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ABSTRACT

Schwarz introduced a method that permits to obtain a solutions for complicated
domains by covering the domain with overlapping subdomains by realizing the
solution of the Dirichlet problem for harmonic functions on these overlapping

subdomains.

The present MS Thesis deals with analyzing the construction and justification of
Schwarz's method and Schwarz-Neumann method for partial differential and finite-
difference equations and how we can prove the convergence of them by using some

theorems and assumptions.

Keywords: Dirichlet problem, Artificial boundary, Schwarz's method, Schwarz-

Neumann method.
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Schwarz, bu Ortlisen alt etki alaninda harmonik fonksiyonlar ic¢in Dirichlet
probleminin ¢oziimiinii gergeklestirerek alt alanlar1 ortiisen etki kaplayarak karmasik

alanlar1 i¢in bir ¢6ziim elde etmek i¢in izin veren bir yontem tanitti.

Mevcut Yiiksek Lisans Tezi, kismi diferansiyel ve sonlu fark denklemlerinin ve nasil
bazi teoremleri ve varsayimlar kullanilarak bunlarin yakinsama ispat i¢in Schwarz

yontem ve Schwarz-Neumann ydnteminin insaat ve gerekcesini analiz ile ilgilenir.

Anahtar Kelimeler: Dirichlet problemi, Yapay sir, Schwarz metodu, Schwarz-

Neumann yontemi.
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Chapter 1

INTRODUCTION

In over a hundred years ago Schwarz produced a method - which is known by

"alternating" - to solve the Dirichlet problem for differential equations [1].

Schwarz’s method requires covering a complicated domain by overlapping
rectangles and solving each of these rectangles alternately. This has many
computational advantages as fast direct methods, such as the Fast Fourier method,
can be applied for the approximation of the solution on overlapping rectangles easily,
thus eliminating the need for complicated algorithms and reducing the required time

for the numerical calculation of the problem.

Another efficient method is the Schwarz-Neumann method. This method requires an
irregular domain to be embedded in a domain which is the union of less complicated
domains, such as rectangles. The irregular domain is placed at the intersection of
these rectangles, and the solution is obtained with the approximation of the boundary
value problem on the overlapping rectangles. Hence Schwarz-Neumann method is

also an iterative method.

This thesis is concerned with the review of these methods, as well as their finite-

difference analogues.



In Chapter 2 of this thesis, which begins with Section 2.1, we formulate Schwarz's
method for partial differential equations on an L-shaped domain B, by solving the
problem in two overlapping rectangles B;and B, covering the domain B and finding
a convergent analytic solution of the Dirichlet problem for arbitrary second order
partial differential equations, by using successive approximations [2, 3]. In Section
2.2, we establish the finite difference analog of Schwarz's method for Laplace’s
equation and prove the convergence of the method [4, 5, 8]. For Section 2.3, we have
calculated numerical example, where it is about finding the approximate solution of

given problem by using Schwarz's alternating method.

In Chapter 3, in Section 3.1, we analyze the Schwarz-Neumann method for second-
order partial differential equations on B’(which is the intersection of the two
overlapping rectangles covering the L-shaped domain B) [2]. Section 3.2 is about the
realization of finite difference equations on B’, by solving two Dirichlet problem in
two regions B;and B, defined above, and finding the approximate solution by using
the Schwarz-Neumann procedure. The approximate solutions are consistent with the

theoretical results obtained.



Chapter 2

SCHWARZ'S METHOD FOR THE SOLUTION OF THE
DIRICHLET PROBLEM FOR THE UNION OF TWO

REGIONS

2.1 Partial Differential Equation of Schwarz's Method

On the xy — plane let us have two regions B;and B, that overlap one another, with

the common part B’'.

Schwarz showed how the Dirichlet problem for harmonic functions in each of the

regions B;and B,, for any continuous or piece-wise continuous boundary functions

can be solved. With the aid of the consecutive solution of problems for regions

B;and B,, we can solve the Dirichlet problem for region B, covered by the

overlapping regions Byand B,.

Schwarz's method allows one to get solutions for regions of more complicated

character, and he regarded the application of the alternating method to the Dirichlet

problem of Laplace's equation

0°u  0%u
Auza—xz+a—yz=0 on B
u=f on L

where L is the border of B.

2.1)



This method was available to the determination of functions satisfying more common

equations and more uneasy boundary conditions.

Let us take the partial differential equations of second order with the following form

(2.2):

Ju du 0%°u 0%*u 0%*u
=0 2.2)

F — =
(x,y,u, dx' 0y’ dx?%’ dxdy’ dy?

On the xy — plane, we have the region B bounded by the border L and let the

function f(M) be piece-wise continuous at points M of border L.

From the Dirichlet problem we can solve the following problem. To find the function
u(x,y), subject to the requirements:

1- u(x, y) is bounded in B,

2- In B, u satisfies equation (2.2),

3- At any points M of continuity of (M) , the values of u will coincide with value of

f (M) at this point.

With respect to equation (2.2), we will have the following assumptions:
Assumption I

Let us consider for a point (x,y), u and & two functions satisfying equation (2.2)
in B, bounded and their values on the border L of region B equal, except, at a finite

set of points, then they will be equal to each other everywhere in B.

B; = Region 1, B,=Region 2, B=B;UB,

B,: Bl N Bz,



L, = Border of region B;, L, = Border of region B,

L = Border of region B

a=Part of L; in B; which lies within B,, a = Remaining part of L; in B,
f=Part of L, in B, which lies within B;, f = Remaining part of L, in B,

v = Intersection of « and £.

