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We study a quantum model with nonisotropic two-dimensional oscillator potential
but with additional quadratic interaction x1x2 with imaginary coupling constant. It
is shown that for a specific connection between coupling constant and oscillator
frequencies, the model is not amenable to a conventional separation of variables.
The property of shape invariance allows to find analytically all eigenfunctions and
the spectrum is found to be equidistant. It is shown that the Hamiltonian is nondi-
agonalizable, and the resolution of the identity must include also the corresponding
associated functions. These functions are constructed explicitly, and their properties
are investigated. The problem of R-separation of variables in two-dimensional sys-
tems is discussed. © 2010 American Institute of Physics. �doi:10.1063/1.3298675�

I. INTRODUCTION

During last years, starting from a pioneering paper of Bender and Boettcher,1 there is a
growing interest to investigate quantum mechanics with non-Hermitian Hamiltonians �see also
Ref. 2� consistently. It was shown that under definite assumptions the spectrum of such Hamilto-
nians is real and a modified scalar product which provides unitary evolution can be built for some
models. For comprehensive reviews, see Refs. 3 and 4 and references therein.

With few exceptions,5–7 the analysis concerned one-dimensional quantum mechanics. In par-
ticular, most results were obtained for a wide class of models, with unbroken PT-invariance.1,8–10

It can be considered as a modern generalization of conventional quantum mechanics to a non-
Hermitian one.

In turn, the notion of the pseudo-Hermiticity,

�H�−1 = H†, �1�

with � a Hermitian invertible operator, allowed to define a more general class of non-Hermitian
systems with physically acceptable properties of energy spectra. The most systematic investigation
of pseudo-Hermiticity has been performed by Mostafazadeh11 �see also Refs. 12 and 13�. A
suitable description of Hilbert space for such systems is given in terms of biorthogonal basis,

which consists of the eigenstates ��n� and ��̃n� of H and H†, correspondingly.
It was found that some systems with complex potentials are naturally described by Hamilto-

nians which are not diagonalizable. They correspond to the systems whose biorthogonal basis
elements do not provide complete basis in Hilbert space. In such a case, one has to add the
so-called associated functions to complete the basis, and Hamiltonian becomes block diagonal
with some number of Jordan blocks of standard structure on its diagonal.
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In Sec. II we formulate the two-dimensional model with complex potential having the form of
second order polynomial in x1 ,x2. Usually, such model is solved easily by means of linear trans-
formation of coordinates with subsequent separation of variables, maybe complex. This procedure
was described, for example, in Ref. 6. But two peculiar cases of such polynomial potentials with
special relation between constants are beyond this scheme: they are not amenable to separation of
variables. Just such model is studied in Sec. II. It is solved exactly: the whole energy spectrum and
corresponding wave functions are found analytically. Instead of by separation of variables, which
is impossible here, the model is solved by means of shape invariance, a powerful method intro-
duced in the framework of SUSY quantum mechanics. In Sec. III we investigate the properties of
the constructed wave functions. We show that they do not realize a resolution of identity, i.e., they
do not form complete basis, i.e., the Hamiltonian is not diagonalizable.14 The corresponding
associated functions are also built analytically in this Section, and their properties are studied in
detail. In Sec. IV, we discuss the conventional procedure of separation of variables in two-
dimensional Schrödinger equation both with real and with complex potentials. For the first case,
the old results of Eisenhart15 are reproduced, and for the second case, we prove that the model of
previous sections does not allow the most general �nonlinear� algorithm of R-separation of
variables.16

II. TWO-DIMENSIONAL COMPLEX OSCILLATOR

Let us consider the two-dimensional model with complex oscillator Hamiltonian,

H = − ��2� + V�x�� = − �1
2 − �2

2 + �1
2x1

2 + �2
2x2

2 + 2igx1x2. �2�

Performing the linear complex transformation of variables x1 ,x2,

xi = �
j=1

2

aijyj , �3�

where aij are complex elements of matrix A, one may try to separate variables in the Schrödinger
equation,

H��x�� = E��x�� . �4�

It is necessary to obtain in diagonal form both the Laplacian and the quadratic potential, although
in complex variables yi. As one can check, this is possible for generic values of parameters �i ,g
in �2�, with two exclusions. Indeed this is impossible, if the coupling constant is

2g = � ��1
2 − �2

2� , �5�

when the Jacobian of �3� vanishes. Just this situation will be considered below in this paper, and
for definiteness we will choose the minus sign above.

