Studies on Thin-shells and Thin-shell
Wormholes

PhD THESIS DEFENSE, 2016

Ali Ovglin
Supervisor: Mustafa Halilsoy
Co-supervisor: S. Habib Mazhariomusavi

29 June 2016

Eastern Mediterranean University



Publications

4/19 of my publications which | will present today.

1. Existence of traversable wormholes in the spherical stellar
systems
A. Ovgun, M. Halilsoy. Astrophys.Space Sci. 361 (2016) 214

2. On a Particular Thin-shell Wormhole
A. Ovgun, |. Sakalli. arXiv:1507.03949 (accepted to publish in
TMPh)

3. Thin-shell wormholes from the regular Hayward black hole
M. Halilsoy, A. Ovgun, S.H. Mazharimousavi Eur.Phys.J. C74 (2014)
2796

4. Tunnelling of vector particles from Lorentzian wormholes in 3+1
dimensions
. Sakalli, A. Ovgun. Eur.Phys.J.Plus 130 (2015) no.6, 110



Table of contents

1. INTRODUCTION

2. WHAT IS A WORMHOLE?

3. MOTIVATION

4. HAWKING RADIATION OF THE TRAVERSABLE WORMHOLES
5. THIN-SHELL WORMHOLES

6. ON A PARTICULAR THIN-SHELL WH

7. HAYWARD THIN-SHELL WH IN 3+1-D



INTRODUCTION




- ~
9550 9%+ 2" TS
P
(5'.‘.'1‘3 ke =g.-g,‘.’.‘-

%%, = ’;2':;("2»4

% "‘5; e 74 )
s-'ﬁJ C A ‘!':,’-: - 29"
-

The Centennial of Einstein’s
General Theory of Relativity

Figure 1: General relativity (GR) is a theory of gravitation that was developed
by Albert Einstein between 1907 and 1915
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Figure 2: Gravity
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ALBERT EINSTEIN'S GENERAL THEORY OF RELATIVITY, 1916

Figure 3: General relativity explains gravity as the curvature of spacetime




PRINCIPLE

Figure 4: The inter-changeable nature of gravity and acceleration is known
as the principle of equivalence.
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General Relativity
Principle of equivalence:

There is no experiment that will
discern the difference between the
effect of gravity

and the effect of acceleration.
Or...

Gravitational mass and inertial
mass are equivalent.

vitational

inertial
mass




T 1

zero motion constant velocity acceleration

Ny

s

-y

The path of a light bearm in three differsnt types of refersnce
frarmes roving with respect to the person sufal the elevator
The light path shown is what the person Asfde the elevator sees.
Under large acceleration, the bearn of light will curve downward.

It should also do that in a region of strong grawity.
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WHAT IS A WORMHOLE?




The distance through our universe between

Earth and Vega is 25 light-years . . .
our universe

hyperspace
Earth ™
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... but the distance vffou/d be much shorter
if we could travel through a wormhole.

Figure 5: Hypothetical shortcut between distant points
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Figure 6: Can we make journeys to farther stars?




Figure 7: How can we open gate into space-time?

- How can we connect two regions of space-time?

- Can we make stable and traversable wormholes?



MOTIVATION




Figure 8: Wormhole

-We do not know how to open the throat without exotic matter.
-Thin-shell Methods with Israel junction conditions can be used to
minimize the exotic matter needed.

However, the stability must be saved.



Figure 9: How to realize Wormholes in real life



History of Wormholes

1

Figure 10: Firstly , Flamm’s work on the WH physics using the Schwarzschild
solution (1916).



A. Einstein N. Rosen

Figure 11: Einstein and Rosen (ER) (1935), ER bridges connecting two
identicalsheets.



Figure 12: JWheeler used "geons” (self-gravitating bundles of
electromagnetic fields) by giving the first diagram of a
doubly-connected-space (1955).

Wheeler added the term "wormhole” to the physics literature at the
quantum scale.



