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ABSTRACT 

The aim of this thesis is the analysis of three secret sharing methods and development 

of a new method having better features. We work on Yuan’s and Chang-Chen-Wang’s 

methods; the latter one is enhanced. 

Yuan proposed two methods which use least significant bits of each pixel that is easiest 

way to hide a secret black-white image into multiple grayscale cover images by 

± 1 operation that is difficult to detect. They are (n, n) as allowing to restore the secret 

from n covers out of n covers; their (2, 3) only modification is also proposed by Yuan. 

Chang-Chen-Wang Secret grayscale image Sharing between several grayscale cover 

images with Authentication and Remedy method (SSAR) has participant 

authentication and damaged pixels repairing properties while Yuan’s methods have 

not these features. We implemented the algorithms and conducted experiments on 

them getting Peak Signal to Noise Ratio (PSNR) and Structural Similarity values 

similar to those obtained in the papers of Yuan and Chang-Chen-Wang. We show that 

SSAR may fail under made assumption of uniqueness of the covers’ identifiers, is not 

able fake participant recognizing, and has limited by five bits out of eight (62.5%) 

repairing ability of one corrupted pixel. Error and fake participant detection ability is 

supported by 4-bit hash value. The SSAR method is (3, n) as allowing to restore a 

secret from any three of n cover images. We correct assumptions on the uniqueness of 

the identifiers so that SSAR works now correctly and propose (4, n) SSAR 

enhancement, SSAR-E, allowing 100% exact restoration of a corrupted pixel by the 

use of any four out of n covers, and recognizing a fake participant with the help of 

cryptographic hash functions, which have 5-bit values that allows better error 
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detection. Also by the use of special permutation having only one loop including all 

the secret image pixels, SSAR-E is able restoring all the secret image damaged pixels 

having just one correct pixel left. The performance and size of cover images for SSAR-

E are the same as for SSAR. 

Keywords: Secret sharing, grayscale images, steganography, authentication, 

repairing. 
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ÖZ 

Bu tezin amacı üç gizli paylaşım yöntemini ve gelişmekte olan daha iyi özelliklere 

sahip yeni bir metodu analiz etmektir. Biz Yuan ve Chang-Chen-Wang’ın yöntemleri 

üzerinde çalışmaktayız.  

Yuan, farkına varılması güç olan ± 1 işlemle gizli siyah-beyaz bir görüntüyü birçok 

gri tonlu görüntüye en kolay şekilde, her bir pikselin en az önemli parçalarını kullanan 

iki farklı yöntem  sunar. Bu yöntemler (n, n), sırrın n kapaklarından n kapaklarının geri 

kazandırılmasına izin verir, onların (2, 3) tek değişikliği de Yuan tarafından 

sunulmuştur. Chang-Chen-Wang gizli gri tonlu görüntü paylaşımında, bir takım gri 

ton kapak görüntüsü ile Belgeleme ve Çözüm yöntemi (SSAR) katılımcı belgelemesi 

ve zarar görmüş piksel onarım özelliği bulunurken, Yuan’ın yönteminde bu özellikler 

bulunmamaktadır. Biz Yuan ve Chang-Chen-Wang’ın belgelerinden elde edildiği 

değerlere benzeyen, algoritma ve yapılan deneylerini Zirve Sinyalinden Ses Oranına 

(PSNR) ve Yapısal Benzerlik’lerini baz alarak değiştirdik. SSAR’ın kapak tanımlayıcı 

benzersizlik varsayımına göre başarısızlığa uğrayabileceğini gösterip sahte katılımcı 

tanımlayamıp, bir bozulmuş pikselin onarma yeteneği bunu sekizde beş parçacık (% 

62.5) oranında kısıtladı. Hata ve sahte bir katılımcı tespit etme yeteneği 4-bit karma 

değeri ile desteklenir. SSAR metodu (3, n) herhangi üç n kapak görüntüsünden sırrı 

eski haline getirmeye izin verir. SSAR’ın düzgün bir şekilde çalışması için 

tanımlayıcıların benzersizliği üzerindeki varsayımları düzeltir, SSAR artışını teklif (4, 

n) ederiz, SSAR-E n kapaklarından herhangi dördünün kullanımı ile bozuk pikselin 

%100 kesin yenilenmesine izin verir. ve 5-bit değere sahip kriptografik karma 

fonksiyonları yardımı ile sahte bir katılımcıyı tanır ve daha iyi hata bulunmasına izin 
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verir. Ayrıca özel değişim kullanımın bütün gizli görüntü piksellerinin bulunduğu tek 

bir döngü ile SSAR-E  zarar görmüş gizli görüntü piksellerini geride sadece doğru bir 

piksel bırakarak geri döndürebilir. SSAR-E’nin performansı ve kapak görüntülerinin 

boyutu SSAR’ınkı ile aynidir. 

Anahtar Kelimeler: Gizli paylaşım, gri tonlamalı görüntü, steganografi, kimlik 

doğrulama, onarım. 
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Chapter 1 

INTRODUCTION 

Secret sharing is one of the management approaches or key creation was invented by 

Shamir [1] and Blakly [2] as a solution to protect the secrets. Secret sharing is a 

technique used to hide a piece of information called “secret” and divided into several 

sections called “share”. In the process of secret transmission, a specific subset of the 

contributions shares received and the secret rehabilitated. The section which produces 

shares and distribute them in special way between cover messages called “Dealer”. 

The secret can be restored only when the shared parts are combined to each other. In 

other words, individual sharing will not be used alone. 

Yuan’s secret sharing methods [3] work on least significant bits of each pixel of secret 

image which is the most popular method that used in steganography. The secret image 

is embedded into textured regions of each chosen cover that selected by calculating 

the maximum of gradient magnitude value of each cover’s pixel. To produce this 

amount it used Sobel operator [4]. First of all, in the beginning, least significant bits 

of each pixel of all covers XOR are all together. In embedding phase, checked this 

value with secret value, if they’re not equal the value of selected cover image increased 

by one or decreased. Finally, with XOR LSBs of shares we can recovered the secret 

image. 
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Chang-Chen-Wang’s Secret Sharing with Authentication and Repairing (SSAR) 

method [5] is intended for sharing a secret grayscale image SI by 3n  cover grayscale 

images {C1,..N} so that exact reconstruction of the secret is possible having any three 

of the cover images. It is considered as one of the best secret sharing algorithms (see 

[6]; Table 4, p. 186, in [7]; Tables 1, 2, pp. 1076, 1077 in [8]; p. 198 in [3]). The secret 

image is embedded into each k-th cover image in the form of a base 5 number ikN  

obtained for i-th 8-bit pixel of a secret image SI (assuming linear numbering of the 

image pixels, iSI , i=1,..,S) using a steganographic Least Significant Base 5 Digit 

(LSB5D) method  that is similar to the Least Significant Bit (LSB) method [3] but 

works with base 5 digits (with possible values 0..4) contrary to LSB working with 

binary numbers (with possible values 0..1). So, embedding of the number ikN  

constructed for one pixel of the secret image needs in the cover a block of pixels of 

size m which is equal to the number of digits in ikN  (m=4 in SSAR).  SSAR provides 

authentication and error detection by the use of a 4-bit hash function of the obtained 

for i-th secret image pixel authenticator ikau , i=1,..,S, k=1,..,N. The authenticator ikau  

(calculated for each cover image Ck separately with unique identifier kid ) is 

concatenated with its hash function value h(i|| ikau ) and used as a part of the number 

ikN  embedded in the cover, k=1,..,N. After extraction, the authenticity (error 

checking) of the extracted authenticator '

ikau ’ is checked by comparing calculated hash 

function value h(i|| '

ikau ) versus the extracted h(i|| ikau ). Repairing ability in the SSAR 

method is based on the use of a complementary dual chain somehow resembling 

reparation facilities of DNA [9] where if a gene on one spiral is damaged, it can be 

restored from the dual spiral, of course, if respective gene of the dual spiral is not 

damaged.  
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The original chain is represented by a linear sequence LS of pixels of the secret image 

SI, LS=(LSi, i=1,..,S), and the dual chain is represented by a sequence LS’=(LS’i, 

i=1,..,S) obtained as a permutation of LS, LS’=perm(LS) meaning that LS’ consists of 

the same elements as LS does, but the order of the elements in LS’ differs from that in 

LS, i.e. for each LSi their exists only one LS’k such that LSi=LS’k, I,k=1,..,S. A partner 

of each pixel LSi of the original sequence is the pixel LS’i from the dual chain having 

the same sequence number. When creating an authenticator and the number ikN , five 

bits of the partner pixel are used. When extracting ikN  from the cover image, and then 

restoring a secret image pixel, the five bits of the partner image are restored also. So, 

if a secret image pixel is damaged, its five bits can be restored from its partner if the 

latter is not damaged. We show that SSAR algorithm has such problems as not ability 

to counter fake participant attack, limited opportunity for error detection based on four-

bit only hash function value, only five out of eight bits recovery in the case of 

damaging, and is not correct under made assumption of mutually exclusive cover 

identifiers. We propose an enhancement of SSAR, SSAR-E, solving all the problems 

mentioned above and allowing also exact repairing of up to S-1 damaged secret image 

pixels out of S. The rest of the thesis is organized as follows. Chapter 2 introduces 

Yuan’s and Chang-Chen-Wang’s methods details and discusses problem definition. In 

chapter 3 we will show the process of development of these methods. Analysis of the 

methods is conducted in chapter 4. Chapter 5 describes the proposed enhancement, 

SSAR-E, and proves its features. Chapter 6 concludes the thesis.  
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Chapter 2 

SURVEY OF YUAN’S AND CHANG-CHEN-WANG’S 

 SSAR METHODS  

There are many methods to embed data inside an image. The most popular of them is 

the LSB method which puts information in least significant bits of the image colors. 

In this chapter evaluate information embedded based on two LSB methods that in this 

thesis, the algorithm known as the Yuan’s secret sharing methods [3] and  I describe 

another method that embed data within meaningful content of a media, the method 

known as the Chang-Chen-Wang’s method [4]. 

When a file is created, some numbers of its bits are usually not usable or less important. 

These bytes can be changed without any significant damage imported to file. This 

feature helps to put information within these bytes without any person understood. 

The easiest way to implement steganography is using least significant bits of each pixel 

which is called “LSB” method. For this purpose at first the data should be convert into 

binary format then embed into least significant bits of an image pixels. Of course we 

want desired image that does not change much. 

2.1 The (n, n) Yuan’s Secret Sharing Methods 

Proposed LSB (n, n) Secret sharing algorithm by Yuan [3] is a sharing of a binary 

Secret image of 𝑨 ∈ 𝑭ℎ×𝑤×1  in LSB Plane, n gray distinct color image of 

𝐶0, 𝐶1, … , 𝐶𝑛−1 ∈ 𝑭ℎ×𝑤×8  . 
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Where 𝑭ℎ×𝑤×𝑚 =  {𝑨|𝑨 = [𝑎𝑖,𝑗,𝑙]ℎ×𝑤×𝑚
} , h = number of row of an image, w = 

number of column of an image, m = number of bit of an image. We have m = 1 for 

binary image, m = 8 for grayscale image and m = 24 for RGB image. Secret can be 

obtained precisely by XOR of all LSB pages containing images with 𝑆0, 𝑆1, … , 𝑆𝑛−1  

sharing. Let’s LSB as a cover image [𝑐𝑖,𝑗,0
𝑡 ] that 0 ≤ 𝑡 ≤ 𝑛 − 1. Let binary image 

𝑩 ∈ 𝑭ℎ×𝑤×1 is calculated as follows: 

  𝑩 = [𝑐𝑖,𝑗,0
0 ]⨁[𝑐𝑖,𝑗,0

1 ]⨁ ⋯ ⨁[𝑐𝑖,𝑗,0
𝑛−1] = ⨁𝑡=0

𝑛−1[𝑐𝑖,𝑗,0
𝑡 ]  (2.1) 

T selection can be made based on the measurement of certain embedded distortion. 

Here, the amount of gradient referred as a gain embedded distortion criteria. Gradient 

magnitude matrix is calculated by the Sobel Operator [4]. So we calculate T selection 

in (i,j) coordinates as follows: 

    𝑻 = 𝑎𝑟𝑔 max
𝑡

𝑔𝑖,𝑗
𝑡     (2.2) 

2.1.1 The (n, n) 1LSB Secret Sharing Method 

The primary method of multi-cover embedded is described below. 

Input: A binary secret image 𝑨 ∈ 𝑭ℎ×𝑤×1 and n distinct grayscale cover images 

𝐶0, 𝐶1, … , 𝐶𝑛−1 ∈ 𝑭ℎ×𝑤×8  that 𝑛 ≥ 2. 