We will use the complex variables z=x1+ ix2 , z̄=x1− ix2=z�, for which

H = − 4�z�z̄ + �2zz̄ + gz̄2, 2�2 � �1
2 + �2

2 � 0, � � 0. �6�

One can check that the Hamiltonian �6� obeys the following property:

HA+ = A+�H + 2��, HA− = A−�H − 2�� , �7�

with operators A� defined as

A� � �z �
�

2
z̄ . �8�

Equation �7� realizes the particular case of shape invariance,17 the property appeared on the first
time in the framework of one-dimensional SUSY quantum mechanics18 with real potentials. Shape
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invariance of the Hamiltonian H�x ;a�, which depends on a parameter a, means that this Hamil-
tonian satisfies the intertwining relations with some operators Q�,

H�x;a�Q+ = Q+H�x; ã� + R�a�, ã = ã�a�, R�a� � 0, �9�

Q−H�x;a� = H�x; ã�Q− + R�a� . �10�

This property provides a very elegant method to solve the Schrödinger equation algebraically:
practically, all known one-dimensional exactly solvable models are shape invariant. Recently this
property was generalized to the two-dimensional quantum mechanics,19 where it gives usually a
quasiexact solvability of the model �i.e., analytical construction of a part of wave functions�. For
the case of two-dimensional Morse potential with specific values of parameters, shape invariance
helped to find the whole spectrum and corresponding eigenfunctions.20

Equation �7� corresponds to the simplest variant of shape invariance: ã�a�=a and R�a�=2�.
This case was investigated in one-dimensional quantum mechanics,21 and the same idea must
work also in two-dimensional case. Since the intertwined Hamiltonians in �9� coincide, such
Hamiltonians were called self-isospectral, and for one-dimensional case self-isospectrality leads to
an equidistant �oscillatorlike� character of the spectrum. In our present case of two-dimensional
complex shape invariant potential, the property �7� provides also the oscillatorlike spectrum of H,

En = 2��n + 1� . �11�

We deal here with unusual quantum mechanics—with complex potential and, even more, with
nondiagonalizable Hamiltonian �see Sec. III�. Nevertheless, the absence of singularities in �2�
ensures that nothing like well known “fall to the center” phenomena22 is possible here �the formal
proof can be found in Appendix�. The normalizable bound state wave functions will be exponen-
tially decreasing at infinity, having no singularities. The corresponding spectrum is bounded from
below, the ground state with energy E0 is denoted as �0,0�x�� �it will be clear below why we use
two indices for enumeration of ��. The excited levels correspond to n=1,2 , . . . in �11�.

From the second intertwining relation �7� it follows that �0,0 must be a zero mode of A−,

A−�0,0�z, z̄� = 0. �12�

Otherwise, the Hamiltonian H would have the lower level �E0−2��, contrary to our assumption on
�0,0 above. The solution of zero mode equation �12� can be found in general form. Indeed, it can

be written in terms of a new function �̃0 of z̄ only,

�0,0�z, z̄� � exp	−
�

2
zz̄
�̃0�z̄� ,

and the Schrödinger equation �4� leads to the first order differential equation,

2�z̄�̃0��z̄� = �E0 − gz̄2 − 2���̃0�z̄� .

Its solution

�̃0�z̄� = �z̄��E0−2��/2�exp�− 	 g

4�
z̄2
�

has to be a single-valued function on a plane, i.e., to be 2	-periodic in polar angle 
 leading
therefore to the spectrum �11�. Formally, infinitely many functions solve �12�

022108-3 Two-dimensional model with quadratic complex interaction J. Math. Phys. 51, 022108 �2010�
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�n,0�z, z̄� = cn,0z̄n exp�− azz̄ − bz̄2�, n = 0,1,2, . . . , , a �
�

2
, b �

g

4�
, �13�

with normalization constants cn,0. The actual ground bound state corresponds to n=0 in �13�, and
it has energy 2�.

All excited states can be built by the standard algebraic procedure of shape invariance,

�n�z, z̄� = �A+�n�0,0�z, z̄�, n = 1,2, . . . , �14�

with exactly the same energies as in �11�. It is easy to check that expressions in �13� and �14�
coincide for all n�0, i.e., �n�z , z̄�=�n,0�z , z̄�, being the zero modes of operator A−. One can also
prove that assuming the existence of any eigenstate different from �14� we would obtain the level
with real part lying below E0, in contradiction with the definition of the ground state having the
lowest real part of the energy. Thus, the whole spectrum of the system �2� is exactly known—�11�.
The corresponding wave functions �n,0�z , z̄� in �13� are known analytically as well, but additional
investigation of their properties is required. It will be performed in Sec. III.