=
.__%I___
oo
=

)4 a

Figure 2.1: Figure of two regions that overlapped one another

We will consider at points of border L of region B the piece-wise continuous
function f (M), and we will find in region B the solution of equation (2.2) with the

following boundary condition

u(x,y)=f(M) on L (2.3)

Now, let us provide a detailing to the alternating process of Schwarz, which allows
us to construct successive approximations to the solution of the problem in B; and

B,.

We will start with the region B;. On a which is a part of border L;, we have given

boundary values, and on &, we will define an arbitrary function ¢ (M), both values of



f(M) and (M) on a and @ give a piece-wise continuous function on the whole

border of the region B,

By solving the Dirichlet problem for equation (2.2) in B; with the given boundary

condition, we can construct u; as a first approximation to u

(2.4)

By using u,, we are able to construct the function v; for the point (x,y) by solving

the Dirichlet problem in B, with the boundary conditions

WZYW) on §

Uy on

(2.5)

By using v; we will construct the second approximation u, to u in B; as a solution

of the Dirichlet problem for (2.2) with the following boundary condition

M
up = {f( ) ona (2.6)
121 on a
and for v,
v, = {f(M) onpg. 2.7)
Uy on f§
By continuing this process we will get
U, = {f(M) on @ Uy = {f(M) on 'B_ . (2.8)
Vn_1 on @ U, on f§

For regions Bjand B,, we have constructed a sequence of approximations to the

function u



Uq, Uy, wn, Uy, ... IN By
(2.9)

V1, V2, we, Up, ... 1IN B,

We need to investigate the convergence of sequences (2.9) and show that the limit
functions satisfy (2.2) and the boundary requisites that we supposed. We can succeed

in doing this with additional assumptions.

Assumption II

On the xy — plane we have region B with its border L; suppose that u and u are two
bounded functions satisfying equation (2.2) in region B and on its border the
boundary values are given, except a finite number of points. We will consider that if
on border L the following inequality is true

u=u, (2.10)
then anywhere in region B we will also have

i > u. (2.11)

Assumption III
Let us have a sequence of solutions of equation (2.2) in B:

Ug, Uy, ey Upy e s (2.12)

Let this sequence be monotonic (increasing or decreasing) and uniformly bounded, it
will converge everywhere within B

lim u,, = u. (2.13)

n—->0oo



So, we can say that the limit of any monotonic and bounded sequence of solutions of

equation (2.2) will also be a solution of equation (2.2).

Assumption IV

In region B suppose that u is a solution of equation (2.2), bounded, and defined
everywhere on border L, except at some of points. If for all boundary values of u on
the border L of B following inequalities are true

—-h<u <+g ,(h,g > 0) (2.14)
then it is true everywhere within B that

—h<u < +g. (2.15)

Assumption V

Let y be a part of border L of region B. On y, we have a continuous function f (M)
and P is an inner point of y. Consider u as a solution of equation (2.2) which is

bounded. Suppose that if at all points of y, without the point P, u has boundary
values equal to f(M), then when the point (x,y) approach to P, u will approach to

the limit value, and this limit value will be exactly f(P) .

To determine convergence of sequences (2.9) to the exact solution, we will begin by
constructing majorant and minorant sequences for sequences (2.9). Let m be the
exact upper bound of values taken by |¢(M)| on @ and by f(M) on L

m = max|[sup|p(M)|, sup f(M)] (2.16)

By solving the Dirichlet problem in B; and B,, we can construct the majorant
sequences u, " and v, for u, and v, respectively, by using

8



wt = {f(M) on ¢ vt = {f(M) on (2.17)
m on @ ut on

uy*t = {f(M) oma = {f(M) onp o 518
vt ona uy”* on f

ot = {f(M) ME = {f(M) N CRT)
V1T on @ U, ™" on

Now, we will explain that u,,™ and v,,™ are majorant for u,, and v,, respectively.

Ona,uut=m=¢eM)=u,andona u,t = f(M) = uy, so, u;* = u, on Ly. By

Assumption IT u;* > u, on B;.

On B, vt =u;t>u; = v; andon B, v;* = v; = f(M). Then on L,, v;* = v,

and by Assumption Il v;* > v, on B,. Continuing this we will get

U," = u,, v, =, (2.20)

Analogously we can produce the minorant sequences u,,~ and v,~ for u, and v,

respectively.

w = {f(M) M = {f(M) on B (2.21)
-m on a U~ on f

u,” = {f(M) ME = {f(M) on f (2.22)
v, ona Uy~ on 8

w,” = {f(M) omaE oy -= {f(M) on f (2.23)
Vp_q~ On & Uy~ on f8



Ona,uy"=—m< M) =uy,andon a u;~ = f(M) = uq, so, u;~ < uy on Lj.

By Assumption Il u;~ < u4 on B;.

OnpB,v;"=u;" <u;=vyand on B, v;~ = v; = f(M). Then on L,, v;” < v,
and by Assumption Il v;~ < v; on B,. By similar procedures we can obtain

U,” <u,, v, <v,. (2.24)

So, we showed that u,tand v,,™ are majorant sequences for u,, and v,, respectively

and u,,~and v,,~ are minorant sequences for u,, and v, respectively.
Now, let us show that both auxiliary sequences are monotonic.

Firstly, we will begin with the majorant sequences, on @, u;* =m and on a u;* =

f(M) <m,sou;* <mon Ly, by Assumption IT u;* < m everywhere on B;.

On B v;* = f(M) <m and on S the value of u;* is not greater than m, then on 8

vt <m,so0,0onL, v;t < m, by Assumption II, v;* < m everywhere on B,.

