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We consider the standard Yang–Mills (YM) invariant raised to the power q, i.e., (F (a)
μν F (a)μν)q as the

source of our geometry and investigate the possible black hole solutions. How does this parameter q
modify the black holes in Einstein–Yang–Mills (EYM) and its extensions such as Gauss–Bonnet (GB) and
the third order Lovelock theories? The advantage of such a power q (or a set of superposed members
of the YM hierarchies) if any, may be tested even in a free YM theory in flat spacetime. Our choice of
the YM field is purely magnetic in any higher-dimensions so that duality makes no sense. In analogy
with the Einstein-power-Maxwell theory, the conformal invariance provides further reduction, albeit in a
spacetime for dimensions of multiples of 4.

© 2009 Elsevier B.V.

1. Introduction

N-dimensional static, spherically symmetric Einstein–Yang–Mills (EYM) black hole solutions in general relativity are well-known by
now for which we refer to [1], and references cited therein. YM theory’s non-linearity naturally adds further complexity to the already
non-linear gravity, thus expectedly the theory and its accompanied solutions become rather complicated. Extension of the Einstein–Hilbert
(EH) action with further non-linearities, such as Gauss–Bonnet (GB) or Lovelock have also been considered. These latter theories involve
higher order invariants in such combinations that the field equations remain second order.

More recently there has been aroused interest about black hole solutions whose source is a power of the Maxwell scalar i.e., (Fμν F μν)q ,
where q is an arbitrary positive real number [2]. Subsequently this will be developed easily into a hierarchies of YM terms. In the standard
Maxwell theory we have q = 1, whereas now the choice q �= 1 is also taken into account which adds to the theory a new dimension of
non-linearity from the electromagnetism. Non-linear electrodynamics, such as Born–Infeld (BI) involves a kind of non-linearity that is
more familiar for a long time [3]. From the outset we express that the non-linearity involved in the power-Maxwell formalism is radically
different from that of BI. An infinite series expansion of the square root term in the latter reveals this fact. For the special choice q = N

4 ,
where N = dimension of the spacetime is a multiple of 4, it yields a traceless Maxwell’s energy–momentum tensor which leads to
conformal invariance. That is, in the absence of different fields such as self-interacting massless scalar field and/or a cosmological constant
we have a vanishing scalar curvature. This implies a relatively simpler geometry under the invariance gμν → Ω2 gμν and naturally attracts
interest. The absence of black hole solutions in higher dimensions for a self-interacting scalar field was proved long time ago [4]. Self-
interacting Maxwell field with a power of invariant, however, which conformally interacts with gravity admits black hole solutions [2].

Being motivated by the black holes sourced by the power of Maxwell’s invariant we investigate in this work the existence of black
holes with a power of YM source. That is we shall choose our source as (F (a)

μν F (a)μν)q (and also
∑q

k=0 bk(F (a)
μν F (a)μν)k , with constant

coefficients bk) where F (a)
μν is the YM field with its internal index 1 � a � 1

2 (N − 1)(N − 2) and q is a real number such that q = 1 recovers
the EYM black holes. Similar to the power-Maxwell case we obtain the conformally invariant YM black holes with a zero trace for the
energy–momentum tensor. It turns out in analogy that the dimensions of spacetimes are multiples of 4. The power q can be chosen
arbitrary provided the conformal property is lost. It will also be shown that q < 0, will lead to the violation of the energy and causality
conditions. This will restrict us only to the choice q > 0. As before, our magnetically charged YM field consists of the Wu–Yang ansatz
in any higher dimensions [1]. The EYM metric function admits an integral proportional to ∼ ln r

r2 for N = 5 and ∼ 1
r2 for all N > 5. The

fixed r-dependence for N > 5, was considered to be unusual i.e., a drawback or advantage, depending on the region of interest. Now with
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the choice of the power q on the YM invariant we obtain dependence on q as well, which brings extra r-dependence in the metric. The
possible set of integer q values in each N > 5 is determined by the validity of the energy conditions. For N = 4 and 5 we show that q = 1,
necessarily, but for N > 5 we can’t accommodate q = 1 unless we violate some energy conditions.

We consider next the GB (i.e., second order Lovelock) and successively Lovelock’s third order term added to the first order EH La-
grangian. Our source term throughout the Letter is the YM invariant raised to the power q (and its hierarchies). In each case, separately or
together, we seek solutions to what we call, the Einstein-power-YM (EPYM) field with GB and Lovelock terms. It is remarkable that such
a highly non-linear theory with non-linearities in various forms admits black hole solutions and in the appropriate limits, with q = 1, it
yields all the previously known solutions. In the presence of both the second and third order Lovelock terms, however, we impose for
technical reasons an algebraic condition between their parameters. This we do for the simple reason that the most general solution involv-
ing both the second and third order terms is technically far from being tractable. Useful thermodynamic quantities such as the Hawking
temperature, specific heat and free energy are determined and briefly discussed.

Organization of the Letter is as follows. Section 2 contains the action, field equations, energy–momentum for EPYM gravity and solu-
tions to the field equations. Sections 3 and 4 follow a similar pattern for the GB and third order Lovelock theories, respectively. Yang–Mills
hierarchies are discussed in Section 5. We complete the Letter with Conclusion which appears in Section 6.