III. NONDIAGONALIZABILITY OF THE HAMILTONIAN

A. General scheme

The quantum mechanics with non-Hermitian Hamiltonians needs a suitable modification of
the scalar product and resolution of identity to make the model self-consistent.3,4 In general, if the
non-Hermitian Hamiltonian H commutes with some antilinear operator B, this may be used for
definition of a new scalar product between arbitrary elements of Hilbert space as follows:

����� � � �B��� . �15�

In the ordinary quantum mechanics with real potentials just the customary complex conjugation
plays the role of such operator B, and the Hamiltonian H is Hermitian under such scalar product
� ���.

In the case of a general antilinear operator B, the Hamiltonian H obeys Hermiticity but with
a scalar product �15�. Symbolically,

��H���� =� �B��H� =� �HB��� =� �BH��� = H����� , �16�

where double integration by parts and vanishing of off-integral terms were used to move H to the
left under the integral. In the two-dimensional case, the Ostrogradsly–Gauss theorem �a two-
dimensional analog of two integrations by parts� allows to move H as well due to exponential
decreasing of all wave functions on large contour. Many one-dimensional models with non-
Hermitian Hamiltonians obey the so-called PT-symmetry,1,3 citebender01,9 where the role of B is
served by the antilinear symmetry operator PT of simultaneous time and coordinate reflections. In
more general situation, non-Hermitian Hamiltonians may be pseudo-Hermitian4 �the definition in
operatorial form was given in �1��. Then the operator B can be chosen as B��T, and the scalar
product �15� coincides with �-scalar-product commonly used in the literature. The pseudo-
Hermitian Hamiltonians �1� are Hermitian being considered under this scalar product.

In our case of two-dimensional coordinate space, such antilinear operator, keeping H in �2�
invariant, can be chosen either as P1T or as P2T, where P1 means x1↔−x1 and P2 means x2↔
−x2. Let us choose the second option for definiteness. The wave functions �n,0�z , z̄� are simulta-
neously the eigenfunctions of P2T with unique eigenvalue +1. For such choice of the operator B,
the scalar product � ���� becomes an integral over the product ���, instead of the ���� in the
ordinary quantum mechanics.
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Now the important property of the wave functions under a new scalar product has to be
investigated—are the corresponding norms positively definite or not. The norms of the basic states
�n,0 can be calculated explicitly,

�n,0��n,0�� =� ��n�2d2x = cn,0
2 � z̄2n exp�− 2�azz̄ + bz̄2��dzdz̄

= cn,0
2 � z̄2n exp�− 2�azz̄ + bz̄2��dzdz̄ = cn,0

2 	−
1

2
�b
n� exp�− 2�azz̄ + bz̄2��dzdz̄

= cn,0
2 	−

1

2
�b
n	 	

2a

 =

	cn,0
2

2a
�n0. �17�

Thus, only the ground bound state �0,0 is normalizable state with a positive norm. All excited
wave functions have zero norms �are “self-orthogonal”�, prohibiting the usual resolution of iden-
tity in terms of complete set of eigenfunctions of H. Such situation was investigated in one-
dimensional quantum mechanics with complex potentials in a series of papers:14 the zero norm of
wave function signals that one deals with a nondiagonalizable Hamiltonian. Then it is necessary to
build the so-called associated functions which participate in a resolution of identity and complete
the basis.

The adequate formalism for diagonalizable non-Hermitian Hamiltonians is the so-called bior-

thogonal basis in the Hilbert space.4,11 This basis includes two types of states ��n� , ��̃n�, such that

H��n� = En��n�, H†��̃n� = E���̃n�, �̃n��m� = �m��̃n� = �nm, �18�

with decompositions

I = ��n��̃n�; H = En��n��̃n� . �19�

In coordinate representation, one can take �̃n�x��=�n
��x��, so that the scalar product is

�̃n��m� =� �n�x���m�x��d2x = �n��m�� = �nm. �20�

This formalism has been discussed in Refs. 4, 11, and 14, for a particular explicit calculations, see
also Ref. 23 �in one-dimensional case� and Ref. 7 �in two dimensions�.