+ +

Ona, u,*=v; <m=w; " andon a u," =u;* = f(M) <m, so u,” <m on
Ly, by Assumption II u,* <m everywhere on B;, thus u;* >u,™ on L;, by

Assumption IT u;* > u,™ everywhere on B;.

By taking the difference between u,*,u,.1* and v, %, v, 1", n=1,2,.. we can

obtain the following result

—u,t = { 0 on @ (2.25)



0
vt — vyt = on f (2.26)
—u,”t on B

0 on a
Up " = Upgq T = { " " — (2.27)
Vno1m — Uy on &
0 on 8
Vpt = Upp T = { = (2.28)
un+ - un+1+ on f
So, we showed that u, *and v,,™ are monotonically decreasing sequences
u1+ = u2+ = e, (229)
v =T > (2.30)

By the same technique we can show that u,,"and v,,~ are monotonically increasing

sequences
ul_ < uZ_ <--, (231)
VT < v, < e (2.32)

Thus
Uu," =u, =u, and v," = v, = v,". (2.33)

According to u,* > u;~ and v,* > v; 7, we can say that u,,* and v, are bounded

below, and by u;* > u,,” and v;* = v,,~, both u,,~ and v,,~ are bounded above.

From monotonicity and boundedness proved above, u,*,v,* and u,,~,v,,~ will be
convergent in B; and B, respectively to some functions say u*,v™ and

u~, v respectively.

11



lim u,* =u", (2.34)

n—-oo

lim v, = v*. (2.35)
n—-oo

And
lim u,” =u~, (2.36)
n—oo
lim v,” =v~. (2.37)
n—0o

We must show that u* = v* | (v* will be continuation of u*),on @, u,* =v,,_;™,

and on 8, u,* = v,*, when n approach to oo, u™ and v* coincide on @ and .

For @ and S ,take M € a or M € 8 with f(M) continuous, we know that

wr>ut >y, (2.38)

When (x,y) approaches M, both u;* and u;~ approach f(M) and by previous

inequality, u* will approach to f (M) when (x, y) approach to M. Similarly for v*.

So, we proved that u™ = v*, (where v* is a continuation of u*). By the same

reasonu~ = v~ , (v~ is acontinuation of u™).

On L, u* and u~ have similar values (with the exception of a finite number of

points), therefore, u™ = u~ = u everywhere in B.

Consequently, u*, v, u~ and v~ will converge in B; and B, respectively to the
same solution u. In view of this the main successive approximations (2.9) will

converge to the same solution u

12



lim u, = u, (2.39)

n—oo

lim v, =u. (2.40)

n—-oo

So, convergence of the Schwarz algorithm is showed, with the five assumptions

presented, for the Dirichlet problem in a domain of the union of two regions.

13



2.2 Finite-Difference Analog of Schwarz's Method

Theorem 2.2.1:

Let B; and B, be overlapping rectangles with sides parallel to the coordinate axes;
L, and L, are their borders respectively, S is the part of L, which belongs to B,

andnotin L; (I # k), ay = L/ Bx (See Fig 2.2-2.5).

Figure 2.3: Figure of two regions that overlapped one another

14
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:82 ;:81

By

Figure 2.4: Figure of two regions that overlapped one another

Figure 2.5: Figure of two regions that overlapped one another

1

&
)l

B2

b1

0

Cc

a

Figure 2.6: Figure of part of two regions that overlapped one another

Let us denote rectangular sets By ,, and B, », on B; and B,, respectively, with mesh-

steps h; and h, such that the vertices B; and B, and the points of intersection of L,

and L, be the nodes of the grids.

We consider the finite-difference problem

15



—(élalul(k) + 5262u§k)) = 0 forx; € By,

(2.41)
u®

=0 forx; € ay, ugk) =1 forx; € B
where 0,9, u is a finite difference approximation with second order accuracy for the
function u, in B, dependent on x and 9,0,u; is a finite difference approximation

with the second order accuracy for the function u, in B; dependent on y.

Then there exists ¢, 0 < q™® < 1 independent of hy, h, such that for x; € S

where (I # k)

0<u® <q®, (2.42)

Proof:

Let us consider the case in Fig 2.2. It can be reduced to following problem
Let B={x:0<x;<a,0<x,<b},

Bi={x:0<c<x;<a,x,=b}, fob={xix;=¢c,0<x,<b},
The function v is a solution of problem

_(a_lalvl + 52021]1) = 0 ,xi € Bh
v; =1 forx; € B, : (2.43)
v; = 0 for L\ p;

Then

1 ¢
v; < max {E ,a} forx; € S, . (2.44)

16



b 0 !
B1
0 B 0 %
0 c 0 a

Figure 2.7: Figure of the function v which is a solution of problem (2.43)

We prove this statement.

Let w be a solution of problem

_(a_lalwl + a_zazwl) =0 ) Xi € Bh
w; = 1 on the rightof x; =conlL,
w; = 0 on the remainder nodes of L,

(2.45)

X2
b 0 .
B1
0 B 1 %

0 C 1 a

W]

Figure 2.8: Figure of the function w which is a solution of problem (2.45)

Then V; < Wi.

If 2 < -, then we define z as a solution of difference Laplace's equation on

N | =

B'={x:0<x; <2c,0<x,<b}, (B c B) with the boundary condition on L

1
z; =0fori;h; <c,z =3 fori;h; =cand z; = 1forijhy > ¢

17



N| R
=

Figure 2.9: Figure of the function z when 2 <

According to symmetry with respect to x; it follows that z; = % for x; € 5,.

On the basis of maximum principle, we have w; < z; on B'.

