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Application of pseudo-Hermitian quantum mechanics
to a PT-symmetric Hamiltonian with a continuum
of scattering states

Ali Mostafazadeha�

Department of Mathematics, Koç University, 34450 Sariyer, Istanbul, Turkey

�Received 20 May 2005; accepted 23 August 2005; published online 21 October 2005�

We extend the application of the techniques developed within the framework of the
pseudo-Hermitian quantum mechanics to study a unitary quantum system described
by an imaginary PT-symmetric potential v�x� having a continuous real spectrum.
For this potential that has recently been used, in the context of optical potentials,
for modeling the propagation of electromagnetic waves traveling in a waveguide
half and half filled with gain and absorbing media, we give a perturbative construc-
tion of the physical Hilbert space, observables, localized states, and the equivalent
Hermitian Hamiltonian. Ignoring terms of order three or higher in the non-
Hermiticity parameter �, we show that the equivalent Hermitian Hamiltonian has
the form p2 /2m+ ��2 /2��n=0

� ��n�x� , p2n� with �n�x� vanishing outside an interval
that is three times larger than the support of v�x�, i.e., in 2 /3 of the physical
interaction region the potential v�x� vanishes identically. We provide a physical
interpretation for this unusual behavior and comment on the classical limit of the
system. © 2005 American Institute of Physics. �DOI: 10.1063/1.2063168�

I. INTRODUCTION

During the past seven years there have appeared over 200 research papers on PT-symmetric
quantum systems. This was initially triggered by the surprising observation of Bessis and Zinn-
Justin and its subsequent numerical verification by Bender and his co-workers1 that certain non-
Hermitian but PT-symmetric Hamiltonians, such as

H = p2 + x2 + i�x3 with � � R+, �1�

have a purely real spectrum. This observation suggested the possibility to use these Hamiltonians
in the description of certain quantum systems. Since the PT-symmetry of a non-Hermitian Hamil-
tonian H, i.e., the condition �H ,PT �=0, did not ensure the reality of its spectrum, a crucial task
was to seek the necessary and sufficient conditions for the reality of the spectrum of a given
non-Hermitian Hamiltonian H. This was achieved in Ref. 2 where it was shown, under the
assumptions of the diagonalizability of H and discreteness of its spectrum, that the reality of the
spectrum was equivalent to the existence of a positive-definite inner product �· , · 	+ that rendered
the Hamiltonian self-adjoint, i.e., for any pair �� ,�� of state vectors �� ,H�	+= �H� ,�	+.

Another condition that is equivalent to the reality of the spectrum of H is that it can be
mapped to a Hermitian Hamiltonian h via a similarity transformation;2,3 there is an invertible
Hermitian operator � such that

H = �−1h� . �2�

The positive-definite inner product �· , · 	+ and the operator � entering �2� are determined by a
positive-definite operator �+ according to2,3
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�· , · 	+ ª �· 
�+ · 	 , �3�

� = ��+, �4�

and the Hamiltonian satisfies the �+-pseudo-Hermiticity condition:4

H† = �+H�+
−1. �5�

Here �·
·	 stands for the standard �L2� inner product that determines the �reference� Hilbert space H
as well as the adjoint H† of H.5 �The adjoint A† of an operator A is the unique operator satisfying,
for all � ,��H, �� 
A†�	= �A� 
�	. A is called Hermitian if A†=A.�

It is this, so-called metric operator, �+ that determines the kinematic structure �the physical
Hilbert space and the observables� of the desired quantum system. Note however that �+ is not
unique6–8 �it is only unique up to symmetries of the Hamiltonian7�. In Ref. 2 we have not only
established the existence of a positive definite metric operator �+ and the corresponding positive-
definite inner product �· , · 	+ for a diagonalizable Hamiltonian with a discrete real spectrum, but we
have also explained the role of antilinear symmetries such as PT and offered a method for
computing the most general �+. �For a treatment of nondiagonalizable pseudo-Hermitian Hamil-
tonians see Refs. 9–11. Note that diagonalizability of the Hamiltonian is a necessary condition for
applicability of the standard quantum measurement theory.5 It is also necessary for the unitarity of
the time-evolution, for a nondiagonalizable Hamiltonian is never Hermitian �its evolution operator
is never unitary11� with respect to a positive-definite inner product.9,10� An alternative approach
that yields a positive-definite inner product for a class of PT-symmetric models is that of Ref. 12.
As shown in Refs. 7 and 13, the CPT-inner product proposed in Ref. 12 is identical to the inner
product �· , · 	+= �·
�+ · 	 for a particular choice of �+.