Output: n shares 𝑆0, 𝑆1, … , 𝑆𝑛−1 ∈ 𝑭ℎ×𝑤×8 

Construction:  Calculate B from n covers according to (2.1) 

𝑆0 = 𝐶0, 𝑆1 = 𝐶1, … , 𝑆𝑛−1 = 𝐶𝑛−1 

Calculate 𝑔0, 𝑔1, … , 𝑔𝑛−1 from n covers, respectively  

While secret bits left to embed do 

get next secret pixel 𝐴𝑖,𝑗 

If 𝐴𝑖,𝑗 ≠ 𝐵𝑖,𝑗 then 

         Calculate T at coordinates (i,j), according to (2.2) 

𝑆𝑖,𝑗
𝑇 = {

𝐶𝑖,𝑗
𝑇 − 1, 𝑖𝑓 𝐶𝑖,𝑗

𝑇 = 255

𝐶𝑖,𝑗
𝑇 + 1, 𝑖𝑓 𝐶𝑖,𝑗

𝑇 = 0     

𝐶𝑖,𝑗
𝑇 ± 1, 𝑜𝑡ℎ𝑒𝑤𝑖𝑠𝑒       

 

end if 

end while 

Reveal: 𝑨′ = [𝑠𝑖,𝑗,0
0 ]⨁[𝑠𝑖,𝑗,0

1 ]⨁ ⋯ ⨁[𝑠𝑖,𝑗,0
𝑛−1] = (𝑆0&1)⨁ ⋯ ⨁(𝑆𝑛−1&1) = ⨁𝑡=0

𝑛−1𝑆𝑡&1 

Figure 2.1. Pseudo code of 1LSB Secret Sharing Method 
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2.1.2 The (n, n) 2LSB Secret Sharing Method 

More bits in gray images can be reversed by using ±1 operator, for example 

(10000000)2 − 1 = (01111111)2 . Therefore, the code bits can be shared on each 

desired bit plane of cover image. Here, another method is presented which embed code 

bits in cover images 2LSB (for example, First and Second LSB). 

2LSB code (n, n) sharing method used for sharing 2-bit code images (four tones) 

𝑨 ∈ 𝑭ℎ×𝑤×2  which secret embedded in cover gray image 2LSB 𝐶0, 𝐶1, … , 𝐶𝑛−1 ∈

𝑭ℎ×𝑤×8 . Therefore, this secret will be reconstructed by XOR all values of 2LSBs n 

output shared 𝑆0, 𝑆1, … , 𝑆𝑛−1 .  

Let define 2-bit image 𝑩 ∈ 𝑭ℎ×𝑤×2 as follows: 

 [𝑏𝑖,𝑗,0] = ⨁𝑡=0
𝑛−1[𝑐𝑖,𝑗,0

𝑡 ], [𝑏𝑖,𝑗,1] = ⨁𝑡=0
𝑛−1[𝑐𝑖,𝑗,1

𝑡 ]   (2.3) 

(2.3) by applying +1 (even 𝑐𝑖,𝑗
𝑡 s) or -1 (odd 𝑐𝑖,𝑗

𝑡  s) on 𝑐𝑖,𝑗
𝑡  can be reversed and 𝑏𝑖,𝑗,1 can 

be reversed by applying +1 (odd 𝑐𝑖,𝑗
𝑡  s) or -1 (even 𝑐𝑖,𝑗

𝑡 s) on  𝑐𝑖,𝑗
𝑡  . So to equalize Bi,j 

with Ai,j , one or two pixels of cover images should be changed in (i,j) coordinates. 

The 2LSB multi-cover embeds method described below. 

Input: A 2-bit secret image 𝑨 ∈ 𝑭ℎ×𝑤×2 and n distinct grayscale cover images 

𝐶0, 𝐶1, … , 𝐶𝑛−1 ∈ 𝑭ℎ×𝑤×8  that 𝑛 ≥ 2. 

Output: n shares 𝑆0, 𝑆1, … , 𝑆𝑛−1 ∈ 𝑭ℎ×𝑤×8 

Construction: Calculate B from n covers according to (2.1) 

𝑆0 = 𝐶0, 𝑆1 = 𝐶1, … , 𝑆𝑛−1 = 𝐶𝑛−1 

Calculate 𝑔0, 𝑔1, … , 𝑔𝑛−1 from n covers, respectively 

While secret bits left to embed do 

get next secret pixel 𝐴𝑖,𝑗 

χ = {𝑡|𝐶𝑖,𝑗
𝑡 ≠ 0, 𝐶𝑖,𝑗

𝑡 ≠ 255,0 ≤ 𝑡 ≤ 𝑛 − 1} 

If 𝐴𝑖,𝑗 ≠ 𝐵𝑖,𝑗 then 

                   begin case 

                         Case 1: 𝑎𝑖,𝑗,0 ≠ 𝑏𝑖,𝑗,0 and 𝑎𝑖,𝑗,1 = 𝑏𝑖,𝑗,1 

                                Calculate T at coordinates (i,j), according to (2.2) 
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𝑆𝑖,𝑗
𝑇 = {

𝐶𝑖,𝑗
𝑇 − 1, 𝑖𝑓 𝐶𝑖,𝑗

𝑇  𝑖𝑠 𝑜𝑑𝑑

𝐶𝑖,𝑗
𝑇 + 1, 𝑖𝑓 𝐶𝑖,𝑗

𝑇 𝑖𝑠 𝑒𝑣𝑒𝑛
 

                             Case 2: 𝑎𝑖,𝑗,0 = 𝑏𝑖,𝑗,0 and 𝑎𝑖,𝑗,1 ≠ 𝑏𝑖,𝑗,1 

                                      If  χ ≠ ∅ then 

                                            T1 = 𝑎𝑟𝑔 max
𝑡

𝑔𝑖,𝑗
𝑡     , 𝑡 ∈ χ 

                                           𝑆𝑖,𝑗
𝑇1 = {

𝐶𝑖,𝑗
𝑇1 − 1, 𝑖𝑓 𝐶𝑖,𝑗

𝑇1  𝑖𝑠 𝑒𝑣𝑒𝑛

𝐶𝑖,𝑗
𝑇1 + 1, 𝑖𝑓 𝐶𝑖,𝑗

𝑇1𝑖𝑠 𝑜𝑑𝑑
 

                                            T2 = 𝑎𝑟𝑔 max
𝑡

𝑔𝑖,𝑗
𝑡     , 𝑡 ∈ {0,1, … , 𝑛 − 1} − {T1} 

                                           𝑆𝑖,𝑗
𝑇2 = {

𝐶𝑖,𝑗
𝑇2 − 1, 𝑖𝑓 𝐶𝑖,𝑗

𝑇2  𝑖𝑠 𝑜𝑑𝑑

𝐶𝑖,𝑗
𝑇2 + 1, 𝑖𝑓 𝐶𝑖,𝑗

𝑇2𝑖𝑠 𝑒𝑣𝑒𝑛
 

                                     else 

                                           𝑆𝑖,𝑗
𝑇 = {

𝐶𝑖,𝑗
𝑇 − 2, 𝑖𝑓 𝐶𝑖,𝑗

𝑇 =  255

𝐶𝑖,𝑗
𝑇 + 2, 𝑖𝑓 𝐶𝑖,𝑗

𝑇 = 0      
 

                                     end if 

                             Case 3: 𝑎𝑖,𝑗,0 ≠ 𝑏𝑖,𝑗,0 and 𝑎𝑖,𝑗,1 ≠ 𝑏𝑖,𝑗,1 

                                     If χ ≠ ∅ then 

                                            T = 𝑎𝑟𝑔 max
𝑡

𝑔𝑖,𝑗
𝑡     , 𝑡 ∈ χ 

                                            𝑆𝑖,𝑗
𝑇 = {

𝐶𝑖,𝑗
𝑇 − 1, 𝑖𝑓 𝐶𝑖,𝑗

𝑇  𝑖𝑠 𝑒𝑣𝑒𝑛

𝐶𝑖,𝑗
𝑇 + 1, 𝑖𝑓 𝐶𝑖,𝑗

𝑇 𝑖𝑠 𝑜𝑑𝑑
 

                                     else  

                                            𝑻 = 𝑎𝑟𝑔 max
𝑡

𝑔𝑖,𝑗
𝑡  

                                           𝑆𝑖,𝑗
𝑇1 = {

𝐶𝑖,𝑗
𝑇1 − 2, 𝑖𝑓 𝐶𝑖,𝑗

𝑇1 = 255

𝐶𝑖,𝑗
𝑇1 + 2, 𝑖𝑓 𝐶𝑖,𝑗

𝑇1 = 0     
 

                                           T2 = 𝑎𝑟𝑔 max
𝑡

𝑔𝑖,𝑗
𝑡     , 𝑡 ∈ {0,1, … , 𝑛 − 1} − {T1} 

                                           𝑆𝑖,𝑗
𝑇2 = {

𝐶𝑖,𝑗
𝑇2 − 1, 𝑖𝑓 𝐶𝑖,𝑗

𝑇2 = 255

𝐶𝑖,𝑗
𝑇2 + 1, 𝑖𝑓 𝐶𝑖,𝑗

𝑇2 = 0     
 

                                    end if  

                              end case 

        end if 

      end while 

      Reveal: 𝑨′ = (𝑆0&3)⨁ ⋯ ⨁(𝑆𝑛−1&3) = ⨁𝑡=0
𝑛−1𝑆𝑡&3 

Figure 2.2. Pseudo code of 2LSB Secret Sharing Method 

Note that for n cover images where χ ≠ ∅ is very rare. For each randomly selected 

color image, the probability of 𝐶𝑖,𝑗
𝑡  to be equal to 0 or 255 is 2-7. As a result, the 

probability of χ ≠ ∅ will be 2-7n. 

In addition   𝑃{𝑎𝑖,𝑗,0 = 𝑏𝑖,𝑗,0, 𝑎𝑖,𝑗,1 ≠ 𝑏𝑖,𝑗,1} = 𝑃{𝑎𝑖,𝑗,0 ≠ 𝑏𝑖,𝑗,0, 𝑎𝑖,𝑗,1 ≠ 𝑏𝑖,𝑗,1} = 2−2 
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Therefore, the probability of ±2 operator usage will be 2−(7𝑛+1), for example in the 

case of n = 4, this value is less than1.9 × 10−9. 

2.1.3 The (2, 3) Yuan’s Method 

Yuan proposed a (k, n) Secret Sharing scheme through the proposed (n, n) Secret 

Sharing methods. His method only works on special conditions that is (2, 3). For 

example we have three covers {C0, C1, C2} with size 512 x 512 and we want embed 

the secret image into these covers. In this scheme secret image should be resized to 

256 x 256. To construct a (2, 3) Secret Sharing scheme we divide covers into 4 same 

regions. In first step we share the secret between the upper-left quadrant of C0 and C1 

by the (2, 2) LSB Secret Sharing scheme, in second step we share the secret between 

the upper-right quadrant of C0 and C2 by the (2, 2) LSB Secret Sharing scheme, in 

third step share the secret between the lower-left quadrant of C1 and C2 by the (2, 2) 

LSB Secret Sharing scheme and finally Share the secret between the lower-right 

quadrant of C0 and C1 and C2 by the (3, 3) LSB SS scheme. After embedding we will 

have three shares {S0, S1, S2} and we can reconstruct a secret from these shares. 

2.2 The Chang-Chen-Wang’s SSAR Method 

The SSAR method takes as input the secret image, SI, which may be represented as a 

sequence of byte-size pixels, LSi, i=1,..,S, and a set of cover images, Ci, i=1,..,n  >=3. 

Each cover image, Ci, has a unique identifier, idi. A key K, defines a permutation of 

LS. SSAR has embedding, extraction, and repairing parts. The repairing part is used 

when errors are detected in the extraction part (replaces a damaged bit by five its most 

significant bits obtained when restoring its co-partner pixel). This part according to 

SSAR shall use the secret key K but if a valid user repairs the image then the use of 

the key is meaningless, but if it is made by an illegal user, it is also meaningless 
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because the image is already disclosed. That’s why the secret key in the permutation 

is redundant.  

In the following, we give details of the embedding, recovering, and repairing parts, 

and provide a numerical example of SSAR usage.  

SSAR Embedding Part (Steps 1-7): 

Step 1. Producing a dual sequence LS’ = permutation (K, LS). Denote bits of LSi as 

a1i,..,a8i, and of its partner LS’i as b1i,..,b8i, i=1,..,S. 

Step 2 for each i, define three quantities,  

}3,..,0{2},7,..,0{2},7,..,0{2
2

1

2

,6

3

1

3

,3

3

1

3  
















k

k

iki

k

k

iki

k

k

kii aaa 

,i=1,..,S,           (2.4) 

using the secret image chain, LS.  

Step 3. Concatenate the bits b1i,..,b4i, of the partner pixel, LS’i with the three 

quantities (2.4), getting 

}15,..,0{48},15,..,0{8},15,..,0{8 43

'

2

'

1

'  iiiiiiiiii bbbb 

,i=1,..,S.            (2.5)  

Step 4. Using (2.5), calculate an authenticator, 

 }16,..,0{17mod)( 2'''  iiiiiik ididau       (2.6) 

For each pixel and each cover, i=1,..,S, k=1,..,n. Thus, for each pixel, we get a system 

of n>= 3 equations that allows solving them with respect to ''' ,, iii  after embedding 

of the authenticators into the cover images by a sender, and the next extraction of the 

authenticators from the cover images by a receiver. 

