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ABSTRACT 

Single-image super-resolution is an ill-posed inverse problem that requires effective 

regularization. Super-resolution over learned dictionaries offers a successful 

framework for efficiently solving this problem exploiting the sparsity as regularizer. 

It is well acknowledged that the success of sparse representation comes as a direct 

consequence of the representation power of learned dictionaries. Along this trend, 

this thesis considers the problem of super-resolution via sparse representation, where 

representation is done over a set of compact high and low resolution cluster 

dictionaries. Such an approach inevitably calls for a model selection criteria both in 

the learning and reconstruction stages. The model selection criteria should have 

scale-invariance property so that link between low resolution and high resolution 

feature spaces is properly established. 

The main contribution in this thesis is to employ two approximately scale-invariant 

patch measures for the classification of image patches in the learning and 

reconstruction stages. These are the sharpness measure and the dominant phase angle 

defined in terms of the magnitude and phase of the gradient operator, respectively. 

These measures are empirically shown to have acceptable degrees of scale-

invariance. i.e. sharpness measure and the dominant phase angle do not significantly 

change for two consecutive resolution levels. This invariance to a large extent 

ensures that model selection is correct in the reconstruction stage where one only 

knows the low resolution patch. Three super-resolution algorithms are proposed 

based on selective sparse coding over cluster dictionaries with the proposed 

measures, applied individually and combined together. In each algorithm, training 
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data is clustered and a coupled dictionary pairs are learned for each cluster. In the 

learning stage any standard coupled dictionary learning algorithm can be used. In the 

reconstruction stage, the most appropriate dictionary pair is selected for each low 

resolution patch and the sparse coding coefficients with respect to the low resolution 

dictionary are calculated. The link between the low and high resolution feature 

spaces is the fact that the sparse representation coefficients of the high and low 

resolution patches are approximately equal. For the case of multiple structured 

dictionaries this link is also strengthened since the dictionaries are learned for 

structured feature spaces. Imposing this link, a high resolution patch estimate is 

obtained by multiplying the sparse coding coefficients with the corresponding high 

resolution dictionary. Quantitative and qualitative experiments conducted over 

natural images validate that each of the proposed algorithms is superior to the 

standard case of using a single dictionary pair, and is competitive with the state-of-

the-art super-resolution algorithms. 

From the rate-distortion perspective, it is shown that computational complexity (rate) 

can be reduced significantly without a significant loss in quality. This is achieved 

due to the fact that the proposed clustering criterion lends itself nicely for identifying 

the patches that are un-sharp (with low frequency content). Such patches can be 

handled effectively using simple algorithm (computationally much less complex) 

such as bicubic interpolation instead of computationally expensive sparse 

representation. Specifically for a typical image, 73.03 % of the patches can be 

handled using bicubic interpolation without significant degradation in quality. 

Keywords: Single image super-resolution, sparse representation, dictionary learning, 

sharpness measure, gradient phase angle, coupled dictionaries. 
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ÖZ  

Tek-görüntüden süper-çözünürlüğe sahip bir görüntü elde etme problemi kötü 

konumlanmış bir problemdir ve etkili bir şekilde düzenlileştirilmesi gerekmektedir. 

Öğrenilen sözlükler üzerinden süper-çözünürlük, bu problemin etkili bir şekilde 

çözülmesi için seyreklik kavramından düzenleyici olarak faydalanarak başarılı bir 

çerçeve sunmaktadır. Seyerek temsiliyetin başarısının öğrenilen sözlüklerin 

temsiliyet gücünün direkt bir sonucu olduğu aşikardır. Bir eğilim doğrultusunda 

seyrek temsiliyet ve buna bağlı olarak öğrenilen bu tez çalışması süper-çözünürlük 

problemini bir dizi yüksek ve düşük çözünürlüklü küme sözlükleri kullanarak 

geliştirmektedir. Birden fazla sözlük kulanma yaklaşımı kaçınılmaz olarak öğrenme 

ve yeniden yapılandırma aşamaları olmak üzere her aşamada bir model seçme 

kriterini gerektirmektedir. Düşük ve yüksek çözünürlüklü öznitelik uzayları 

arasındaki bağlantının uygun bir şekilde sağlanması için model seçme kriterinin 

ölçekten bağımsız bir özelliğe sahip olması gerekmektedir.  

Bu tez çalışmasının asıl katkısı öğrenme ve geri çatma (yeniden yapılandırma) 

safhalarında görüntü yamalarının sınıflandırılması maksadıyla iki tane ölçekten  

yaklaşık bağımsız kriterlerin kullanılmasıdır. Bu kriterler eğim operatörü kullanılarak 

tanımlanan keskinlik ölçüsü ve baskın faz açısıdır. Bahsi gereçen ölçülerin ölçekten 

yaklaşık olarak bağımsız oldukları kanıtlanmıştır. Bu veri iki ardışık çözünürlük 

seviyesindeki görüntü yamalarının hem keskinlik ölçüsü hem de baskın faz açısının 

önemli ölçüde değişim göstermediği anlamını taşımaktadır. Bu bağımsızlık büyük 

ölçüde kişinin yalnızca düşük çözünürlüklü görüntü yaması hakkında bilgi sahibi 

olduğu yeniden yapılandırma model seçiminin (yani yüksek çözünürlülük 



vi 
 

kümesinden hangisinin kullanılacağı) doğru olduğunu göstermektedir. Önerilen 

sınıflandırma ölçekleri ile birlikte küme sözlükleri üzerinde seçici seyrek kodlamaya 

dayalı üç süper çözünürlük algoritması önerilmiş olup her biri tek başına uygulanmış 

ve daha sonra birbirleri ile birleştirilerek daha sıradüzensel bir sınıflandırmaya dayalı 

süper-çözünürlük algoritması önerilmiştir. Her bir algoritmada, öğrenme verileri 

kümlenmiş olup her bir küme için o kümeye ait görüntü yamalarının öznitelik 

uzayları birbirine bağlantılı bir yöntem kullanılarak alçak ve yüksek çözünürlükte 

birer sözlük öğrenilmiştir. Öğrenme aşamasında herhangi bir standart bağlantılı 

sözlük öğrenme algoritması kullanılabilmektedir. Yeniden yapılandırma aşamasında 

her biri çözünürlüklü yama için en uygun sözlü çifti seçilmiş olup, düşük 

çözünürlüklü sözlük dikkate alınarak seyrek kodlama katsayıları hesaplanmıştır. 

Düşük ve yüksek çözünürlüklü öznitelik uzayları arasında bağlantı, düşük ve yüksek 

çözünürlüklü yamaların seyrek temsiliyet katsayılarının yaklaşık olarak eşit oldukları 

varsayımdır. Bu varsayım önerilen çoklu yapısal sınıflama yönteminden dolayı 

güçlenmektedir. Bu bağlantıdan yararlanılarak seyrek kodlama katsayıları ve ilgili 

yüksek çözünürlüklü sözlükler çarpılarak yüksek çözünürlüklü yama tahminleri elde 

edilmiştir. Doğal görüntüler üzerinde gerçekleştirilen ve niteliksel denemeler 

önerilmiş olan herhangi bir algoritmanın tek bir sözlük çiftinin kullanıldığı standart 

yöntemlere karşı üstünlük sağladığı ve gelişmiş süper-çözünürlük algoritmaları ile 

rekabet ettiğini onaylamaktadır. 

Hız-bozunum teorisi bakış açısından herhangi önemli bir kalite kaybı yaşanmadan 

hesaplama karmaşıklığının azaltılabildiği gösterilmiştir. Bu ise önerilen kümeleme 

kriterinin keskin olmayan (düşük frekans içerikli) yamaları kolayca belirlenmesine 

dayanmaktadır. Bu tür keskin olmayan yamalar, hesaplama açısından yüksek 

maliyetli seyrek temsiliyet yerine bikübrik ara değer bulma gibi basit algoritmalar 
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(hesaplama açısından karmaşıklık derecesi çok daha düşük) kullanılarak etkili bir 

şekilde ele alınabilmektedir. Özellikle tipik görüntü için yamaların 96%’lık oranı 

bikübik ara değer kullanılarak kalitede herhangi önemli bir düşüş yaşanmadan ele 

alınabilmektedir. 

Anahtar Kelimler: Tek görüntü süper-çözünürlük, seyrek temsiliyet, çoklu sözlük 

öğrenimi, keskinlik ölçüsü, baskın faz açısı, bağlantılı sözlükler. 
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Chapter 1 

1 INTRODUCTION 

1.1 Sparse Signal Representation 

Sparse signal representation has received a lot of attention as a successful 

representation framework in many signal and image processing areas. Sparse 

representation using over-complete dictionaries has been employed in image 

denoising [1], super-resolution [2], compression [3], pattern recognition [4] and 

inpainting [5] over the last decades. In [6], Mallat and Zhang suggested that over-

complete bases have the ability to represent a wider range of signals. Early research 

by Olshausen and Fieldt [7, 8] pointed out that a dictionary obtained by sparse 

coding can take the properties of the respective signal fields. Furthermore, they 

investigated sparse representation of image patches using a sparse linear combination 

of elements from an appropriately chosen over-complete dictionary. 