Under the above-mentioned conditions every Hamiltonian having a real spectrum determines
a set UH+ of positive-definite metric operators. To formulate a consistent unitary quantum theory
having H as its Hamiltonian, one needs to choose an element �+ of UH+. �Alternatively one may
choose sufficiently many operators with real spectrum to construct a so-called irreducible set of
observables which subsequently fixes a metric operator �+.14� Each choice fixes a positive-definite
inner product �· , · 	+ and defines the physical Hilbert space Hphys and the observables. The latter
are by definition15 the operators O that are self-adjoint with respect to �· , · 	+, alternatively they are
�+-pseudo-Hermitian. These can be constructed from Hermitian operators o acting in H according
to5

O = �−1o� . �6�

In particular, one can define �+-pseudo-Hermitian position X and momentum P operators,5,15

express H as a function of X and P, and determine the underlying classical Hamiltonian for the
system by letting 	→0 in the latter expression.5,16 Alternatively, one may calculate the equivalent
Hermitian Hamiltonian h and obtain its classical limit �again by letting 	→0�.

Another application of the �+-pseudo-Hermitian position operator X is in the construction of
the physical localized states:



�x�	 ª �−1
x	 . �7�

These in turn define the physical position wave function, ��x�ª �
�x� ,�	+= �x
�
�	, and the in-
variant probability density,

��x� ª

��x�
2

�
−�

�


��x�
2dx

=

�x
�
�	
2

��,�	+
, �8�

for a given state vector 
�	.5,16
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The above-mentioned prescription for treating PT-symmetric and more generally pseudo-
Hermitian Hamiltonians with a real spectrum has been successfully applied in the study of the
PT-symmetric square well in Ref. 5 and the cubic anharmonic oscillator �1� in Ref. 16—See also
Ref. 17. Both these systems have a discrete nondegenerate energy spectrum, and the results of
Refs. 4 and 2 are known to apply to them. The aim of the present paper is to seek whether these
results �in particular the construction method for �+� may be used for treating a system with a
continuous spectrum. �The question whether the theory of pseudo-Hermitian operators as outlined
in Refs. 4 and 2 is capable of treating a system having scattering states was posed to the author by
Zafar Ahmed during the second International Workshop on Pseudo-Hermitian Hamiltonians in
Quantum Physics, held in Prague, 14–16 June, 2004.� This question is motivated by the desire to
understand field-theoretical analogues of PT-symmetric systems which should admit an S-matrix
formulation. Furthermore, there are some basic questions related to the nonlocal nature of the
Hermitian Hamiltonian h and the pseudo-Hermitian observables such as X and P especially for
PT-symmetric potentials with a compact support �i.e., potentials vanishing outside a compact
region�.

To achieve this aim we will focus our attention on a simple toy model recently considered as
an effective model arising in the treatment of the electromagnetic waves traveling in a planar slab
waveguide that is half and half filled with gain and absorbing media.18 This model has a standard
Hamiltonian,

H =
p2

2m
+ v�x� , �9�

and a PT-symmetric imaginary potential,

v�x� ª i�
��x +
L

2
� + ��x −

L

2
� − 2��x�� =�

0 for 
x
 

L

2
or x = 0

i� for x � �−
L

2
,0�

− i� for x � �0,
L

2
� ,
� �10�

where L� �0,�� is a length scale, �� �0,�� determines the degree of non-Hermiticity of the
system, and � is the step function:

��x� ª �
0 for x � 0

1

2
for x = 0

1 for x � 0.
� �11�

The Hamiltonian �9� differs from a free particle Hamiltonian only within �−L /2 ,L /2� where it
coincides with the Hamiltonian for the PT-symmetric square well.5,19

It is important to note that unlike in Ref. 18 we will consider the potential �10� as defining a
fundamental �noneffective� quantum system having a unitary time-evolution �and S-matrix�.
Therefore our approach will be completely different from that pursued in Ref. 18 and the earlier
studies of effective �optical� non-Hermitian Hamiltonians.20

Among the main reasons for our consideration of the potential �10� is that its eigenvalue
problem can be solved exactly and analytically. However, the computation of the metric operator
and consequently that of physical observables, localized states, associated Hermitian Hamiltonian,
etc., are extremely involved, and we could only carry them out using first-order perturbation
theory.