The formalism becomes more complicated14 in the case of quantum systems with nondiago-
nalizable non-Hermitian Hamiltonians, like our �2�. For such systems, the basis �18� is not com-
plete, and the decompositions �19� do not work. In order to improve the situation, every self-
orthogonal wave function �n,0, n�1 with zero norm must be accompanied with a set of pn−1
associated functions �n,k, k=1,2 , . . . , pn−1. It must be clear now why notations with two indices
of wave functions were introduced above. By definition, these functions obey

�H − En��n,k = �n,k−1, k = 1,2, . . . ,pn − 1, �21�

where all functions are supposed to be normalizable, and the operator H, when applied to these
functions, preserves this property. Here we restrict ourselves for simplicity with the case when
each self-orthogonal eigenfunction �n,0, n=1,2 , . . ., is accompanied by only one set of associated
functions �n,k, k=1,2 , . . . , pn−1.

Similarly to the scheme of previous paragraph, the partner eigenfunctions �̃n,0 also are ac-

companied by their associated functions �̃n,k, k=1,2 , . . . , pn−1. Practically, it is convenient to

numerate the functions �̃, identifying them with ��, as follows:

022108-5 Two-dimensional model with quadratic complex interaction J. Math. Phys. 51, 022108 �2010�
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�̃n,pn−k−1 = �n,k
� , k = 0,1,2, . . . ,pn − 1. �22�

With these notations, according to the general formalism which was illustrated in detail for some
one-dimensional models,14 the scalar product �20� in the extended biorthogonal basis must be

�n,k��m,l�� = �̃n,k��m,l� =� �n,k�x���m,l�x��d2x = �nm�k�pn−l−1�,

k = 0,1, . . . ,pn − 1, l = 0,1, . . . ,pm − 1. �23�

Correspondingly, the generalized decompositions must be

I = �
n=0

�

�
k=0

pn−1

��n,k���n,pn−k−1�� , �24�

H = �
n=0

�

�
k=0

pn−1

En��n,k���n,pn−k−1�� + �
n=0

�

�
k=0

pn−2

��n,k���n,pn−k−2�� . �25�

The Hamiltonian H is clearly nondiagonal, but block diagonal. Each block—Jordan cell of stan-
dard form �see �25��—has dimensionality pn.

B. The specific model: Non-Hermitian two-dimensional oscillator

The eigenfunctions �n,0 were found analytically in Sec. II �see Eq. �13��. All these functions
for n�1 were shown to be self-orthogonal, and therefore, some associated functions must be
properly taken into account. In this subsection we are going to investigate the properties of these
functions, and, in particular, to check the relations �23� and to find the values of pn.

First of all, we will prove that scalar products �23� vanish for different energy levels En ,Em,
i.e., that �n,k ��m,l��=0 for n�m. The proof is by induction in k , l with essential use of pseudo-
Hermiticity of H. Indeed, as in ordinary quantum mechanics,

0 = �n,0�H��m,0�� − H�n,0��m,0�� = �Em − En��n,0��m,0�� ,

i.e., wave functions with different energies are orthogonal. Analogously, because of definition
�21�,

0 = �n,0��H − Em���m,1�� − �H − Em��n,0��m,1�� = �n,0��m,0�� − �En − Em��n,0��m,1�� ,

and the scalar products between wave functions and first associated functions for different En ,Em

also vanish,

�n,0��m,1�� = �n,1��m,0�� = 0.

The procedure can be continued further leading to orthogonality of all functions with different
n ,m.

Now we have to consider the wave functions and associated functions, which belong to the
same value n. For the first associated function �n,1, the defining Eq. �21� can be solved explicitly
in a general form with two arbitrary constants,

�n,1�z, z̄� = �an,1zz̄n−1 − an,1
n − 1

�
z̄n−2 + cn,1z̄n +

1

2�
	cn,0 −

2an,1g

�

z̄n ln z̄� · exp�− 	�

2
zz̄ +

g

4�
z̄2
� .

One of integration constants is defined by physical requirement for wave functions to be single
valued in the plane,
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an,1 =
�cn,0

2g
=

cn,0

8b
, �26�

leading to

�n,1�z, z̄� = � cn,0

8b
zz̄n−1 −

�n − 1�cn,0

16ab
z̄n−2 + cn,1z̄n�exp�− �azz̄ + bz̄2�� . �27�

The second integration constant cn,1 reflects the obvious fact �see �21�� that �n,1 is defined up to
a solution of homogeneous Schrödinger equation cn,1�n,0. This additional term must be defined by
a suitable “normalization,” i.e., by conditions �23�. One can check that the normalization condi-
tions �23� fix uniquely not only cn,1, but all higher additional terms as well.