Step 5. For each authenticator (2.6), ikau , calculate its 4-bit hash function value, 

 }15,..,0{)||(  ikik auihashhv , i=1,..,S, k=1,..,n.    (2.7) 
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Step 6. Using (2.6), (2.7), generate a number 

}575,..,0{234 5  iikikik bhvauN     (2.8) 

By mixing an authenticator, its hash, and 5-th bit of LS’i in a way allowing getting 

back its constituent parts. The number can be represented as a four-digit base-5 

number. 

Step 7. Each cover image Ck is represented as a sequence of S 4-pixel blocks so that 

ikN  in the form of four base 5 digit number, ]4..1[ikN , is embedded into four 

consecutive pixels Ck[4(i-1)+1,..,4i]: 

Ck[4(i-1)+j]’=Ck[4(i-1)+j]-Ck[4(i-1)+j]mod5+ ][ jNik ,            (2.9) 

j=1,..,4, i=1,..,S, k=1,..,n.   

Embedding in (C.-C. Chang, 2011), see Fig. 4 therein, is done in slightly more 

complicated way than (2.9) but mainly it complies with (2.9). 

Consider now SSAR extraction part that takes n covers with embedded by (2.9) 

numbers ikN  representing parts of the secret image SI and restores them and their 

ingredients; restored values have R in their names. 

SSAR Extraction Part (Steps 1-6): 

Step 1. Restore digits of the embedded number using (2.9) 

NRik[j]=Ck’[4(i-1)+j] mod 5, j=1,..,4, i=1,..,S, k=1,..,n.   (2.10) 

Step 2.  Restore constituent parts of the numbers (2.10) using (2.8) 

2mod;2)34mod(;34 5 ikiikikikik NRbRdivNRhvRdivNRauR  .  (2.11) 

Step 3. Check errors (authenticity) of the restored by (2.11) authenticator by 

recalculating of the hash of the restored authenticator, ikauR and comparing it versus its 

restored hash function value: 

ikik hvRauRihash ),(     (2.12) 
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If (2.12) is true then the authenticator is considered valid, otherwise an error is 

detected. 

Step 4. If checking in (2.12) of Step 3 is true (no error) for any three covers, then three 

entities, ''' ,, iii RRR  ,  used in calculation of authenticators (2.6) are restored from 

(2.6) by solving a system of at least three linear modulo 17 algebraic equations with 

respect to three unknowns.  

Step 5. Having restored ''' ,, iii RRR  , values 
iii RRR  ,, together with ii bRbR 41 ,..,

from (2.5) can be restored as follows 

2mod)4(,8

,8,8,4mod,8mod,8mod

'

4

'

3

'

22

'

1

'''

divRbRdivRbR

divRbRdivRbRRRRRRR

iiii

iiiiiiiii









     (2.13) 

Step 6. From (2.13), the original pixel is restored using (2.4) 

iiii RRRLS   432 .     (2.14) 

Obtained in (2.11) and (2.13) five bits ii bRbR 51 ,.., of the partner pixel LS’i can be used 

for its restoration in the case if it is damaged. Let’s illustrate SSAR by following 

Example 1. 

Example 1. Let the secret image size S=6, secret image sequence of pixels is 

LS=(15,34,49,105,217,28), permutation is (4,2,1,3,6,5), LS’=(105,34,15,105,28,217). 

Thus, the partner for LS1 is LS4, for LS2 is LS2, for LS3 and LS1, for LS4 is LS3, for LS5 

is LS6, and for LS6 is LS5. Thus, if LS4 is corrupted, its 5 bits may be obtained from the 

information obtained when restoring LS1 whose partner is LS4. Let the number of cover 

images N=5, each of them having 4S=24 pixels. Consider embedding of the pixel 

LS1=15 into the 5 cover images. SSAR Embedding Part Step 1 is already applied. 

According to Step 2 equations (2.4), 3,3,0 111   . Using (2.14), we see that 

actually LS1=32*0+4*3+3=15. According to Step 3 equations (2.5), and taking into 
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account that LS4=105=(1100 1001), we get 3,11,8 '

1

'

1

'

1   .  From the last 

values, according to (2.13), we can get back correct values

0,0,3,1,3,1,0 4131

'

1211111  bbbb  . Calculate now authenticators of 

LS1 pixel according to (2.6) using covers’ identifiers as id1=1, id2=2, id3=3, id4=4, 

id5=5: 

;217mod)2535118(

;1517mod)1634118(;017mod)933118(

;817mod)432118(;517mod)131118(

15

1413

1211







au

auau

auau

        (2.15) 

If any three of the authenticators (2.15) are available, we can get '

1

'

1

'

1 ,,  by solving 

a system of equations (2.6). Say, if the first three authenticators are restored then we 

have the following system: 

17mod)93(0

17mod)42(8

17mod)11(5

'

1

''

1

'

113

'

1

''

1

'

112

'

1

''

1

'

111



















au

au

au

     (2.16) 

The systems (2.16) has Vandermonde matrix of the coefficients and may be solved, 

e.g., using Cramer’s rule [10] (dividing the determinant of the matrix of the system 

coefficients with substituted column of the coefficients with the column of the known 

values by the determinant of the coefficients matrix): 

317mod
2

6

2

11

931

421

111

det/

031

821

511

det

1117mod9517mod2517mod
2

5

2

39

931

421

111

det/

901

481

151

det

817mod
2

16

2

1

931

421

111

det/

930

428

115

det

'

1

1'

1

'

1





















   (2.17) 
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As far as the identifiers appearing in (2.6) are mutually exclusive, Vandermonde 

determinant (Vandermonde matrix) used in denominators of (2.17) is non-zero, and 

the solution exists. As far as the calculations are done modulo 17, the Vandermonde 

determinant also may be equal to zero if any two identifiers are congruent modulo 17 

but it is not the case for the current example. We see that (2.17) returns back correct 

'

1

'

1

'

1 ,,  values. Next, in Step 5, according to (2.7), hash function values are calculated 

for the authenticators. In [5], equations (2.9)-(2.11), define how 4-bit resulting hash 

function value is to be calculated using some generic hash function. For simplicity and 

getting particular results, let hash function be ,16mod)1113()(  xxh . Then, 

according to (2.7) in Step 5, 

 

.5)34()00100010()00010||001()2||1()||1(

,14)47()00101111()01111||001()15||1()||1(

,11)32()00100000()00000||001()0||1()||1(

,3)40()00101000()01000||001()8||1()||1(

,12)37()00100101()00101||001()5||1()||1(

1515

1414

1313

1212

1111











hhhhauhhv

hhhhauhhv

hhhhauhhv

hhhhauhhv

hhhhauhhv

        (2.18) 

Now, let us apply Step 6 using (2.8), (2.15), and (2.16) and taking into account that 

LS4=( 8111..bb ) = (1100 1001), we get the numbers for embedding and their 

representation as 4-digit base 5 numbers: 

030479125342234

412453912143415234

0043231211340234

2104279123348234

12401951212345234

51151515

51141414

51131313

51121212

51111111











bhvauN

bhvauN

bhvauN

bhvauN

bhvauN

         (2.19) 

Let us assume that the first four bytes of the five cover images where the numbers 

(2.19) are to be embedded are as follows: 

C1=(12,240,251,128,...), C2=(137,49,56,122,..), C3=(17,1,67,78,..), 

C4=(190,217,218,16,..),         C5=(123,213,65,41,..)                                               (2.20) 
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From (2.19), (2.20), according to (2.9) in Step 7,  

C1=(11,242,254,125,...), C2=(137,46,55,124,..), C3=(15,0,69,78,..), 

C4=(194,216,217,19,..),        C5=(120,213,65,44,..)                                               (2.21) 

For the Step 1 of the SSAR Extraction Part, applying modulo 5 operations to (2.21), 

we restore the 4-digit base 5 numbers (2.19), 1240=195, 2104=279, 0043=23, 

4124=539, 0304=79. From (2.19), applying Step 2 equations (2.21), we restore 

authenticators (2.15), 5, 8, 0, 15, 2, their hash function values (2.18), 12,3,11,14,5, and 

51b =1. Checking of (2.12) in Step 3 returns all true values, hence, any three of the five 

authenticators obtained may be used for restoring 3,11,8 '

1

'

1

'

1   , as it is made 

in (2.16) for the first three authenticators in accordance with Step 4. And lastly, the 

original values 3,3,0 111   are restored according to Step 5 equation (2.13) 

together with )1100(),,,( 41312111 bbbb . 

Thus, we see how the SSAR method works for embedding a secret image pixel and 

five bits of its partner into four consecutive pixels of the cover images. If in our 

example the partner pixel after extraction is found out in the checking (2.12) to be 

incorrect, its five most significant bits can be gained from the results of extraction of 

LS1 containing in the case under consideration five correct most significant bits of 

LS4. 

2.3 Steganography System Quality Evaluation Metrics 

In order to evaluate the image steganography performance, some quality 

measurements such as SNR, PSNR and MSE are presented. 
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Mean Square Error (MSE) defined as mean squares differences between the original 

image and image after embedding. This measure calculated as follows. 

              MSE = 1 𝑋𝑌⁄ [∑ ∑ (𝑐(𝑖, 𝑗) − 𝑒(𝑖, 𝑗))2𝑌
𝑗=1

𝑋
𝑖=1 ]   (2.22) 

Where X and Y are the length and width of the image, respectively. C(i,j) is the original 

image pixel value and e(j,j) is steganography image pixel value within (i,j). 

Signal to noise ratio (SNR) measures image sensitivity. This criteria measures the 

original strength relative to background noise. SNR value can be obtained by: 

    𝑆𝑁𝑅𝑑𝐵 = 10log10 (
𝑃𝑠𝑖𝑔𝑛𝑎𝑙

𝑃𝑛𝑜𝑖𝑠𝑒
)   (2.23) 

Signal peak to noise ratio (PSNR) determines the amounts of damages imported to 

image by embedded data and calculated as follows: 

    𝑃𝑆𝑁𝑅 = 10log10(𝐿 ∗ 𝐿/𝑀𝑆𝐸)  (2.24) 

Where L is the image signal peak which is equal to 255 for an 8-bit image. 

2.4 Problem Definition 

Yuan’s method use binary image as a secret image and embed it into grayscale covers 

but Chang-Chen-Wang’s method use grayscale image. Chang-Chen-Wang’s method 

has an ability that can be repair the images after tampering by hackers and for detecting 

errors used a hash function but Yuan’s method doesn’t have these features. Chang-

Chen-Wang’s method claiming to have participant authentication and damaged pixels 

repairing properties. Chang-Chen-Wang’s method cannot repair corrupted pixel fully, 

because is limited by five bits out of eight (62.5%) repairing ability of one corrupted 

pixel. Error detection ability is supported by 4-bit hash value but it doesn’t use 

cryptographic hash functions also this method cannot restore secret image when a lot 

of damaged pixels. In chapter 5 we proposed a method that it has the ability to recover 

fully by eight bits, and with using cryptographic hash functions, which have 5-bit 

values that allows better errors detection and by use of special permutation having only 
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one loop including all the secret image pixels, new method is able restoring all the 

secret image damaged pixels having just one correct pixel left.  
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Chapter 3 

IMPLEMENTATION OF THE YUAN’S AND CHANG- 

CHEN-WANG’S SSAR METHODS 

At first, Yuan’s method [3] is investigated in 1LSB and 2LSB normally. Then 

implement Chang-Chen-Wang’s method and shown how it works. 

3.1 1LSB (n, n) Secret Sharing Yuan’s Method 

Yuan’s method includes both 1LSB and 2LSB. In 1LSB, Appendix A, least significant 

bit is used for each pixel. At first cover images and secret image must be converted to 

a set of bits matrix so that least significant bit in each pixel is used. We created a 

function that convert each double value into binary value. 

According to (2.3), the XOR resulting of all LSBs covers are calculated as B value. In 

this function each LSB values of covers should be XOR together. For each cover, 

gradient magnitude is obtained by Sobel operator and for embeds each pixel of secret 

image. For calculating gradient magnitude we used already function in MATLAB. 