 

Image patches can be represented with fixed linear basis functions such as Fourier 

basis functions, wavelets, curvelets, contourlets and the discreet cosine transform. 

With such basis functions, the representation coefficients can be easily calculated as 

the inner product of a signal and the basis functions. It is possible to enforce sparsity 

on this representation by thresholding the representation coefficients. However, it is 

noted that this way of sparse representation is not well-suited for a large set of 

signals [9]. A remedy is to use a redundant dictionary composed of prototype signals. 



 

 

2 

 

Redundancy increases the quality of a learned dictionary in representation and 

contains more prototype signal structures which gives a better signal approximation. 

1.2 Problem Formulation 

A dictionary is a matrix whose columns are derived from example signals. 

Dictionary atoms are initialized from a set of randomly selected signals and updated 

in such a way that they preserve the loyalty in representing training data and keep the 

representation of data sparse. Signal fitting capability is the great advantage of a 

learned dictionary and this is based on the fact that the atoms in a learned dictionary 

are conveyed from natural signal examples. 

Sparse signal representation over learned dictionaries is based on the assumption that 

a vector signal 
nRx  can be approximated as a linear combination of a few atoms 

in a dictionary 
KnRD  , where n  is the dimension of the signal space and K  is the 

dictionary atoms. This approximation can be written as Dwx  , where w  is the 

sparse coding vector which is mainly composed of zero elements. The problem of 

determining w , given x  and D  is referred to as sparse approximation and can be 

formulated as 

swtosubjectDwx
w


02

minarg                             (1.1) 

Where S  is sparsity, and the 
2

and 
0

operators denote the vector Euclidean 

norm and the number of non-zero elements in a vector, respectively. 

Sparse approximation is essentially a vector selection problem. This process is 

shown to be computationally expensive and is known as a non-deterministic 
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polynomial-time (NP)-hard. This computationally-complex problem can be 

approximately solved with zero-norm minimization via the pursuit methods such as 

the matching pursuit (MP) [10] and the orthogonal matching pursuit (OMP) [11] 

algorithms. The zero norm minimization can be replaced with a 1-norm 

minimization. This replacement significantly reduces the computational complexity 

of sparse approximation, as done in the basis pursuit (BP) [12] and the focal under-

determined system solver (FOCUSS) [13] algorithms.    

Learned dictionaries are customarily obtained by training over a set of example 

signals. This is referred to as the dictionary learning (DL) process. This process is 

concerned with learning dictionaries that can faithfully and sparsely represent data 

vectors in a given training set. Therefore, a dictionary is shown to effectively 

represent data over which it is trained. A most important property of sparse 

representation is its capability in taking the inherent signal features. Furthermore, in 

super-resolution (SR) these features would be invariant quantity that can be used to 

derive relative information about the un-known high-resolution image from the low-

resolution image.    

It is well-known that the variability of signals within a class is less than the 

variability of signals in general. Therefore, to improve the representation quality of 

learned dictionaries, recent research has considered clustering signals into several 

clusters and learning compact cluster dictionaries. This leads to a set of class 

dictionaries. Several works are based on employing a certain classifier to separate 

training signals based on a specific measure into multiple clusters or more precisely, 

the classification criterion applied to the problem is different. A dictionary is learned 
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for each cluster. The same classifier is then used to classify a test signal to belong to 

a certain cluster. Then, the sparse representation of the signal is carried out over the 

cluster dictionary. The multiple dictionary setting allows for better representation at 

reduced computational complexity. In this thesis, the problem of multiple dictionary 

learning by choosing suitable clustering criteria is addressed and studied over the 

problem of single-image super-resolution (SISR).   

1.3 Thesis Contributions 

 The major objective in this thesis is to devise approaches for performing DL and 

sparse approximation over clusters. This requires using certain signal classifiers that 

can effectively separate image patches based on specific criteria. Such classifiers are 

used to cluster training data into several clusters. Then, a dictionary is learned for 

each cluster over its own data. In essence, cluster data share a common feature. 

Therefore, the signal variability within a cluster is much less than the signal 

variability in the signal space. This forms the basic motivation to allow for designing 

compact cluster dictionaries. Learning compact cluster dictionaries meets two 

objectives. First, enhancing the representation quality since each dictionary is 

concerned with a specific signal class. Second is reducing the computational 

complexity of DL and sparse representation despite the usage of multiple 

dictionaries. In this thesis, the proposed clustered sparse representation and 

dictionary learning approaches are applied to the problem of SISR. This is done 

along the line of multiple dictionary setting. In this work the magnitude and phase of 

gradient operator is used as a scale-invariance criterion for classifying patches and 

selecting the model in the reconstruction. 



 

 

5 

 

Here is a brief listing of the main contributions made in this thesis: 

1. Defining a sharpness measure (SM) based on the magnitude of the patch 

gradient operator. This measure is used to characterize spatial intensity 

variations of image patches and shown to be approximately invariant to the 

patch resolution. Therefore, it is used to separate image patches based on 

how sharp they are. SM is used as a classifier in the clustering stage and as a 

model selection criterion in the reconstruction stage. We propose a single-

image super-resolution algorithm based on this sparse coding paradigm. 

2. In the next contribution, we make use of the phase of the gradient operator as 

an approximately scale-invariance measure for classifying patches. A 

dominant phase angle (DPA) measure is defined based on a majority 

selection of the angles in the phase matrix of the patch gradient operator. 

This classifier is used for the clustering and model selection purposes. This 

idea is used in the single-image super-resolution problem. 

3. The next contribution considers making use of the SM and DPA measures 

together for the purposes of clustering and model selection. A first clustering 

stage is performed using SM. Then, DPA is used as a secondary classifier to 

further cluster patches in each SM cluster based on their directionality. 

Again, this sparse coding model is tested over the single image super-

resolution problem. 

4. Naturally, SM is used to classify patches based on their relative sharpness. It 

is noted that clusters of low SM values contains patches of insignificant high 

frequency (HF) components. Besides, the DPA measure can separate patches 

of non-dominant directional structure. It is also noted that such patches have 

insignificant HF components. In view of these observations the fourth 
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contribution in this thesis considers applying the simple bicubic interpolation 

to super-resolve patches in these clusters. In other words, the 

computationally expensive sparse representation based super-resolution 

framework is exclusively applied to patches of significant HF components 

which form a minority of image patches. Therefore, this contribution serves 

in substantially reducing the computational complexity without sacrificing 

the performance. 

1.4 Thesis Outline 

The remainder of this thesis is organized as follows. Chapter 1 presents an 

introduction to dictionary learning and sparse representation and addresses the main 

contributions in this thesis. In Chapter 2, a brief literature review is made concerning 

benchmark approaches to sparse representation and DL approaching the multiple 

dictionary setting. Besides, super-resolution via spares representation over learned 

coupled dictionaries is also briefly revised. Chapter 3 introduces a super-resolution 

algorithm based on sparse representation over multiple cluster dictionaries. 

Clustering and model selection are carried out using SM. Another super-resolution 

algorithm based on clustering using DPA is outlined in Chapter 4. The two measures 

are used together to perform clustering and model selection for the purpose of super-

resolution in Chapter 5. Then, Chapter 6 considers reducing the computational 

complexities of the proposed algorithms by making use of bicubic interpolation to 

super-resolve patches of insignificant HF components. In Chapter 7, conclusions and 

possible future works are presented. 
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Chapter 2 

2 LIERATURE REVIEW  

2.1 Introduction 

Sparse representation assumes that a signal admits being represented as a linear 

combination of a few elements drawn from a dictionary. The dictionary learning 

process and the way it is used to achieve a sparse representation are two major 

processes in this field. This chapter introduces the main concepts of sparse coding 

and dictionary learning, summarizing the leading approaches for these processes. 

Besides, it reviews the approach of image super-resolution via sparse representation 

as a typical application of this representation.  

2.2 Sparse Approximation 

Sparsity has been shown as a useful property of a representation. A trivial approach 

to sparsity is to threshold the representation coefficients subject to a certain set of 

basis functions obtained with an inner product operation. Despite its simplicity, such 

an approach is shown to offer a poor representation quality. A better alternative is to 

perform a basis search process over the columns of a given dictionary. Given a 

vector signal 
nRx  and a dictionary

KnRD  , this search process is referred to as 

the sparse approximation process. The aim of this process is to find a sparse 

representation coefficient vector 
KRw  that results in a loyal and sparse 

approximation to the original signal x . In view of the loyalty and sparsity 
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requirements, the sparse approximation process can be mathematically posed as 

follows:  


20

minarg Dwxtosubjectw
w

                         (2.1) 

The 
0

and 
2

operators denote the number of non-zero elements and the 

Euclidean norm, respectively. The approximation is sparse when most of the 

coefficients of w  are zero subject to a certain level of representation error tolerance 

  [14]. Sparse approximation requires the availability of a dictionary D . Generally, 

dictionaries can be obtained in many ways, for example by scaling and translation of 

some basis functions like Gabor and wavelet frames or via training over example 

signals as will be discussed in the following sections. The advantage of employing a 

dictionary has been well acknowledged [15], especially when one learns redundant 

(over-complete) dictionaries, i.e., by setting nK  .  

