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In this paper we consider a linear signal system together with the two linear
observation systems. The observation systems differ from each other by the
noise processes. The noise of one of them is a constant shift in time of the
signal noise. In the other one the shift is neglected. Respectively, we consider
two best estimates of the signal corresponding to two different observation
systems. The following problem is investigated: whether the effect of the shift
on the best estimate becomes negligible as time increases. This leads to a
comparison of the asymptotical behaviors of the solutions of respective Riccati
equations. It is proved that under a certain relation between the parameters,
the effect of the shift is not negligible.

1 Introduction

Kalman filtering for both independent and correlated white noises (see, for
example, [Ben92, CP78, LS98, Dav77, FR75]) and its modification to colored
noises (see [BJ68]) are very powerful method of estimation in engineering,
especially, in space engineering (see [BJ68, CJ04]). However, a detailed study
of the nature of noises arising in guidance and control of spacecrafts shows
that, more adequately, the noises disturbing the signal and the observations
are shifted in time for some small value, while this shift is neglected in space
engineering.

Indeed, let € be the time needed for electromagnetic signals to run the
path ground radar-satellite-ground radar. Assume that the control action «
changes the parameter z of the satellite in accordance with the linear equation
z' = ax + bu if noise effects and the distance to the satellite are neglected.
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Then at the time ¢ the ground radar detects the signal 2(t) = z(t —e/2) +w(t)
that is the useful information z(t — €/2) about the parameter of the satellite
at t — /2 corrupted by white noise w(t) due to atmospheric propagation.
Furthermore, the parameter of the satellite at t—e/2 is changed by the control
action u(t —¢) that is sent by the ground radar at the time moment ¢ —e. This
control passing through the atmosphere is corrupted by the noise w(t — ¢).
Hence, the equation for the parameter of the satellite must be written as
' (t—e/2) = ax(t —e/2) +blu(t —e) +w(t —e)]. Substituting #(¢) = z(t —e/2)
and @(t) = u(t — €), we obtain the state-observation system

{ F'(t) = az(t) + bu(t) + bw(t —¢),
2(t) = Z(t) + w(t),

disturbed by shifted white noises with the state noise delaying the observation
noise. Since the Earth orbiting satellites have a nearly constant distance from
the Earth, the value ¢ of the shift for them is time independent.

New applications of the GPS such as measuring vertical and horizontal
ground deformations aimed to study volcanos and earthquakes want getting
a centimeter (or millimeter) accuracy of satellites’ positions. Among different
ways toward this aim, one may be the use of Kalman type optimal filter for
shifted white noises, obtained in [Bash03] and [Bash05] (abbreviate this filter
as KF*). Note that in this case the observations are more informative than in
the case of correlated noises since they depend on the future of the signal noise
as well. Proper filtering with respect to such observations should produce an
improvement in comparison with the Kalman filter for correlated white noises
(abbreviate this filter as KF).

Thus, we have two filters KF and KF*. The first one is easy in its realiza-
tion, successfully tested in many applications and produces the best estimate
if the shift in the model is neglected. But for the model with shifted noises it
produces an estimate which is not the best one, being perhaps close to it. On
the other hand, the second one produces the best estimate for the model with
shifted noises, but it needs relatively more calculations for its realization and
not yet used in applications. Whether the replacement of KF by KF* is rea-
sonable? For this, let ,(t) and & (t) be the estimates of the signal process x(t)
in accordance with KF* and KF, respectively. Denote i(t) = E[Z,(t) — 2. (t)]?,
where E is a symbol for expectation, and call it an improvement process. From
engineering point of view, regarding the guidance and control of satellites, the
asymptotical behavior of i(¢) should be important since once a satellite is es-
tablished on its approximate position in the orbit, lim; . ¢(¢) will say whether
the improvement is valid at further time moments. If lim; o, i(¢t) = 0, then
the improvement provided by KF* in comparison with KF becomes negligible
for large time moments and, therefore, this case does not support the replace-
ment. Unlike, if lim; o 4(¢t) > 0 or lim;_, i(t) does not exist, then the best
estimate &, (t) non-negligibly deviates from the estimate & (t) for large ¢ and,
hence, the replacement is recommended.
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In this paper we study lim; . i(¢), and use the respective Riccati equa-
tions of KF and KF*. While KF is well discussed in the existing literature,
KF* was found recently (see [Bash03, Bash05] together with Remark 1 in
this paper). We proved that under certain relation between the parameters of
the system, &,(t) non-negligibly deviates from the estimate &,(t) for large ¢.
Moreover, numerical study of the respective Riccati equations shows that the
error of estimation of KF* is greater than the same of KF. This also supports
the replacement of KF by KF* because the greater is the error by KF”*, less
reliable is the estimate by KF. Finally, note that the results of this paper
are obtained for one dimensional systems. As far as the deviation of Z,(¢)
from &,(t) is detected in an easy case, it should expectedly more valid for
complicated cases as well.