1
Therefore, w; < Sonx; € B .

If <>
a

N | =

with the boundary condition

X1

a

z = 0
2c x
a a

forx; <c
forx; =c

forx; > ¢

18
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N

, then we define z on B’ C B as a solution of difference Laplace's equation

(2.46)



X1 2c x;

a a

Vv

2c

Figure 2.10: Figure of the function z when 2 =
By symmetry z; = 0 for x; € f, and z; = 0 for i;h; > .

The function % satisfies Laplace's difference equation, therefore w = z + % also

satisfies this equation on B’ . Compare it with w on domain B, w < w and therefore

Wi=0+§for X; € B, = Wl-S%fOI‘ X; € B,.

¢ 2c

0 a a
|
0 B2 |
|
|

0 0 C 2C
0

Figure 2.11: Figure of the function w which is a solution of problem (2.47), (2.48)

_(a_lal(l)i + a_zaz(l)i) =0 (24‘7)

w=0 forx; <c
X1

w=— forx;=c
a

2c
w=— forx; >c
a

(2.48)

19



Figure 2.12: Figure of the function w

Therefore, Theorem 2.2.1 in the case Fig.2.2 is proved.

The remainder case reduces to the considered case by the maximum principle. For

example in the case Fig.2.14

_(0_16121 + 52622l) = 0 on Bl
z; = 1 on the right of vertical 8, of L, (2.49)
z; = 0 on the remainder of L,

0 1
B

0 1
0 1

Figure 2.13: Figure of part of two regions that overlapped one another

‘Bz a2

Bai By

a;| By

Figure 2.14: Figure of two regions that overlapped one another

20



Then on vertical part of 5, , ulgl) <z <qW.

By similarity the inequality is true on the horizontal part of £,.

Theorem 2.2.1 can be generalized, first of all, for the case of finite number (of
rectangles) space variables, and second in the case of cubic grids and for the domains

as in Figure 2.15, 2.16 and so on.

Furthermore, the operator can be replaced with 9-point difference operator, i.e.,

2 2 hoth,
—z 3.0, ~ —Z 0,0, — ———5,0,0,0, (2.50)
r=1 r=1

Figure 2.15: Figure of two regions that overlapped one another

Figure 2.16: Figure of two regions that overlapped one another

21



Theorem 2.2.1 helps us to show the convergence of Schwarz's method for the

solution of the problem

2 -
- Zr=16r8rui = O,Xl' € Bh

(2.51)
U = @;,x; € Ly

where B = B; U B, (see Theorem 2.2.1).

22



Theorem 2.2.2

Let Sy, be the set of nodes of the grid on S, and let the operators V and W, where

n-1

the operator V is defined for the function w on f;, which transform to the

function v™ = V(w™™1) defined on B, pas a solution of the problem

2 -
- ZT:l Orarvl- = O,xl- S Bl,h

n o me1 (2.52)
v' =@ forx; € a; , v =w; " forx; € f1

and the operator W is defined as w™ = W (v™) on 8, pin B, ;, from the condition:

2 —_
— ZT=1 ararWl' =0 » Xi € BZ,h

2.53
w' = @; forx; € ay,w' = v forx; € B ( )

Let for the solution of problem (2.50) the following iterative process be applied: for
the given w™ = v° on B; , we define v° =V(w™) =V (v°) on By, and on B, p;

then we find w® = W(@%), vt =VWw®) ,wl=wwl),....

Then

lu = vl < q"llu— ”0”6(/32)
lu = whllcey < q"qPllu —v°li¢s,)
n=0, q= q(l)q(z)

(2.54)

23



Proof:

The function u — v" satisfies on By 5, , the difference Laplace equation and is equal

to 0 on a;. Then, by Theorem 2.2.1

lw = vy < qPlu = v ey = aPllu—w™Hiee,) -

Similarly (by analogously)

lw = w™ e,y < aPllu = v Mg, -

Then, from (2.55), (2.56) and the principle of maximum, we obtain

lu = v""lep,y < aPqPNlu — v g,y < @llu — v 2lep,y) < -

<q"lu—vlce,y  a=qPq®
and

I = whllepy < @@l = wleg, = aPllu = v e, -

From (2.57) and (2.58), we have

lu —w™les < aPq™llu —v°llce,

Theorem 2.2.2 is proved.

IA

(2.55)

(2.56)

(2.57)

(2.58)

(2.59)

Let us consider the case when functions v" and w™ are defined approximately, for

example by using some iterative (or other approximate) methods. Then for real

values we have the functions 7°, w° , 71 ,w?, ..., where
vO=V)+,w =w@°) +n°,
vl=v@)+&,w=w@") +19t,
=V + &, Wt =w@") + 9"

and the functions are defined by errors of iterative methods.
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Theorem 2.2.3

Let in (2.59)

||S(k||c(31) <€, ||77k||c(32) <& (2.61)
and

pn = max(llu — 7" le(g,), Il = #"llcepp ) (2.62)
Then

0 1-4q" D @) s

Pn < q™lu—v"lcy + 1-¢ (1+ max(q( ) q¢ )))s (2.63)
Proof:
We have

u—vt=u—-Vwn?l) -

Therefore

lu =7y < lu=V@"  Dllepy +& < qPllu—w" ey +E=
= qOllu =W @) =" Yo, + € <

<qWNu=WwW@ Dllepy +qPE+E

< qVqPNu— 7" g,y +E(1+qM) =

=qllu—v" e,y +EA+qW) <

<qMu—-VEOlep,y +E+A+q+q*+-+q"H(1+qD)e

1-gq

n
=q"lu=V@)ll¢ep,) + €+ p (1+qW)e<
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- "qn (1+qD)z

< qWq™Mlu—v°lcp) +E+

By analogs we estimate |[u — w"|[¢(g,) » and we obtain (2.63)
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2.3 Numerical Experiment

In this section, we will present a numerical experiment as an illustration of the
application of Schwarz's method. For the approximate solution of the problem on the
overlapping rectangles covering the domain the Gauss Seidel methods has been used,

where the computations are carried out by using MATLAB programming language.