To the best of the author’s knowledge, the only other non-Hermitian Hamiltonian with a
continuous �and doubly degenerate� spectrum that is shown to admit a similar treatment is the one

102108-3 Pseudo-Hermitian systems with continuous spectra J. Math. Phys. 46, 102108 �2005�
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arising in the two-component formulation of the free Klein-Gordon equation.21,22 Compared to �9�,
this Hamiltonian defines a technically much simpler system to handle, because it is essentially a
tensor product of an ordinary Hermitian Hamiltonian and a 2�2 matrix pseudo-Hermitian Hamil-
tonian.

II. METRIC OPERATOR

The essential ingredient of our approach is the metric operator �+. For a diagonalizable
Hamiltonian with a discrete spectrum it can be expressed as

�+ = �
n

�
a=1

da


�n,a	��n,a
 , �12�

where n, a, and dn are a spectral label, a degeneracy label, and the multiplicity �degree of
degeneracy� for the eigenvalue En of H, respectively, and �
�n ,a	� is a complete set of eigenvec-
tors of H† that together with the eigenvectors 
�n ,a	 of H form a biorthonormal system.4,2

Now, consider a diagonalizable Hamiltonian with a purely continuous doubly degenerate real
spectrum �Ek�, where k� �0,��. We will extend the application of �12� to this Hamiltonian by
changing �n¯ to �dk¯. This yields

�+ = �
0

�

dk�
�k, + 	��k, + 
 + 
�k,− 	��k,− 
� , �13�

where we have used � as the values of the degeneracy label a.22 The biorthonormal system
�
�k ,a	 , 
�k ,a	� satisfies

H
�k,a	 = Ek
�k,a	, H†
�k,a	 = Ek
�k,a	 , �14�

��k,a
��,b	 = �ab��k − ��, �
0

�

�
�k, + 	��k, + 
 + 
�k,− 	��k,− 
�dk = 1, �15�

where �ab and ��k� stand for the Kronecker and Dirac delta functions, respectively, k� �0,��, and
a ,b� �−, + �,

We define the eigenvalue problem for the Hamiltonian �9� using the oscillating �plane wave�
boundary conditions at x= ±� similar to the free particle case which corresponds to �=0. To
simplify the calculation of the eigenvectors we first introduce the following dimensionless quan-
tities:

x ª � 2

L
�x, p ª � L

2	
�p, Z ª �mL2

2	2 ��, H ª �mL2

2	2 �H = p2 + v�x� , �16�

v�x� ª iZ���x + 1� + ��x − 1� − 2��x�� = � 0 for 
x
 
 1 or x = 0

iZ for x � �− 1,0�
− iZ for x � �0,1� .

� �17�

The eigenvalue problem for the scaled Hamiltonian H corresponds to the solution of the
differential equation


−
d2

dx2 + v�x� − Ek���x� = 0, �18�

that is subject to the condition that � is a differentiable function at the discontinuities x
=−1,0 ,1 of v. Introducing �1 : �−� ,−1�→C, �− : �−1,0�→C, �+ : �0,1�→C, and �2 : �1,��→C
according to

102108-4 Ali Mostafazadeh J. Math. Phys. 46, 102108 �2005�
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��x� ¬ �
�1�x� for x � �− �,− 1�
�−�x� for x � �− 1,0�
�+�x� for x � �0,1�
�2�x� for x � �1,�� ,

� �19�

we have

�1�− 1� = �−�− 1�, �1��− 1� = �−��− 1� , �20�

�−�0� = �+�0�, �−��0� = �+��0� , �21�

�+�1� = �2�1�, �+��1� = �2��1� . �22�

Now, imposing the plane-wave boundary condition at x= ±� and demanding that the eigenfunc-
tions � be PT-invariant, which implies