A more commonly adopted version of sparse approximation formulation is as 

follows.  

swtosubjectDwx
w


02

minarg                        (2.2) 

where S  is the number of non-zero elements. Only a few elements in w  are allowed 

to be non-zero. In the following, some major approaches to sparse approximation 

section are addressed. 
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2.3 Sparse Approximation Approaches 

If a dictionary is an orthogonal basis, the representation coefficients can be obtained 

through a simple inner product operation. Generally, the formulation in (2.2) is used 

for the representation purpose and the calculation of 0l  norm is a sparse 

approximation approach and known to be NP-hard [16]. In the literature, sparse 

approximation approaches are categorized into greedy algorithms and convex 

relaxation approaches. In greedy algorithms, the 0l  norm is minimized in an iterative 

manner while successively approximating the signal. The matching pursuit (MP) [17, 

18], basic matching pursuit (BMP) [19], orthogonal matching pursuit (OMP) [16, 11] 

and order recursive matching pursuit (ORMP) algorithms [20] are examples of this 

category. On the other hand, convex relation approaches [21] are based on relaxing 

the 0l  norm minimization to minimizing the 1l  norm, giving a significant reduction 

to the computational complexity of the process. The focal underdetermined system 

solver (FOCUSS) [13, 22] and the method of frames [23] with thresholding are in 

this category.  

2.3.1 Greedy Algorithms 

Greedy sparse approximation algorithms [24] are based on providing approximate 

solutions to the sparse approximation problem by minimizing the 0l  norm. This 

norm is minimized efficiently in an iterative manner. In each iteration, a portion of 

the signal is represented with one atom drawn from the dictionary. The selected atom 

is the one that most correlates to the given signal portion. This process is continued 

until a stopping criterion is met. It is noted that the MP algorithm by Mallat and 

Zhang in [6] forms the foundation for greedy algorithms based on which many other 

variants and extensions were developed.  
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2.3.1.1 Matching Pursuit (MP)  

The MP family is one of the well-known algorithms first proposed by Mallat and 

Zhang in [6]. This algorithm has been employed to obtain an efficient approximate 

solution to (2.2). For the representation of a signal x , a new atom id  is selected from 

a dictionary  KddD ,...,1  in every iteration i . Let us denote the set of selected 

atoms from the first selected atom till the i -th selected one by iS , as follows. 

 ii ddS ,...,1                                                     (2.3) 

For solving the optimization problem in (2.2), MP iteratively calculates the following  

  iii
wd

wddx

ii

1
,

minarg  ,                                       (2.4) 

where  ii www ,...,1  are the corresponding coefficients for each atom id . The 

approximation to each component of x , ix̂  will be  

iii wdx ˆ ,                                                      (2.5) 

First, the MP algorithm defines a residual signal r  and initializes it with the signal x  

as xr 0 . At each iteration i , the current residual ir  is approximated by picking an 

atom in D  that most correlates to this residual. This is done by calculating the inner 

product between the residual and each of the dictionary atoms as 

1 i
T
ii rdw ,                                                      (2.6) 

Then, the atom of the largest absolute inner product is selected as follows.  

1maxarg i
T
i

d

rd

i

.                                                      (2.7) 

After atom selection, the residual is updated as follows.  
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1ˆ  ii xxr .                                                     (2.8) 

In the next iteration, the same process is repeated with the newly updated residual. 

Iterations go until certain representation sparsity or error is met. Algorithm 1 outlines 

the main steps of the MP algorithm. 

Algorithm 1 Matching Pursuit Algorithm (MP) 

INPUT: x  is training set, D  is dictionary, S  sparsity,  . 

OUTPUT: w . 

Initialization: 1r . 

while Si  or 
2

r do 

 //Atom Selection 

 rDw T  

 i
w

wmaxarg  

 //Residual update 

 iidwrr   

 1 ii  

end while 

 

2.3.1.2 Orthogonal Matching Pursuit (OMP)  

As an better extension to the MP algorithm, the OMP algorithm is proposed and the 

same atom selection is adopted [6, 25]. Similar to MP, OMP iterates to find the best 

atom to represent each residual ir . However, it differs in the way of atom selection 

and residual update. In OMP, the atom that maximizes the projection of ir  onto its 

column space is selected. This is formulated as follows.  

1maxarg i
T
i

d

rd

i

,                                                     (2.9) 
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At every iteration, all the coefficients obtained for the previously selected atoms are 

optimized by OMP. After each iteration, the representation coefficients are 

calculated via least squares with respect to the chosen atoms. This is done as follows.  

xSw ii
                                                     (2.10) 

where 

iS  is the Moore-Penrose pseudo-inverse of iS . The next step is to update the 

residual for the next OMP iteration. To this end, the new residual is calculated by 

projecting the previously calculated residual onto the complement of the column 

space spanned by the set of selected atoms. Consequently, this means that OMP 

selects an atom only once. This means a better approximation in the sense that the 

degree of freedom of the selection process is reduced with iteration. Practically, the 

impact of this property is that OMP has a better approximation quality compared to 

MP, despite its increased computational complexity overhead. For a given signal x  

and dictionary D  with K  columns, OMP can be outlined as in the following steps 

[26]. It starts by setting xr 0  and 0i : 

I. Select the next dictionary atom by solving for 1maxarg i
T
i

d

rd

i

. 

II. Update the approximation
2

2
minarg i

x
i xxd

i

 , where ],...,[ 1 ii ddd  . 

III. Update the residual ixxr  . 

 

2.3.1.3 Other Greedy Algorithms 

Many other algorithms offering improvement in both representation fidelity and 

computational complexity have been proposed along the line of the greedy algorithm 

family [20, 6, 25, 28, 29, 30]. The aim of these methods is to more efficiently 
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guarantee convergence. In the signal processing literature, their setting goes by the 

name of MP and OMP and their several other variants and extensions. 

2.3.2 Convex Relaxation Algorithms 

It has been shown that minimizing the 1l  norm motivates sparsity. In view of this 

result, convex relaxation methods are based on relaxing the 0l  norm to minimizing 

the 1l  norm. This replacement has a great advantage in reducing the computational 

complexity of sparse approximation to be more tractable. Moreover, this reduction 

allows for solving the sparse approximation problem using standard optimization 

approaches [27]. 

2.3.2.1 Basis Pursuit and the Least Absolute Shrinkage and Selection Operator  

The Basis pursuit (BP) algorithm considers the optimization problem in (2.2) and 

replaces the 0l  norm minimization with 1l  norm minimization, as follows [12].  

Dwxtosubjectw
w


1

minarg ,                               (2.11) 

Generally, there are some methods to find the solution to the BP problem. Under the 

right conditions, these solutions can lead to a sparse solution or even the sparsest 

one. This is due to the fact that the 1l  norm is only concerned with values of entry 

not the quantity. Another similar way to BP is the least absolute shrinkage and 

selection operator (LASSO) algorithm proposed in [31] which is referred to as basis 

pursuit denoising (BPD). In LASSO, the 1l  norm is minimized like BP with some 

restrictions on its value. This is formulated as follows.  

SwtosubjectDwx
w


12

minarg ,                         (2.12) 
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Where the sparsity is controlled by the parameter S . Finding approximation rather 

than just representation is allowed in LASSO and like BP, reaching the sparsest 

solution under the right conditions is guaranteed. In this work, the LASSO is used for 

solving the sparse representation problem. 

2.3.2.2 Focal Underdetermined System Solver (FOCUSS) 

The focal underdetermined system solver (FOCUSS) is an approximation algorithm 

to find a solution for (2.2) by considering minimizing the )1( pl p  norm instead of 

the 0l  norm [13, 22]. To obtain an exact solution, this method requires solving for 

the following.  

Dwxtosubjectw
p

p
w

minarg ,                         (2.13) 

This algorithm is presented as a general estimation tool usable across different 

applications by combining desirable characteristics of both classical optimization and 

learning-based algorithms. 

2.4 Dictionary Learning in Single Feature Space 

The sparse signal representation is based on the availability of a dictionary D . The 

columns of the dictionary can give an approximation to a given signal x . A 

dictionary can be derived by defining as an analytic function or learning over a set of 

training signals. The standard algebraic basis functions such as Gabor and wavelet 

frames, Fourier basis functions, etc are in the first category. Sparse coding over such 

dictionaries is obtained by performing a simple inner product between the dictionary 

and training signal. These dictionaries are not fit to a large set of signals [14]. 

Learning dictionary over a set of training signals are in the second category. It has 



 

 

15 

 

been shown that the learned dictionaries are more adaptive to structures of signal and 

have a better capability to signal-fitting [14]. 

 

The process of learning or training a dictionary based on some available training data 

such that it is well adapted to its purpose is known as dictionary learning (DL) [14]. 

It can be generalized that the learned dictionary should possess two characteristics. 

First is the loyalty of representing the data over which it is trained, and second is the 

sparsity of such a representation. 

Given a set of training signals denoted by Mn
M RxxxX  ],...,,[ 21  , the DL 

problem is to learn a dictionary Kn
K RdddD  ],...,,[ 21  which represents the 

training examples with coefficients 
MKRW  . Using the cost function (.)f , the 

DL problem can be formulated as the following minimization problem.  