Figure 13: First traversable WH, Morris-Thorne (1988).



GRAVITATION

Figure 14: Then Morris, Thorne, and Yurtsever investigated the requirements
of the energy condition for traversable WHs.



Figure 15: A technical way to make thin-shell WHs by Visser (1988).



Traversable Wormhole Construction Criteria

- Spherically symmetric and static metric
- Obey the Einstein field equations.

- Must have a throat that connects two asymptotically flat regions
of spacetime.

- No horizon, since a horizon will prevent two-way travel through
the wormhole.

- Tidal gravitational forces experienced by a traveler must be
bearably small.

- Traveler must be able to cross through the wormhole in a finite
and reasonably small proper time.

- Physically reasonable stress-energy tensor generated by the
matter and fields.

- Solution must be stable under small perturbation.

- Should be possible to assemble the wormhole. ie. assembly
should require much less than the age of the universe.



Traversable Lorentzian Wormholes

The first defined traversable WH is Morris Thorne WH with a the
red-shift function f(r) and a shape function b(r) :

1

_ b0
;

ds? = _eX0ge 4 1 dr? + r*(d6? + sin” d¢?). (1)

- Spherically symmetric and static

- Radial coordinate r such that circumference of circle centered
around throat given by 2zr

- rdecreases from 400 to b = by (minimum radius) at throat,
then increases from by to +o0o

- At throat exists coordinate singularity where r component
diverges

- Proper radial distance [(r) runs from —oco to +o00 and vice versa



HAWKING RADIATION OF THE
TRAVERSABLE WORMHOLES




BLACK HOLE

Virtual photon pairs pop r\ ... butif one photon passes

out of nowhere and then 7 ? over the event horizon it gets
annihilate each other... ° (] @ trapped, and its partner is
i ‘ - emitted as Hawking radiation
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Figure 16: Hawking radiation
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A new kind of wormhole

If awormhole can form between a black hole and its emitted photans, this could
solve a tricky problem in theoretical physics

CLASSIC
WORMHOLE Black hol= Black hole

NEW
WORMHOLE

Black hole

black holes

Figure 18: ER=EPR



Figure 19: The radiation is due to the black hole capturing one of a
particle-antiparticle pair created spontaneously near to the event horizon.



- For studying the HR of traversable WHs, we consider a general
spherically symmetric and dynamic WH with a past outer
trapping horizon.

- The traversable WH metric can be transformed into the
generalized retarded Eddington-Finkelstein coordinates as
following

ds® = —Cdu® — 2dudr + r* (d6* + Bdy?) (2)
where C =1—2M/r and B = sin’ 6.
- Proca equation in a curved space-time :
1
V=3

in which the wave functions are defined as v, = (wo, 11, %2, 13).

2
8;t (\/jg¢y;u) + %w” = (@, (3)

- Use WKB approximation, the following HJ ansatz is substituted
into Eq. (3)
thy = (Co, C1, Gz, C3) @7°(109), (4)



- Furthermore, we define the action S(u,r,0, ¢) as following

S(u,r,8,¢) = So(u,r,0,¢)+hSi(u,r,6,)+1Sy(u,r,0,0)+.... (5)

- Then one can use the separation of variables method to the
action So(u,r, 6, ¢):

So = Eu — W(r) — j — ke, (6)

- It is noted that E and (j, R) are energy and real angular
constants, respectively.

- After inserting Egs. (4), (5), and (6) into Eq. (3), a matrix equation



A(co,c1,c27c3)T = 0 (to the leading order in k) is obtained by

2B[0,W(r)]* 2,
Dy = 2m?r*B + 2BO,W(r)Er* + 2Bj* 4 2R?,
2A31 o
- rz = _2BJ8FW(r)7
JAVE)
W S —2f€8rW(l’),
—2BCm?r? + 2E%r*B — 2j°BC — 2R%C, @)
—2A32 0 o
7 = 2JBCOW(r) + 2EjB,
Ay
m?r?B + 2BEr9,W(r) + r’BC[a,W(r)]” + K,
—A43 o a
2B - k’j7

—2rBC[OW(r)]* — 4BEFO,W(r) — 2B(m?r* + /2).