 A comparison between the secret image and obtained value of B in advance will be 

done. If these two pixels were not equal, according to embedding algorithm and based 

on g value, at first phase, cover number and pixel value related to that cover earned, 

and if its value was equal to 255, a one unit subtracted from it and if it was equal to 

zero, a one unit will be added, otherwise, one unit added or subtracted randomly and 

this process continued until all pixels within the secret image are checked. All covers 

and gradient magnitude obtained used as input parameters of this function. 
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1 for i=1:r 
2    for j=1:c 
3        if(A(i,j)~=B(i,j)) 
4            [t,T]= max([g1(i,j),g2(i,j),g3(i,j),g4(i,j)]); 
5            if(CT(i,j,T)==255) 
6                ST(i,j) = CT(i,j,T)-1; 
7                Embeding_map(i,j,T) = 0; 
8            elseif(CT(i,j,T)==0) 
9                ST(i,j,T) = CT(i,j,T)+1; 
10                Embeding_map(i,j,T) = 0; 
11            else 
12                if(rand(1)>0.5) 
13                    ST(i,j,T) = CT(i,j,T)-1; 
14                    Embeding_map(i,j,T) = 0; 
15                else 
16                    ST(i,j,T) = CT(i,j,T)+1; 
17                    Embeding_map(i,j,T) = 0; 
18                end 
19            end 
20        end 
21    end 
22 end 

In this function at line 4, at first we found maximum of g value in pixel (i, j) and we 

got T that is the number of cover we want embed our secret image value into it. Then 

we checked the cover value, if is equal to 255 then decrease one unit from the value 

and if is equal to 1, one unit increased, otherwise we use a random function for 

generating a random value from +1 and -1. Also here for drawing embedding map if 

any value of covers changed, we put zero into this matrix then draw it as a plot in 

MATLAB. Finally, to recover secret image, all least significant bit value of embedded 

images must be XOR to each other. After recovering secret image we calculate PSNR 

and MSSIM for each embedded images. For MSSIM we used already function in 

MATLAB but for calculating PSNR we used instructions of calculate PSNR in Chang-

Chen-Wang’s paper [5]. 

1 function My_psnr=My_PSNR(I,J) 
2    X = double(I);  
3    Y = double(J);  
4  
5    MSE = sum((X(:)-Y(:)).^2) / prod(size(X));  
6    My_psnr = 10*log10(255 * 255/MSE); 
7 end 
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Here we explain the special case of (n, n) of 1LSB and 2LSB methods that n = 2 for 

1LSB and n = 4 for 2LSB. For this purpose, 512 × 512 sized images are used. Also a 

two-tone image (binary) and a four-tone 512 × 512 image are used. Examples of these 

images are shown below. 

 
Figure 3.1. Grayscale Cover Images 

A sample of images used as cover images in simulations is shown. As shown in the 

figure 3.1, gray images (8-bit) are used for this purpose. As explained above, with the 

purpose of separation, two one-bit and two-bit images are used as a secret image that 

shown in following figure. 

 
Figure 3.3. Secret Image (Four Tone) 

 
Figure 3.2. Secret Image (Two Tone) 
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At first 1Bit LSB Secret Sharing method were evaluated. See implementation results 

of this algorithm for (2, 2) model as shown below.  

 

 

 
Figure 3.4. Results of 1LSB (2, 2) – first row is cover images – second row is 

embedded images – third row is embedding map of each images 

The amounts reported for PSNR in two output images (55.70 dB and 53.04 dB) 

indicates that embedded data which using this algorithm could not make drastic 

changes in output image quality such that there is not any appearance change to be 

recognized. Also structural similarity mean value (SSIM) of output cover images in 

comparison to original image are very close to one (0.999 and 0.998) which 

acknowledge it. 
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After this stage, secret extracted from the input cover images. Input binary image and 

extracted binary image are shown. 

 
Figure 3.5. Recovered 2-tone image 

 

3.2 2LSB (n, n) Secret Sharing Yuan’s Method 

In 2LSB, Appendix B, all of functions are similar to 1LSB just one function is 

different. In embedding phase ate first value X should be calculated then if two pixels 

were not equal, we have three cases. In case 1 if LSB1 of two matrices are not equal 

and LSB2 of these matrices are equal, according to embedding algorithm and based on 

g value, we use some instructions for embedding this value into cover selected and 

another cases we have another instructions. This process continued until all pixels 

within the secret image are checked. Finally, to recover secret image, all least 

significant bit value of embedded images must be XOR to each other. After recovering 

secret image we calculate PSNR and MSSIM for each embedded images. 

1 for i=1:r 
2    for j=1:c 
3        X = find_X(CT(i,j,:)); 
4        

5%****************************************************************** 
6        %case1: 
7        

8%****************************************************************** 
9        if(a(i,j,1)~=B(i,j,1) && a(i,j,2)==B(i,j,2) ) 
10            [ST,Embeding_map] =  



22 
 

11    mbed_case1(ST,gT,CT,i,j,Embeding_map); 
12        

13%***************************************************************** 
14       %case2: 
15        

16%***************************************************************** 
17        elseif(a(i,j,1)==B(i,j,1) && a(i,j,2)~=B(i,j,2) ) 
18            [ST,Embeding_map]=  

19     embed_case2(ST,gT,CT,X,i,j,Embeding_map); 
20        

21%***************************************************************** 
22        %case3: 
23        

24%***************************************************************** 
25        elseif(a(i,j,1)~=B(i,j,1) && a(i,j,2)~=B(i,j,2) ) 
26            [ST,Embeding_map] =  

27      embed_case3(ST,gT,CT,X,i,j,Embeding_map); 
28        end 
29    end 
30 end 

For embedding the secret image value in this algorithm, we have three cases. Like 

previous algorithm we have some conditions that the value of secret image and B that 

calculate by equation (2.3) are not equal. We should find all of covers number that 

values of these covers are not equal to 255 or 0, then we will find g from these numbers 

just in case 2 and 3. 

1 function [ST,Embeding_map] =  

2 embed_case1(ST,gT,CT,i,j,Embeding_map) 
3 [t, T ]= max([gT(i,j,1),gT(i,j,2),gT(i,j,3),gT(i,j,4)]); 
4 if(mod(CT(i,j,T),2)==0) 
5    ST(i,j,T) = CT(i,j,T)+1; 
6    Embeding_map(i,j,T) = 0; 
7 else 
8    ST(i,j,T) = CT(i,j,T)-1; 
9    Embeding_map(i,j,T) = 0; 
10 end 

In case 1 and line 3 we found maximum of gradient magnitude value and put it into T 

value. Then we checked is odd or even, if it was even we added 1 to this value 

otherwise subtracted by 1.  
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1 function [ST, Embeding_map] =  

2 embed_case2(ST,gT,CT,X,i,j,Embeding_map) 
3 if ~(isempty(X)) 
4    [aa, bb ]= sort( gT( i,j, X(1:length(X)) ) ,'descend' ); 
5    T1= X(bb(1)); 
6     
7    if(mod(CT(i,j,T1),2)==0) 
8        ST(i,j,T1) = CT(i,j,T1)-1; 
9        Embeding_map(i,j,T1) = 0; 
10    else 
11        ST(i,j,T1) = CT(i,j,T1)+1; 
12        Embeding_map(i,j,T1) = 0; 
13    end 
14    [aa, bb ]= sort( gT( i,j, : ) ,'descend' ); 
15    T2 =bb(1); 
16    if(T2==T1) 
17        T2 = bb(2); 
18    end 
19    if(mod(CT(i,j,T2),2)==0) 
20        ST(i,j,T2) = CT(i,j,T2)+1; 
21        Embeding_map(i,j,T2) = 0; 
22    else 
23        ST(i,j,T2) = CT(i,j,T2)-1; 
24        Embeding_map(i,j,T2) = 0; 
25    end 
26 else 
27    [t, T ]= max([gT(i,j,1),gT(i,j,2),gT(i,j,3),gT(i,j,4)]); 
28    if( CT(i,j,T)==0 ) 
29        ST(i,j,T) = CT(i,j,T)+2; 
30        Embeding_map(i,j,T) = 0; 
31    elseif( CT(i,j,T)==255 ) 
32        ST(i,j,T) = CT(i,j,T)-2; 
33        Embeding_map(i,j,T) = 0; 
34    end 
35 end 

For case 2 and 3 we act according to Fig 2.2 in chapter 2. At first we need find X, then 

obtained g meets X, then we checked this value is odd or even and act according to the 

algorithm.  

After 1 Bit LSB SS algorithm analyzed, 2Bit LSB algorithm performance will be 

evaluated. Implemented result of this algorithm for (4, 4) model shown. 
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Figure 3.6. Results of 2LSB (4, 4) – first row is Cover images – second row is 

 Embedded images – thirs row is Embedding map of each images 

The above amounts reported for PSNR in four output images (56.46 dB, 52.63 dB, 

55.59 dB and 53.1 dB) indicates that embedded data which using this algorithm could 

not make drastic changes in quality of output image such that there is not any 

appearance change to be recognized. Also the structural similarity mean value 

(MSSIM) of output cover images in comparison to original image are very close to 

one (0.999) which acknowledge it. 

After this stage, code images in cover image are extracted and input binary image with 

extracted output binary image are shown here. 
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Figure 3.7. Recovered Four tone Images 

 

3.3 Chang-Chen-Wang’s SSAR Method 

In this method, Appendix C, at first we need shuffled pixel values and we used 

Henon_Map function for this that we can see the instruction following. We used a key 

for shuffling that we define at the first of codes. 

1 function shuffled_index = Henon_map(count, key) 
2    x = zeros(1, count+1); 
3    x(1) = 0.8912; 
4    y = zeros(1, count+1); 
5    y(1) = 1; 
6    a = key; 
7    b = 0.1; 
8    for i = 2:count+1 
9       x(i) = 1 - a * x(i-1)^2 + y(i-1); 
10        y(i) = b * x(i-1); 
11    end 
12     
13    [tmp, shuffled_index] = sort(x(2:count+1)); 
14 end 

Then we should obtain the authentication code that in chapter 2 we describe this that 

how we can calculate it. This function shown the instructions. 

1  [hd, wd] = size(SI); 
2  S = hd*wd; 
3  [X, Y] = Permutation_phase(hd*wd, K); 
4  [LS] = SI(X); 
5  [LS_prim] = SI(Y); 
6  % -------------- Three Quantities -------------- 
7  alpha = bitget(LS, 8) * 4 + bitget(LS, 7) * 2 + bitget(LS, 6); 
8  beta = bitget(LS, 5) * 4 + bitget(LS, 4) * 2 + bitget(LS, 3); 
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9  gama = bitget(LS, 2) * 2 + bitget(LS, 1); 
10     
11 alpha_prim = alpha + 8 * bitget(LS_prim, 8); 
12 beta_prim = beta + 8 * bitget(LS_prim, 7); 
13 gama_prim = gama + 8 * bitget(LS_prim, 6) + 4 *  

14 bitget(LS_prim,5); 
15   
16 b5y = bitget(LS_prim, 4); 
17 % ------------- Authenticator, Hash Function and Hidden Data ----    

18 for i=1:S 
19  for k=1:n 
20        au(:,i,k) = mod(int16(alpha_prim(i)) + int16(beta_prim(i)) 

21        * id(k) + int16(gama_prim(i)) * (id(k) ^ 2), 17); 
22  
23        str = strcat(dec2bin(i,3),dec2bin(au(:,i,k),5)); 
24        temp = string2hash(str); 
25        hv(:,i,k) = bitget(temp, 5) * 8 + bitget(temp, 6) * 4 + … 
26        bitget(temp, 7) * 2 + bitget(temp, 8); 
27  
28        b5y(:,i,k) = b5y(i); 
29    end 
30 end 
31 %--------------- Embedding Phase --------------------- 
32 N = au * 34 + int16(hv) * 2 + int16(b5y); 
33  
34 for i=1:n 
35  N_five_base = dec2base(N(:,:,i), 5, 4); 
36    Covers_prim_tmp = embedding_algorithm(N_five_base,  

37    Covers(:,:,i)); 
38    Covers_prim(:,:,i) = reshape(Covers_prim_tmp,(hd*2),(wd*2)); 
39 end 

In line 7-9 we can calculate three numbers α, β, γ and in line 11-14 obtain α՜, β՜, γ՜ then 

in line 20 we calculate au for any covers, finally we can get N value. Before embedding 

we should convert N value into 4-digit of base 5 of N, then embed each digit into 

covers that we see the corresponding code below. 

1  Nx1 = N_five_base(:, 1) - '0'; 
2  Nx2 = N_five_base(:, 2) - '0'; 
3  Nx3 = N_five_base(:, 3) - '0'; 
4  Nx4 = N_five_base(:, 4) - '0'; 
5  
6  [ht wd] = size(Cover);  
7  S = (ht*wd)/4; 
8  
9  for i=1:S 
10  for j=1:4 
11  switch j 
12       case 1 
13           Cover_prim(4*(i-1)+j) = Cover(4*(i-1)+j) –  

14              mod(Cover(4*(i-1)+j),5) + Nx1(i); 
15          case 2 



27 
 

16                Cover_prim(4*(i-1)+j) = Cover(4*(i-1)+j) –  

17                mod(Cover(4*(i-1)+j),5) + Nx2(i); 
18           case 3 
19                Cover_prim(4*(i-1)+j) = Cover(4*(i-1)+j) –  

20                mod(Cover(4*(i-1)+j),5) + Nx3(i); 
21           case 4 
22                Cover_prim(4*(i-1)+j) = Cover(4*(i-1)+j) –  

23               mod(Cover(4*(i-1)+j),5) + Nx4(i); 
24      end 
25    end 

26 end 

In line 12-23 we embedded each digit into covers, we used two for loops that one loop 

start from 1 to S that is number of secret pixels and another one start from 1 to 4 that 

is number of digits of each N value. At the result of this procedure we get an image 

with some blocks with size 4. In reconstruction phase, before participants join the truth 

of their own shares can be verified and in this phase we can check whether the share 

is authentic. 