�−�0� = �+�0�*, �−��0� = − �+��0�*, �23�

we find Ek=k2, i.e., the spectrum is real positive and continuous, and

�1�x� = A1eikx + B1e−ikx, �2�x� = A2eikx + B2e−ikx, �±�x� = A±eik±x + B±e−ik±x, �24�

where

k± ª
�k2 ± iZ , �25�

A1 = A2
* =

eik

�2�
�L−�k�u + K−�k�v�, B1 = B2

* =
e−ik

�2�
�L−�− k�u + K−�− k�v� , �26�

L−�k� ª
1

2
�cos k− −

ik− sin k−

k
�, K−�k� ª

1

2
�k+

k−
� k− cos k−

k
− i sin k−� , �27�

A± =
1

�8�

u + � k+

k−
��1/2

v�, B± =
1

�8�

u − � k+

k−
��1/2

v� , �28�

and u ,v�R are arbitrary constants �possibly depending on k and/or Z and not both vanishing�.
The presence of the free parameters u and v is an indication of a double degeneracy of the

eigenvalues Ek=k2. We will select u and v in such a way as to ensure that in the limit Z→0 we
recover the plane-wave solutions of the free particle Hamiltonian, i.e., we demand limZ→0 ��x�
=e±ikx /�2�. This condition is satisfied if we set

u = 1, v = ± 1. �29�

In the following we use the superscript � to identify the value of a quantity obtained by setting
u=1 and v= ±1. In this way we introduce A1

±, B1
±, A2

±, B2
±, A±

±, B±
±, and �±. The latter define the

basis �generalized23� eigenvectors 
�k , ± 	 by �x 
�k , ± 	ª�±�x�.
The next step is to obtain 
�k , ± 	. In view of the identity H†= 
H
Z→−Z, we can easily obtain

the expression for the eigenfunctions � of H†. Introducing

102108-5 Pseudo-Hermitian systems with continuous spectra J. Math. Phys. 46, 102108 �2005�
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��x� ¬ �
�1�x� for x � �− �,− 1�
�−�x� for x � �− 1,0�
�+�x� for x � �0,1�
�2�x� for x � �1,�� ,

� �30�

we have

�1�x� = C1eikx + D1e−ikx, �2�x� = C2eikx + D2e−ikx, �±�x� = C±eik�x + D±e−ik�x, �31�

where

C1 = C2
* =

eik

�2�
�L+�k�r + K+�k�s�, D1 = D2

* =
e−ik

�2�
�L+�− k�r + K+�− k�s� , �32�

L+�k� ª L−�− k�*, K+�k� ª − K−�− k�*, �33�

C± =
1

�8�

r + � k+

k−
�±1/2

s�, D± =
1

�8�

r − � k+

k−
�±1/2

s� , �34�

and r ,s�R are �possibly k- and/or Z-dependent� parameters that are to be fixed by imposing the
biorthonormality condition �15�. The latter is equivalent to a set of four �complex� equations
�corresponding to the four possible choices for the pair of indices �a ,b� in the first equation in
�15�� which are to be solved for the two real unknowns r and s. This together with the presence of
the delta function in two of these equations make the existence of a solution quite nontrivial.

We checked these equations by expanding all the quantities in powers of the non-Hermiticity
parameter Z up to �but not including� terms of order two and found after a long and tedious
calculation �partly done using MATHEMATICA� that indeed all four of these equations are satisfied,
if we set r=u=1 and s=v= ±1. Again we will refer to this choice using superscript �. In par-
ticular, we have �±= 
�±
Z→−Z and �x 
�k , ± 	ª�±�x�.