The determinant of the A-matrix (detA = 0) is used to get

2y 3
detA = 64Bm?r? {;rZBC [0, W(r)])” + BEFO,W(r) + g (m?r* +j%) + kz} :

- Then the Eq. (8) is solved for W(r)

—F B2 m? 2 12
Wi(r)_/<ci\/cz_c_CE32r2_Cr2)dr' ©)

- The above integral near the horizon (r — ry) reduces to

Wi(r):/(_CE E) dr. (10)

- The probability rate of the ingoing/outgoing particles only
depend on the imaginary part of the action.

- Eqg. (10) has a pole at C = 0 on the horizon.

- Using the contour integration in the upper r half-plane, one

obtains . .
Wy=im|—=+—1]. 11
* T (2H|H 2I€|H> ( )




From which
ImS = ImWy, (12)

that the x|y = 0,C/2 is the surface gravity.

- Note that the x|y is positive quantity because the throat is an
outer trapping horizon.

- When we define the probability of incoming particles W.. to
100% such as [apsorption = €~ 4™ & 1.

- Consequently W_ stands for the outgoing particles.
- Then we calculate the tunneling rate of the vector particles as

2E

remission —2ImWwW =i
= ———— = Tlemission = € = = il (13)

rabsorption

- The Boltzmann factor I' ~ e=#f where  is the inverse
temperature is compared with the Eqg. (13) to obtain the Hawking
temperature T|y of the traversable WH as

H|H

Ty = ——= 14
b= (14)



- Surprisingly, we derive the the negative T|y that past outer
trapping horizon of the traversable WH radiate thermal
phantom energy (i.e. dark energy)

- Additionally, the radiation of phantom energy has an effect of
reduction of the size of the WH's throat and its entropy.

- The main reason of this negativeness is the phantom energy
which is located at the throat of WH.

- Moreover, as a result of the phantom energy, the ordinary
matter can travel backward in time.

- Nonetheless, this does not create a trouble. The total entropy of
universe always increases, hence it prevents the violation of the
second law of thermodynamics.

- Moreover, in our different work, we show that the gravitino also
tunnels through WH and we calculate the tunneling rate of the
emitted gravitino particles from traversable WH.



THIN-SHELL WORMHOLES




ENTRANCE TOWORMHOLE EXITOF WORMHDEE

OURUNIVERSE =~ ; ¥ OTHERUNVERSE

- Constructing WHs with non-exotic (normal matter) source is a
difficult issue in General Relativity.

- On this purpose, firstly , Visser use the thin-shell method to
construct WHs by minimizing the exotic matter on the throat of
the WHs.



- We need to introduce some conditions on the
energy-momentum tensor.




Input: Two space-times

-Use the Darmois -Israel formalism and match an interior spacetime
to an exterior spacetime

-Use the Lanczos equations to find a surface energy density o and a
surface pressure p.

-Use the energy conservation to find the equation of motion of
particle on the throat of the thin-shell wormhole

-Check the stability by using different EoS equations.
-Check Stability by using the
Outputs Thin-shell wormhole

o < 0 with extrinsic curvature K > 0 of the throat means it required
exotic matter.



ON A PARTICULAR THIN-SHELL WH




- The line element of a Scalar Hairy Black Hole (SHBH)

investigated by Mazharimousavi and Halilsoy is

4rdr?
fr)

ds® = —f(r)dt* + + r’de?, (15)

where

- Here u and [ are constants.
- Event horizon of the BH is located at r, = u¢?.
- It is noted that the singularity located at r = 0.