WD
F

WD

DWXWDf

,

2

,

minarg),(minarg  ,                         (2.14) 

There is imposed sparseness criterion on W . Accordingly, the DL process can be 

conducted as a successive alternation between two stages which leads to optimal 

solution. The first stage is a sparse approximation stage where D  is unaltered. The 

second one is a dictionary update stage with the calculated sparse approximation 

coefficients. To solve the second stage of the DL process (updating the dictionary 

while sparse coding coefficients are fixed), several approaches have been proposed. 

There are other different methods of finding the sparse coding coefficients and 

updating the dictionary. The earliest dictionary training attempt was proposed by 

Olshausen and Fieldt in 32. They estimated an optimal dictionary using maximum-
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likelihood estimation. A Gaussian or Laplace prior on the sparse representation 

coefficients is assumed during optimal dictionary estimation. The steepest descent 

method is employed for updating the sparse coefficients and the dictionary. In recent 

years, several other DL algorithms have been proposed [14, 33, 34, 35, 36, 37, 38, 

39, 40, 41, 42, 43]. Here is a brief revision of some benchmark DL approaches. 

2.4.1 The Method of Optimized Directions (MOD) 

Engan et al.in [44, 45] proposed the method of optimal directions (MOD) as a frame 

design technique for the use with vector selection algorithms such as MP. In this 

setting, Engan et al. formulated the dictionary update problem (
2

minarg
F

D

DwX  ) 

as a least squares (LS) problem of solving for a under-determined set of variables 

with a given set of equations. A LS solution to this problem can be obtained 

algebraically using the pseudo-inverse solution.  

Algorithm 2 MOD Dictionary Learning Algorithm 

INPUT: 
MnRX   is training set, 

0D  is dictionary, S  sparsity, Num  is number 

of iterations. 

OUTPUT: D  and w . 

Initialization: 
0DD  and 1i . 

while numi  do 

 for 1j  to M do 

 set jjj
w

j XDwtosubjectwW

j


0

minarg  // Sparse Coding 

 end for 

 
 XWD  // updating the dictionary 

 XED  // normalizing the dictionary 

 1 ii  

end while 
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Similar to other DL algorithms, the MOD algorithm alternates between this 

prescribed dictionary update stage and a sparse approximation stage. MOD is shown 

to give a locally optimal solution to the DL problem. Algorithm 2 explains the main 

steps of the MOD algorithm. 

2.4.2 Recursive Least Squares Dictionary Learning (RLS-DLA) 

In the recursive least squares dictionary learning algorithm (RLS-DLA) [14], a 

dictionary is continuously updated as each new training vector is processed. A 

forgetting factor is introduced and adjusted in an appropriate way that makes the 

algorithm less dependent on the initial status. This improves both the convergence 

properties of RLS-DLA as well as the representation ability of the resulting 

dictionary. One of the advantage of RLS-DLA is that it leads to a dictionary that can 

be expected to be general for a given employed signal class, and not solely to the 

particular (small) training set used in its training [14]. Algorithm 3 outlines the main 

steps of the RLS-DLA algorithm. 

2.4.3 K-SVD Dictionary Learning 

The K-SVD algorithm proposed by Aharon et al. in [15] uses a singular value 

decomposition approach for creating a dictionary for sparse representation which 

generalizes the K-means clustering algorithm. The K-SVD algorithm updates a 

dictionary based on minimizing the objective function
T

F
DWXWDC ),( . It can 

be re-written as follows,  

2

1

),(

Fkk
kkkk

T

F

K

k
kk WDWDXWDXWDC 



                 (2.15) 
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Algorithm 3 Recursive least squares dictionary learning algorithm 

INPUT: 
nRx , 0D (an initial dictionary), 0C (an initial C  matrix, possibly the 

identity matrix), 10   (forgetting factor). 

OUTPUT: D (learned dictionary) 

1. Get the new training vector ix  

2. Find iw , typically by using 1iD  and a vector selection algorithm. 

3. Find the representation error iii wDr 1 . 

4. Apply i  by setting 1
1

1 


  iii CC  . 

5. Calculate the vector ii wCu 
 1  and if step 9 is done rDv T

i 1 . 

6. Calculate the scalar )1/(1 uwT
i . 

7. Update the dictionary 
T

ii ruDD  1 . 

8. Update the C -matrix for the next iteration, 
T

ii uuCC  
1 . 

9. If needed update the matrix 
T
ii DD . 

10. If wanted normalized the dictionary. 

Return D  

Where the formula (2.15) is sum of rank-one matrices. kE  is a partial residual matrix 

and can be defined as 



kk

kkk WDXE . In order to minimizeC , a dictionary 

atom kD  and the sparse approximation coefficients kW  can be updated jointly.This 

is easily achieved by calculating the best rank-one approximation to kE . In essence, 

this rank-one approximation comes as a result of the outer product between the 

updated dictionary atom and the updated sparse approximation coefficient. Thus, K-

SVD algorithm updates the dictionary D  one atom at a time. This method is 

summarized as follows. 
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I. For each atom kD  in a dictionary, specify the locations of the set of training 

vectors that use the atom in their sparse approximation coefficient vectors W , 

labeled as ( k ). 

II. Calculate a so-called partial residual matrix restricting to have the active set 

of training signal that use that particular atom as its columns. 

III. Using the solution of the best rank-one approximation of the matrix kE , 

update the atom kD  and the coefficients 
k

k
W


. SVD (singular value 

decomposition) can be used to directly obtain that solution. 

 

Hence, during the dictionary update step the support of the sparse approximation 

coefficients should not be modified, kE  and its rank-one approximation are restricted 

to the corresponding columns of the signals which employ the k -th atom in their 

sparse approximation. This is, the indices corresponding to the non-zero elements of 

the vector kW . Algorithm 4 summarizes the main steps of the K-SVD algorithm. 

2.4.4 Online Dictionary Learning (ODL) 

In order to minimize the cost function of (2.2) under some constraints, most 

dictionary learning algorithms have accessed the whole training set at each iteration. 

However, they cannot handle very large training sets effectively. Accordingly, 

Mairal et al. in [9, 40] proposed a new online dictionary learning algorithm (ODL), 

based on stochastic approximations that process one element or a small subset 

(batch) of the training set at a time. It is noted that the authors in [9, 40] gave a proof 

of convergence of the ODL algorithm. 
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Algorithm 4 K-SVD Dictionary learning algorithm 

INPUT: MnRX   is training set, 0D  is initial dictionary, S  is sparsity, Num  is 

number of iteration. 

OUTPUT: D , W . 

Initialization: 
0DD  , 1i . 

while Numi   do 

 for 1k  to K  do 

    set 0,2,1 ,  ikk Wtosubjectmi  

    set k
kk

kkk WDXE  


][  

      )(,, kESVDVU   

    1uDk   

    TvW
k 11,1  

    end for 

    DED  // Normalizing the dictionary 

    1 ii   

end while 

 

Considering a training set composed of i.i.d (independent, identically distributed) 

samples of a distribution )(xp  where each training vector is drawn individually, 

ODL calculates an updated dictionary by minimizing the objective function in (2.16). 

Using the steps outlined in Algorithm 5, ODL updates each column of the dictionary 

sequentially using the procedure presented in Algorithm 6.  

1
1

2

22

11
)(ˆ

i

t

i
iit wDwx

n
Df  



,                         (2.16) 

2.5 Dictionary Learning in Coupled Feature Spaces 

There is coupled feature space in many signal processing problems for example the 

high-resolution (HR) and low-resolution (LR) patch space in patch-based image SR 

[46]. Intuitively, a single sparse coding model is used for learning dictionaries in  
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Algorithm 5 Online Dictionary Learning 

INPUT: )(xpRx n  , R  , 
KnRD 0  and,  Num ( number of iteration). 

OUTPUT: TD  (learned dictionary). 

Initialization: 00 A , 00 B  (reset a past information). 

for 1t  to Num  do 

Draw tx  from )(xp  

Calculate 
1

2

21
2

1
minarg wwDxw tt

Rw

t
K

 



 I 

T
tttt wwAA  1  and 

T
tttt wxBB  1  

Compute tD  using Algorithm 5, with 1tD  as warm restart, so that 





t

i
ii

CD
t wDwx

T
D

1
1

2

22

11
minarg  ))()(

2

1
(

1
minarg t

T
t

T

CD

BDTrDADTr
T




 II 

end for 

return D 

 

Algorithm 6 Dictionary update 

INPUT: Kn
K RddD  ],...,[ 1  (input dictionary) 




 
t

i

T
ii

KK
K wwRaaA

1
1 ],...,[  




 
t

i

T
ii

Kn
K wxRbbB

1
1 ],...,[  

repeat  

Initialization: 
0DD  , 1i . 

for 1j  to K  do 

   Update the j -th column to optimize for  II 

   jjj
jj

j dDab
A

u  )(
1

 

   j

j

j
j u

u
d

)1,max(arg

1

2

  

end for 

until convergence 

Return D (updated dictionary) 
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coupled feature space [2]. These dictionaries couldn't be able to capture the complex, 

spatial-variant and non-linear relationship between the two feature spaces. 