1  for k=1:n 
2   C = Covers_prim(:,:,k); 
3     for i=1:S 
4       str =''; 
5           for j=1:4 
6            NR_tmp(j) = mod(C(4*(i-1)+j),5); 
7                str = strcat(str,num2str(NR_tmp(j))); 
8           end 
9  
10          NR(:,i,k) = base2dec(str, 5); 
11          auR(:,i,k) = floor(NR(:,i,k)/(34)); 
12          hvR(:,i,k) = floor(mod(NR(:,i,k), 34)/2); 
13          b5yR(:,i,k) = floor(mod(NR(:,i,k),2)); 
14    end 
15  end 
16  % ---------------------- Check errors (authenticity) -----------

17  for k=1:n 
18   hv(:,:,k) = generate_ax(auR(:,:,k), 1:size(auR,2)); 
19         
20      if (hv(:,:,k) == hvR(:,:,k)) 
21       authenticated(k) = k; 
22      end 
23      ER(:,:,k) = reshape(255*(hv(:,:,k) == hvR(:,:,k)), ht/2,  

24      wd/2); 
25  end 
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Here, authentication code re-calculated and checked with first authenticator. If they 

are equal, this pixel is authentic pixel otherwise is inauthentic. Finally, in 

reconstruction phase, at least we need three legal participants to join together that can 

be reconstruct the secret image and we used Cramer’s rule for solving this system. 

Corresponding code: 

1  A(:,1) = [1 1 1]; 
2  A(:,2) = delta; 
3  A(:,3) = delta .^ 2; 
4  
5  for i=1:S 
6 b(:,1) = au(1,i,delta); 
7 
8     A1 = A;A1(:,1)=b; 
9     A2 = A;A2(:,2)=b; 
10    A3 = A;A3(:,3)=b; 
11    D = int16(det(A)); 
12    D1 = int16(det(A1)); 
13    D2 = int16(det(A2)); 
14    D3 = int16(det(A3)); 
15  
16    alpha_prim(i) = mod(int16(mod(D1 * mulinv(D,17),17)),17);  
17    beta_prim(i) = mod(int16(mod(D2 * mulinv(D,17),17)),17);   
18    gama_prim(i) = mod(int16(mod(D3 * mulinv(D,17),17)),17); 

19  end 

For Chang-Chen-Wang’s method four 512 × 512 cover images are used. Also a 256 × 

256 image for secret image is used. Examples of these images are shown below. 

 
Figure 3.8. Secret Image 

The amounts reported for PSNR in four output images are (42.04 dB, 42.01 dB, 42.06 

and 42.04) indicates that embedded data which using this algorithm not good same as 
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Yuan’s method [3] and output image quality lower than Yuan’s method [3]. Also 

structural similarity mean value (SSIM) of output cover images in comparison to 

original image are (0.797, 0.798, 0.789 and 0.788) which acknowledge it. 

 

 

 
Figure 3.9. Results of Chang-Chen-Wang’s Method 

The following table shows the values of all three methods. According to values 

obtained, the 1LSB method with least destruction on an image, has high quality after 

embedding information inside of covers. 

Table 3.1. PSNR and SSIM of three methods 

 Airplane Ship Girl Pepper 

1LSB PSNR (dB) 58.59 56.36 55.46 59.43 
2LSB PSNR (dB) 56.46 52.63 55.59 53.1 

SSAR PSNR (dB) 42.04 42.01 42.06 42.04 

1LSB SSIM 0.999 0.999 0.999 0.999 

2LSB SSIM 0.996 0.996 0.996 0.996 

SSAR SSIM 0.797 0.798 0.789 0.788 
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Also table 3.2 shows differences of our obtained value and paper’s value in 1LSB 

method [3]. 

Table 3.2. PSNR and SSIM of 1LSB methods 

 Airplane Lena 

Our PSNR (dB) 54.74 53.63 
Yuan’s PSNR 

(dB) 

54.48 53.83 

Our SSIM 0.998 0.998 

Yuan’s SSIM 0.998 0.998 

Table 3.3 shows differences of our obtained value and paper’s value in 2LSB method 

[3]. 

Table 3.3. PSNR and SSIM of 2LSB methods 

 Airplane Lena 

Our PSNR (dB) 51.18 51.04 
Yuan’s PSNR 

(dB) 

51.29 50.98 

Our SSIM 0.996 0.996 

Yuan’s SSIM 0.996 0.996 

And table 3.4 shows differences of our obtained value and paper’s value in SSAR 

method [5]. 

Table 3.4. PSNR and SSIM of SSAR methods 

 Baboon Airplane Sailboat Lena Pepper 

Our PSNR (dB) 42.02 42.05 42.04 42.21 42.04 
Chang’s PSNR 

(dB) 

45.10 45.11 45.10 45.12 45.12 

Our SSIM 0.990 0.9659 0.9783 0.9733 0.9638 
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Chapter 4 

ANALYSIS OF THE YUAN’S AND CHANG-CHEN- 

WANG’S SSAR METHODS 

As mentioned earlier, our purpose is to analyze Yuan’s method [3] and Chang-Chen-

Wang’s method [5] then optimize the Chang-Chen-Wang’s method. 

4.1 Yuan’s versus Chang-Chen-Wang’s SSAR Methods 

Unlike Yuan’s methods [3], in Chang-Chen-Wang’s method [5], input secret image is 

type of grayscale and input image to cover image ratio is one-to-two while the Yuan’s 

methods [3] are one-to-one. Chang-Chen-Wang’s method [5] has an ability that can 

be repair an image when this image tampered by a hacker. Chang-Chen-Wang’s 

method [5] use a hash function for detecting error and has an extra procedure that each 

cover to restore the image must be authenticated but Yuan’s methods [3] have not these 

features. Yuan’s methods [3] use a simple algorithm to retrieve a secret image and 

after embedding, the photos have little damage. As a result, the final image will be 

displayed with high quality and therefore it will be very hard to detect. But because of 

the complexity of the Chang-Chen-Wang’s method [5], the image quality is lower than 

Yuan’s methods [3] but with advantages such as authentication and the ability to 

recover an image we can ignore this objection. 

4.2 Chang-Chen-Wang’s SSAR Method Analysis 

As it was stated in the Chapter 1, SSAR under its assumption may be working 

incorrectly. This we prove by the following counterexample Example 2. In the 

Example 1, we have seen that denominators used in (2.17) are non-zero because 
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identifiers appearing in (2.16) are all distinct, and hence, Vandermonde determinant is 

not zero. But as far as (2.17) uses arithmetic modulo 17, it shall not be also equal to 

zero modulo 17. It might happen that the determinant is non-zero but is zero modulo 

17; in such a case, the solution does not exist as it is shown in the Example 2. 

Example 2. Let’s consider the same conditions as in the Example 1, but the identifiers 

of the cover images are (1,2,18,4,5), instead of the used (1,2,3,4,5). Then in 2.15, 2.16  

517mod)324318118(13 au     (4.1) 

And the determinant used in the denominators of (2.17) will be as follows 

017mod27217mod)52324(

17mod)723242418628(17mod

324181

421

111

det




  (4.2) 

As far as the denominator is equal to zero in (2.23), the solution of (2.16) does not 

exist if 183 id instead of 33 id used in the Example 1. The reason of the problem 

that in spite of the identifiers are mutually exclusive, they are not mutually exclusive 

modulo 17. The system of equations (2.16) with the last equation replaced according 

to (2.22) by 

17mod)32418(5 '

1

''

1

'

113   au    

thus, has no solution. 

It is claimed in [5] that SSAR can recognize malicious users with the help of hash 

function but it is known and can be used by fake users to get a valid hash for the 

artificially created authenticators. Also, the hash function used is only four-bit, and 

needs extension for greater reliability. In the next chapter 5, we propose an 

enhancement of SSAR, SSAR-E method that always works correctly, counters fake 
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participants, has greater bit-size hash function, and allows exact repairing of up to n-1 

damaged pixels out of n given that at least one pixel is not corrupted. In SSAR, only 5 

bits out of 8 are repaired, but in the SSAR-E, all 8 bits are repaired exactly. 
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Chapter 5 

DEVELOPMENT OF SSAR-E METHOD 

Our proposed enhancement basically is the same as SSAR but has the following 

modifications to 

 Have it working correctly for assumptions used; 

 Repair all eight bits of the partner pixel; 

 Withstand fake participant attack and extend hash function value bit size from 

4 to 5; 

 Restore up to S-1 corrupted secret image pixels out of S; 

 Allow the secret image disclosing to the authorized parties only. 

The modifications are presented below. 

Modification 1 (to have the SSAR correctly working). Covers’ identifiers are not just 

mutually exclusive as required in [5], p. 3075, Section 3.1, but mutually exclusive 

modulo 17, i.e. 17mod0)(,(  ji ididjiji . In that case, actually, systems like 

(2.16) are always solvable because the determinant of the coefficient matrix is not only 

are not zero but also not zero modulo 17 as it is required by the algorithm. 

Modification 2 (to have an opportunity of repairing all eight bits of the partner pixel, 

not just five bits). In SSAR, from each pixel, three entities are constructed, iii  ,, , 

which are 3, 3, and 2 bit entities, extended to 4-bit entities ''' ,, iii  by the use of 1, 1, 

and 2 bits of the partner pixel. Thus, four bits of the partner pixel are mixed with the 
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three entities, and the 5-th bit of the partner pixel is embedded in the numbers obtained 

in Step 6, equation (2.8). In SSAR-E, we work with four two-bit entities, and SSAR 

Embedding Part, Steps 2-4 are rewritten as follows. 

Step 2.  For each i, define four quantities, 

}3,..,0{2

},3,..,0{2},3,..,0{2},3,..,0{2
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i=1,..,S                     (5.1) 

Step 3. Concatenate the bits  b1i,..,b8i, of the partner pixel, LS’i with the four quantities 

(5.1), getting 
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,  i=1,..,S.   (5.2) 

Step 4. Using (2.5), calculate an authenticator, 

}16,..,0{17mod)( 3'2'''  iiiiiiiik idididau      (5.3) 

For each pixel and each cover, i=1,..,S, k=1,..,n. Thus, for each pixel, we get a system 

of n >= 4 equations that allows solving them with respect to '''' ,,, iiii  after 

embedding of the authenticators into the cover images by a sender, and the next 

extraction of the authenticators from the cover images by a receiver. 

Also Steps 4-6 of the SSAR Extraction Part are to be rewritten as follows. 

Step 4. If checking in (2.12) of Step 3 is true (no error) for any four covers, then four 

entities, '''' ,,, iiii RRRR  ,  used in calculation of authenticators (5.3) are restored from 

(5.3) by solving a system of at least four linear modulo 17 algebraic equations with 

respect to four unknowns. That system is always solvable because of the condition 

introduced in Modification 1. 
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Step 5. Having restored '''' ,,, iiii RRRR  , values 
iiii RRRR  ,,, together with 

ii bRbR 81 ,.., from (5.2) can be restored as follows 

2mod)4(,8,2mod)4(,8

,2mod)4(,8,2mod)4(,8

,4mod,4mod,4mod,4mod

'
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divRbRdivRbRdivRbRdivRbR
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        (5.4) 

Step 6. From (5.4), the original pixel is restored using (5.1) 

iiiii RRRRLS   41664      (5.5) 

Obtained in (5.4) eight bits 81 ,..,bRbR i of the partner pixel LS’i can be used for its 

restoration in the case if it is damaged. 

Modification 3 (to have SSAR resistant to fake participant attack and hash function 

value bit number extension from 4 to 5). SSAR uses any hash function that does not 

allow countering fake participant attack. To resist the attack, the hash function shall 

be cryptographic, i.e. having a secret key parameter shared by the valid communicating 

parties.  Also, as far as all the participant pixel bits are embedded into four entities (see 

Modification 2), one bit used in the number (2.8) for keeping 5-th bit of the partner 

pixel, now can be used for the hash function value keeping. Thus, Steps 5-6 of the 

SSAR Embedding Part are rewritten as follows. 

Step 5. For each authenticator (2.6), ikau , calculate its 4-bit hash function value, 

 }31,..,0{)||(  ikSKik auihashhv , i=1,..,S, k=1,..,N,  (5.6) 

Where SK is a secret key shared by the valid communicating parties. 

Step 6. Using (5.3), (5.6), generate a number  

}575,..,0{34  ikikik hvauN     (5.7) 
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By mixing an authenticator and its hash in a way allowing getting back its constituent 

parts. The number can be represented as a four-digit base-5 number. 