- Firstly we take two identical copies of the SHBHs with (r > a):
M* = (x|r > 0),

- The manifolds are bounded by hypersurfaces M and M—, to get
the single manifold M = M*™ + M~



- We glue them together at the surface of the junction
¥+ = (x|r=a).

where the boundaries X are given.
- The spacetime on the shell is

ds? = —dr? + 61(7')2616‘27 (17)

where 7 represents the proper time .
- Setting coordinates &' = (7, 6), the extrinsic curvature formula
connecting the two sides of the shell is simply given by

XY x> OxP
+ .+ 5
Ky ==y (ag»‘agf T Tag o€ agf)’ e

where the unit normals (n7n, = 1) are

op OH OH

OH | oM
Oxe OxB

s (19)

with H(r) = r —a(7).



- The non zero components of n$ are calculated as

nt::anC.l,
2 72120 — |2
— al?(4a?la lu+a)7
(Pu—a)

where the dot over a quantity denotes the derivative with
respect to 7.

- Then, the non-zero extrinsic curvature components yield
V—al2(8a%1%a + 8al*a? — [>u + 2a)
4a22/—4a22a — Pu+a

1 =
KE =+ V4a2l2a — 2u + a.
oo 203

+ _
KTT_

)

(22)

(23)

- Since Kj is not continuous around the shell, we use the Lanczos

equation:
1
Sj=—g- ([Kj] = [Klgy) -

where K is the trace of Kj, [Kj] = K; - K .

(24)



o First[y’ K+ = —K = [K’l] Whlle [KU] =0.
- For the conservation of the surface stress—-energy S}j =0.

- Sjj Is stress energy-momentum tensor at the junction which is
given in general by

Sj) = diag(a, _p)a (25)

with the surface pressure p and the surface energy density o.

- Due to the circular symmetry, we have

KZ 0

T

k= o « |. (26)

Thus, from Eq.s (25) and (24) one obtains the surface pressure
and surface energy density .

- Using the cut and paste technique, we can demount the interior
regions r < a of the geometry, and links its exterior parts.



- The energy density and pressure are

1 :
o= ———\/4a22a - 2u +a, (27)

8mazl

1 (8a%Pa+ 8ala® — Pu+2a

p | (6afad ). (28)
16mra:l 4a?l2a — Pu+a

Then for the static case (a = ag), the energy and pressure

quantities reduce to

v/ —[u + ag, (29)

o) = — 3
8rajl
D 1 (—[2U+2Clo)
0= .
16mall V—LPu+ao
Once o > 0 and o + p > 0 hold, then WEC is satisfied.

- Itis obvious from Eq. (24) that negative energy density violates
the WEC, and consequently we are in need of the exotic matter
for constructing thin-shell WH.




- We note that the total matter supporting the WH is given by

2w 1
%= [ 1oV, 90 = 2000(20) = ~——/~FU T a5
0

4ag [l

(31)
- Stability of the WH is investigated using the linear perturbation
so that the EoS is

p = (o), (32)
where (o) is an arbitrary function of o.
- It can be written in terms of the pressure and energy density:
d da .
. (ca) + w% = —qQo. (33)
- From above equation, one reads

o = _%(20 + ), (34)

and its second derivative yields

o = 2G4+ Y

). (35)



where prime and tilde symbols denote derivative with respect to
a and o, respectively.

- The conservation of energy for the shell is in general given by
@ +V=0, (36)

where the effective potential V is found from Eq. (27)

1 u
V=— — = —16a’c’n.

i ig ba‘oc mw (37)
- In fact, Eq. (36) is nothing but the equation of the oscillatory
motion in which the stability around the equilibrium point
a = ag is conditional on V'(ap) = 0 and V’(ap) > 0.

- We finally obtain

,  (38)

a=ap

1 o o
V' = ~3@ {6471’205 <(00’)/ + 40’5 + (12> + u]




or equivalently,

V= i%{f6mﬁa3Kbﬂg%$02+¢%¢“+3kr+¢9]fu}
a=aop
(39)
- The equation of motion of the throat, for a small perturbation
becomes
V//(ao)

@+ =2 (a - )’ =0.