Example 1: Let B be an L-Shaped region bounded by the border L on the xy —

plane, which is covered by two overlapping rectangles B; and B, (see Figure 2.17)

t
(0,2) (1,2)
B,
g |--&. L) (2,1)
B B
. .y
(0,0) ¢ (2,0)

Figure 2.17: Figure of two regions that overlapped one another

with the common part B’ bounded by the border L', where

B, ={(x,y):0<x<2and 0<y<1}

B, ={(x,y):0<x<1and 0<y<2}

B={(x,y):0<x<2and 0<y<2}/{(x,y):1<x<2and1<y<2}

B' ={(x,y):0<x<1and 0<y<1}.

We consider the boundary value problem

A _62u azu_o B
u—ﬁ+a—yz— on ) (264)
u =e*siny on L,
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where u(x,y) = e*siny is assumed to be the exact solution. For the approximate

solution we have the grid set,
B, = {(xi,yj):xi = ih,y; = jh for i=0,1,..,n,j=0,1,..,n,where 0 < x <

2 and O<y<2}/{(xi,yj):1<x<2and1<y<2}.

A Schwarz iteration was completed by obtaining an approximate solution on each
rectangle with the use of the 5-point scheme, where the system of finite-difference

equations were solved by the Gauss Seidel method.

We use the difference approximation for Laplace's equation

_(a_lalus + ézazus) =0 on Bhs , S = 1, 2

. 2.65
us = e's sin jhg on L (2.65)

S

The exact and numerical solutions are shown in Table 2.1, where [[ep|lcp) =

max{|u — u,|}, is difference between the exact and approximate solution, in the

[[u=uy-m| ,
2B s the order of

maximum norm, h = 27™ . m = 3,4,5,6 and R;, = |

|u—u2_(m+1) ” c(B)

convergence of the approximate solution.
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Table 2.1: The maximum error between exact solution and approximate solution and
the order of convergence of the approximate solution.

h llerlles) Ry =

% 4.950960176828279¢-04 3.931757779541467
% 1.259223089120631e-04 3.977278259276012
% 3.166042220414944¢-05 4.014597237097936

— 7.886325908756930e-06

29



Chapter 3

THE SCHWARZ-NEUMANN'S METHOD FOR THE
SOLUTION OF THE DIRICHLET PROBLEM FOR THE
INTERSECTION OF TWO REGIONS

3.1 Schwarz-Neumann Method for the Solution of Partial
Differential Equations

In Chapter 2 we have discussed Schwarz's method for the solution of the Dirichlet
problem in a region that is the union of two regions. We can apply a similar idea to
the solution of the Dirichlet problem in a region that is the common part of the two

overlapping domains.

Let us explain the idea of this method. We will start with an arbitrary linear
homogeneous partial differential equation of second order that satisfies the
assumptions mentioned in Chapter 2. Let us take an equation with the following
form:

Aazu+ZB 62u-I-Cazu+Dau+Eau+F =0 3.1
dx2 dxdy = 0dy? ox  Cay 4T G1)

and on the xy — plane we will take a region B, bounded by the border L .

For equation (3.1), we will consider the same assumptions will be satisfied, that we

formed in Chapter 2.
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We have two regions B; and B, with same properties that we explained in Chapter 2,
the Dirichlet problem for any continuous or piece-wise continuous boundary values
of the sought functions can be solved in these regions, and let it be wanted to find a
function w(x, y) satisfing equation (3.1) in B’ and obtaining the specified values on

its border L’

w(x,y) =f(M) on L (3.2)

In view of (3.2), f(M) is a piece-wise continuous function at the point Mon L'. To
obtain this function, Neumann decided to form a function w(x, y) which is the sum
of two functions

w(x,y) = ulx,y) + v(x,y) (3.3)
where u and v are determined and satisfy equation (3.1) in B;and B, respectively.

We must choose them so that the sum of u and v satisfies boundary condition (3.2).

For clarity, consider the specific case given in Figure 2.1.

In region B, for the point (x,y), let us define a function w as a solution of (3.1),
determined by its boundary values on the border L of B. We want to represent
function w in the following form

w=[u+w]+[v-ow] (3.4)

Now, on the part @ — y on L,, there is no restriction on the boundary values of u, so
we can take arbitrary values of w for the first summand u + w. Analogously, for the
second summand v — w on the part f — y of the border L,, we can choose arbitrary

boundary values.
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It remains to consider part y of region B, we can manage the choice of w that u + w
has arbitrary values. The second summand, v — w, will be fully determined by the

values f(M) — (u + w) because the values of w = u + v are given.

In accordance with this idea, on a, we can take any values for the function u. For the
function v, arbitrary boundary values can be defined only on f — ¥, and on y its

values equal f(M) — u.

Now, we must show that both summands u and v, if they exist, are unique. Let us
resolve w as follows

w=u+v =u"+v" (3.5)
where u' and u'’ are in B; and coincide on @, and v’ and v are in B, and they
coincide on . We will take the differences u' — u"’and —(v' — v""). They are also
solutions of equation in B; and B, respectively. On parts « and 8 the values of the
difference equal to zero. From equation (3.5), in part B they will coincide

u —u"=--v"). (3.6)

Thus we see that the difference v’ — v’ is a continuation of the solution u’ — u" of
equation (3.1) from B; into B,. Additionally the solution on the border L of the
region B has null values. By Assumption I, it is equal to zero everywhere in B,
therefore, u' = u" and v’ =v'". Then both summands u and v are uniquely

determined by specified boundary conditions.