2. Field equations and the metric ansatz for EPYM gravity

The N(= n+2)-dimensional action for Einstein-power-Yang–Mills (EPYM) gravity with a cosmological constant Λ is given by (8πG = 1)

I = 1

2

∫
M

dn+2x
√−g

(
R − n(n + 1)

3
Λ − F q

)
, (1)

in which F is the YM invariant

F = Tr
(

F (a)
λσ F (a)λσ

)
, Tr(.) =

n(n+1)/2∑
a=1

(.), (2)

R is the Ricci Scalar and q is a positive real parameter. Here the YM field is defined as

F(a) = dA(a) + 1

2σ
C (a)

(b)(c)A
(b) ∧ A(c) (3)

in which C (a)

(b)(c) stands for the structure constants of n(n+1)
2 -parameter Lie group G , σ is a coupling constant and A(a) are the SO(n + 1)

gauge group YM potentials. The determination of the components C (a)

(b)(c) has been described elsewhere [5]. We note that the internal
indices {a,b, c, . . .} do not differ whether in covariant or contravariant form. Variation of the action with respect to the spacetime metric
gμν yields the field equations

Gμ
ν + n(n + 1)

6
Λδμ

ν = T μ
ν, (4)

T μ
ν = −1

2

(
δμ

ν F q − 4q Tr
(

F (a)
νλ F (a) μλ

)
F q−1), (5)

where Gμν is the Einstein tensor. Variation with respect to the gauge potentials A(a) yields the YM equations

d
(
	F(a)F q−1) + 1

σ
C (a)

(b)(c)F q−1A(b) ∧ 	F(c) = 0, (6)

where 	 means duality. It is readily observed that for q = 1 our formalism reduces to the standard EYM theory. Our objective in this work
therefore is to study the role of the parameter q in the black holes. Our metric ansatz for N(= n + 2) dimensions, is chosen as

ds2 = − f (r)dt2 + dr2

f (r)
+ r2 dΩ2

n , (7)

in which f (r) is our metric function and

dΩ2
n = dθ2

1 +
n∑

i=2

i−1∏
j=1

sin2 θ j dθ2
i , (8)

where

0 � θn � 2π, 0 � θi � π, 1 � i � n − 1.

The choice of these metrics can be traced back to the form of the stress–energy tensor (5), which satisfies T 0
0 − T 1

1 = 0 (see Eq. (12) below)
and consequently G0

0 − G1
1 = 0, whose explicit form, on integration, gives |g00 g11| = C = constant. We need only to choose the time scale

at infinity to make this constant equal to unity.
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Table 1
Energy conditions WEC, SEC and DEC and the causality condition (CC) versus the admissible ranges of parameter q.

WEC SEC DEC CC

q < 0 no no no no
0 � q < n

4 yes no no no
n
4 � q < n+1

4 yes yes no no
n+1

4 � q < n+1
2 yes yes yes yes

n+1
2 < q yes yes yes no

2.1. Energy–momentum tensor

Recently we have introduced and used the higher dimensional version of the Wu–Yang ansatz in EYM theory of gravity [1,5]. In this
ansatz we express the Yang–Mills magnetic gauge potential one-forms as

A(a) = Q

r2
C (a)

(i)( j)xi dx j, Q = YM magnetic charge, r2 =
n+1∑
i=1

x2
i , (9)

2 � j + 1 � i � n + 1, and 1 � a � n(n + 1)/2,

x1 = r cos θn−1 sin θn−2 · · · sin θ1, x2 = r sin θn−1 sin θn−2 · · · sin θ1,

x3 = r cos θn−2 sin θn−3 · · · sin θ1, x4 = r sin θn−2 sin θn−3 · · · sin θ1,

. . .

xn = r cos θ1.

One can easily show that these ansaetze satisfy the YM equations [1,5]. In consequence, the energy–momentum tensor (5), with

F = n(n − 1)Q 2

r4
, (10)

Tr
(

F (a)
θiλ

F (a)θiλ
) = (n − 1)Q 2

r4
= 1

n
F (11)

becomes

T a
b = −1

2
F q diag[1,1, κ,κ, . . . , κ], and κ =

(
1 − 4q

n

)
. (12)

We observe that the trace of T a
b is T = − 1

2 F q(N − 4q) which vanishes for the particular case q = N
4 . It is also remarkable to give the

intervals of q in which the Weak Energy Condition (WEC), Strong Energy Condition (SEC), Dominant Energy Condition (DEC) and Causality
Condition (CC) are satisfied [6]. It is observed from Table 1 that the physically meaningful range for q is n+1

4 � q < n+1
2 , which satisfies

all the energy and causality conditions. The choice q < 0, violates all these conditions so it must be discarded. In the sequel we shall use
this energy–momentum tensor to find black hole solutions for the EPYM, EPYMGB and EPYMGBL field equations with the cosmological
constant Λ.