- Note that for the condition of V'(ag) > 0, TSW is stable where

the motion of the throat is oscillatory with angular frequency
\///(GO)

7 -



Some Models of EoS Supporting Thin-Shell WH

In this section, we use particular gas models (linear barotropic gas
(LBG), chaplygin gas (CG) , generalized chaplygin gas (GCG) and
logarithmic gas (LogG) ) to explore the stability of TSW.

Stability analysis of Thin-Shell WH via the LBG
The equation of state of LBG is given by

) = gqo, (40)

and hence
¥’ (00) = o, (41)
where ¢ is a constant parameter. By changing the values of [ and u

in Eq. (35), we illustrate the stability regions for TSW, in terms of ey
and ao.
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Figure 20: Stability Regions via the LBG

Stability analysis of Thin-Shell WH via CG

The equation of state of CG that we considered is given by

¥ =eo(> — L)+ po, (42)

g go



and one naturally finds

_50

2

After inserting Eq. (39) into Eq. (35), The stability regions for
thin-shell WH supported by CG is plotted in Fig.

(43)
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Stability Regions via the CG



Stability analysis of Thin-Shell WH via GCG
By using the equation of state of GCG

v=po(2) ", (44)
and whence
W (00) = 7505—;’, (45)

Substituting Eq. (41) in Eq. (35), one can illustrate the stability
regions of thin-shell WH supported by GCG as seen in Fig.
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Figure 22: Stability Regions via the GCG



Stability analysis of Thin-Shell WH via LogG

- In our final example, the equation of state for LogG is selected
as follows (eg, 00, po are constants)

Y =eo ln( )+po, (46)
which leads to
o) = 2
V' (o0) = g (47)

- After inserting the above expression into Eq. (35), we show the
stability regions of thin-shell WH supported by LogG in Fig.



Figure 23:
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- In summary, we have constructed thin-shell WH by gluing two
copies of SHBH via the cut and paste procedure.

- To this end, we have used the fact that the radius of throat must
be greater than the event horizon of the metric given: (ag > rp).

- We have used LBG, CG, GCG, and LogG EoS to the exotic matter.
- Then, the stability analysis (V’(ag) > 0) is plotted.
- We show the stability regions in terms ap andeg



HAYWARD THIN-SHELL WH IN
3+1-D




- The metric of the Hayward BH is given by

ds® = —f(r)dt® + f(r)~'dr* + r’dQ’.

with the metric function
2mr?
N={1- ———
fn ( rs +2m12)

dQ? = d6? + sin® 0dg¢?.

and

- It is noted that m and [ are free parameters.

- At large r, the metric function behaves as a Schwarzchild BH

limf()—>1—2m+(9(1>

r—oo I’L*

whereas at small r becomes a de Sitter BH

2

llmf(r) —1-7+0 (r).

(51)



- Thin-shell is located at r=a..
- The throat must be outside of the horizon (a > rp).

- Then we paste two copies of it at the point of r = a.

- For this reason the thin-shell metric is taken as
ds? = —dr? + a (1)’ (d92 +sin 9d¢>2)

where 7 is the proper time on the shell.
- The Einstein equations on the shell are

K] -6 =S,
where [X] = X; — X4,

- Itis noted that the extrinsic curvature tensor is K’/
- Moreover, K stands for its trace.

(53)

- The surface stresses, i.e., surface energy density o and surface

pressures SY = p = S? , are determined by the surface

- J
stress-energy tensor S.