SSAR Extraction Part Steps 2-3 are also to be rewritten accordingly: 

Step 2. Restore constituent parts of the numbers (2.10) using (5.7) 

34mod;34 ikikikik NRhvRdivNRauR      (5.8) 

Step 3. Check errors (authenticity) of the restored by (5.8) authenticator by 

recalculating of the hash of the restored authenticator, ikauR , and comparing it versus 

its restored hash function value (see 5.8): 

ikikSK hvRauRihash )||( .      (5.9) 

If (5.9) is true then the authenticator is considered valid, otherwise an error is detected. 

Modification 4 (to have an opportunity of repairing S-1 damaged pixels out of S). 

SSAR Embedding Part uses (see Step 1) some permutation to produce a dual sequence 

LS’. In the Example 1, the permutation (4,2,1,3,6,5) was used so that the partner for 

LS1 is LS4 (LS1=>LS4), for LS2 is LS2 (LS2=>LS2), for LS3 and LS1 (LS3=>LS1), for 

LS4 is LS3 (LS4=>LS3), for LS5 is LS6 (LS5=>LS6), and for LS6 is LS5 (LS6=>LS5), 

where A=>B denotes that B is a partner of A. We see that the permutation defines three 

loops of partnership: LS1=>LS4=>LS3=>LS1, LS2=>LS2, LS5=>LS6=>LS5. For 

example, if LS1 is damaged, it may be restored from LS3, that in turn ca be damaged 

and restored from LS4 if LS4 is correct. Thus, we see that if we have a loop of 

partnership of length three, then if its elements are damaged, they can be restored from 

only one correct remained pixel. But if a loop is of length one, then there is no repairing 

opportunity for that pixel. It is desirable having the loops of partnership of the maximal 

possible length to have maximal repairing facility. Maximal possible loop involves all 

S elements of the secret image pixels Hence, the permutations to be used in the SSAR-
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E are to be such that they have only one loop involving all pixels of the image, e.g., it 

may be a permutation which is circular right shift, (6,1,2,3,4,5) for S=6, where 

LS1=>LS6=>LS5=>LS4=>LS3=>LS2=>LS1. In that case, if LS1 is damaged it may be 

restored from LS2, which may be restored from LS3, which may be restored from LS4, 

which may be restored from LS5, which may be restored from LS6 If it  is correct. Thus, 

five pixels, may be restored from just one remained correct pixel LS6.Thus, to have an 

opportunity of repairing of S-1 pixels out of S just from one remaining correct pixel, 

we need in Step 1 of SSAR Embedding Part using of not any permutation but a special 

permutation having only one loop involving all image’s pixels. Thus, we are to rewrite 

Step 1 as follows. Note also that secret key K usage in the permutation is not necessary 

as far as it is not used further in SSAR. 

Step 1. Producing a dual sequence LS’=permutation(LS), where permutation() 

involves all S elements in a single loop. Denote bits of LSi as a1i,..,a8i, and of its partner 

LS’i as b1i,..,b8i, i=1,..,S. 

Modification 5 (to allow the secret image disclosing to the authorized parties only). 

The SSAR method allows disclosing the secret image to any person having any three 

out of n covers using equations (2.6). We can prevent it by the use of cryptographic 

hiding the sequence of authenticators (producing again sequence of numbers modulo 

17) before the numbers (2.8), in SSAR, and (2.30), in SSAR-E, embedding in the cover 

images. Cryptographic hiding of the sequence of authenticators may be made, e.g., by 

the use Counter mode of any block cipher (see [11], p.207 therein, modified so that 

the block cipher output is taken modulo 17 and added/subtracted with/from 

plaintext/ciphertext when encrypting/decrypting. Initial counter value and the cipher 

key shall be shared by the authorized sender and receiver. Thus, we introduce in 
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SSAR-E Embedding Part the Step 4’ for hiding the identifiers, and Step 3’ in the 

SSAR-E Extraction Part after Step 4 and Step 3, respectively. 

SSAR-E Embedding Part Step 4’. Encrypt the authenticator, ikau  , using an encryption 

algorithm,  , with secret key, SK1, and current Counter value as follows: 

1;17mod)(1  CounterCounterCounterEauau SKikik  

SSAR-E Extraction Part Step 3’. Decrypt the authenticator, ikau  , using a decryption 

algorithm, xxED KK ))((   , such that  for any valid secret key K and plaintext x, with 

secret key, SK1, and current Counter value as follows: 

  1;17mod)(1  CounterCounterCounterDauau SKikik  

Thus, we introduced four modifications for the SSAR method to get its enhancement, 

SSAR-E, having such properties as 

 Correct working under made assumptions; 

 An opportunity of repairing all eight bits of the partner pixel instead of just five 

bits; 

 Resistance to the fake participant attack that is based on the use of 

cryptographic hash functions; 

 Greater probability of error detection because of the use of 5-bit hash function 

contrary to four bits used in SSAR; 

 An opportunity of repairing up to S-1 damaged  pixels out of S due to the use 

of the dual sequence obtained by the special permutation having all S pixels 

involved in one partnership loop contrary to an arbitrary permutation used in 

SSAR; 

 Allowing the secret image disclosing to the authorized people only using 

cryptographic hiding of the authenticators. 
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Thus, the SSAR-E method having Embedding, Extraction, and repairing parts is as 

follows. Assumption of SSAR-E is defined in Modification 1. 

SSAR-E Embedding Part (Steps 1-4, 4’, 5-7). 

Step 1. Produce a dual sequence LS’=permutation(LS), where permutation() involves 

all S elements in a single loop. Denote bits of LSi as a1i,..,a8i, and of its partner LS’i 

as b1i,..,b8i, i=1,..,S. 

Step 2.  For each i, define four quantities by (2.24) 

Step 3. Concatenate the bits b1i,..,b8i, of the partner pixel, LS’i, with the four quantities 

(2.24), getting (2.25). 

Step 4. Using (2), calculate an authenticator (23) for each pixel and each cover, 

i=1,..,S, k=1,..,n>=4. Thus, for each pixel, we get a system of n>= 4 equations that 

allows solving them with respect to  after embedding of the authenticators into the 

cover images by a sender, and the next extraction of the authenticators from the cover 

images by a receiver. 

Step 4’. Encrypt the authenticator, ikau , using an encryption algorithm,  , with secret 

key, SK1, and current Counter value as follows: 

1;17mod)(1  CounterCounterCounterEauau SKikik  

Step 5. For each authenticator (2.6), ikau , calculate its 4-bit hash function value (2.29). 

Step 6. Using (2.26), (2.29), generate the number (2.30) by mixing an authenticator 

and its hash in a way allowing getting back its constituent parts. The number can be 

represented as a four-digit base-5 number. 

Step 7. Each cover image Ck is represented as a sequence of S 4-pixel blocks so that   

in the form of four base 5 digit number, ]4..1[ikN  , is embedded into four consecutive 

pixels Ck[4(i-1)+1,..,4i] by (2.9). 
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SSAR-E Extraction Part (Steps 1-3, 3’, 4-6) 

Step 1. Restore digits of the embedded number using (2.9) get (2.10). 

Step 2. Restore constituent parts of the numbers (2.10) using (2.30) get (2.31). 

Step 3. Check errors (authenticity) of the restored by (2.31) authenticator by 

recalculating of the hash of the restored authenticator, ikauR  , and comparing it versus 

its restored hash function value (see (2.31)) using the condition (2.32). If (2.32) is true 

then the authenticator is considered valid, otherwise an error is detected. 

Step 3’. Decrypt the authenticator, ikau  , using a decryption algorithm, D  , such that 

xxED KK ))((   for any valid secret key K and plaintext x, with secret key, SK1, and 

current Counter value as follows: 

  1;17mod)(1  CounterCounterCounterDauau SKikik  

Step 4. If checking in (2.12) of Step 3 is true (no error) for any four covers, then four 

entities, '''' ,,, iiii RRRR   ,  used in calculation of authenticators (2.26) are restored 

from (2.26) by solving a system of at least four linear modulo 17 algebraic equations 

with respect to the four unknown entities. That system is always solvable because of 

the condition introduced in Modification 1 the Vandermonde determinant of the 

system is non-zero. 

Step 5. Having restored '''' ,,, iiii RRRR  , values 
iiii RRRR  ,,, together with 

ii bRbR 81 ,.., from (2.25) can be restored by (2.27). 

Step 6. From (2.27), the original pixel is restored using (2.24) by (2.28). 
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Chapter 6 

CONCLUSION AND FUTURE WORK 

This thesis was analysis of two secret sharing methods that their shares by multi cover 

adaptive steganography. Both of methods are share-constructing method. In the 

construction step we used grayscale images. For revealing the secret image we used 

simple Boolean operation on Yuan’s method but used three linear algebraic equations 

modulo 17 for Chang-Chen-Wang’s method. 

Yuan’s method share the secret bits of an image among the edges and texture regions 

of particular covers by using the gradient-based measure but Chang-Chen-Wang’s 

method share these bits within meaningful contents of covers Images also fake cover 

images and errors in the covers are recognized and may be repaired. In Chang-Chen-

Wang’s method, the SSAR algorithm is proposed claiming to solve the problem. It 

uses three entity representation of every secret image pixel and mixes them with four 

bits of the partner pixel from the dual pixel sequence obtained by shuffling of the secret 

image pixel sequence. For each such three entities and each cover having a unique 

identifier, an authenticator is calculated as a second order polynomial of the identifier 

and the three entities used as its coefficients. If number of covers is greater or equal to 

three, any three of such authenticators can be used for unique restoration of the three 

entities from which the secret image pixel may be restored. The authenticators are 

embedded into the cover images together with their hash function values (for their next 

checking after un-hiding) and the 5-th bit of the partner pixel. SSAR method may be 
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classified as (3,n) secret sharing method meaning that for restoration of the secret 

method, it is sufficient having any three out of n cover images used for embedding of 

the secret image. Analysis of SSAR shows that this ability of restoration of the secret 

image from any three covers is based on the solvability of a system of three linear 

algebraic modulo 17 equations that is expected to be provided assuming that the 

covers’ identifiers are mutually exclusive. We show by the counterexample that this 

condition is not sufficient and prove that it shall be extended to mutually exclusive 

modulo 17 identifiers which is used in our proposed enhanced method, SSAR-E. 

Hiding of the authenticators is done by the Least Significant Base 5 Digit method with 

the authenticator represented as a 4-digit base 5 number, needing four cover image’s 

pixels per one authenticator. In the course of the authenticator un-hiding, the secret 

image pixel is restored together with five bits of the partner pixel if the authenticator 

is classified as a correct one. In the proposed SSAR-E, four two-bit entities are 

produced from a secret image pixel that allows embedding in the authenticator of all 

eight bits of the partner pixel thus improving remedy facilities of SSAR method but it 

is now (4, n) secret sharing method, i.e. any four cover images out of n are necessary 

for the secret image un-hiding. Correctness of an authenticator is checked by the use 

of a 4-bit hash function value in SSAR; we extend the function to a 5-bit one that 

allows more reliable checking of the authenticators. The SSAR method using usual 

hash functions is able detecting errors but is not able countering fake participant attack 

when some cover gets embedded fake authenticators together with their correctly 

calculated known hash function. In the proposed SSAR-E method, a cryptographic 

hash function having a secret key value shared by the valid communicating parties is 

used to counter fake participant attack. If it is found out that most pixels are corrupted, 

this may serve as an indicator of the fake participant attack. The SSAR method uses 
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an arbitrary permutation for shuffling the pixels of the secret image to get the dual 

sequence having partner pixels of the secret image. If the pixel is corrupted, in SSAR-

E, it can be fully 100% restored from the partner pixel contrary to the SSAR where 

only five out of 8 bits (62.5%) could be restored. If the partner pixel in SSAR method 

is also corrupted then repairing is not possible generally (because its partner may be 

itself). In SSAR-E, the permutation for the dual sequence generating is selected so that 

it involves all the secret image pixels in a single partnership loop meaning that if a 

pixel and its partner are corrupted but the partner of the partner is not corrupted they 

may be restored from the latter, and so up to S-1 corrupted pixels in the partner loop 

can be restored from the last in the partnership loop correct pixel that is a very 

important feature of the secret sharing method not supported by the SSAR method. 

However, both of methods have same goal but one of them has easy instructions for 

embedding and recovery, another one vice versa and one of them can reconstruct the 

secret after tampering by hacker but another one cannot. 