To solve this problem several algorithms have been proposed. A two-step learning 

problem is proposed by Zeyde et al.[47]. In this method one dictionary is learned by 

K-SVD [15] and the other one is obtained via least square. The dictionaries are 

learned individually but the same sparse coding coefficients are used for the two 

feature spaces. A semi-coupled training model is proposed by Wang et al.[48] to 

solve the problem where a mapping matrix is used to capture the relationship of the 

sparse representations between spaces. The learned dictionaries can better minimize 

the error in both spaces than those learned in concatenated spaces, but the 

corresponding relationship of dictionaries in two feature spaces are not captured 

during the learning progress. Yang et al.in [49] proposed the bilevel optimization 

solution  to moves one of the optimization problem to the regularization term of the 

other problem instead of solving two optimization problem in two feature spaces in 

[50]. The same sparse coding is used for both feature spaces. A beta process joint 

dictionary learning (BP-JDL) is provided by He et al. in [46] to customize the 

problem of learning dictionaries in coupled feature spaces. Furthermore, this method 

adds more consistent and accurate mapping between the two feature spaces. In this 

method the sparse representations can be decomposed to values and dictionary atom 

indicators but they have different priors in two feature spaces. Therefore, sparse 

representation that corresponds to the same dictionary atoms with the same sparsity 

is learned and has different values in coupled feature spaces. In this work the method 

proposed by Yang et al.in [50] is employed to learned the coupled dictionaries. 
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2.5.1 Sparse Representation over Multiple Dictionaries 

It is well-known that the success of sparse representation came as a result of 

employing redundant learned dictionaries. The representation power of learned 

dictionaries depends on its redundancy. Generally speaking, more redundancy means 

more possible atoms to be used for a signal approximation. However, redundancy 

cannot be arbitrarily increased because of two concerns. First concern is the fact that 

it increases the computational complexity and the second concern is the associated 

instabilities and degradation in the sparse approximation process [27]. In view of 

these observations, recent research has considered a setting where multiple class 

dictionaries are used instead of a highly redundant one. This multiple dictionary 

setting is based on the fact that each signal class has certain properties in common to 

all its signals. This allows for designing compact class dictionaries. The advantage of 

this setting lies in allowing for high representation quality at reduced redundancy 

levels. Aside from the computational complexity and stability concerns, this setting 

allows for reducing the degree of freedom for sparse approximation as compact 

dictionaries are used. 

Example works along the multiple dictionary setting include the work of Dong et al. 

[51] who used K-means clustering to divide the training data into a number of 

clusters, and learned compact cluster dictionaries. They then adaptively select the 

most relevant cluster dictionary for a given signal. Feng et al. [52] split the signal 

space into subspaces using K-space clustering and extract shared bases in these 

subspaces to form a dictionary. It is assumed that a testing patch belong to any of the 

designed subspaces. Another example is the work of Yu et al. [53] where they used a 

family of orthogonal learned basis functions of different characteristics. Each basis is 
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concerned with a specific signal structure. They applied a corresponding structural 

sparse model selection over the structural dictionary. Another more recent work by 

Yang et al. [54] considers using information in the gradient operator to cluster 

signals into geometric clusters. They have learned geometric dictionaries over data in 

these clusters. 

The work conducted in this thesis comes along the line of multiple dictionary setting. 

The information from the magnitude and phase of the gradient operator is used as 

criteria for a signal classification. Such classifiers are used for clustering patches in 

training stage and model selection in the reconstruction stage. This work considers 

super-resolution as practical application. 

2.6 Single Image Super-Resolution 

Single image super-resolution (SR) is an ill-posed inverse problem of obtaining a HR 

image from a LR one. It is customary to model the relationship between a HR image 

HI  and its LR counterpart LI  by an assumed blurring and downsampling operation, 

as described in (2.17).  

HL II  ,                                                 (2.17) 

Where  is the blurring and downsampling operator. In this context, estimating HI  

is referred to as SR. Several LR images are required to reconstruct a HR one in 

conventional SR methods. Recently, sparse representation is successfully employed 

in SISR approaches to enhance the quality of image reconstruction. Several 

approaches to SR exist in the literature. These can be classified into three main 

categories [55]. 
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I. Interpolation based methods: The first category includes interpolation-

based methods [55, 56, 57] which aim at estimating the unknown pixel values 

by interpolation. They are shown to blur the high frequency contents in the 

HR estimate. However, interpolation by exploiting natural image features is 

shown to perform better, particularly in preserving the edges. Nevertheless, 

such techniques have a limited capability in handling the visual complexity of 

natural images, especially for fine textures and smooth shades. 

II. Reconstruction based methods: The second category is reconstruction-

based methods [58, 59, 60, 61]. The key idea behind these methods is to 

apply a reconstruction constraint on the estimated HR image. This constraint 

enforces similarity between a blurred and downsampled version of the HR 

image and the LR input image. Still, such methods are shown to produce 

jaggy or ringing artifacts around edges because of the lack of regularization. 

III. Learning based methods: The third category is the learning-based methods 

[62, 63, 64, 65, 66, 67, 68, 69]. These methods use a training stage and a 

testing stage. They are based on utilizing the correspondence between the LR 

and HR image patches as a natural image prior. This is carried out by 

assuming a similarity between training and testing sets of signals. One of the 

most successful learning approaches is the sparse representation-based 

approach. 

2.6.1 Single-Image Super-Resolution via Sparse Representation 

Dictionary learning techniques have been used by many methods in SISR to capture 

the concurrent prior between the LR and HR patches [2, 49, 50, 64, 65]. In all these 

methods two dictionaries in both LR and HR feature spaces are learned and HR 

patch is normally recovered from the HR dictionary and the sparse coding 
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coefficients calculated from LR patch and LR dictionary. The sparse representation 

framework for super-resolution proposed by Yang et al.[2, 50] is based on 

reconstructing HR image patches from their counterparts in the LR image. This 

reconstruction is based on employing two constraints. First, a reconstruction 

constraint, which enforces the SR outcome to belong to the solution space of (2.17). 

Second, is a sparsity prior which is based on assuming that the sparse coding 

coefficients of LR image patches are identical to those of their counterparts in the 

HR image. For this purpose, a large database of HR and LR image patches 

corresponding to the same scene is used in [2, 50]. This approach allows for superior 

results. Still, it requires a long execution time. Then, Yang et al.employed a pair of 

over-complete coupled dictionaries in both the LR and HR resolution levels for the 

purpose of sparse coding [50]. These two dictionaries are learned over a set of HR 

and LR patch pairs in such a way that imposes the equality of the sparse coding 

coefficients of HR and LR patches. In this thesis, Yang's method has been used for 

obtaining LR and HR dictionaries and sparse coding coefficients. Furthermore, the 

SR algorithms in this thesis come along Yang's method as explained in the next 

section. 

Recently, several methods went beyond the invariance assumption for improving the 

stability of the recovery [46, 48, 70]. He et al. [46], proposed Bayesian method using 

a beta process to learn the over-complete dictionaries. Due to unique property of beta 

process learned dictionaries are more consistent and have accurate mapping between 

two feature spaces. In [48], Wang et al. used linear mapping between the LR and HR 

sparse coding coefficients combined with 1l  sparsity to learning. Peleg et al. 

suggested statistical prediction model based on sparse representation of LR and HR 
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image patches in [70] which allows the method to avoid any invariance assumption. 

They used MMSE to predict the HR patches and interpretation of a feedforward 

neural network to decrease a complexity of their model. 

2.6.2 The First Approach to Single-Image Super-Resolution via Sparse 

Representation 

Suppose that a HR image ( HI ) is divided into patches. Then, these patches are 

reshaped into one-dimensional (1-D) vector signals where they are combined 

column-wise to form an array of vector patches Hx . The patch array Hx  can be 

sparsely represented over a HR dictionary HD  as follows 

HHH wDx  ,                                                 (2.18) 

where Hw  denotes the array of sparse representation coefficient vectors of Hx . The 

representation coefficients can be obtained by vector selection algorithms such as 

OMP [11] or LASSO [31]. Let Lx  denote an array composed of reshaped patches of 

the corresponding LR image of the same scene ( LI ). Similarly, Lx  can be sparsely 

represented over a LR dictionary LD  as follows 

LLL wDx  ,                                                 (2.19) 

where Lw  is the array of sparse representation coefficient vectors of Lx . The same 

blurring and downsampling operator   shown in (2.17) can be used to relate Lx  and 

Hx  ( HL xx  ). 

If LD  and HD  are learned in a coupled manner, it can be further assumed that   

relates the atoms of the two dictionaries, i.e., HL DD  . In view of the above 

assumptions, one may write 

HLHHHL wDwDxx                                (2.20) 
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In view of (2.20), it is concluded that LH ww  . 

The above ideas lay the foundation for the HR patch reconstruction stage. Let i
Hx  

and i
Lx  denotes the i -th patch in Hx  and Lx , respectively. To this end, i

Hx  can be 

reconstructed with the availability of HD  and the sparse coding coefficient of i
Lx  

over 𝐷𝐿, denoted by i
Lw , as follows 

i
LH

i
H wDx                                                    (2.21) 

It is advantageous to allow a certain overlap between patches to contribute to better 

local consistency in the reconstructed HR image patches [50]. Then, each LR patch is 

used to reconstruct its HR counterpart in the HR image according to (2.21). 