2 Description of the problem

We will set the problem in one-dimensional case while the results can be ex-
tended to multidimensional case as well. Consider the one-dimensional linear
signal system

2/ (t) = az(t) + bw(t), z(0) =z, t >0, (1)

and the two one-dimensional linear observation systems
2'(t) = cx(t) + w(t), 2(0) =0, t >0, (2)

y'(t) = cx(t) +w(t +¢), y(0) =0, t >0, (3)

where z(t) is a signal process, y(¢) and z(t) are observation processes, w(t)
is a Gaussian white noise process with the mean Ew(t) = 0 and with the
covariance cov(w(t),w(s)) = §(t — s), J is the Dirac’s delta function, € > 0,
a,b,c are real numbers, zg is a Gaussian random variable with the mean
E(z¢) = 0 and with the variance pg, xo and w(t), t > 0, are independent.

Let &,(t) and &,(t) be the best estimates of the signal z(¢) based on the
observations z(s), 0 < s < t, and y(s), 0 < s < t, respectively. Here, Z,(¢)
is the output of the well-known KF for the correlated white noises with the
error of estimation

ex(t) = B[z (t) — a(t)]* = f(1),
where f(t) is a solution of the Riccati equation
f'(t) =2(a = be) f(t) — > f(t)?, £(0) =po, t > 0. (4)

Adapting the results from [Bash05] for the estimate &, (t), we can deduce that
Z,(t) is the output of the KF* with the error of estimation

ey(t) = Bl (1) — 2()* = p(t),
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where p(t) is a solution of the equation

{p/(t) = Qap(t) + QQ(ta 0) + b2X(0,E] (t) - Czp(t)za (5)
p(0) = po, t >0,

with X (0, (¢) being the indicator function of the interval (0, ]. Here ¢(t,0) is
a solution of

K~

—
QO

% %) (t,0) = aq(t,0) + r(t,0,0) — 3p(t)q(t, ),
=0, - <0<0, (6)
q(ta ) = —bCp(t), t > 07

with r(¢, 7,0) bemg a solution of

(& + 4 + Z)r(t,7,0) = —c2q(t, 7)q(t, 6),

r(0, 7 )—0 —£<0<0, —e<7<0, (7)
r(t,—e,0) = —bc(q(t, —¢) + q(t,0)), —e <6 <0, t >0,
(t ) = *bC(q(t, 75) + q(taT))a —e<7<0,t>0.

Remark 1. There is a misprint in the formula (18) from Bashirov [Bash05].
The boundary condition

R(t,m,t— A1) =-Q (¢, 1)CTFT

in this formula must be read as
R(t,r,t—=A"'(t) = —FCQ(t,t —A'(t)) — Q" (t,7)CTF™.
Respectively, the boundary conditions
R(t,7,—¢) = Q" (t,7)CTFT,

and

R(t,7,t—c't) = -Q"(t,7)C"FT",
in the formulae (27) and (32) from Bashirov [Bash05] must also be read as

R(t,7,—¢) = —FCQ(t,—¢) — Q™ (t,7)CTFT,

and
Rlri =) = ~FCQ(1t - 4) - QM.