2.2. EPYM black hole solution for N � 5 dimensions

In N(= n + 2) � 5 dimensions the rr component of Einstein equation reads

3(n(n − 1)Q 2)q

r2(2q−1)
+ 3n

[
rg′(r) + (n − 1)g(r) + Λ

3
(n + 1)r2

]
= 0, (13)

in which f (r) = 1 + g(r). Direct integration leads to the following solutions

f (r) =
{

1 − 4m
nrn−1 − Q 1

r4q−2 − Λ
3 r2, q �= n+1

4 ,

1 − 4m
nrn−1 − Q 2 ln r

rn−1 − Λ
3 r2, q = n+1

4 ,

Q 1 = ((n − 1)nQ 2)q

n(n + 1 − 4q)
, Q 2 = ((n − 1)nQ 2)

n+1
4

n
, (14)

where m is the ADM mass of the black hole. It is observed that physical properties of such a black hole depends on the parameter q. The
location of horizons, f (rh) = 0, involves an algebraic equation whose roots can be found numerically. The entropy, Hawking temperature
and other thermodynamics properties all can be calculated accordingly and they are dependent on q. Table 1 shows that the minimum
possible value for q which provides all the energy conditions to be satisfied is given by qmin = n+1

4 , that is, the case of solution with
logarithmic term. In 5 dimensions qmin = 1, which recovers the usual EYM solution found in [1,5]. With the exception of N = 5 where
q = 1 is part of possible q′s (which satisfy all the energy conditions), in higher dimensions q must be greater than one. For instance, in
6 dimensions 5

4 � q < 5
2 and in 7 dimensions 3

2 � q < 3. If one constrains q to be an integer, Table 2 gives the possible q values in some
dimensions. From this table we can identify the dimensions in which the logarithmic term appears naturally. These are N = 5,9,13, . . . ,
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Table 2
List of some possible integer q values versus N .

Dimensions N 5 6 7 8 9 10 11 12 13

possible integer q 1 2 2 2,3 2,3 3,4 3,4 3,4,5 3,4,5

for which qmin = N−1
4 is an integer. Let us remark that since for N = 4 our YM field gauge transforms to an Abelian form [7], our results

become automatically valid also for N = 4.
We observe that although the metric function f (r) at infinity goes to −Λ

3 r2 its behavior about the origin is quite different and strongly
depends on q i.e.,

lim
r→0

f (r) →

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

− 4m
nrn−1 → −∞, q < n+1

4 ,

((n−1)nQ 2)
n+1

4

nrn−1 ln( 1
r ) → +∞, q = n+1

4 ,

((n−1)nQ 2)q

n(4q−n−1)r4q−2 → +∞, q > n+1
4 .

(15)

This is important because for the case of q � n+1
4 one may adjust the mass and charge to have a metric function in contradiction with

the Cosmic Censorship Conjecture (CCC). One statement of this conjecture is that all singularities (here r = 0) are hidden behind event
horizons. Of course, nature may restrict Q and m in order not to violate this conjecture.

Note that r = 0 is a singularity for the metric whose Ricci scalar is given by

R =
⎧⎨
⎩

((n−1)nQ 2)q(n+2−4q)

nr4q , q �= n+1
4 ,

((n−1)nQ 2)
n+1

4

nrn+1 , q = n+1
4 .

(16)

2.3. Extremal black holes

Closely related with a usual black hole is an extremal black hole whose horizons coincide. As it is well known to get extremal solution
one should solve f (r) = 0, and f ′(r) = 0 simultaneously. This set of equations for the solution (14), without cosmological constant, leads
to

re = (
n(n − 1)

) q−1
2(2q−1) Q (

q
2q−1 )

, (17)

me =

⎧⎪⎨
⎪⎩

(2q−1)Q
(

q
2q−1 )

2(4q−n−1)
n

3q−1−n+qn
2(2q−1) (n − 1)

(n−1)(q−1)
2(2q−1) , q �= n+1

4 ,

(n−1)
n−3

4 Q
n+1

2

8 {n n+1
4 (2 + 3

2 ln n(n−1)

Q 2/3 ) − n
n+5

4

2 ln(n(n − 1)Q 2)}, q = n+1
4 ,

(18)

where re is the radius of degenerate horizon and me and Q are the extremal mass and charge of the black hole, respectively. One may
check the case of q = 1, resulting in

re = Q , me = n

2(3 − n)
Q , (19)

which clearly in 4 dimensions gives re = Q = me , as it should.

2.4. Thermodynamics of the EPYM black hole

In this section we present some thermodynamical properties of EPYM black hole solution with cosmological constant. Here it is
convenient to rescale our quantities in terms of some different powers of radius of the horizon rh , i.e., we introduce

Ť H = T H rh, M̌ADM = MADM/rn−1
h , Λ̌ = Λr2

h, Q̌ i = Q i/r2(2q−1)

h , Č = C/rn
h and F̌ = F/rn−1, (20)

where T H = f ′(rh)/4π is the Hawking temperature, C = C Q = T H ( ∂ S
∂T H

)Q is the heat capacity for constant Q and F = MADM − T H S is the
free energy of the black hole as a thermodynamical system. Therein

S = A

4
= (n + 1)π( n+1

2 )

4
(n+3
2 )

rn
h (21)

is the Bekenstein–Hawking entropy where 
(.) stands for the gamma function. As one may notice in (14) m represent the ADM mass of
the black hole. This helps us to write

M̌ADM = m̌ =
⎧⎨
⎩

n
4 (1 − Q̌ 1 − Λ̌

3 ), q �= n+1
4 ,

n
4 (1 − Q̌ 2 ln(rh) − Λ̌

3 ), q = n+1
4 ,

(22)

which imposes some restrictions on Q̌ i and Λ̌ in order to have a positive and physically acceptable M̌ADM.
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In terms of the event horizon rh Hawking temperature becomes

Ť H =

⎧⎪⎨
⎪⎩

−Q̌ 1(n+1−4q)− Λ̌
3 (n+1)+(n−1)

4π , q �= n+1
4 ,

−Q̌ 2− Λ̌
3 (n+1)+(n−1)

4π , q = n+1
4 .