I intend to study this topic as of my future work, moreover, improved performance of 

the (k, n) model of presented in the Hai- Dong Yuan’s paper and Chang-Chen-Wang’s 

paper by using n specific covers. 
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Appendix A: 1LSB (n, n) SS Yuan Algorithm 

Appendix A-1: Code for Importing Images 

clc; 
clear all; 
addpath('pics1/') 
pic_m = 8; 
%=================================================================== 
n = 2; 
Cover_size = 512; 
Covers = uint8( zeros(Cover_size,Cover_size,n) ); 
img_name = 'C'; 
for i=1:n 
    img = imread([img_name, '',num2str(i) '.jpg']); 
    C = size(img); 
    if(length(C)> 2) 
        img = rgb2gray(img); 
    end 
    img = imresize(img, 'OutputSize',[Cover_size Cover_size]); 
    Covers(:,:,i) = img; 
end 

 
A = imread('Secret.bmp'); 

Secret_size = 512; 
A = imresize(A, 'OutputSize',[Secret_size Secret_size]); 
%=================================================================== 
for i=1:n 
    c = image_to_3Dmat(Covers(:,:,i),pic_m); 
    Covers_bit(:,:,:,i) = c; 
end 
%=================================================================== 

Appendix A-2: Code for Calculating (2.2) 

function B = binaryimageB(Covers) 
[r,c,d,t]= size(Covers); 

  
B = xor(Covers(:,:,1,1),Covers(:,:,1,2)); 
for i=3:t 
    B = xor(B, Covers(:,:,1,i)); 
end 

  
end 
%=================================================================== 

 

Appendix A-3: Code for Calculating Gradient Magnitude 

for i=1:n 
    g = cacl_g(double(Covers(:,:,i))); 
    gT(:,:,i) = g; 
en 
%===================================================================  

function g = cacl_g(image) 
    [g,Gdir] = imgradient(image); 
end 
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Appendix A-4: Code for Embedding Phase 

[S,Embeding_map] = embed_loop(A,B,Covers,gT); 
%=================================================================== 

function [ST,Embeding_map] = embed_loop(A,B,Covers,gT) 

  
[r,c]=size(A); 

  
ST = Covers; 
Embeding_map = ones(size(Covers)); 
for i=1:r 
    for j=1:c 
        if(A(i,j)~=B(i,j)) 
            [t,T]= max(gT(i,j,:)); 
            if(Covers(i,j,T)==255) 
                ST(i,j,T) = Covers(i,j,T)-1; 
                Embeding_map(i,j,T) = 0; 
            elseif(Covers(i,j,T)==0) 
                ST(i,j,T) = Covers(i,j,T)+1; 
                Embeding_map(i,j,T) = 0; 
            else 
                if(rand(1)>0.5) 
                    ST(i,j,T) = Covers(i,j,T)-1; 
                    Embeding_map(i,j,T) = 0; 
                else 
                    ST(i,j,T) = Covers(i,j,T)+1; 
                    Embeding_map(i,j,T) = 0; 
                end 
            end 
        end 
    end 
end 
%=================================================================== 

Appendix A-5: Code for Converting Double Value of Image into Binary  

for i=1:n 
    s = image_to_3Dmat(S(:,:,i),pic_m); 
    s_bits(:,:,:,i) = s; 
end 
%=================================================================== 

function outmatrix = image_to_3Dmat(image,pic_m) 
[r,c]=size(image); 
outmatrix= zeros(r,c,pic_m); 
h=waitbar(0,'please wait...'); 

  
for i=1:r 
    for j=1:c 
        x1 = dec2bin(image(i,j)); 
        for l=1:length(x1) 
            if( x1(l)=='1') 
                outmatrix(i,j,length(x1)-l+1) = 1; 
            end 
        end 
    end 
    waitbar(i/r) 
end 
close(h); 

 
%=================================================================== 
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Appendix A-6: Code for Calculating PSNR and SSIM and Show Results 

figure('units','normalized','outerposition',[0 0 1 1]); 
set(gcf, 'name', 'Results'); 
for i=1:n 
    subplot(3,n,i); imshow(Covers(:,:,i)); title(['Cover 

',num2str(i)]); 
    subplot(3,n,i+n); imshow(uint8(S(:,:,i))); 
    PSNR = My_PSNR(Covers(:,:,i),S(:,:,i)); 
    [ssimval, ssimmap] = ssim(uint8(S(:,:,i)),Covers(:,:,i)); 
    title(['PSNR = ',num2str(PSNR) ,' dB    SSIM = 

',num2str(ssimval)]); 
    subplot(3,n,i+2*n); imshow(Embeding_map(:,:,i)); 
end 
%=================================================================== 
tic 
    Ap = binaryimageB(s_bits); 
toc; 
time = toc; 
%=================================================================== 
figure; 
set(gcf, 'name', 'Secret Image and Image Recovery'); 
subplot(1,2,1); 
imshow(A); 
title('input image (two tone)'); 
subplot(1,2,2); 
imshow(Ap); 
title('extraced image (two tone)'); 
%=================================================================== 
function My_psnr=My_PSNR(I,J) 

  
    X = double(I);  
    Y = double(J);  

  
    MSE = sum((X(:)-Y(:)).^2) / prod(size(X));  
    My_psnr = 10*log10(255 * 255/MSE); 

  
end 
%=================================================================== 
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Appendix A-7: Screenshot of PSNR and SSIM 1LSB Method 
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Appendix B: 2LSB (n, n) SS Yuan Algorithm 

Appendix B-1: Code for Importing Images 

clc; 
clear all; 
addpath('pics/') 
pic_m = 8; 
%=================================================================== 
n = 4; 
Cover_size = 256; 
Covers = uint8( zeros(Cover_size,Cover_size,n) ); 
img_name = 'C'; 
for i=1:n 
    img = imread([img_name, '',num2str(i) '.jpg']); 
    C = size(img); 
    if(length(C)> 2) 
        img = rgb2gray(img); 
    end 
    img = imresize(img, 'OutputSize',[Cover_size Cover_size]); 
    Covers(:,:,i) = img; 
end 
%=================================================================== 
A = imread('Secret.gif'); 
Secret_size = 256; 
A = imresize(A, 'OutputSize',[Secret_size Secret_size]); 
a = image2bit_to_3Dmat(A); 
%=================================================================== 
for i=1:n 
    c = image_to_3Dmat(Covers(:,:,i),pic_m); 
    Covers_bit(:,:,:,i) = c; 
end 
%=================================================================== 

Appendix B-2: Code for Calculating (2.2) 

B(:,:,1) = binaryimageB(Covers_bit(:,:,1,:)); 
B(:,:,2) = binaryimageB(Covers_bit(:,:,2,:)); 
%=================================================================== 
function B = binaryimageB(Covers) 
[r,c,d,t]= size(Covers); 

  
B = xor(Covers(:,:,1,1),Covers(:,:,1,2)); 
for i=3:t 
    B = xor(B, Covers(:,:,1,i)); 
end 

  
end 
%=================================================================== 

Appendix B-3: Code for Calculating Gradient Magnitude 

for i=1:n 
    g = cacl_g(double(Covers(:,:,i))); 
    gT(:,:,i) = g; 
end 
%=================================================================== 
function g = cacl_g(image) 



53 
 

    [g,Gdir] = imgradient(image); 
end 

Appendix B-4: Code for Embedding Phase 

[S] = embed_loop(a,B,Covers,gT); 
%=================================================================== 
function [ST] = embed_loop(a,B,CT,gT) 
[r,c,m]=size(a); 
ST = CT; 
for i=1:r 
    for j=1:c 
        X = find_X(CT(i,j,:)); 
        

%****************************************************************** 
        %case1: 
        

%****************************************************************** 
        if(a(i,j,1)~=B(i,j,1) && a(i,j,2)==B(i,j,2) ) 
            ST =embed_case1(ST,gT,CT,i,j); 
        

%****************************************************************** 
            %case2: 
        

%****************************************************************** 
        elseif(a(i,j,1)==B(i,j,1) && a(i,j,2)~=B(i,j,2) ) 
            ST= embed_case2(ST,gT,CT,X,i,j); 
        

%****************************************************************** 
        %case3: 
        

%****************************************************************** 
        elseif(a(i,j,1)~=B(i,j,1) && a(i,j,2)~=B(i,j,2) ) 
            ST = embed_case3(ST,gT,CT,X,i,j); 
        end 
    end 
end 
%=================================================================== 
function ST = embed_case1(ST,gT,CT,i,j) 
[t,T]= max(gT(i,j,:)); 
if(mod(CT(i,j,T),2)==0) 
    ST(i,j,T) = CT(i,j,T)+1; 
else 
    ST(i,j,T) = CT(i,j,T)-1; 
end 
%=================================================================== 
function [ST, Embeding_map] = 

embed_case2(ST,gT,CT,X,i,j,Embeding_map) 
if ~(isempty(X)) 
    [aa, bb ]= sort( gT( i,j, X(1:length(X)) ) ,'descend' ); 
    T1= X(bb(1)); 

     
    if(mod(CT(i,j,T1),2)==0) 
        ST(i,j,T1) = CT(i,j,T1)-1; 
        Embeding_map(i,j,T1) = 0; 
    else 
        ST(i,j,T1) = CT(i,j,T1)+1; 
        Embeding_map(i,j,T1) = 0; 
    end 
    [aa, bb ]= sort( gT( i,j, : ) ,'descend' ); 
    T2 =bb(1); 
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    if(T2==T1) 
        T2 = bb(2); 
    end 
    if(mod(CT(i,j,T2),2)==0) 
        ST(i,j,T2) = CT(i,j,T2)+1; 
        Embeding_map(i,j,T2) = 0; 
    else 
        ST(i,j,T2) = CT(i,j,T2)-1; 
        Embeding_map(i,j,T2) = 0; 
    end 
else 
    [t, T ]= max([gT(i,j,1),gT(i,j,2),gT(i,j,3),gT(i,j,4)]); 
    if( CT(i,j,T)==0 ) 
        ST(i,j,T) = CT(i,j,T)+2; 
        Embeding_map(i,j,T) = 0; 
    elseif( CT(i,j,T)==255 ) 
        ST(i,j,T) = CT(i,j,T)-2; 
        Embeding_map(i,j,T) = 0; 
    end 
end 
%=================================================================== 
function [ST,Embeding_map] = 

embed_case3(ST,gT,CT,X,i,j,Embeding_map) 
if ~(isempty(X)) 
    [t, bb ]= max( gT( i,j, X( 1:length(X) ) ) ); 
    T=X(bb); 
    if(mod(CT(i,j,T),2)==0) 
        ST(i,j,T) = CT(i,j,T)-1; 
        Embeding_map(i,j,T) = 0; 
    else 
        ST(i,j,T) = CT(i,j,T)+1; 
        Embeding_map(i,j,T) = 0; 
    end 

     
else 
    [aa, bb ]= sort( gT( i , j , : ) ,'descend' ); 
    T1= bb(1); 
    if( CT(i,j,T1)==0 ) 
        ST(i,j,T1) = CT(i,j,T1)+2; 
        Embeding_map(i,j,T1) = 0; 
    elseif( CT(i,j,T1)==255 ) 
        ST(i,j,T1) = CT(i,j,T1)-2; 
        Embeding_map(i,j,T1) = 0; 
    end 
    T2 =bb(2); 
    if( CT(i,j,T2)==0 ) 
        ST(i,j,T2) = CT(i,j,T2)+1; 
        Embeding_map(i,j,T2) = 0; 
    elseif( CT(i,j,T2)==255 ) 
        ST(i,j,T2) = CT(i,j,T2)-1; 
        Embeding_map(i,j,T2) = 0; 
    end 
end 
%=================================================================== 

Appendix B-5: Code for Converting Double Value of Image into Binary  

for i=1:n 
    s = image_to_3Dmat(S(:,:,i),pic_m); 
    s_bits(:,:,:,i) = s; 
end 
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%=================================================================== 

function outmatrix = image_to_3Dmat(image,pic_m) 
[r,c]=size(image); 
outmatrix= zeros(r,c,pic_m); 
h=waitbar(0,'please wait...'); 

  
for i=1:r 
    for j=1:c 
        x1 = dec2bin(image(i,j)); 
        for l=1:length(x1) 
            if( x1(l)=='1') 
                outmatrix(i,j,length(x1)-l+1) = 1; 
            end 
        end 
    end 
    waitbar(i/r) 
end 
close(h); 

 
%=================================================================== 

Appendix B-6: Code for Calculating PSNR and SSIM and Show Results 

figure('units','normalized','outerposition',[0 0 1 1]); 
set(gcf, 'name', 'Results'); 
for i=1:n 
    subplot(3,n,i); imshow(Covers(:,:,i)); title(['Cover 

',num2str(i)]); 
    subplot(3,n,i+n); imshow(uint8(S(:,:,i))); 
    PSNR = My_PSNR(Covers(:,:,i),S(:,:,i)); 
    [ssimval, ssimmap] = ssim(uint8(S(:,:,i)),Covers(:,:,i)); 
    title(['PSNR = ',num2str(PSNR) ,' dB    SSIM = 