Having obtained 
�k , ± 	 we are in a position to calculate the metric operator �13�. We carried
out this calculation using first-order perturbation theory in Z. It involved expanding the �1

±�x�,
�2

±�x�, and �±
±�x� in powers of Z, substituting the result in

�x
�+
y	 = �
0

�

��+�y�*�+�x� + �−�y�*�−�x��dk �35�

which follows from �13�, and using the identities:

�
−�

�

eiakdk = 2���a�, �
−�

� eiak

k
dk = i� sign�a�, �

−�

� eiak − eibk

k2 dk = ��
b
 − 
a
� �36�

�where a ,b�R and sign�a�ª��a�−��−a�� to perform the integral over k for all 16 possibilities
for the range of values of the pair of independent variables �x,y� in �35�. This is an extremely
lengthy calculation whose detail we will not include here. It is absolutely remarkable that the
expressions for �x
�+
y	 that we obtain for these 16 possibilities may be combined to yield a single
formula that is valid for all x ,y�R, namely

�x
�+
y	 = ��x − y� +
i

8
�4 + 2
x + y
 − 
x + y + 2
 − 
x + y − 2
�sign�x − y�Z + O�Z2� , �37�

where O�Z2� stands for terms of order two and higher in powers of Z. Note that �x
�+
y	*

= �y
�+
x	, which is consistent with the Hermiticity of �+.
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III. PHYSICAL OBSERVABLES AND LOCALIZED STATES

The physical observables of the system described by the Hamiltonian �9� are obtained from
the Hermitian operators acting in H=L2�R� by the similarity transformation �6�. This equation
involves the positive square root � of �+ which takes the form16

�±1 = e�Q/2, �38�

if we express � in the exponential form

�+ = e−Q. �39�

In view of �38� and the Backer-Campbell-Hausdorff identity,

e−ABeA = B + �B,A� +
1

2!
��B,A�,A� + . . . �40�

�where A and B are linear operators�, physical observables �6� satisfy16

O = o − 1
2 �o,Q� + 1

8 ��o,Q�,Q� + . . . . �41�

If we expand �+ and Q in powers of Z,

�+ = 1 + �
�=1

�

�+�
Z�, Q = �

�=1

�

Q�Z�, �42�

where �+�
and Q� are Z-independent Hermitian operators, we find using �39� that

Q1 = − �+1
, Q2 = − �+2

+ 1
2�+1

2 . �43�

Combining this relation with �41�, we have

O = o − 1
2 �o,Q1�Z + 1

8 �− 4�o,Q2� + ��o,Q1�,Q1��Z2 + O�Z3� . �44�

In the following we calculate the �+-pseudo-Hermitian position �X� and momentum �P�
operators,16 up to �but not including� terms of order Z2. This is because so far we have only
calculated �+1

which in view of �37� satisfies

�x
�+1

y	 = i

8 �4 + 2
x + y
 − 
x + y + 2
 − 
x + y − 2
�sign�x − y�, ∀ x,y � R . �45�

Substituting the scaled position �x� and momentum �p� operator for o in �44�, using �45�, and
doing the necessary algebra, we find

�x
X
y	 = x��x − y� +
i

16
�4 + 2
x + y
 − 
x + y + 2
 − 
x + y − 2
�
x − y
Z + O�Z2� , �46�

�x
P
y	 = − i�x��x − y� + 1
8 �2 sign�x + y� − sign�x + y + 2� − sign�x + y − 2��sign�x − x�Z + O�Z2� ,

�47�

where Xª2X /L and PªLP / �2	� are dimensionless �+-pseudo-Hermitian position and momen-
tum operators, respectively.

As seen from �46�, both X and P are manifestly nonlocal and non-Hermitian �but pseudo-
Hermitian� operators. If we scale back the relevant quantities in �46� and �47� according to �16�,
we find

�x
X
y	 = x��x − y� +
im

4	2 �2L + 2
x + y
 − 
x + y + L
 − 
x + y − L
�
x − y
� + O��2� , �48�

102108-7 Pseudo-Hermitian systems with continuous spectra J. Math. Phys. 46, 102108 �2005�
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�x
P
y	 = − i	�x��x − y� +
m

4	
�2 sign�x + y� − sign�x + y + L� − sign�x + y − L��sign�x − y�� + O��2� .

�49�

Note that the contributions of order � to P vanish, if both x and y take values outside
�−L /2 ,L /2�.