(23)

For the case of q �= n+1
4 clearly by imposing M̌ADM, Ť H > 0 one finds Λ̌

3 < (1 − 1
2q ) and for the case of q = n+1

4 and choosing rh = 1, one

gets Λ̌
3 < 1 − Q̌ 2+2

n+1 . The heat capacity Č is given by

Č =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

n
2

π
n+1

2


( n+1
2 )

(n+1)Λ̌
3 +(n+1−4q)Q̌ 1−(n−1)

Λ̌
3 (n+1)−Q̌ 1(n+1−4q)(4q−1)+n−1

, q �= n+1
4 ,

n
2

π
n+1

2


( n+1
2 )

(n+1)Λ̌
3 −(n−1)+Q̌ 2

(n+1) Λ̌
3 −nQ̌ 2+(n−1)

, q = n+1
4 ,

(24)

which reveals the thermodynamic instability of the black hole. In fact the possible roots of denominator of Č present a phase transition
which can be interpreted as thermodynamical instability.

For completeness we give also the free energy F of our black hole as a thermodynamical system, which is

F̌ =

⎧⎪⎪⎨
⎪⎪⎩

[Q̌ 1(n+1−4q)+ Λ̌(n+1)
3 +1−n]π n−1

2 −2n(Q̌ 1+ Λ̌
3 −1)
( n+1

2 )

8
( n+1
2 )

, q �= n+1
4 ,

[Q̌ 2+ Λ̌(n+1)
3 −(n−1)]π n−1

2 −2n(Q̌ 2 ln(rh)+( Λ̌
3 −1))
( n+1

2 )

8
( n+1
2 )

, q = n+1
4 .

(25)

By letting q = 1 and n = 2 for the 4-dimensional Reissner–Nordström metric, the foregoing expressions become

MADM = m = rh

2

(
1 + Q 2

r2
h

)
, (26)

T H = f ′(rh)

4π
= 1

4πrh

(
1 − Q 2

r2
h

)
, (27)

SBH = πr2
h, (28)

C Q = −
2π [1 − Q 2

r2
h

]r2
h

[1 − 3 Q 2

r2
h

]
, (29)

F =
(

1 + 3Q 2

r2
h

)
rh

4
. (30)

3. Field equations and the metric ansatz for EPYMGB gravity

The EPYMGB action in N(= n + 2) dimensions is given by (8πG = 1)

I = 1

2

∫
M

dn+2x
√−g

(
R − n(n + 1)

3
Λ + αLGB − F q

)
, (31)

where α is the GB parameter and LGB is given by

LGB = Rμνγ δ Rμνγ δ − 4Rμν Rμν + R2. (32)

Variation of the new action with respect to the spacetime metric gμν yields the field equations

G E
μν + αGGB

μν + n(n + 1)

6
Λgμν = Tμν, (33)

where

GGB
μν = 2

(−Rμσκτ Rκτσ
ν − 2Rμρνσ Rρσ − 2Rμσ Rσ

ν + R Rμν

) − 1

2
LGB gμν, (34)

and Tμν is given by (12).

3.1. EPYMGB black hole solution for N � 5 dimensions

As before, the rr component of Einstein equation (33) can be written as

3(n(n − 1)Q 2)q

4(q−1)
+ 3n

[(
r3 − 2α̃2rg(r)

)
g′(r) − α̃2(n − 2)g(r)2 + r2(n − 1)g(r) + Λ

(n + 1)r4
]

= 0, (35)

r 3
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in which α̃2 = (n − 1)(n − 2)α2. This equation admits a solution as

f±(r) =

⎧⎪⎨
⎪⎩

1 + r2

2α̃2
(1 ±

√
1 + 4

3 Λα̃2 + 16mα̃2
nrn+1 + 4α̃2 Q 1

r4q ), q �= n+1
4 ,

1 + r2

2α̃2
(1 ±

√
1 + 4

3 Λα̃2 + 16mα̃2
nrn+1 + 4α̃2 Q 2 ln(r)

rn+1 ), q = n+1
4 .

(36)

The asymptotic behavior of the metric reveals that

lim
r→∞ f±(r) →

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 + r2

2α̃2
(1 ±

√
1 + 4

3 Λα̃2 ), q < n+1
4 ,

1 + r2

2α̃2
(1 ±

√
1 + 4

3 Λα̃2 ), q = n+1
4 ,

1 + r2

2α̃2
(1 ∓

√
1 + 4

3 Λα̃2 ), q > n+1
4 ,

(37)

which depending on Λ it is de Sitter, Anti-de Sitter or flat. Abiding by the (anti) de Sitter limit for α̃2 → 0, we must choose the (−) sign.