To find the norm of �n,1 and some other scalar products below, we shall calculate a class of
two-dimensional integrals of the form

IN,M �� zNz̄M exp�− 2�azz̄ + bz̄2��dzdz̄ �28�

with positive constants a ,b and integer N ,M. These integrals vanish for odd values of �N+M� due
to antisymmetry under a space reflection �x1 ,x2�→−�x1 ,x2�, i.e., IN,M =0 for �N+M�=2s+1. For
even values of �N+M�, we start from the basic integral,24

I�a,b,c� =� exp�− 2�azz̄ + bz̄2 + cz2��dzdz̄ = 	�−1, � � 2��a2 − 4bc� . �29�

Then, the required IN,M can be calculated by suitable differentiations of I�a ,b ,c�= I���,

I2n,2�n+k� =� �zz̄�2nz̄2k exp�− 2�azz̄ + bz̄2 + cz2��dzdz̄�c=0

= �	−
1

2
�a
2n	−

1

2
�b
k

I����
�c=0

= 0, k � 0, �30�

I2�n+k�,2n =� �zz̄�2nz2k exp�− 2�azz̄ + bz̄2 + cz2��dzdz̄�c=0

= �	−
1

2
�a
2n	−

1

2
�c
k

I����
�c=0

= 	�− 1�k2−�2n+1��2k + 1�!�2k + 1�2nbka−�2k+2n+1�,

�31�

I2n+1,2�n+k�+1 =� �zz̄�2n+1z̄2k exp�− 2�azz̄ + bz̄2 + cz2��dzdz̄�c=0

= �	−
1

2
�a
2n+1	−

1

2
�b
k

I����
�c=0

= 0, k � 0, �32�

I2�n+k�+1,2n+1 =� �zz̄�2n+1z2k exp�− 2�azz̄ + bz̄2 + cz2��dzdz̄�c=0 = �	−
1

2
�a
2n+1	−

1

2
�c
k

I����
�c=0

= 	�− 1�k2−�2n+2��2k + 1�!�2k + 1�2n+1bka−�2k+2n+2�. �33�

In particular, it is clear that IN,M =0 for M �N. The listed integrals allow to check that for the first
excited level n=1 functions �1,0, �1,1, in addition to self-orthogonality of �1,0, satisfy �up to
normalization factors� the relations �23� with the value p1=2,
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� �1,1�1,0dzdz̄ = 1; � �1,1�1,1dzdz̄ = 0,

where one has to take c1,1=c1,0 /8a in �27� and c1,0
2 =32a2b /	 in �13�. For the general value n

�2, the norm of the first associated functions ���n,1�2dzdz̄=Const·�n,2. Comparing with the
orthogonality relations �23�, this signals that p2=3, and vice versa, pn�3 for n�2.

Calculation of scalar products for higher order associated functions �n,k with k�2 will be
performed by an alternative method, where the main role is played by the last associated functions
�n,pn−1. From the definition �21�, the following expression for �n,k in terms of �n,pn−1 can be
easily derived:

�n,k = �H − En�pn−k−1�n,pn−1, k = 0,1, . . . ,pn − 1. �34�

The dimension pn−1 of Jordan cell and the highest associated function �n,pn−1 must be derived by
solving the equation

�H − En�pn�n,pn−1 = 0 �35�

by subsequent calculation of �n,k along �34�, and finally, by checking the required scalar products
�23�.

We shall prove now that pn=n+1 and the following solution of Eq. �35�

�n,n = cn�n exp�− �azz̄ + bz̄2��, �n � �az + bz̄�n, n � 0, �36�

satisfy all necessary conditions above �constants of normalizations cn will be defined below�.
In order to prove these statements, one has to check straightforwardly the following relations:

�H − Em� · �0,0 = �0,0 · 4�− �z�z̄ + a�z�z + z̄�z̄ − m� + 2bz̄�z� � �0,0 · Dm, �37�

�Dm�n� = 4a�− bn�n − 1��n−2 + �n − m��n + 2bnz̄�n−1� , �38�

Dm · z̄ j = z̄ jDm − 4jz̄j−1�z + 4ajz̄j . �39�

By the method of mathematical induction, it can be derived from �37�–�39� that

Dn
k�n = �2ab�k�

i=0

k

�n − �2k − i − 1��2k−i�i
�k�z̄i�n−�2k−i�,

where

�a�k = a�a + 1� ¯ �a + k − 1�, �0
�k� = �− 2�k, �k

�k� = 22k, �0�i�k
�k� =

�− 2�i�k − �i − 1��i�0
�k�

i!
,

and the coefficients � j
�k� satisfy the system of equations,

2�i − k��i
�k� = �i + 1��i+1

�k� , 0 � i � k ,

�k+1
�k+1� = 4�k

�k�, �0
�k+1� = − 2�0

�k�,

2�2�i−1
�k� − �i

�k�� = �i
�k+1�, 1 � i � k .