Next, we compute the localized states 
�x� of the system. The corresponding state vectors are
defined by �7�. Using this equation as well as �38�, �42�, �43�, �45�, and �16� we have the following
expression for the x-representation of a localized state 
�y� centered at y�R:

�x

�y�	 = ��x − y� −
im�

8	2 �2L + 2
x + y
− 
x + y + L
− 
x + y − 1
�sign�x − y� + O��2� . �50�

Because the linear term in � is imaginary, the presence of a weak non-Hermiticity only modifies
the usual �Hermitian� localized states by making them complex �nonreal� while keeping their real
part intact. Note however that for a fixed y the imaginary part of �x 

�y�	 does not tend to zero as

x−y
→�. This observation which seems to be in conflict with the usual notion of localizability
has a simple explanation. Because the usual x operator is no longer an observable, it does not
describe the position of the particle. This is done by the pseudo-Hermitian position operator X; it
is the physical position wave function ��x�ª �
�x� ,�	+ that defines the probability density of
localization in space �8�. The physical position wave function for the localized state 
�y� is given
by �
�x� ,
�y�	+= �x 
y	=��x−y� which is the expected result.

IV. EQUIVALENT HERMITIAN HAMILTONIAN AND CLASSICAL LIMIT

The calculation of the equivalent Hermitian Hamiltonian h for the Hamiltonian �9� is similar
to that of the physical observables. In view of �2�, �38�, �40�, and �42�, and the last equation in �16�
which we express as

H = p2 + i��x�Z with ��x� ª ��x + 1� + ��x − 1� − 2��x� , �51�

we have

h = p2 + h1Z + h2Z2 + O�Z3� , �52�

h1 ª i��x� + 1
2 �p2,Q1� , �53�

h2 ª
1
8 �4�p2,Q2� + 4i���x�,Q1� + ��p2,Q1�,Q1�� . �54�

where

h ª �H�−1 = mL2h/�2	2� �55�

is the dimensionless Hermitian Hamiltonian associated with H.
Next, we substitute �43� and �45� in the identity �x
�p2 ,Q1�
v	= ��y

2−�x
2��x
Q1
y	, and perform

the necessary algebra. We then find �x
�p2 ,Q1�
v	=−2i��x���x−y�. Therefore,

�p2,Q1� = − 2i��x� , �56�

and in view of �53�

h1 = 0. �57�

This was actually to be expected, for both the operators appearing on the right-hand side of �53�
are anti-Hermitian, while its left-hand side is Hermitian. The fact that an explicit calculation of the
right-hand side of �53� yields the desired result, namely �57�, is an important check on the validity
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of our calculation of �+1
. It may also be viewed as an indication of the consistency and general

applicability of our method, that was initially formulated for systems with a discrete spectrum.5,16

According to �57�,

h = p2 + h2Z2 + O�Z3� . �58�

Hence, in order to obtain a better understanding of the nature of the system described by the
Hamiltonian H, we need to calculate h2. As we will next show, the knowledge of �x
�+1


y	 turns
out to be sufficient for the calculation of h2. To see this we first employ �56� to express h2 in the
form

h2 = 1
4 �2�p2,Q2� + i���x�,Q1�� . �59�

Now, we recall that p2, Q2, ��x�, and Q1 are all Hermitian operators. Therefore �p2 ,Q2� and
i���x� ,Q1� are, respectively, anti-Hermitian and Hermitian. In view of �59� and the Hermiticity of
h2, this implies that

�p2,Q2� = 0. �60�

Hence,

h2 =
i

4
���x�,Q1� =

i

4
��+1,��x�� , �61�

where we have also made use of the first equation in �43�. We should also mention that the
identities �56� and �60� can be directly obtained from the pseudo-Hermiticity condition �5� by
substituting �39� in �5� and using �40� and �42�.

We can easily use �45� and �61� to yield the expression for the integral kernel of h2, namely

�x
h2
y	 = 1
32�4 + 2
x + y
− 
x + y + 2
− 
x + y − 2
�sign�x − y����x� − ��y��, ∀ x,y � R .