3.2. Thermodynamics of the EPYMGB black hole

By using the above rescaling plus α̌2 = α̃2/r2
h , one can find the Hawking temperature of the EPYMGB black hole solutions (36) as

Ť H (−) =

⎧⎪⎨
⎪⎩

− Q̌ 1(n+1−4q)+ Λ̌
3 (n+1)−(n−1)−α̌2(n−3)

4π(1+2α̌2)
, q �= n+1

4 ,

− Q̌ 2+ Λ̌
3 (n+1)−(n−1)−α̌2(n−3)

4π(1+2α̌2)
, q = n+1

4 ,

(38)

Ť H (+) =

⎧⎪⎨
⎪⎩

Q̌ 1α̌2(n+1−4q)+ Λ̌
3 α̌2(n+1)−α̌2

2(n−3)−α̌2(n−5)+2
4πα̌2(1+2α̌2)

, q �= n+1
4 ,

Q̌ 2α̌2+ Λ̌
3 α̌2(n+1)−α̌2

2(n−3)−α̌2(n−5)+2
4πα̌2(1+2α̌2)

, q = n+1
4 ,

(39)

here (±) state the correspondence branches. Here we observe that Ť H (−) in the limit of α̌2 → 0 correctly reduces to the Hawking
temperature of EPYM black hole (23) as expected. It is remarkable to observe that α̌2 = − 1

2 is a point of infinite temperature, or instability
of the black hole. This means that if α̃2/r2

h = − 1
2 , the black hole will be unstable. For the positive branch one should be careful about

α̌2 → 0 which is not applicable.
In the sequel we give the other thermodynamical properties of the BH solution (36) in separate cases.

3.2.1. Negative branch q �= n+1
4

The ADM mass:

M̌ADM = m̌ = n

4

(
1 + α̌2 − Q̌ 1 − Λ̌

3

)
. (40)

The heat capacity:

Č = n

2
π

n+1
2

(α̌2 + 1
2 )


(n+1
2 )

Λ̌
3 (n + 1) + (n + 1 − 4q)Q̌ 1 − (n − 3)α̌2 − (n − 1)

{(n + 1)(α̌2 + 1
6 )Λ̌ + (n − 3)α̌2

2 − 4[(q − 3
4 )α̌2 + 1

2 (q − 1
4 )]Q̌ 1(1 + n − 4q) + (n−7

2 )α̌2 + (n−1
2 )} . (41)

The free energy:

F̌ = [Q̌ 1(n + 1 − 4q) + Λ̌(n+1)
3 − (n − 3)α̌2 + 1 − n]π n−1

2 − 4n(Q̌ 1 + Λ̌
3 − 1 − α̌2)(α̌2 + 1

2 )
(n+1
2 )

8(1 + 2α̌2)
(n+1
2 )

. (42)

3.2.2. Negative branch q = n+1
4

The ADM mass:

M̌ADM = m̌ = n

4

(
1 + α̌2 − Q̌ 2 ln(rh) − Λ̌

3

)
, (43)

The heat capacity:

Č = nπ
n+1

2
(α̌2 + 1

2 )


(n+1
2 )

(n+1)Λ̌
3 − (n − 1) − (n − 3)α̌2 + Q̌ 2

(n + 1)(1 + 6α̌2)
Λ̌
3 − (2(n − 2)α̌2 + n)Q̌ 2 + 2(n − 3)α̌2

2 + (n − 7)α̌2 + (n − 1)
. (44)

The free energy:

F̌ = [Q̌ 2 + Λ̌(n+1)
3 − (n − 3)α̌2 − (n − 1)]π n−1

2 − 4n(Q̌ 2 ln(rh) + ( Λ̌
3 − 1) − α̌2)(α̌2 + 1

2 )
(n+1
2 )

8(1 + 2α̌2)
(n+1
2 )

. (45)
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3.2.3. Positive branch q �= n+1
4

The ADM mass:

M̌ADM = m̌ = n

4

(
1 + α̌2 − Q̌ 1 − Λ̌

3

)
. (46)

The heat capacity:

Č = −n

2
π

n+1
2

(α̌2 + 1
2 )


(n+1
2 )

× − Λ̌
3 (n + 1)α̌2 − (n + 1 − 4q)α̌2 Q̌ 1 + (n − 3)α̌2

2 + (n − 5)α̌2 − 2

{(n + 1)(α̌2 + 1
6 )α̌2Λ̌ + (n − 3)α̌3

2 − 4[(q − 3
4 )α̌2 + 1

2 (q − 1
4 )]α̌2 Q̌ 1(1 + n − 4q) + (n+1

2 )α̌2
2 + (n+7

2 )α̌2 + 1} . (47)

The free energy:

F̌ = [−Q̌ 1α̌2(n + 1 − 4q) − Λ̌(n+1)
3 α̌2 + (n − 3)α̌2

2 + (n − 5)α̌2 − 2]π n−1
2 − 4nα̌2(Q̌ 1 + Λ̌

3 − 1 − α̌2)(α̌2 + 1
2 )
(n+1

2 )

8α̌2(1 + 2α̌2)
(n+1
2 )

. (48)

3.2.4. Positive branch q = n+1
4

The ADM mass:

M̌ADM = m̌ = n

4

(
1 + α̌2 − Q̌ 2 ln(rh) − Λ̌

3

)
. (49)