Thus,
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�H − En�k�n,n = cn�2ab�kexp�− �azz̄ + bz̄2���
i=0

k

�i
�k��n − �2k − i − 1��2k−iz̄

i�n−�2k−i�, �40�

and for k=n, only one coefficient of z̄i does not vanish: i=k=n. Therefore,

�H − En�n�n,n = cn�8ab�nn!z̄n exp�− �azz̄ + bz̄2�� =
cn�8ab�nn!

cn,0
�n,0. �41�

The action of one more operator �H−En� onto this equation leads just to required Eq. �35�. The
norm of �n,n is calculated using the explicit expression �36� and the integrals �30�–�33�,

�n,n��n,n�� =� dzdz̄�az + bz̄�2nexp�− 2�azz̄ + bz̄2 + cz2��c=0

=� dzdz̄	−
1

2

n

�a2�c + 2ab�a + b2�b�nexp�− 2�azz̄ + bz̄2 + cz2��c=0

= 	−
1

2

n

��a2�c + 2ab�a + b2�b�nI����c=0 = 0.

The action of the operator �a�a+b�b� onto the vanishing integral above leads to the useful expres-
sions for arbitrary integer n ,k,

� dzdz̄�az + bz̄�nz̄k exp�− 2�azz̄ + bz̄2�� = �nk
	n!

2n+1a
. �42�

Equations �40� for k�n, together with Eqs. �34� and �42�, allow to analyze other scalar products
of associated functions with the same energy. Indeed, since according to �40� �n,n−k is a linear
combination ��i-are combinations of constants entering �40��,

�n,n−k = �
i=0

k

�iz̄
i�n−2k+i�0,0,

the required scalar products are

�n,n−k,�n,n−k��� =� dzdz̄�
i=0

k

�
j=0

k�

�i� j�z̄
i+j�n−2k+i�n−2k�+j exp�− 2�azz̄ + bz̄2��

=� dzdz̄�
i=0

k

�
j=0

k�

�i� j�z̄
i+j�az + bz̄�2n−2�k+k��+i+jexp�− 2�azz̄ + bz̄2�� .

Therefore, due to Eq. �42�, the following choice of cn,0 in �13� and cn in �36�:

cn =
cn,0

�8ab�nn!
, cn,0

2 =
2a�16ab�n

	

provides normalized scalar products,

�n,k,�n,k��� = �k,n−k�, �43�

as it should be for pn=n+1. Summarizing this subsection, we proved that the dimension of Jordan
cell corresponding to energy En depends on n, namely, pn=n+1, and all constructed associated
functions, after suitable normalization, provide the necessary scalar products �23�.
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IV. NONSEPARABILITY OF VARIABLES

It was already noted in Sec. II, that the Schrödinger equation with �complex� potential of
second order in x1 ,x2, just in the case �5�, does not allow an ordinary separation of variables by
means of linear transformation of coordinates. A more general question will be studied in this
section: whether any nonlinear transformation can provide the separation. Actually, we are inter-
ested in opportunity to perform the so-called R-separation of variables,16 which is explored, for
example, in three-dimensional problems with central forces. In two-dimensional context,
R-separation means that coordinates x1 ,x2 can be mapped �and the mapping is invertible� to new
�complex, in general� variables,

q1 = Q1�x1,x2�, q2 = Q2�x1,x2�, x1 = X1�q1,q2�, x2 = X2�q1,q2� , �44�

so that the Hamiltonian takes the form

H =
1

�1�q1� + �2�q2�
�− ��q1

2 + �q2

2 � + �1�q1��q1
+ �2�q2��q2

+ �1�q1� + �2�q2�� , �45�

with arbitrary functions �i ,�i ,�i. In such a case, the problem splits onto two one-dimensional
problems. The separation of variables in two- and three-dimensional Schrödinger equations with
real potentials was investigated by Eisenhart,15 where the exhaustive lists of corresponding coor-
dinate systems qi�x�� and potentials V�x�� were found: 11 systems in three dimensions and 3 systems
in two-dimensional case. Because of complexity of potential, we are interested here in the gener-
alization of these results on two-dimensional R-separation: both potentials V�x�� and the new
coordinates q1 ,q2 may be complex.