�62�

As seen from this equation, �x
h2
y	=0, if x� �−1,1� and y� �−1,1�.
We can express h2 as a function of x and p by performing a Fourier transformation on the y

variable appearing in �62�, i.e., computing

�x
h2
p	 ª �2��−1/2�
−�

�

�x
h2
y	eipydy. �63�

This yields h2 as a function of x and p, if we order the factors by placing x’s to the left of p’s. We
can easily do this by expanding �x
h2
p	 in powers of p. Denoting the x-dependent coefficients by
�n, we then have

h2 = �
n=0

�

�n�x�pn, �64�

where we have made the implicit assumption that �x
h2
p	 is a real-analytic function of p.
The Fourier transform of �x
h2
y	 can be performed explicitly. �One way of doing this is to use

the integral representations of the absolute value and sign function, as given in �36�, to perform the
y-integrations in �63� and use the identities

�
−�

� eiaudu

u�u − k�
=

i�

k
�eiak − 1�sign�a� ,
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�
−�

� eiaudu

u�u − k�2 =
i�

k2 �1 + �iak − 1�eiak�sign�a�, ∀ a,k � R ,

to evaluate the remaining two integrals. The resulting expression is too lengthy and complicated to
be presented here.� We have instead used MATHEMATICA to calculate �x
h2
p	 and found the
coefficients �n for n�5. It turns out that indeed �x
h2
p	 does not have a singularity at p=0, and
that �0 ,�2 ,�4 are real and vanish outside �−3,3� while �1 ,�3 ,�5 are imaginary and proportional
to ��x�−1/2 outside �−3,3�. As we will explain momentarily these properties are necessary to
ensure the Hermiticity of h.

Figures 1, 2, and 3 show the plots of real part of �n for n=0,2 ,4 and the imaginary part of �n

FIG. 1. Graph of the real part of �0 �dashed curve� and �2 �full curve�.

FIG. 2. Graph of the imaginary part of �1 �dashed curve� and �3 �full curve�.
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for n=1,3 ,5. As seen from these figures �the absolute value of� �n sharply decreases with n,
which suggests that a truncation of �64� yields a good approximation for the action of h2 on the
wave functions with bounded and sufficiently small x-derivatives.

If we use �p
h2
x	= �x
h2
p	* to determine the form of h2 and suppose that �2n�x� are real and
�2n+1�x� are imaginary for all n=0,1 ,2 ,3 , . . ., we find

h2 = �
n=0

�

pn�n�x�* = �
n=0

�

�p2n�2n�x� − p2n+1�2n+1�x�� .

Adding both sides of this relation to those of �64� and diving by two, we obtain

h2 =
1

2�
n=0

�

�an�x�,p2n�, an�x� ª �2n�x� + i�2n+1� �x� , �65�

where �·,·� stands for the anticommutator, a prime denotes a derivative, and we have made use of
the identity: �f�x� ,pm�= �if��x� ,pm−1�. It is important to note that because �2n�x� are real and
�2n+1�x� are imaginary, an�x� are real. Moreover, outside �−3,3�, �2n�x�, �2n+1� �x�, and conse-
quently an vanish. Therefore, we can express h2 in the manifestly Hermitian form �65� with all the
x-dependent coefficient functions vanishing outside �−3,3�. Figure 4 shows the plots of an for
n=0,1 ,2. They are all even functions of x with an amplitude of variations that decreases rapidly
as n increases.

Next, we scale back the relevant quantities and use �16�, �55�, �58�, and �65� to obtain

h =
p2

2m
+

�2

2 �
n=0

�

��n�x�,p2n� + O��3�, �n�x� ª 2m� L

2	
�2�n+1�

an�2x

L
� . �66�

In view of the fact that an and �n are real-valued even functions, h is a manifestly Hermitian P-
and T-symmetric Hamiltonian. We can also express it in the form

FIG. 3. Graph of the real part of �4 �dashed curve� and the imaginary part of �5 �full curve�.
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h =
1

4
�meff

−1�x�,p2� + w�x� +
�2

2 �
n=2

�

��n�x�,p2n� + O��3� , �67�

where

meff�x� ª
m

1 + 2m�2�1�x�
, w�x� ª �2�0�x� .