So, we have reduced the proof of existence and the construction of function w which

is a solution for equation (3.1), to the construction of functions u and v. To check
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them we will be able to follow the method of successive approximations in a form

fairly special from that proposed with the aid C. Neumann.

Now let us select the boundary values of u on @ and v on f —y. On ¢ — y we can
assign a function @ (M), so values of @ (M) together with values f(M)on a + y will

form a piece-wise continuous function at a point M on L, keeping in mind

_ (M) on a—y
_{f(M) on y (3.7)

By choosing values of u on @ we can determine values of v on y so that v = 0 on y.
On [ —y, we can assign arbitrary values of v that we explained above. For
simplicity we can set them so that they have null values, then for v we obtain the

boundary values as follows

v=0 onp (3.8)

Boundary values of u and v on a and f are arbitrarily was chosen by us for clarity
and simplicity. In addition it is evident that for convergence of successive
approximations such a choice of the boundary values of u and v is inessential: if
successive approximations converge for our choice of boundary values, they will
converge for any other choice of them, supplied simplest that they be piece-wise
continuous and such that u + v = f(M) on y. So, for any other way of selecting
boundary values will be reduced to ours by the representation

U =u4+wandv' =v—-w (3.9
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On part @ the values of u are unknown to us. We can arbitrarily define piece-wise
continuous values @¢(M) on @, both values of u and @ (M) on a and & respectively

they form piece-wise continuous values on the whole border L.

We will construct first approximation u; to u, as a solution by solving the Dirichlet

problem for equation (3.1) with the following boundary conditions

f(M) ona-y
u =4¢9M) on y . (3.10)
p(M) on @«

By using the values u, takes on § and subtracting from f(M), from the values of v
on [, and from solving the Dirichlet problem for equation (3.1) in B,, we can
construct the function v; which is the first approximation to v in B, with boundary

values

(3.11)

=]
= ™

{ 0 0
v, =
f(M) —u, on

By using v;, we are able to construct second approximation u, to u in B; as a

solution of the Dirichlet problem for (3.1) with the following boundary condition

fM) on a-—y
U, =4 (M) on y (3.12)
f(M) —v, on @
and for v,
v, ={ 0 on § (3.13)
fM) —wy on f
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We can continue this process to get successive approximations u, 4, and v, for u
and v respectively, by solving the Dirichlet problem of (3.1) in regions B; and B,

under the boundary conditions

f(M) on a-—y

Ups1 =4 @(M) on ¥y (3.14)
f(M) —v, on @

Vni1 ={ 0 on f (3.15)
fM) — upyq on f

So, we have constructed a sequence of approximations to functions u and v in each

of B;and B, respectively

U, Uy, o, Upyq, - 1IN Bj
(3.16)

V1,V2, o, Ungyt1, - N By

The concept of checking convergence of successive approximations is the same
process as in Chapter 2. For each of the sequences we must construct a majorant and

a minorant sequence and prove that they converge to same limit.

In Chapter 2, for the convergence of Schwarz's method, we have constructed
majorants u*,, and v*, for u, and v, together. But here, the construction of the
majorant u™,, for u,, will be conducted parallel with construction for minorant v—,,
for v,. The reason of this is that construction of the majorant for one term for the

sum must be connected with minorant for the other term.
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Let N be a positive number greater than max|p(M)|. Now let us begin with
constructing the sequence of functions u*, and v~,, by solving the Dirichlet

problem for (3.1) in B;and B, respectively with the following boundary values

f (M) on a—y
uty =< (M) on y (3.17)
+N on a
_ 0 on f (3.18)
v, = _ )
Tl —ut on B
f M) on a-y
U =9 (M) on y (3.19)
f(M) —v~_ on a
0 on f
Vo (xy) = . (3.20)
fM) —u* , (x,y) on p
We must prove that the sequence u*; , u*,, ... will be majorant for u,, u,, ..., and

sequence v 4, V5, ... will be minorant for vy, v, , ....

Let us take differences between functions of these sequences u*,,,; and u,,, and
between v~,,; and v,,;. They will also be solutions of (3.1) in Bjand B,

respectively, and their boundary values will be connected under the following

relations
N 0 on a 3.21)
U —u = .
1 1 +N — (M) on a
_ 0 on f
v 1= 171 = + — (322)
U —ut, on f
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N 0 on «
U n+1 — Uns1 = - - (3.23)

Uy — VT, on «

B 0 on f
UV nt1 = Vn41 = + 5" (3.24)

If we see the difference ut; — u,, we can decide that boundary values of it on L, are
non-negative. By Assumption II, u*; —u; = 0 everywhere in B;. The values of
vy —v; <0 on L,, from Assumption II, that v7; —v; < 0 everywhere in B,.
Continuing this procedure, we can obtain that for any n the following inequalities
are true

ut, >u,, v, <v,. (3.25)
Analogously we can construct sequences U™ ;,U 5, ..., as a minorant for u,, Uy, ... ,
and v*,v",, ..., as a majorant for vy, v, ..., by solving the Dirichlet problem for

(3.1) in By or B, respectively, with the boundary conditions

fM) on a-—y
Uy =99WM) on ¥y (3.26)
—N on a
N _{ 0 on f 327
VT fM) —u, on f (3:27)
fM) on a-—y
U ner =4 (M) on vy (3.28)
fM) —v*t on @
N _{ 0 on f 329
Vint1 = f(M)_u_n+1 on E ( : )
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We can show that for any n the following inequalities will be true:

U S Uy, VT 21, (3.30)

So, we have obtained
ut, >u, =ut,, (3.31)
v <y, <vh,. (3.32)

The choice of the number N will be decided such that the auxiliary majorant and
minorant sequences of functions are monotonic. It will be done with an additional
Assumption V, which is related not only with partial differential equation, but also

with regions B; and B,.