The heat capacity:

Č = nπ
n+1

2
(α̌2 + 1

2 )


(n+1
2 )

Λ̌
3 (n + 1)α̌2 − (n − 5)α̌2 − (n − 3)α̌2

2 + Q̌ 2α̌2 + 2

{2(n + 1)(α̌2 + 1
6 )α̌2Λ̌ + 2(n − 3)α̌3

2 − [2(n − 2)α̌2 + n]α̌2 Q̌ 2 + (n + 1)α̌2
2 + (n + 7)α̌2 + 2} . (50)

The free energy:

F̌ = [−Q̌ 2α̌2 − Λ̌(n+1)
3 α̌2 + (n − 3)α̌2

2 + (n − 5)α̌2 − 2]π n−1
2 − 4nα̌2(Q̌ 2 ln rh + ( Λ̌

3 − 1 − α̌2))(α̌2 + 1
2 )
(n+1

2 )

8α̌2(1 + 2α̌2)
(n+1
2 )

. (51)

Finally in this section we look at Č which clearly, in general, vanishes at α̌2 = − 1
2 . Also any possible root for the denominator of Č

gives instability point or a phase transition.

4. Field equations and the metric ansatz for EPYMGBL gravity

In this section we consider a more general action which involves, beside the GB term, the third order Lovelock term [8,9]. The EPYMGBL
action in N(= n + 2) dimensions is given by (8πG = 1)

I = 1

2

∫
M

dn+2x
√−g

(
R − n(n + 1)

3
Λ + α2 LGB + α3 L(3) − F q

)
, (52)

where α2 and α3 are the second and third order Lovelock parameters respectively, and [8]

L(3) = 2Rμνσκ Rσκρτ Rρτ
μν + 8Rμν

σρ Rσκ
ντ Rρτ

μκ + 24Rμνσκ Rσκνρ Rρ
μ + 3R Rμνσκ Rσκμν

+ 24Rμνσκ RσμRκν + 16Rμν Rνσ Rσ
μ − 12R Rμν Rμν + R3, (53)

is the third order Lovelock Lagrangian. Variation of the new action with respect to the spacetime metric gμν yields the field equations

Gμν + α2GGB
μν + α3G(3)

μν + n(n + 1)

6
Λgμν = Tμν, (54)

where

G(3)
μν = −3

(
4Rτρσκ Rσκλρ Rλ

ντμ − 8Rτρ
λσ Rσκ

τμRλ
νρκ + 2Rν

τσκ Rσκλρ Rλρ
τμ − Rτρσκ Rσκτρ Rνμ + 8Rτ

νσρ Rσκ
τμRρ

κ

+ 8Rσ
ντκ Rτρ

σμRκ
ρ + 4Rν

τσκ Rσκμρ Rρ
τ − 4Rν

τσκ Rσκτρ Rρ
μ + 4Rτρσκ RσκτμRνρ + 2R Rν

κτρ Rτρκμ

+ 8Rτ
νμρ Rρ

σ Rσ
τ − 8Rσ

ντρ Rτ
σ Rρ

μ − 8Rτρ
σμRσ

τ Rνρ − 4R Rτ
νμρ Rρ

τ + 4RτρRρτ Rνμ − 8Rτ
ν Rτρ Rρ

μ

+ 4R Rνρ Rρ
μ − R2 Rνμ

) − 1

2
L(3)gμν. (55)
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4.1. EPYMGBL black hole solution for N(= n + 2) � 7 dimensions

As before we start with the rr component of Einstein equation which reads

3(n(n − 1)Q 2)q

r4(q−1)
+ 3n

[(
r5 − 2α̃2r3 g(r) + 3rg2)g′(r) + α̃3(n − 5)r2 g(r)3

− α̃2(n − 3)r2 g(r)2 + r4(n − 1)g(r) + Λ

3
(n + 1)r6

]
= 0, (56)

where α̃3 = (n − 1)(n − 2)(n − 3)(n − 4)α3.

4.1.1. The particular case of α̃3 = α̃2
2/3

In the third order Lovelock theory we first prefer to impose a condition on Lovelock’s parameters such as α̃3 = α̃2
2/3. This helps us to

work with less complicity and in the sequel for the sake of completeness we shall present the general solution without this restriction as
well. The metric function after this condition is given by

f (r) =

⎧⎪⎨
⎪⎩

1 + r2

α̃2
(1 − 3

√
1 + Λα̃2 + 12mα̃2

nrn+1 + 3α̃2 Q 1
r4q ), q �= n+1

4 ,

1 + r2

α̃2
(1 − 3

√
1 + Λα̃2 + 12mα̃2

nrn+1 + 3α̃2 Q 2 ln r
rn+1 ), q = n+1

4 ,

(57)

where as usual m is the mass of the black hole. One may find

lim
r→∞ f (r) → 1 + r2

α̃2

(
1 − 3

√
1 + Λα̃2

)
(Λ > 0) (58)

which gives the asymptotical behavior of the metric such as de Sitter, Anti-de Sitter or flat (Λ = 0). We note that in the limit α̃2 → 0, we
have f (r) → 1 − Λ

3 r2, as it should.