3 The stability of the improvement

It is natural to call the mean square difference
i(t) = Elzy (1) — 2:(t)]°

as an improvement provided by KF* in comparison with KF. We say that
the improvement i(¢) is unstable if lim;_, . i(t) = 0. Otherwise, we say that it
is stable. Note that the stability of the improvement should not be confused
with the stability of the signal system or filters.
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Lemma 1. Let f(t) and p(t) be solutions of the equations (4) and (5), respec-
tively. The following statements hold:

(a) (VIO — Vo) <i(t) < (VIO + /D).

(b) If both limy_. f(t) and lim; o p(t) exist and equal to 0, then
the improvement i(t) is unstable.

(c) If both lim;_. f(t) and lim;_,o p(t) exist and equal to different
values, then the improvement i(t) is stable.

(d) If limy_ o f(t) exists, while limy_ o, p(t) does not exist, then the
improvement i(t) is stable.

Proof. By Cauchy—-Schwarz inequality,

i(t) = B2, () — &, ()] = E[(#.(t) — 2(t)) — (&, (t) — «(t))]?

= f(t) + p(t) — 2B[(2:(t) — 2(1)) (&, () — x(t))

> (t) + p(t) — 24/ Bl2 (1) - 2(t)]2Bli, (1) - x(1)]?

= f(t) + p(t) — 2/FOp(t) = (VT — V/p(1)),

and
i(t) = f(t) + p(t) — 2E[(@. () — () (&, (t) — 2(2))]

< () +p(t) + 2/B[(22(1) — (1)) (@, () — 2(1))]]
< (8) + p(t) + 20/ Bl2- (1) — 2(t)]2Bli, (1) — 2(1)]?
= F() +p(t) + 2/ F@O)p() = (VFD + VD),

proving part (a). Part (b) follows from part (a) by the squeeze principle. Also,
parts (¢) and (d) follow from the first inequality in part (a).

Parts (¢) and (d) of Lemma 1 give sufficient conditions for stability of
the improvement, while Lemma 1(b) presents a sufficient condition for being
unstable. Also, Lemma 1(a) tells us that the expression (/f(t) — \/p(t))? is
a lower bound of i(¢) and in case of stability it can be used to approximate
the improvement from below at different instants.

Concerning the Riccati equation (4), it has a trivial solution f(t) = 0 if
po = 0. In case py > 0, its solution can explicitly be expressed as

_ Po
f(t) = T poc?t (8)

if a = be, and

if a # be. One particular subcase of (9) is f(t) = po if 2(a — be) = poc?. Hence,
the following asymptotical behavior of f(t) can easily be deduced:
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(10)

limf(t):{o’ if a < bc or py =0,

2(a —be)/c?, if a > be and pg > 0.

Numerical investigation of the equations (5)—(7) allows to conjecture that

lim p(t)

=0, if a < bc or pg =0,
> 0, if a > be and pg > 0.

Therefore, in the next section in order to prove that there are the values of
the parameters a, b and ¢, which make the improvement i(t) stable, we will
concentrate on the case when py > 0 and a > be, assuming that
lim p(t) = lim f(t) = 2(a — be) /2. (11)
t—o0 t—o0
Then we will deduce a necessary condition for this assumption. The negation of

the necessary condition will produce a sufficient condition for the improvement
i(t) to be stable.