Assumption V: Let functions Ug ¢(x,y) and U, ¢(x,y) be solutions of the Dirichlet

problem for equation (3.1) in region B; with boundary conditions

0 on «a

s =Gan o o o
f(M) on a-—y

U =10 M) on
0 on

(3.34)

RI <

and, function Vg ( is a solution of the Dirichlet problem in B, with following

boundary condition

0 on
Vgr = {f(M) on (3.35)

= ™™

We will use the specific case of function Ug ;s by solving the Dirichlet problem in B,
for boundary values equal to zero on a and equal to one on @, and for U, the

boundary values equal to the values of u or u*; on a and equal to zero on @
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Ug1 = {0 on (3.36)

1 on «
U = {” on- @ (3.37)
0 on «

For function V5, , we will solve the Dirichlet problem in B, for boundary values

equal to zero on £ and equal to Ug ; on g

0

Vs, = 3.38
AUz {Ua,l 0 (3:38)

@]
=
)

=

By Assumption II we can say that all values obtained by Uz ; in B; will lie in the

interval [0, 1]. So, values for V5, will also lie in the same interval, and therefore all

values that this function will obtain in B belongs to [0, 1].

In view of the values that Vg, acquires on @ of the border of B;, they are between

zero and one. Using this and by Assumption V, we will require that none of them
will overtake some proper fraction

Vg, <9 <1 for (x,y) €a. (3.39)

Now let us return to the auxiliary sequences, and look for the difference between u™;

and ut,

0 on «

uty—uty = {N —f(M)+v~; on a° (3.40)

We can represent u* (x, y) in the form of the sum of two solutions of equation (3.1)

u+1 = NU&,I + Ua,u . (3.41)

39



First of them, NUg 1, acquires on @ values equal to N, and on « its values equal to
zero; for second, Uy, acquires on a same values as does u*; or u, and on & its

values equal to zero.

Accordingly for v~ 4, by its boundary values, we can represent it in the form

v = Vﬁ,f — VEJH = V[—;,f — NVB,Uc—m — VE'Ua,u . (3.42)

Then values of difference u*; — u™,on @ are equal to

N=fM)+v s =N(1=Vgy, )+ Vs —Vgy,, —F(M). (343)

The last three terms (Vg — Vg, — f(M)), are bounded functions at the point

(x,y) on . The coefficient of N, (by Assumption V), is positive and not less than

1 — 9. Therefore, we must choose a large N such that following inequality is true

N (1 - VB.Um) = |V/_>’.f — Vg, — F(M)]. (3.44)

Values of u*; — u™, on a will not be negative. By the choice of N, u*; —u*, will
not be less than zero everywhere on L;, and by Assumption II we can say that
everywhere in B; following inequality is satisfed

uty —u*t,=>0. (3.45)

With u*, and v~, and their boundary values, we will obtain the following
inequalities

0 on

a
+
uty un+1—{vn_vn_1 on &’ (3.46)
_ 0 on fB
Vn=V n1 = {u+n+1 _u+n on [)7 ’ (3'47)



where n = 1,2,3, ... . From the above inequalities it is not difficult to show that
sequences u*,, and v, are monotonic
u+1 = u+2 = -, (34‘8)

U_l < 7.7_2 < - (34‘9)

Analogously by taking same value of N, we are able to show monotonicity of
sequences U™, and v, too
U Su < (3.50)

17+1 > v+2 < .. (351)

We have showed the monotonicity of auxiliary sequences, by using u*, > u, >
u , and v, < v, < v*, and we obtained the following inequalities
ut, z2ut, zu, =u ", =>uy, (3.52)

v ,<v <y, <vt <vF,. (3.53)

We can say that sequences u*,, and u™,,, are bounded. By assumption III, they will
converge to some functions and their limit functions

ut = limu*,andu™ = limu™, (3.54)

n—-oo n—-oo

will satisfy equation (3.1) in B;.

By a similar method we can prove that the sequences v*, and v~, are also
convergent, and their limit functions

vt = limvt,andv™ = lim v, (3.55)

n—oo n—oo

also satisfy equation (3.1) in B,.
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So, u* and v~ are determined in regions Bjand B, respectively. Their sum w =

u® 4+ v~ is determined in B'and satisfies equation (2.1) there.
Now, we want to find limit valueson L' = @ + 8 + v.

Let us take any point M on @, and let the defined function f (M) be continuous at this

point. By our construction of u*,,,;and v~,,we have

u+n+1(x' }’) = f(M) - U_n(x’ Y) (356)

Starting with this and by simple logic we can show that approaching from (x,y) to
M, w will tend to a limit value and this limit value is f(M). Let a point (x, y) tend to
apoint M. By u* < u*,, we will have

(x}yiggMu+(x, y) < (x}yiggM U1 (0, y) = f(M) —v=(M). (3.57)
For any n above inequality is true. As n tends to infinity the right side will approach
to f(M) — v~ (M), and the left side of the inequality does not change by changing n ,

so, we obtain the following inequality

(xlji/E)Mqu(x, y) < f(M) — v (M). (3.58)

On the other hand, suppose function u,(x,y), solving the Dirichlet problem in B

with boundary condition
(M) on a-y

u,(x,y) =1 f(M) on y . (3.59)
f(M)—v—(M) on a
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Because of v—, <v~, on border L; and by Assumption II everywhere in By,
u*, 41 = u,. Then

lim u*,,;, = ut > u,. (3.60)

In this inequality, if the point (x, y) approaches M, we get
lim u*(x,y) < lim u,(x,y)=fM)—v-(M). (3.61)
(x,3)~M (xy)-M
If we see inequalities (3.55) and (3.58), the limit value of u*(x,y) at the point M,

we obtain the following equation

lim ut ey = wt = M) = v (), (3:62)

From this we can say that w = u* + v~ will have a limit value equal to f(M) when

a point (x,y) tends to M.