The change in variables �44� in the kinetic part of H=−��x1

2 +�x2

2 �+V�x1 ,x2� gives the follow-
ing conditions:

��x1
Q1���x1

Q2� + ��x2
Q1���x2

Q2� = 0, �46�

��x1
Q1�2 + ��x2

Q1�2 = ��x1
Q2�2 + ��x2

Q2�2 = −
1

�1�q1� + �2�q2�
, �47�

which lead, in particular, to relation

�x1
Q2 = �x2

Q1. �48�

Actually, the opposite sign in the right hand side of �48� is also possible, but the final results will
be the same. The general solution of �48� is expressed in terms of an arbitrary complex function
G,

Q1 = �x2
G�x1,x2�; Q2 = �x1

G�x1,x2� . �49�

After substitution of �49� back into �46�,

��x1
�x2

G�x1,x2�� · ��x1

2 + �x2

2 �G�x1,x2� = 0, �50�

we have two options,

�x1
�x2

G�x1,x2� = 0, �51�

��x1

2 + �x2

2 �G�x1,x2� = 0. �52�

For the first option, the variable q1 depends on x1 only, and analogously, q2 on x2. Then from �47�,
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��x1
Q1�x1���x1=X1�q1�

2 = ��x2
Q2�x2���x2=X2�q2�

2 = −
1

�1�q1� + �2�q2�
,

for which only noninteresting solutions exist: �i�qi�=Const, and correspondingly, Qi�xi� are linear
complex functions of xi.

The second option �52� gives more interesting general solution,

G�x1,x2� = m�z� + n�z̄�, z = x1 + ix2, z̄ = x1 − ix2,

q1 = Q1�x1,x2� = m��z� + n��z̄�, q2 = Q2�x1,x2� = i�m��z� − n��z̄�� ,

z = Z�q−�, z̄ = Z̃�q+� = �Z�q−���, q+ � q1 + iq2, q− � q1 − iq2

in terms of new functions m ,n ,Z , Z̃. In order to investigate, whether variables q1 ,q2 allow sepa-
ration of variables in the Schrödinger equation, we substitute this solution in the kinetic part of
Hamiltonian,

��x1

2 + �x2

2 � = 4m�z�n�z̄���q1

2 + �q2

2 ��z=Z�q−�;z̄=Z̃�q+�.

The separation of variables �45� in Laplacian is possible only if

�4m�z�n�z̄��z=Z�q−�;z̄=Z̃�q+��−1 = �1�q1� + �2�q2� ,

i.e., if

�q1
�q2

�m−1�Z�q−��n−1�Z̃�q+��� = 0.

Thus, one obtains two ordinary differential equations,

�n−1�q+���
n−1�q+�

=
�m−1�q−���

m−1�q−�
= �2, � = const. �53�

After straightforward calculations, the case �=0 leads to the following solutions:

z = �1q−
2 + �1q− + �1; z̄ = �2q+

2 + �2q+ + �2, �54�

where �i ,�i ,�i are constants. Here z=x1+ ix2 , z̄=x1− ix2 are still mutually conjugate, although
q+ ,q− are, in general, not necessarily conjugate. If we are interested, similarly to Ref. 15, only in
real variables qi, and therefore q+=q−

�, then the constants in �54� are mutually conjugate: �1= �̄2

�� , �1= �̄2�� , �1= �̄2��. In this case for ��0 by means of a suitable constant shifts of qi

and xi, without loss of generality, one can made �=�=0. Choosing also the special scale, namely,
�=1 /2, we obtain

q1,2
2 = � x1 + �x1

2 + x2
2�1/2, x1 =

q1
2 − q2

2

2
, x2 = q1q2, �55�

and

��qi� = qi
2, �1�q1� + �2�q2� = 2�x1

2 + x2
2�1/2. �56�

The potential takes the form

V�x1,x2� = �x1
2 + x2

2�−1/2�f�x1 + �x1
2 + x2

2�1/2� + g�− x1 + �x1
2 + x2

2�1/2�� . �57�

Expressions �55�–�57� coincide exactly with the case III of Eisenhart.15
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For �1=�2=0 in �54�, the transformation x�→q� describes linear transformations to complex
coordinates q1 ,q2, which were mentioned in Sec. II. For complex q1 ,q2 the general form �54� is
allowed. For example, �1=0 , �2�0 among others.