4.1.2. The case of arbitrary α̃2 , α̃3
The general solution of the metric function for the case of EPMGBL is given by

f (r) =

⎧⎪⎪⎨
⎪⎪⎩

1 + α̃2r2

3α̃3
(1 + 3√

�

2ωnα̃2rn+1+2q + 2ωn(α̃2
2−3α̃3)rn+1+2q

3√
�α̃2

), q �= n+1
4 ,

1 + α̃2r2

3α̃3
(1 + 3

√
�̃

2nα̃2rn+1 + 2n(α̃2
2−3α̃3)rn+1

3
√

�̃α̃2

), q = n+1
4 ,

(59)

where

� = 36ω2n2r2(1+n+q)
(√

δα̃3 − 3Q 2
1 α̃2

3r1+n − ωr4qζ
)
,

δ = (
3Q 1α̃

2
3r1+n)2 + 6Q 1ωr4q+1+nζ + ω2r8q

α̃2
3

{
ζ 2 − (

α̃2
2 − 3α̃3

)3
(

2n

9
r1+n

)2}
,

ζ = λnr1+n + α̃2
3m, ω = 1 + n − 4q, λ = α2

3Λ + α̃2α̃3 − 2

9
α̃3

2, Q 1 = nq(n − 1)q Q 2q, (60)

and

�̃ = 36n2r2(1+n)
(
3α̃3

√
δ̃ − ζ̃

)
, δ̃ = −

(
2nr1+n

3α̃3

)2(
α̃2

2 − 3α̃3
)3 + 9

α̃2
3

ζ̃ 2,

ζ̃ = α̃2
3χ + λnr1+n, χ = 3Q 2 ln r + m, Q 2 = n

1+n
4 (n − 1)

1+n
4 Q

1+n
2 . (61)

Occurrence of the roots naturally restricts the ranges of parameters since the results must be real and physically admissible.
Here also one can find the nature of metric at infinity, namely

lim
r→∞ f (r) → 1 + Λeffr

2 (62)

where

Λeff = 1

9α̃3

(
−9 3

√
λ

6
+ (

3α̃3 − α̃2
2

) 3

√
6

λ
+ 3α̃2

)
. (63)

4.2. Thermodynamics of the EPYMGBL black hole

As before, we complete this chapter by giving some thermodynamical properties of the EPYMGB black hole solution. Clearly, working
analytically with the arbitrary α̃2, α̃3 may not be possible therefore we only stress on the specific case of α̃3 = α̃2

2/3. Given this particular
choice, we start with the ADM mass of the BH which reads

M̌ADM = m̌ =
⎧⎨
⎩

n
4 (1 + α̌2(

α̌2
3 + 1) − Q̌ 1 − Λ̌

3 ), q �= n+1
4 ,

n (1 + α̌2(
α̌2 + 1) − Q̌ 1 ln(rh) − Λ̌ ), q = n+1 ,

(64)
4 3 3 4
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whose Hawking temperature is given by

Ť H =

⎧⎪⎪⎨
⎪⎪⎩

−Q̌ 1(n+1−4q)− Λ̌
3 (n+1)+(n−5)

α̌2
2

3 +α̌2(n−3)+n−1
4π(1+α̌2)2 , q �= n+1

4 ,

−Q̌ 1− Λ̌
3 (n+1)+(n−5)

α̌2
2

3 +α̌2(n−3)+n−1
4π(1+α̌2)2 , q = n+1

4 .

(65)

We notice here that the Hawking temperature diverges as α̌2 approaches to −1.

4.2.1. q �= n+1
4

The heat capacity:

Č = n

2
π

n+1
2

(α̌2 + 1)


(n+1
2 )

Λ̌
3 (n + 1) + (n + 1 − 4q)Q̌ 1 − (n − 5)

α̌2
2

3 − (n − 3)α̌2 − (n − 1)

{(1 + n)(5α̌2 + 1) Λ̌
3 − 4[(q − 5

4 )α̌2 + (q − 1
4 )]Q̌ 1(1 + n − 4q) + (n − 5)

α̌3
2

3 + 2
3 (n − 8)α̌2

2 − 6α̌2 + n − 1}
.

(66)

The free energy:

F̌ = {[Q̌ 1(n + 1 − 4q) + Λ̌(n+1)
3 − (n − 5)

α̌2
2

3 − (n − 3)α̌2 + 1 − n]π n−1
2 − 2n(Q̌ 1 + Λ̌

3 − 1 − α̌2 − α̌2
2

3 )(α̌2 + 1)2
(n+1
2 )}

8(1 + α̌2)2
(n+1
2 )

. (67)

4.2.2. q = n+1
4

The heat capacity:

Č = n

2
π

n+1
2

(α̌2 + 1)


(n+1
2 )

Λ̌
3 (n + 1) + Q̌ 2 − (n − 5)

α̌2
2

3 − (n − 3)α̌2 − (n − 1)

{(1 + n)(5α̌2 + 1) Λ̌
3 − [(n − 4)α̌2 + n]Q̌ 2 + (n − 5)

α̌3
2

3 + 2
3 (n − 8)α̌2

2 − 6α̌2 + n − 1}
. (68)

The free energy:

F̌ = [Q̌ 2 + Λ̌(n+1)
3 − (n − 5)

α̌2
2

3 − (n − 3)α̌2 + 1 − n]π n−1
2 − 2n(Q̌ 2 ln(rh) + Λ̌

3 − 1 − α̌2 − α̌2
2

3 )(α̌2 + 1)2
(n+1
2 )

8(1 + α̌2)2
(n+1
2 )

. (69)

In the foregoing expressions it is observed that for α̌2 = −1, the free energy diverges, signalling the occurrence of a critical point. Further,
the sign of the heat capacity can be investigated to see whether thermodynamically the system is stable (Č > 0) or unstable (Č < 0),
which will be ignored in this Letter.