',num2str(ssimval)]); 
    subplot(3,n,i+2*n); imshow(Embeding_map(:,:,i)); 
end 
%=================================================================== 
tic 
    Ap1 = binaryimageB(s_bits(:,:,1,:)); 
    Ap2 = binaryimageB(s_bits(:,:,2,:)); 
    [r,c]=size(Ap1); 
    for i=1:r 
        for j=1:c 
            Ap(i,j,1) = Ap1(i,j); 
            Ap(i,j,2) = Ap2(i,j); 
        end 
    end 
%     Ap = convert_to_image(Ap1,Ap2,r,c); 
toc; 
time = toc; 
%=================================================================== 
figure; 
set(gcf, 'name', 'Secret Image and Image Recovery'); 
subplot(1,2,1); 
imshow(A); 
title('input image (Four tone)'); 
subplot(1,2,2); 
imshow(Ap); 
title('extraced image (Four tone)'); 
%=================================================================== 
function My_psnr=My_PSNR(I,J) 
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     X = double(I);  
    Y = double(J);  

  
    MSE = sum((X(:)-Y(:)).^2) / prod(size(X));  
    My_psnr = 10*log10(255 * 255/MSE); 

  
end 
%=================================================================== 

Appendix B-7: Screenshot of PSNR and SSIM Result in 2LSB Method 
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Appendix C: Chang Algorithm 

Appendix C-1: Code for Importing Images 

clc; 
clear all; 
close all; 
addpath('pics/') 
%=================================================================== 
SI = imread('Secret.jpg'); % *************** Secret Image 

***************** 
Secret_size = 256; 
SI = imresize(SI, 'OutputSize',[Secret_size Secret_size]);  
n = 5; %************* Number of Covers *************** 

  
%------------- Input Covers --------------- 
Cover_size = 512; 
Covers = uint8( zeros(Cover_size,Cover_size,n) ); 
img_name = 'C'; 
for i=1:n 
    img = imread([img_name, '',num2str(i) '.jpg']); 
    C = size(img); 
    if(length(C)> 2) 
        img = rgb2gray(img); 
    end 
    img = imresize(img, 'OutputSize',[Cover_size Cover_size]); 
    Covers(:,:,i) = img; 
end 

  
%------------------------------------------------------------------- 

Appendix C-2: Code for Shuffling Phase  

id = (1:n); % ---------- Covers Identifier ------------ 
K = 1.76; % -------- Permutation Key ---------- 
 

[hd, wd] = size(SI); 
S = hd*wd; 
[X, Y] = Permutation_phase(hd*wd, K); 
[LS] = SI(X); 
[LS_prim] = SI(Y); 
%=================================================================== 
function [LS, LS_Prim] = Permutation_phase(L, K) 
    LS = 1:L; 
    LS_Prim = Henon_map(L, K); 
end 
%=================================================================== 
function shuffled_index = Henon_map(count, key)  
    x = zeros(1, count+1); 
    x(1) = 0.8912; 
    y = zeros(1, count+1); 
    y(1) = 1; 
    a = key; 
    b = 0.1; 
    for i = 2:count+1 
        x(i) = 1 - a * x(i-1)^2 + y(i-1); 
        y(i) = b * x(i-1); 
    end 
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    [tmp, shuffled_index] = sort(x(2:count+1)); 
end 

Appendix C-3: Code for Generate Authenticator and Hash Value 

% -------------- Three Quantities -------------- 
alpha = bitget(LS, 8) * 4 + bitget(LS, 7) * 2 + bitget(LS, 6); 
beta = bitget(LS, 5) * 4 + bitget(LS, 4) * 2 + bitget(LS, 3); 
gama = bitget(LS, 2) * 2 + bitget(LS, 1); 

     
alpha_prim = alpha + 8 * bitget(LS_prim, 8); 
beta_prim = beta + 8 * bitget(LS_prim, 7); 
gama_prim = gama + 8 * bitget(LS_prim, 6) + 4 * bitget(LS_prim, 5); 

  
b5y = bitget(LS_prim, 4); 
% ------------- Authenticator, Hash Function and Hidden Data -------    

for i=1:S 
    for k=1:n 

au(:,i,k) = mod(int16(alpha_prim(i)) + int16(beta_prim(i)) *   

id(k) + int16(gama_prim(i)) * (id(k) ^ 2), 17); 

  
      str = strcat(dec2bin(i,3),dec2bin(au(:,i,k),5)); 
      temp = string2hash(str); 
      hv(:,i,k) = bitget(temp, 5) * 8 + bitget(temp, 6) * 4 + ... 
      bitget(temp, 7) * 2 + bitget(temp, 8); 

  
      b5y(:,i,k) = b5y(i); 
    end 
end 
%--------------- Embedding Phase --------------------- 
N = au * 34 + int16(hv) * 2 + int16(b5y); 

Appendix C-4: Code for Ebmedding Phase  

%------------------------------------------------------------------- 
for i=1:n 

N_five_base = dec2base(N(:,:,i), 5, 4); 
Covers_prim_tmp = embedding_algorithm(N_five_base, 

Covers(:,:,i)); 
      Covers_prim(:,:,i) = reshape(Covers_prim_tmp,(hd*2),(wd*2)); 
end 

 
function [Cover_prim] = embedding_algorithm(N_five_base,Cover) 

  
Nx1 = N_five_base(:, 1) - '0'; 
Nx2 = N_five_base(:, 2) - '0'; 
Nx3 = N_five_base(:, 3) - '0'; 
Nx4 = N_five_base(:, 4) - '0'; 

  
[ht wd] = size(Cover);  
S = (ht*wd)/4; 

  
for i=1:S 
    for j=1:4 
        switch j 
            case 1 

Cover_prim(4*(i-1)+j) = Cover(4*(i-1)+j) - 

mod(Cover(4*(i-1)+j),5) + Nx1(i); 
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            case 2 
Cover_prim(4*(i-1)+j) = Cover(4*(i-1)+j) - 

mod(Cover(4*(i-1)+j),5) + Nx2(i); 
            case 3 

Cover_prim(4*(i-1)+j) = Cover(4*(i-1)+j) - 

mod(Cover(4*(i-1)+j),5) + Nx3(i); 
            case 4 

Cover_prim(4*(i-1)+j) = Cover(4*(i-1)+j) - 

mod(Cover(4*(i-1)+j),5) + Nx4(i); 
         end 
     end 
end 

  
end 

Appendix C-5: Code for Extract Phase  

function [ SI, Time, Covers_prim] = Extraction( Covers_prim, n, K ) 

     
Covers = double(Covers_prim(:,:,1)); 
[ht, wd] = size(Covers); 

     
%------------------------------------------------ Extracting phase 
S = (ht*wd)/4; 
for k=1:n 
   C = Covers_prim(:,:,k); 
   for i=1:S 
      str =''; 
      for j=1:4 
          NR_tmp(j) = mod(C(4*(i-1)+j),5); 
          str = strcat(str,num2str(NR_tmp(j))); 
      end 

  
      NR(:,i,k) = base2dec(str, 5); 
      auR(:,i,k) = floor(NR(:,i,k)/(34)); 
      hvR(:,i,k) = floor(mod(NR(:,i,k), 34)/2); 
      b5yR(:,i,k) = floor(mod(NR(:,i,k),2)); 
    end 
end 
% ------------------- Check errors (authenticity) ------------------ 
for k=1:n 

hv(:,:,k) = generate_ax(auR(:,:,k), 1:size(auR,2)); 

         
      if (hv(:,:,k) == hvR(:,:,k)) 
       authenticated(k) = k; 
      end 
      ER(:,:,k) = reshape(255*(hv(:,:,k) == hvR(:,:,k)), ht/2, 

wd/2); 
end 
% ------------------ Extraction Phase ------------------------------ 
if (size(authenticated,2) >= 3) 

  
        delta = randperm(3,3); 
tic 
        [ alpha_prim, beta_prim, gama_prim ] = Extract_Phase( S, 

auR, delta ); 

  
        [alpha, beta, gama, b1y, b2y, b3y, b4y] = ... 
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            reconstructing_algorithm(alpha_prim, beta_prim, 

gama_prim); 

  
        LS = uint8(alpha * 32 + beta * 4 + gama); 
        LS_prim = uint8(b1y * 2^7 + b2y * 2^6 + b3y * 2^5 + b4y * 

2^4 + double(b5yR(:,:,1)) * 2^3 + 5); 

     

         
SI = uint8(reshape(LS, ht/2, wd/2)); 
else 
    disp('Sorry, The number of legal participants fewer than 

three.'); 
    SI = zeros(ht/2, wd/2); 
end 
toc; 
Time = toc; 
end 

 

% ------------------ Extraction ------------------------------ 

 
 function [ alpha_prim, beta_prim, gama_prim ] = Extract_Phase( S, 

au, delta ) 

  
    A(:,1) = [1 1 1]; 
    A(:,2) = delta; 
    A(:,3) = delta .^ 2; 

  
    for i=1:S 
        b(:,1) = au(1,i,delta); 

     
        A1 = A;A1(:,1)=b; 
        A2 = A;A2(:,2)=b; 
        A3 = A;A3(:,3)=b; 
        D = int16(det(A)); 
        D1 = int16(det(A1)); 
        D2 = int16(det(A2)); 
        D3 = int16(det(A3)); 

  
        alpha_prim(i) = mod(int16(mod(D1 * mulinv(D,17),17)),17);  
        beta_prim(i) = mod(int16(mod(D2 * mulinv(D,17),17)),17);   
        gama_prim(i) = mod(int16(mod(D3 * mulinv(D,17),17)),17);  

  
    end 

  
end 

  

Appendix C-6: Code for Recover Damaged Image   

for i=1:n 
I = Covers_prim(:,:,n);  

      position = [ht/2 wd/2]; 
      box_color = {'green'}; 
      text_str = 'I CAN FLY'; 
      Covers_prim(:,:,n) = ... 
                

rgb2gray(insertText(I,position,text_str,'FontSize',14,'BoxColor',box

_color,'BoxOpacity',0.4)); 
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end 
for k=1:n 

C = Covers_prim(:,:,k); 
      for i=1:S 
       str =''; 
            for j=1:4 
             NR_tmp(j) = mod(C(4*(i-1)+j),5); 
                  str = strcat(str,num2str(NR_tmp(j))); 
            end 

  
            NR(:,i,k) = base2dec(str, 5); 
            auR(:,i,k) = floor(NR(:,i,k)/(34)); 
            hvR(:,i,k) = floor(mod(NR(:,i,k), 34)/2); 
            b5yR(:,i,k) = floor(mod(NR(:,i,k),2)); 
        end 
end 
for k=1:n 

hv(:,:,k) = generate_ax(auR(:,:,k), 1:size(auR,2)); 

         
if (hv(:,:,k) == hvR(:,:,k)) 

       authenticated(k) = k; 
end 

         
      ER(:,:,k) = reshape(255*(hv(:,:,k) == hvR(:,:,k)), ht/2, wd/2) 
end 

perm_index = Henon_map((ht/2)*(wd/2), K) 
      [tmp, sorted_index] = sort(perm_index) 
      LS_prim_sorted = LS_prim(sorted_index) 

         
inauthentic_pixels = (reshape(ER(:,:,delta(1)), 1, 

ht*wd/4)==0)|(reshape(ER(:,:,delta(2)), 1, 

ht*wd/4)==0)|(reshape(ER(:,:,delta(3)), 1, ht*wd/4)==0) 

         
      inauthentic_indeces = getIndexOf(inauthentic_pixels, 1) 
      SI(inauthentic_indeces) = LS_prim_sorted(inauthentic_indeces) 

         
      authentic_indeces = getIndexOf(inauthentic_pixels, 0) 
      SI(authentic_indeces) = LS(authentic_indeces) 

         
      SI = uint8(reshape(SI, ht/2, wd/2)) 

Appendix C-7: Code for Calculating PSNR, SSIM and Show Results 

figure('units','normalized','outerposition',[0 0 1 1]); 
set(gcf, 'name', 'Covers before and after embedding'); 
for i=1:n 
    subplot(2,n,i); imshow(Covers(:,:,i)); title(['Cover 

',num2str(i)]); 
    subplot(2,n,i+n); imshow(uint8(Covers_prim(:,:,i))); 
    PSNR = My_PSNR(Covers(:,:,i),Covers_prim(:,:,i)); 
    [ssimval, ssimmap] = 

ssim(uint8(Covers_prim(:,:,i)),Covers(:,:,i)); 
    title(['PSNR = ',num2str(PSNR) ,' dB    SSIM = 

',num2str(ssimval)]);     
end 
%=================================================================== 
figure; 
set(gcf, 'name', 'Secret Image and Image Recovery'); 
subplot(1,2,1); 
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imshow(SI); 
title('input image (Grayscale Image)'); 
subplot(1,2,2); 
imshow(uint8(SI_R)); 
title('extraced image (Grayscale Image)'); 
%=================================================================== 
diff = isequal(SI,SI_R); 
if diff == 1 
    disp('Images are same') 
else  
    disp('Images are not same')  
end; 

Appendix C-8: Screenshot of PSNR and SSIM Result in Chang-Chen-Wang’s 

Method 

 

 


