA0

)

R2 + fGA2

)

er2J2

]

,

Θ41 =
(

−fG2A0erR+RrG2fE
)

J2,

Θ42 = −W ′J2,

Θ43 =
(

−RfG2A2er − J1RfG2r
)

J2,

Θ44 = −
[

r
(

−R2N2 + fG
)

J2
1 − 2

(((

−N2A2 +NA0

)

R2 + fGA2

)

e−R2NE
)

rJ1 − rR2fG2W ′2

+rR2E2 + 2erR2 (NA2 −A0)E −
((

m2fG− e2 (NA2 −A0)
2
)

R2 + fGe2A2
2

)

r
]

.

The nontrivial solution of this equation [20]

Θ(C0, C1, C2, C3)
T = 0, (47)
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is obtained by using the determinant of the matrix equals zero, detΘ = 0, it follows

−m2
[

−fG2R2r2α2W ′2 +
(

−f
(

m2r2α2 + J2
2

)

G+ r2α2 ((eA2 + J1)N − eA0 + E)
2
)

R2 −Gfα2r2 (eA2 + J1)
2
]3

= 0.

(48)
Solving this equation for the radial part leads to the following integral, as noted that F (r) = f(r)G(r),

W±(r) = ±
∫ R(r)

√

(E − eA0 + (eA2 + J1)N)
2 − F

[(

m2 +
J2
2

r2α2

)

+ (eA2+J1)
2

R2

]

(

γ2 − ω2

α2

)

r G(r)
dr. (49)

Integrating around the pole at the outer horizon r+, and by using R(r+) = γr+, gives [10, 11]

W±(r) = ± iπγ (E − eA0 + (eA2 + J1)N)
(

γ2 − ω2

α2

)

G′(r+)
, (50)

where Enet = (E − eA0 + (eA2 + J1)N) . By the same way used in the first part, the tunneling rate of particles
tunneling from inside to outside the horizon is given by

Γ =
P+

P−

≃ e(−4ImW+). (51)

On the other hand, using Eqns.(30) and (39), it follows

γ2 − ω2

α2
= 1, (52)

and

G′(r+) =

(

2α2r+ +
b

αr2+
− 2c2

α2r2+

)

. (53)

Again, comparing the Boltzmann factor Γ = e−βEnet, with the tunneling rate, gives the Hawking temperature
[27, 28]

TH =
G′(r+)

4π

(

γ2 − ω2

α2

)

γ
=

1

4πγ

(

2α2r+ +
b

αr2+
− 2c2

α2r2+

)

. (54)

IV. CONCLUSION

To summarize, in this paper, we derive the charged black strings temperature using the Hamilton-Jacobi method
of the tunneling formalism for the massive vector particles. In the case of a static black string, we start from the
field equations, then we use the WKB approximation and the separation of variables which results with a set of four
equations. In order to work out the Hawking temperature, we solve the radial part by using the determinant of the
metric equals zero. Next, we extend our results to the rotating case and calculate the Hawking temperature. Finally,
the results presented in this work extend the tunneling method for massive vector bosons in the case of static/rotating
black strings and are consistent with those in the literature[26–29].
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