Reconstructed HR patches are then reshaped into the two-dimensional (2-D) form 

and merged together to form a HR image estimate. 
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Chapter 3 

3 IMAGE SUPER-RESOLUTION VIASPARSE 

REPRESENTATION OVER MULTIPLE LEARNED 

DICTIONARIES BASED ON EDGE SHARPNESS 

3.1 Introduction 

Most SR algorithms fail to reconstruct the salient image features like edges, corners 

and texture. However, representation of these features which contain high gradient 

magnitudes is crucial for visual improvement. An important discriminating property 

for image patches is the sharpness measure (SM) which is defined via the gradient 

operator [71]. For taking advantage of this important fact, designing a set of 

structured coupled LR and HR dictionary pairs is proposed [72, 73]. For this 

purpose, training data is clustered into a number of clusters based on SM and a pair 

of coupled LR and HR dictionaries is trained over the training data in each clusters. 

In the reconstruction stage, the SM value of each LR patch is used to identify its 

cluster. Then, for reconstructing the HR patch, the dictionary pair of each identified 

cluster is employed. This classification serves for designing dictionary pairs that are 

well suited to represent image features with various sharpness levels. 

3.2 Approximate Scale-Invariance of the Image Patch Sharpness 

Measure  

SM can be defined via the magnitude of the gradient operator as a numerical measure 

that can quantify spatial intensity variations of image patches. The SM value of each 

image patch is defined [74] as 



 

 

30 

 

 
 


1 2

1 1

N

i

N

j

v
j

h
i GGSM                                            (3.1) 

where 1N , 2N  denote the patch horizontal and vertical dimensions and 
hG , 

vG

denote its horizontal and vertical gradients respectively. In this context SM can be 

effectively employed as a criterion to classify edges, corners and texture in an image 

based on how sharp they are. 

Sun et al. in [55], defined the gradient profile prior, and studied its behavior with 

respect to image scale. They reported that the edge sharpness of natural images 

follows a certain distribution which is independent of image resolution and applied 

this finding as a prior to the problem of SISR. In this work, SM defined via the 

gradient operator is used as an approximately scale-invariant quantity for a pair of 

LR and HR patches coming from the same scene. For image patches that contain 

strong edges, corners and texture, the invariance of SM is strong. 

To investigate the impact of scale on SM, the following experiment is conducted on 

each of the images shown in Fig. 3.1.The following experiments are carried out to 

investigate the effect of scale on SM. A HR image is divided into non-overlapping 

6x6 patches. Each HR patch is filtered by a bicubic kernel and downsampled by a 

scale factor of 2 to obtain its 3x3 LR counterpart. Figure 3.2 shows the histograms of 

the SM values for patches of several HR images (top) and their LR counterparts 

(bottom). In view of Fig. 3.2, it can be seen that the two histograms in both 

resolution levels are similar. For the Text Image 1 and ppt3 images, a significant 



 

 

31 

 

number of sharp patch pairs exist, where for the Barbara and Building Image 1 

images, there are few sharp patch pairs.  

      

      
Figure 3.1: Test images from left to right and top to bottom: Barbara, BSDS 198054, 

Butterfly, Fence, Flowers, Input 6, Lena, Man, ppt3, Starfish, Text Image 1 and 

Texture. 

  

  
Figure 3.2: Histogram of SM values for HR patches (top), and LR patches (bottom) 

for images from left to right and top to bottom, Barbara, Building Image 1, ppt3, and 

Text Image 1. 
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The statistical distributions of the SM values of LR and HR patches suggest that the 

SM criterion is approximately scale-invariant. 

To further investigate the impact of scale on SM, a similar experiment is conducted 

on the image set shown in Fig.3.1. Again, each image is divided into non-

overlapping 6x6 patches. 3x3 LR patches are obtained as specified earlier. Seven 

clusters denoted by 𝐶1 through 𝐶7 are defined to correspond to SM intervals of [0, 4], 

[4, 8], [8, 12], [12, 16], [16, 20], [20, 24] and [24, 255], respectively. The bounds of 

these intervals are empirically selected such that the last interval contains high SM 

values and the remaining SM range is uniformly split into the first six intervals. 

For each case, the SM values of all LR and HR patches of an image are calculated. 

Each patch is classified into one of the clusters based on its SM value. The total 

number of HR patches classified into a given cluster is counted. Then, the number of 

their LR counterparts that are correctly classified into the same cluster is counted. 

The SM invariance ratio is defined as the ratio between the number of correctly 

classified LR patches and the total number of HR patches in a cluster. For each test 

image, Table 3.1 shows the total number of HR patches classified into each cluster 

(top) and the corresponding SM invariance ratio (bottom). Considering the Butterfly 

image, as an example, Table 3.1 indicates that there are 558 HR patches classified 

into 1C  based on their SM values. 86.0 % of their LR counterparts are correctly 

classified into the same cluster. In other words, SM for the HR and LR patches is 

approximately scale-invariant for 1C  in both cases. 
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In view of Table 3.1, one notices that SM is strongly scale-invariant particularly for 

the first (unsharp) and the last (sharpest) clusters, rather than the intermediate 

clusters. The average scale-invariance ratio is 89.6 % in 1C  and 74 % in 7C .  

Table 3.1: Number of HR patches in each cluster (top) and the percentage of the 

corresponding LR patches correctly classified into the same cluster (bottom) via the 

SM criterion. The largest number of patches in a cluster with the corresponding 

percentage is in bold face.  

Image 𝐶1 𝐶2 𝐶3 𝐶4 𝐶5 𝐶6 𝐶7 

Barbara 
1934 1406 759 714 556 401 1626 

80.9 45.0 20.9 19.0 14.2 8.5 18.6 

BSDS 198054 
1039 367 651 557 368 235 1157 

96.6 60.5 46.9 34.1 28.3 15.3 81.0 

Butterfly 
558 213 146 142 140 164 486 

86.0 47.9 24.7 13.4 7.9 6.1 89.1 

Fence 
387 211 224 196 169 188 474 

94.6 50.7 30.4 25.5 17.8 13.8 46.0 

Flowers 
1420 1144 946 630 324 231 429 

87.0 41.3 28.9 17.6 13.9 10.4 70.6 

Input6 
1842 1454 1723 1776 1659 1348 2124 

90.7 51.2 37.6 25.8 19.7 11.8 62.4 

Lena 
3145 2145 797 488 364 224 233 

90.7 49.5 21.5 14.8 11.5 10.7 70.4 

Man 
1237 2210 1357 828 641 425 698 

88.0 54.1 34.8 29.1 18.3 13.9 43.0 

Starfish 
310 504 278 186 169 163 239 

69.4 43.3 24.5 8.1 4.7 8.0 61.1 

TextImage1 
4965 134 164 213 202 201 5671 

85.3 45.5 37.8 18.3 20.3 32.8 78.1 

Texture 
16 290 313 334 383 422 9691 

62.5 55.5 39.3 29.0 12.3 13.0 84.3 

ppt3 
6574 340 340 393 371 308 1464 

95.5 37.4 17.1 5.6 10.8 2.9 84.8 

Average 89.6 49.0 31.7 22.5 16.6 11.9 74.0 
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However, SM is moderately scale-invariant for the intermediate clusters 2C  through 

6C . One can also observe in Table 3.1 that the SM scale-invariance degrades with 

increasing number of clusters. This observation is valid for almost all images 

considered in Table 3.1. For sharp images, one observes that most of the patches fall 

in last cluster for which SM is strongly scale-invariant. Considering Text Image 1 as 

an example of sharp images, 78.1 % of patches in 7C  have their LR counterparts 

with SM values falling into the same cluster. Thus, one can predict with good 

accuracy what cluster a HR patch belongs to, given its LR counterparts. 

The above conclusions imply that SM can be effectively used as a criterion for 

selecting the model (dictionary pair), especially for the last cluster that corresponds 

to the sharpest patches in an image. Image patches with high sharpness values are 

those which contain edges, corners and texture. In other words, they are patches of 

high frequencies which are the most difficult image regions to reconstruct. This 

observation forms the basis for potential improvement in HR image reconstruction, 

depending on the availability of cluster dictionary pairs that can effectively represent 

signals in their respective clusters.  

3.3 Clustering and Sparse Model Selection with Patch Sharpness 

Measure 

The proposed algorithm is composed of two stages of training and reconstruction. In 

the first stage, a set of dictionary pairs is prepared and in the second stage the best 

dictionary pair is selected to sparsely reconstruct HR patches from the corresponding 

LR patches. For the training stage, a set of HR images is required. A LR version of 

each HR image is obtained by filtering it with a bicubic kernel and then 
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downsampling it by a scale factor of 2. Each LR image is then interpolated by a scale 

factor of 2 to the dimensions of the corresponding HR image and they are said to be 

in the middle resolution (MR) level. As done in [50], for each input LR patch Lx  the 

sparse representation coefficients are obtained with respect to LD  and the 

corresponding HR dictionary HD  will be combined to these coefficients to obtain 

the output HR patch Hx . The sparse representation problem can be formulated as 

follows.  