5. Yang–Mills hierarchies

In this section we investigate the possible black hole solutions for the case of a superposition of the different power of the YM
invariant F and any further investigation in this line is going to be part of our future study. It is our belief that a detailed analysis of the
energy conditions for the YM hierarchy exceeds the limitations of the present Letter, we shall therefore ignore it. The YM hierarchies in d
dimensions has been studied by Tchrakian et al. [10] in a different sense. Here we start with an action in the form of

I = 1

2

∫
M

dn+2x
√−g

(
R + α2 LGB + α3 L(3) −

q∑
k=0

bk F k

)
, (70)

in which F is the YM invariant, b0 = n(n+1)
3 Λ and bk�1 is a coupling constant. Variation of the action with respect to the spacetime

metric gμν yields the field equations

Gμ
ν + α2GμGB

ν + α3Gν (3)
μ = T μ

ν, (71)

T μ
ν = −1

2

q∑
k=0

bk
(
δμ

ν F k − 4k Tr
(

F (a)
νλ F (a) μλ

)
F k−1), (72)

and variation with respect to the gauge potentials A(a) yields the YM equations

q∑
k=0

bk

{
d
(
	F(a)F k−1) + 1

σ
C (a)

(b)(c)F k−1A(b) ∧ 	F(c)
}

= 0. (73)

Our metric ansatz for N(= n + 2) dimensions, is given by (7) and the YM field ansatz is as before such that the new energy–momentum
tensor reads as

T a
b = −1

2

q∑
bk F k diag[1,1, γ ,γ , . . . , γ ], and γ =

(
1 − 4k

n

)
. (74)
k=0
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The solution of Einstein equation for α2 = α3 = 0 reveals that

f (r) = 1 − 4m

nrn−1
− 1

nrn−1
Ψ (75)

where m is the ADM mass of the black hole and

Ψ =
∫

rn
q∑

k=0

bk F k dr =

⎧⎪⎨
⎪⎩

∑q
k=0 bk

(n(n−1)Q 2)k

(n−4k+1)r4k−n−1 , k �= n+1
4 ,

b n+1
4

(n(n − 1)Q 2)
n+1

4 ln r + ∑q

k=0 �= n+1
4

bk
(n(n−1)Q 2)k

(n−4k+1)r4k−n−1 , k′ = n+1
4 .

(76)

The case of GB which comes after α3 = 0 reveals

f±(r) = 1 + r2

2α̃2

(
1 ±

√
1 + 16mα̃2

nrn+1
+ 4α̃2

nrn+1
Ψ

)
. (77)

For the case of α2,α3 �= 0 first we give a solution for the specific choice of α̃3 = α̃2
2/3 which admits

f (r) = 1 + r2

α̃2

(
1 − 3

√
1 + 12mα̃2

nrn+1
+ 3α̃2

nrn+1
Ψ

)
, (78)

and then the most general solution for α2,α3 �= 0 yields a general metric function as

f (r) = 1 + α̃2r2

3α̃3

(
1 +

3
√

�

2nα̃2rn+1
+ 2n(α̃2

2 − 3α̃3)rn+1

3
√

�α̃2

)
, (79)

where

� = 36n2r2(1+n)

(
α̃3

3

√
3
√

δ +
(
α̃3 − 2

9
α̃2

2

)
− 6α̃2

3

(
1

2
Ψ + m

))
, (80)

and

δ = (
4α̃3 − α̃2

2

)
n2r2(n+1) + 36α̃2nrn+1

(
α̃3 − 2

9
α̃2

2

)(
1

2
Ψ + m

)
+ 108α̃2

3

(
1

2
Ψ + m

)2

. (81)

6. Conclusion

Clearly, the YM invariant/source F q becomes simplest for q = 1. Beside simplicity there is no valid argument that prevents us from
choosing q �= 1. As a result, the latter modifies many black holes obtained from YM field as a source and it specifies also in higher
dimensions, which q values are consistent with the energy conditions. For electric type fields there is a drawback that F q may not be real
for any q, however, this doesn’t arise for our pure magnetic type YM field. We note that the same situation is valid also in the power-
Maxwell case. In spite of so much non-linearities, including even a YM source of the form

∑q
k=0 bk F k , with the requirement of spherical

symmetry we obtained exact black hole solutions to the Lovelock’s third order theory. In analogy with the non-linear electrodynamics,
the requirement of conformal invariance puts further restrictions on q and the spacetime, namely the dimension of spacetime turns out
to be a multiple of 4. Physically, the power q modifies the strength of fields both for r → 0 and r → ∞. It is observed that asymptotically
(r → ∞), irrespective of q the effect of Lovelock gravity, whether at second or third order, becomes equivalent to an effective cosmological
constant.
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