By a similar method we can show that when the point (x, y) tends to any point M on

S with continuous f (M), w will approach to a limit value equal to f(M).

It remains only on y to investigate limit values of w. Suppose that M is an inner point
of y, and suppose the function f (M) is continuous at M. We must prove that for an
approach of a point (x, y) to a point M, w will approach to f(M). We have

ut, >ut>u, (3.63)

From construction of u*; and u™;, when a point (x,y) tends to M, u*; and u=; will

tend to f(M). So, u™ - f(M) as (x,y) > M.
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On a —y we will take a point M which ¢ (M) is continuous at M. When (x,y)
approaches M, u*; and u™,will approach ¢ (M). From previous inequality it follows

that u™ will tend to ¢ (M).

By the inequality
v, <v <vt, (3.64)
and by the actuality that when (x, y) approach to any inner point of 8 of border L,,

v~ and vt tend to zero, v~ has a limit value equal to zero at any inner point of f.

Consequently w = u™ 4+ v~ has limit values equal to f(M) at any points of the

border L' of B’'.

Similarly, we can show that for u~and v* their sum u~ + v™* is also a solution of

(3.1) and at any points of the border L' of B’ has limit values equal to f(M).

Because of the Dirichlet problem in B’ can have only a unique solution, and hence

we have
w=ut+v- =u" +vt. (3.65)
So,
ut=u" =u, (3.66)
vt =v" =y, (3.67)

and u,, , v, must converge to the same function

limu, =u (3.68)
n—->oo
lim v, =v (3.69)
n—oo
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w=u+v. (3.70)

From this convergence, the Schwarz-Neumann algorithm is formed, with the
previous five assumptions, in the Dirichlet problem for the intersection of two

regions.
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3.2 Finite-Difference Analog of Schwarz-Neumann Method with

Numerical Experiment

In this section, we will demonstrate the finite-difference analog of Schwarz-
Neumann method by using the following numerical experiment and we will present
numerical experiments as an illustration of the application of Schwarz-Neumann
method. For the approximate solution of the problem on the overlapping rectangles
covering the domain the Gauss Seidel methods has been used, where the

computations are carried out by using MATLAB programming language.

Example 1: Let B be an L-Shaped region bounded by the border L on the xy —
plane, that consists of two overlapping rectangles B; and B, at the origin point (see

Figure 3.1).

Y
(0,2) (1,2)
B,
B e LD (2,1)
B i B
! .
(0,0) a (2,0)

Figure 3.1: Figure of two regions that overlapped one another

Their common part is B’ bounded by its border L', where
B ={(x,y):0<x<2and0<y <1}, B, ={(x,y):0<x<land0 <y <2}
B={(xy)0<x<2and 0<y<2}/{(x,y):1<x<2and1<y<2}

B'={(x,y):0<x<1and 0<y<1}
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0w 9%w )
Au=ax2+a—yz=0 on B

w =e*siny on L

(3.71)

For the approximate solutions we have the set of nodes
B’y = {(xi,yj):xi =th,yj=jh for i=0,1,..,n,j=0,1,..,n, 0 <x <

land 0<y<1}
We will use the finite-difference problem with their boundary conditions.

To solve this difference equation we have applied the Gauss Seidel method. The

exact and numerical solutions are shown in Table 3.1.

We use the difference approximation for Laplace's equation
—(5161115 + a_zazus) =0 on B,hS ,S = 1,2

2
. . 3.72
Z ug, = e'Ms sin jhg on Ly, (3.72)
s=1

The exact and numerical solutions are shown in Table 3.1, where [[e,|[¢c5) =
max{|w -y, us,h|}, is difference between the exact and approximate solution, in

2
f-S5esvsaenl

the maximum norm, h =2, m=2,...,6 and R, = 1s the

||w—2§=1 Ug 2= (m+1) ” c(B)

order of convergence of the approximate solution.
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Table 3.1: The maximum error between exact solution and approximate solution and
the order of convergence of the approximate solution.

h llenllcesy Ry, =

% 5.788943433201466¢-04 3.617961095277416
% 1.600056849908604¢-04 3.935755982929401
%6 4.065437127831473e-05 3.987760849778389
% 1.019478670105656¢-05 3.993895824293641

— 2.552592042848190e-06
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Chapter 4

CONCLUSION

Schwarz's method gave us the unbounded possibility of extending the class of
regions for which the explicit solution of the first boundary-value problem can be

constructed.

In this thesis, we have discussed the Schwarz and the Schwarz-Neumann methods for
solving the Dirichlet problem for partial differential equations on an L-shaped

domain. The convergence of the solution has also been reviewed.

Numerical experiments have been provided to demonstrate the application of the
finite-difference analogue of these methods. The approximate solutions are

consistent with the theoretical results.

Both of these methods can be applied for the approximation of the solution of
boundary value problems in domains covered by more than two sub-domains.

Schwarz’s method can also be applied in three dimensional domains.
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