- The energy and pressure densities are obtained as

o= —% o) + @

p=2 f(a)+ a N a+f(a)/2

a Vi +a )
- Then they reduce to simple form in a static configuration
(a=ao)

00:*0% (o)
and
B <\/ @) , f(%) /2>
Po =2
do f(ao)

- Stability of such a WH is investigated by applying a linear
perturbation with the following EoS

p=1(o)

(55)

(56)



- Moreover the energy conservation is
ijo_
$,=0
which in closed form it equals to
ij RiFin | cikpl
SJ+S ij +S ij_O

after the line element in Eq.(53) is used, it opens to

0 0]
— (00%) +p- (a) = 0.

- The 1-D equation of motion is
@ +V(a) =0,
in which V(a) is the potential,

ao

via)=1- (%)

- The equilibrium point at a = agp means V' (ap) = 0 and
V"’ (ag) > 0.



- Then itis considered that fi (ao) = f2 (ao), one finds Vo = V, = 0.

- To obtain V" (ag) > 0 we use the given p = ¢ (o) and it is found
as follows

and >
o = 2@ +9)E+ 2¢'), (66)

where ¢/ = 92 After we use vy = po, finally it is found that

oh

V" (a0) = £ — g [(o0 +2p0)? + 200 (0 + o) (1-+ 26/ (o) (67)



Some models of EoS

Now we use some models of matter to analyze the effect of the
parameter of Hayward in the stability of the constructed thin-shell
WH.

Linear gas

For a LG, EoS is choosen as
=m0 (0 —0o0) + Po (68)

in which ng is a constant and ¢’ (¢) = np.
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Figure 24: Stability of Thin-Shell WH supported by LG.

Fig. shows the stability regions in terms of ny and ap with different
Hayward's parameter. It is noted that the S shows the stable regions.



Chaplygin gas

For CG, we choose the EoS as follows

1 1
¢_770(—>+Do
g gp

where g is a constant and ¢’ (o) = — .

90

(69)
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Figure 25: Stability of Thin-Shell WH supported by CG.

In Fig, the stability regions are shown in terms of ng and aq for
different values of £. The effect of Hayward’s constant is to increase
the stability of the Thin-Shell WH.



Generalized Chaplygin gas
The EoS of the GCG is taken as

8@ =10 (5 - )+ (70)

where v and ng are constants. We check the effect of parameter v in
the stability and ¢ becomes

Y (o) = Ppo (?)V (71)
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Figure 26: Stability of Thin-Shell WH supported by GCG.
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We find ¢’ (09) = —g—Zz/. In Fig., the stability regions are shown in
terms of v and ag with various values of /.



Modified Generalized Chaplygin gas
In this case, the MGCG is

1
$(0)=60(o—a0) = (- = ) +Po 72)
in which &, no and v are free parameters. Therefore,

¥’ (00) :fo+no%- (73)
0
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Figure 27: Stability of Thin-Shell WH supported by MGCG.

To go further we set &, = 1and v = 1. In Fig, the stability regions are
plotted in terms of 1y and ag with various values of ¢. The effect of
Hayward's constant is to increase the stability of the Thin-Shell WH.



Logarithmic gas

Lastly LogG is choosen by follows

Y (o) =mnoln

‘ + Po (74)
0

ag
g
in which ng is a constant. For LogG, we find that

W (00) = 2

UO'
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Figure 28: Stability of Thin-Shell WH supported by LogG.

In Fig.,, the stability regions are plotted to show the effect of
Hayward's parameter clearly. The effect of Hayward's constant is to
increase the stability of the Thin-Shell WH.



- In this section we construct thin-shell WHs from the Hayward
BH.

- On the thin-shell we use the different type of EoS with the form
p = (o) and plot possible stable regions.

- We show the stable and unstable regions on the plots.
- Stability simply depends on the condition of V"’ (ag) > 0.

- We show that the parameter ¢, which is known as Hayward
parameter has a important role.

- Moreover, for higher ¢ value the stable regions are increased.
- It is checked the small velocity perturbations for the throat.

- It is found that throat of the thin-shell WH is not stable against
such kind of perturbations.

- Hence, energy density of the WH is found negative so that we
need exotic matter.
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