4 The system Riccati equation (5)—(7)

Let po > 0 and a > be and assume that (11) holds. To investigate lim;_, o p(t)
we need an explicit representation for the solution (p(t),q(t,0),r(t,7,0)) of
the system (5)—(7). While it will not be used in the sequel, it is interesting to
note that r(¢,7,0) = 0if 0 <t < max(e + 0, + 7), and

o Jat—0—eT—0—e)+qt—0—c,—¢c), e<O<T <O
’I“(t77'79)— bC{q(t’r5,97’5)+q(t7—5,5),5§7§0§0

t
—02/ q(s,s—t+71)q(s,s—t+0)ds

nax(t—0—e,t—7—¢)

if ¢ > max(e + 0,e + 7). Moreover, r(t,7,6) is a continuous kernel of
the nonnegative integral operator (see [Bash05]) and, therefore, it satisfies
r(t,7,60) =r(t,0,7) and

T(t7T70)207 tZOa 7€§0§0a 7€§T§03 (12)

that will be used later.
Furthermore, the solution of the equation (6) can be represented as
q(t,0) =0if 0 <t <e+0, and
—()2 ¢ « {7
q(t,0) = bt Joeogplerd p(t—0—¢)
t 5 [t
+/ etltme)=e Jo vt dar(s, 0,s —t+6)ds (13)
t—0—e

ift>e+0.
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Regarding p(t), it satisfies the initial condition p(0) = po together with
the differential equation p’(t) = 2ap(t) + b*> — *p(t)?, if 0 < t < &, and

P (t) = 2(a = be)p(t) — p(t)” + 2[g(t, 0) — q(t, —¢)]
if t > e. Therefore, for a given § > 0, we can represent p(t) in the form

2(a—bc)d—c? ! a) da
plt) = 2T Sy

t N 2 t
+2 / Pabt=)=® [Tp(e)dar, 0y (s _oYds  (14)
t—5
for sufficiently large t.
Applying the assumption (11) to (14), we obtain
t

lim [q(5,0) — q(s,—¢€)]ds = 0.

t—oo Ji_ 5
Since § > 0 is arbitrary and ¢(t,0) — ¢(¢, —¢) is continuous in ¢,

lim [¢(¢,0) — q(¢t, —€)] = 0. (15)

t—o0

By (6) and (13),
al1,0) (1, ~2) = bep(t) — " SO )]

t t
+/ eot=9)= S pe dar(s, 0,s —t)ds.
t—e
Hence, from (15) and by the assumption (11),

¢
2b(a—b
lim ebe=)t=3)y (50,5 — t) ds = 2(a = be) [e(%c_“)s . 1].

t—o0 t—e C

Thus, by (12),
2b(a — be)

[e@bc—a)f - 1} > 0. (16)
C

Since are in the case a > be, we find out that the inequality (16) does not
hold if 0 < 2bc < a. Hence, the following is proved.

Theorem 1. If 0 < 2bc < a and py > 0, then the improvement i(t) is stable.

5 Concluding remarks

In this paper the asymptotical behaviors of solutions of two related Riccati
equations are compared. These solutions represent the errors of estimation
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Fig. 1. Graphs of f(t), p(t) and i(t) in different cases.

by KF* and KF, producing the best estimates when the noises in the linear
filtering problem are shifted in time and not shifted, respectively. The aim was
to detect the cases of the parameters a, b and ¢ for which the best estimates
by KF* and KF asymptotically deviate from each other, and wherethrough to
support the significance of KF* for models with shifted noises. In the paper we
prove that if 0 < 2bc < a and py > 0 the improvement (¢) provided by KF* in
comparison with KF is asymptotically non-negligible while it may be small.
The graphs of functions f(t), p(t) and i(t) from Fig. 1 (left), obtained by
numerical methods, are typical for the case 0 < 2bc < a. Numerical study of
other cases allows to conjecture that () is still asymptotically non-negligible
in the case 0 < be < a < 2be (see Fig. 1 (center)), while it is negligible when
0 < a < be (Fig. 1 (right)). One more observation from Fig. 1 is that in any
case p(t) > f(t), i.e., the error of estimation by KF* is greater than the same of
KF. Since in applications we never get the exact values of unknown parameters
and make decision about them on the base of estimations and respective errors,
this tells us that the preciseness of estimation by KF is indeed less reliable.
Although the results of the paper are obtained for a one dimensional system,
the complication of the system should expectedly make the deviation of Z,(¢)
from Z,(¢) more valid. All this supports KF* in applications required delicate
estimations, especially for positioning satellites with extreme precision.
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