1
2

2
minarg wFxWFD LL
w

                                 (3.2) 

Where F  is a feature extraction operator and the sparsity of solution is balanced by 

the parameter  . As shown in Chapter 2, this 1l   linear regularization is known as 

LASSO. F  is used to ensure that the computed coefficients fit the most relevant part 

of the LR image and have a more accurate prediction for the HR image patch 

reconstruction. Since the HF components of the HR image are important, the HF 

contents of the LR image are important for predicting the HF content that has been 

lost [50]. Typically high-pass filter is chosen for extracting features. In this work, as 

done in [50], the first-order and second-order derivatives are used as the features for 

LR patches. Four 1-D filters are used to extract the derivatives. These filters are as 

follows. 

.],1,0,2,0,1[,],1,0,1[ 343121
TT ffffff                     (3.3) 

where T  denotes transpose. By applying these four 1-D filters (feature extraction 

operator) four gradient maps are obtained and four patches are extracted from these 

four patches. Then these four patched are concatenated to become the feature vector. 

Based on [50], it is better to obtain features from MR image. LR and HR patches 
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corresponding to the same spatial location are handled as pairs. Each LR patch is 

then classified into a specific cluster based on its SM value. The HR patch in each 

pair is placed into the same cluster. LR and HR patches of each cluster are used to 

train for a pair of coupled LR and HR dictionaries, respectively. For this purpose, the 

method proposed in [50] is used. Algorithm 7 outlines the main steps of the training 

phase. 

Algorithm 7 The Proposed Cluster DL Algorithm 

INPUT: HR training image set, number of clusters 

OUTPUT: A set of dictionary pairs.  

1. Divide each HR image into patches and subtract the mean value of each 

patch. 

2. Reshape patches into vectors and combine them column-wise to form a HR 

training array. 

3. Blur (bicubic kernel) and downsample each HR image to generate a LR 

image. 

4. Divide each LR image into patches. 

5. Upsample each LR image to the MR level. 

6. Apply feature extraction filters on each MR image. 

7. Divide the extracted features into patches and reshape them into column 

vectors. 

8. Combine the features column-wise to form the LR training array. 

9. for Each patch in the LR training array, 

10. Calculate the SM value of the corresponding patch in the LR image, and find 

the cluster number. 

11. Add the MR patch to the LR training set of this cluster. 

12. Add the corresponding HR patch to the HR training set of this cluster. 

13. end for 

14. For each cluster, learn a pair of coupled dictionaries. 

 

In the reconstruction stage, first a LR image is upsampled using bicubic interpolation 

to the MR level. Then, by applying feature extraction filters features are extracted 

and divided into patches which are reshaped into the vector form. To assure local 

consistency between the reconstructed patches, a certain patch overlap (for a patch 
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size of 55 , 4-patch overlap) is allowed [50]. The SM value of each LR patch is 

calculated and which cluster it belongs to is identified. Employing the dictionary pair 

of the identified cluster, the sparse representation coefficient vector of the 

corresponding MR patch over the cluster LR dictionary is calculated. Then by right-

multiplying the cluster dictionary with the sparse representation coefficients of the 

MR patch the HR patch is reconstructed and for all LR patches the same procedure is 

repeated. Finally, the reconstructed HR patches are reshaped into the 2-D form and 

merged to constitute the HR image estimate. In this merging, each pixel value is 

obtained from the average of its values in the reconstructed patches that contain it. 

Algorithm 8 outlines a summary of the proposed reconstruction procedure. 

Algorithm 8 The Proposed Single-Image Super-resolution Algorithm. 

INPUT: A LR test image, cluster dictionary pairs. 

OUTPUT: A HR image estimate 

1. Divide the LR image into overlapping patches. 

2. Upsample the LR image to the required resolution level (MR). 

3. Apply feature extraction filters on the MR image. 

4. Divide the extracted features into overlapping patches and reshape them into 

vectors. 

5. for Each LR patch do 

6. Calculate the SM of the LR patch. 

7. Determine the cluster this patch belongs to. 

8. Sparsely code the features of the corresponding MR patch over the cluster LR 

dictionary. 

9. Reconstruct the corresponding HR patch by right-multiplying the HR 

dictionary of the same cluster with the sparse codes of the MR features. 

10. end for 

11. Merge overlapping patches to obtain a HR image estimate. 

It is noted that the computational complexity of image reconstruction in the proposed 

algorithm is similar to that of the algorithm of Yang et al. [50]. Despite the use of 

multiple dictionary pairs, only one pair is selected for each image patch. It is well-



 

 

38 

 

known that the most computationally complex stage in the reconstruction process is 

the sparse coding stage. Since the proposed algorithm uses dictionaries of the same 

size, the sparse coding computational complexity is the same as the case of using a 

single dictionary pair. Overall, the dictionary pair selection process (model selection) 

requires calculating the SM value of each LR patch. This calculation adds a bit more 

complexity for the proposed algorithm as compared to the algorithm of Yang et al. 

[50].    

3.4 Experimental Validation 

In this section, the performance of the proposed algorithm is examined and compared 

to three leading super-resolution algorithms proposed by Zeyde et al. [47], Yang et 

al. [50] and He et al. [46]. These algorithms used in the comparison are different in 

nature. In order to have fair comparisons, care has been taken to ensure that the 

parameters used in the training and testing stages are as close to each other for all 

algorithms as possible. If a parameter is unique to a specific algorithm, the value 

suggested by the authors is used. Image super-resolution results for a scale factor of 2 

are presented. The proposed algorithm can easily be modified for other scale factors. 

However, this requires studying the scale-invariance property of SM with the 

increased scale factor. Accordingly, the SM intervals can be set. This invariance 

seems to be the only limiting factor for extending the proposed setting to work with 

larger scale factors. 

A LR patch size of 55 , with a 4 -pixel patch overlap is used in the proposed 

algorithm and the algorithm of Yang et al. [50] and a patch size of 33  with a 2-

pixel patch overlap as default values provided by the authors is used in the algorithm 
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of Zeyde et al. [47]. A patch size of 77  with a 6 -pixel overlap is used in the 

algorithm of He et al. [46] as suggested by authors. 

A LR image is obtained by applying a bicubic filtering operation on its HR 

counterpart, and then downsampling the filtered image by 2 in both dimensions. Test 

images include some well-known benchmark natural images which were used in [70, 

75]. Several other images have also been selected from different datasets [76, 77, 78] 

because of their rich high frequency contents. All test images are shown in Fig. 3.1. 

Dictionaries of the proposed algorithm are learned in a coupled manner as specified 

in [50]. Dictionary training for the proposed algorithm is done over the 1000-image 

Flickr dataset [79], along with several typical text images as a source of high 

sharpness patches. Some of images in Flickr dataset are chosen and shown in Fig. 3.3 

and added text images are shown in Fig 3.4.  

      

      
Figure 3.3: Selected images from Flickr dataset. 
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Figure 3.4: Additional text images added to the Flickr dataset for the training of the 

proposed algorithm and the algorithm of Yang et al.  

The clustering of LR and HR training data is carried out as outlined in Section 3.2. 

We then randomly selected 40000 pairs of LR and HR training patches for each 

cluster. 

A single dictionary pair with 1000 atoms is learned for the algorithm of Yang et al. 

[50]. For the learning, 40,000 pairs of LR and HR patches are randomly selected 

from the same training set used by the proposed algorithm. The algorithm of Zeyde 

et al. [47] also uses a pair of 1000-atom dictionaries, with the training image dataset 

provided by the authors [47]. A LR dictionary is learned by K-SVD [15] with 40 

iterations and sparsity S =3. Then, the coupled HR dictionary is calculated as 

specified in [47]. For a subjective comparison, we have added a final back-projection 

stage to Zeyde et al.'s [47] algorithm as the other three algorithms employ it. We 

used the default design parameters and training image dataset for the algorithm of He 

et al.as specified in [46] and a pair of 771-atom coupled dictionaries is trained. 

Test images include gray-scale and color images. A LR gray-scale image is input to 

each of the super-resolution algorithms to reconstruct its HR counterpart. However, a 



 

 

41 

 

LR color image is first transformed to the luminance and chrominance color space 

and only the luminance component is input to the super-resolution algorithm to 

reconstruct the luminance component of the corresponding HR image. As 

customarily done in most super-resolution algorithms, the two chrominance 

components are reconstructed by bicubic interpolation. To obtain a full-color HR 

image, the three components are used. In this experiment, PSNR is used as a 

quantitative measure of quality. For gray-scale images, PSNR is calculated between 

the original and reconstructed images. For color images, on the other hand, PSNR is 

calculated with the luminance color components of the original image and the 

reconstructed image, in accordance with the common practice in the literature. PSNR 

is defined as follows, 
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yyPSNR                                (3.4) 

where y  is the true image and ŷ  is its estimate and both are 8-bit gray-scale NM   

images. )ˆ,( yyMSE  is the mean-square error between y  and ŷ , which is defined as 
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Also, SSIM [80] is used as a perceptual quality metric, which is believed to be more 

compatible with human perception than PSNR. Similar to most super-resolution 

algorithms, we calculate SSIM for color images as the average SSIM value of the 

luminance and two chrominance components of the image. 

 

An important issue in the proposed algorithm is the number of clusters to employ. 