The case ��0 gives from �53�

z = �1 exp��q−� − �1 exp�− �q−�, z̄ = �2 exp��q−� − �2 exp�− �q−� . �58�

For the case of real q1 ,q2, the constant � is real, and �1= �̄2�� , �1= �̄2��. Two options for �58�
must be considered separately. If �=0, by means of rotations in �x1 ,x2�-plane one obtains

x1 = � exp��q1�cos �q2, x2 = − � exp��q1�sin �q2,

��q1� + �2�q2� = �2 exp�2�q1� ,

V�x1,x2� =
f�x2/x1� + g�x1

2 + x2
2�

x1
2 + x2

2 , �59�

coinciding with the case I of Eisenhart.15

The second option with real �=−�=a /2 gives exactly the case II of Eisenhart,

x1 = a cosh��q1�cos��q2�, x2 = − a sinh��q1�sin��q2� ,

�1�q1� + �2�q2� =
�2a2

2
�cosh�2�q1� − cos�2�q2�� ,

V�x1,x2� =
a2�f�A + B� + g�B − A��

�A2 + x2
2/a2�1/2 , A �

x1
2 + x2

2 − a2

2a2 , B � �A2 + x2
2/a2�1/2. �60�

After the analysis above, it is clear that R-separation of variables for polynomial potential in �2�,
if possible at all, would belong to the option �54�. But explicit substitution of �54� into �6� shows
that this expression is not reducible to the form �45�, i.e., the system �2� is not amenable to
separation of variables.

V. CONCLUSIONS

It is interesting to compare the non-Hermitian model �2� and �5�, which does not allow for
separation of variables, with the same model, but without condition �5�, i.e., with the model of
Ref. 6. It is clear that our model corresponds to merging of pairs of mutually complex conjugate
energy levels in Ref. 6, since the restriction �5� just leads to vanishing imaginary parts of energy
eigenvalues. Thus, the condition �5� on coupling constant violates diagonalizability of the Hamil-
tonian, Eq. �3�, in Ref. 6 and also turns complex energy levels to the real axis. The special remark
concerns the dimensionality of Jordan cells: pn= �n+1� coincides with the degeneracy of the
corresponding levels En in the model �2�, for g=0 and �1=�2, i.e., in the model of isotropic real
two-dimensional oscillator. It would be interesting to investigate further the classical integrals of
motion and most importantly quantum symmetry operators for the diagonalizable and nondiago-
nalizable cases, both being solvable, and the interplay with separability of variables.
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APPENDIX: SYMMETRY OPERATOR

It follows from the shape invariance property, i.e., from intertwining relations �7�, that the
operator R=A+A− commutes with Hamiltonian H. This fact allows to choose the wave functions of
H, such that they are simultaneously the eigenfunctions of R. Let us solve the corresponding pair
of equations,

	�z
2 −

�2

4
z̄2
� = −

�2

4
r2� , �A1�

�− 4�z�z̄ + �2zz̄ + gz̄2�� = E� , �A2�

where eigenvalues of R are denoted as −�2r2 /4 with arbitrary �complex� constant r. Equation �A1�
has two independent solutions,

��1��z, z̄� = c�1��z̄�exp�zf�z̄��, ��2��z, z̄� = c�2��z̄�exp�− zf�z̄�� , �A3�

where c�1,2��z̄� are arbitrary functions and f�z̄����z̄2−r2 /2. Substitution of �A3� into �A2� leads
to first order homogeneous equations for c�1,2��z̄�,

− 4�c�1�f�� + �gz̄2 − E�c�1��z̄� = 0, �A4�

4�c�2�f�� + �gz̄2 − E�c�2��z̄� = 0. �A5�

They are solvable explicitly, in a general form,

c�1��z̄� =
const

f
exp	� gz̄2 − E

4f
dz̄
, c�2��z̄� =

const

f
exp	−� gz̄2 − E

4f
dz̄
 . �A6�

It is easy to check that ��2��z , z̄� has an exponentially decreasing asymptotics at infinity. The
apparent singularity of c�2��z̄� at zeros of f�z̄� can be compensated for r=0 just for the positive
values of E, thus justifying the choice of positive n in �11�. For these values of energy, the
functions ��2��z , z̄� coincide with wave functions �13� in Sec. II.
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