Therefore, for low energy particles where one may neglect terms involving fourth and higher
powers of p, the Hamiltonian h and consequently H describe motion of a particle with an effective
position dependent mass meff�x� that interacts with the potential w�x�. Figure 5 shows a graph of

FIG. 4. Graph of a0, a1, and a2.
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meff�x� for m=1/2, 	=1, L=2, and �=1/3. For the same values of these parameters, w�x�
=a0�x� /9. See Fig. 4 for a graph of a0.

If we replace �x , p� of �66� and �67� with their classical counterparts �xc , pc�, we obtain the
“classical” Hamiltonian:

H̃c =
pc

2

2m
+

�2

2 �
n=0

�

�n�xc�pc
2n + O��3� =

pc
2

2meff�xc�
+ w�xc� +

�2

2 �
n=2

�

�n�xc�pc
2n + O��3� , �68�

which coincides with the free particle Hamiltonian outside the physical interaction region, i.e.,
�−3L /2 ,3L /2�. The fact that this region is three times larger than the support �−L /2 ,L /2� of the

potential v�x� is quite surprising. Note also that H̃c is an even function of both the position xc and
momentum pc variables.

Figure 6 shows the phase space trajectories associated with the Hamiltonian H̃c for L=2, 	
=1, m=1/2, �=Z=1/3. For large values of the momentum the trajectories are open curves de-
scribing the scattering of a particle due to an interaction that takes place within the physical
interaction region, �−3,3�. For sufficiently small values of the momentum closed trajectories are

FIG. 5. Graph of the effective mass meff �full curve� for m= 1
2 , 	=1, L=2, and �= 1

3 . The dashed curve represents m= 1
2 .

FIG. 6. Phase space trajectories of the Hamiltonian H̃c�xc , pc� for m= 1
2 , 	=1, L=2, and �= 1

3 . The horizontal and vertical
axes are, respectively, those of xc and pc.
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generated. These describe a particle that is trapped inside the physical interaction region. This is

consistent with the fact that for small pc, H̃c is dominated by the potential term w�xc� which in
view of its relation to a0�x� and Fig. 4 can trap the particle.

We wish to emphasize that because we have not yet taken the 	→0 limit of H̃c, we cannot
identify it with the the true classical Hamiltonian Hc for the quantum Hamiltonian h and conse-

quently H. Given the limitations of our perturbative calculation of H̃c, we are unable to determine
this limit. �This is in contrast with both the PT-symmetric square well and the PT-symmetric
cubic anharmonic oscillator studied in Refs. 5 and 16, respectively. In the former system the
presence of an exceptional spectral point imposes the condition that � must be of order 	2 or
higher and consequently the classical system is the same as that of the Hermitian infinite square
well.5 In the latter system, the 	→0 limit of the associated Hermitian Hamiltonian can be easily
evaluated and classical Hamiltonian obtained.16� Therefore, we cannot view the presence of closed

phase space trajectories for H̃c as evidence for the existence of bound states of h and H. This is
especially because these trajectories are associated with very low momentum values where the
quantum effects are expected to be dominant.

V. CONCLUSION

In this paper we explored for the first time the utility of the methods of pseudo-Hermitian
quantum mechanics in dealing with a non-Hermitian PT-symmetric potential v�x� that has a
continuous spectrum. We were able to solve the eigenvalue problem for this potential exactly and
obtain the explicit form of the metric operator, the pseudo-Hermitian position and momentum
operators, the localized states, and the equivalent Hermitian Hamiltonian perturbatively.

Our analysis revealed the surprising fact that the physical interaction region for this model is
three times larger than the support of the potential, i.e., there is a region of the configuration space
in which v�x� vanishes but the interaction does not seize.

A simple interpretation for this peculiar property is that the argument x of the potential v�x� is
not a physical observable and the support �−L /2 ,L /2� of v�x� being a range of eigenvalues of x
does not have a direct physical meaning. This observation underlines the importance of the
Hermitian representation of non-Hermitian �inparticular PT-symmetric� Hamiltonians having a
real spectrum.

The Hermitian representation involves a nonlocal Hamiltonian that is not suitable for the
computation of the energy spectrum or the S-matrix of the theory. Yet it provides invaluable
insight in the physical meaning and potential applications of pseudo-Hermitian and PT-symmetric
Hamiltonians and is indispensable for the determination of the other observables of the corre-
sponding quantum systems.
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