There is no specific rule of thumb to decide on the optimal number of clusters. We 
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have empirically examined the impact of the number of clusters on the performance 

of the proposed algorithm. For this purpose, the following experiment which studies 

the effect of the total number of clusters on the performance is designed. Using the 

SM of the LR patches, we first classified the training data into a total of 3, 5, 7, 9, 11 

and 13 clusters. For each case, we learned a dictionary pair for every cluster. The 

case which treats the training data as a single cluster (Yang et al [50]) and learns a 

single coupled dictionary pair is also studied. We then used the learned dictionary 

pairs for each case and reconstructed each of the 12 test images (shown in Fig. 3.1). 

For each case, SM is used as a model selection criterion. Average PSNR and SSIM 

values are recorded for each case. We then repeated the same experiment with 

perfect model selection. Given a LR patch and the HR ground-truth in perfect model 

selection, we first reconstruct the HR patch with all the cluster dictionary pairs and 

then pick the cluster dictionary pair that minimizes the MSE between the ground-

truth HR patch and its reconstructions. Fig. 3.5 shows the average PSNR and SSIM 

values with respect to the total number of clusters for the two scenarios: perfect 

model selection and SM-based model selection.  

Several observations can be made from the results presented in Fig. 3.5. First, it 

indicates that using a set of cluster dictionary pairs is better than using a single 

dictionary pair. Second, perfect model selection plots suggest that using more 

clusters means significantly better performance. This result further suggests that the 

designed cluster dictionary pairs are selective and best fit their respective cluster 

signals. Third, when SM is applied as a model selection criterion, the performance of 

the proposed algorithm increases with increasing clusters.  
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(a) 

 
(b) 

Figure 3.5: Performance of the proposed algorithm with perfect model selection and 

SM as a model selection criterion. (a) Average PSNR versus number of clusters.  (b) 

Average SSIM versus number of clusters. 



 

 

44 

 

The average PSNR and SSIM performances peak at seven clusters and then degrade 

slightly. This behavior is due to the trade-off between the number of clusters and the 

accuracy of SM as a model selection criterion. It can be generalized that with more 

clusters the dictionary pair corresponding to each cluster tends to be more 

discriminative and better represent signals of the respective cluster. However, using 

more clusters makes the model selection task less accurate. Plots in Fig. 3.5 suggest 

that with better model selection criteria, significant improvements in both PSNR and 

SSIM are possible. 

The number of clusters is set to seven and to further investigate the representation 

power of the designed cluster dictionary pairs another experiment is carried out. The 

training data of each cluster is used for this purpose. The HR patch in each cluster is 

reconstructed with every cluster dictionary pair based on its LR counterpart. The 

MSE between the true HR patch and each of it's reconstructions is obtained. For 

comparison, a HR patch in each cluster is also reconstructed with the single 

dictionary pair of Yang et al.’s [50] algorithm. Table 3.2 shows the results of this 

experiment. It is obvious that data in each cluster is best represented with the 

dictionary pair of that particular cluster. Considering 1C , it is observed that the 

dictionary pairs corresponding to other clusters and the single dictionary pair of 

Yang et al.[50] do in fact adequately represent data in this cluster. This is due to the 

fact that 1C  contains smooth patches. For this reason, one does not in fact need 

sophisticated algorithms for the unsharp cluster 1C . A simple algorithm such as 

bicubic interpolation suffices in satisfactorily reconstructing HR patches in this 

cluster. However, data in 7C  can not be satisfactorily represented by dictionary pairs 
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belonging to other clusters. Also, the single dictionary pair of Yang et al.[50] fails to 

represent data in 7C . Table 3.2 clearly indicates that error levels for sharper clusters 

are significantly higher than unsharp clusters. Therefore, reconstructing very sharp 

features is a challenging task. One must pay special attention to designing 

dictionaries that can better address the problem of reconstructing such features. 

Table 3.2: Reconstruction quality (MSE) of HR patches in all clusters based on their 

LR counterparts using the dictionary pair in each cluster. SD denotes the case of a 

single cluster with a single dictionary pair (as used by Yang et al [50]). 

Data in/ 

Dictionaries 

in 
𝐶1 𝐶2 𝐶3 𝐶4 𝐶5 𝐶6 𝐶7 SD 

𝐶1 1.90 2.15 2.19 2.23 2.26 2.30 2.46 2.28 

𝐶2 67.82 57.29 60.18 60.76 61.47 61.72 67.62 67.01 

𝐶3 169.17 149.00 139.50 145.32 147.62 147.19 159.77 162.97 

𝐶4 306.12 267.42 261.02 245.69 257.26 256.93 275.65 286.23 

𝐶5 488.04 425.97 416.72 406.30 385.45 401.07 425.64 450.20 

𝐶6 677.01 583.89 569.63 560.01 556.25 515.34 568.51 613.64 

𝐶7 1868.97 1587.96 1531.46 1449.82 1399.02 1374.98 1074.08 1562.71 

 

In the light of the above experiments, we choose to use a total of seven clusters 

which turns out to be a good compromise between the representation power of the 

dictionary pairs and the accuracy of SM as a model selection criterion. 

Figure 3.6 shows example reshaped atoms of the 7 HR cluster dictionaries designed 

with the proposed algorithm. It can be clearly seen that the learned dictionary atoms 
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inherit the sharpness nature of their respective clusters. The sharpness of the atoms 

increases from 1D  until 7D . 

 (a)  (b)  (c) 

 (d)  (e)  (f) 

 
(g) 

Figure 3.6: Example reshaped atoms of HR dictionaries from (a) Cluster 1C  (unsharp 

cluster) up to (g) Cluster 7C  (the sharpest cluster). 
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The PSNR (top) and SSIM (bottom) values of super-resolution reconstructions 

obtained with the aforementioned algorithms and setups with respect to the original 

ground-truth image are listed in Table 3.3. It is noted that we have conducted the 

simulations with source codes provided by the authors of [50], [47] and [46]. The 

proposed algorithm clearly out-performs the algorithm of Zeyde et al. [47] with an 

average PSNR improvement of 0.47 dB. The proposed algorithm performs better 

than the algorithm of Yang et al. [50] with an average PSNR improvement of 0.17 

dB. This improvement validates the added-benefit of employing multiple dictionary 

pairs instead of a single general dictionary pair. 

In view of Table 3.3, one notices that the success of the proposed algorithm is 

particularly valid for images with sharp features such as Text image 1 and the 

butterfly and ppt3 images. Considering Text Image 1, as an example, it can be seen 

in Table 3.1 that the majority of patches are located in clusters 1C  (85.3 %) and 7C  

(78.1 %). For those two clusters, SM is strongly scale-invariant. This means that SM 

performs well as a model selection criterion. Even though SM is moderately or 

weekly invariant in the middle clusters ( 2C  through 6C ), a small percentage of 

patches is located in these clusters. Similar observations can be made for other test 

images. In general, the SM of highly detailed images spreads over a wide range. 

Patches with high SM values tend to be approximately invariant with respect to 

scale. The proposed algorithm exploits this fact and thus has a clear advantage in 

representing sharp edges and corners.  
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Table 3.3: PSNR (dB) and SSIM comparisons of bicubic interpolation, the 

algorithms of Zeyde et al. [47], Yang et al. [50], He et al. [46] and the proposed 

algorithm, respectively. 

Image Bicubic Zeyde et al. Yang et al. He et al. Proposed 

Barbara 
25.35 25.89 25.86 25.84 25.87 

0.7930 0.8374 0.8357 0.8372 0.8361 

Berk. 198054 
24.75 26.56 26.85 26.98 27.05 

0.8267 0.8771 0.8816 0.8839 0.8830 

Butterfly 
27.46 30.59 31.26 31.44 31.68 

0.8985 0.9384 0.9457 0.9463 0.9480 

Fence 
25.05 26.22 26.34 26.22 26.41 

0.7449 0.8008 0.8037 0.8045 0.8046 

Flowers 
30.42 32.39 32.76 32.98 32.85 

0.8828 0.8984 0.9005 0.9018 0.9005 

Input6 
28.08 29.93 30.15 30.24 30.31 

0.8523 0.8957 0.8976 0.8989 0.8991 

Lena 
34.71 35.68 36.36 36.58 36.37 

0.8507 0.8625 0.8631 0.8647 0.8634 

Man 
29.26 30.44 30.68 30.80 30.76 

0.8315 0.8692 0.8713 0.8739 0.8719 

ppt3 
26.85 29.30 29.68 29.79 30.04 

0.9372 0.9572 0.9604 0.9621 0.9634 

Starfish 
30.23 31.99 32.66 33.28 32.82 

0.8923 0.9244 0.9279 0.9325 0.9298 

TextImage1 
17.52 18.47 18.58 18.54 18.85 

0.7246 0.7893 0.7974 0.7953 0.8100 

Texture 
20.64 22.60 22.55 22.78 22.67 

0.8272 0.8949 0.8939 0.8997 0.8963 

Average 
26.69 28.34 28.64 28.79 28.81 

0.8385 0.8788 0.8816 0.8834 0.8838 

 

It can be seen in Table 3.3 that the proposed algorithm is competitive with the state-

of-the-art algorithm of He et al. [46], with a slight average PSNR improvement of 

0.02 dB. The performances of the two algorithms are similar for images with limited 

spread of SM values. For images with wide spread of SM values, however, the  
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Figure 3.7: Visual comparison of the Butterfly image: (a) Original, and 

reconstructions of (b) Bicubic interpolation, (c) Zeyde et al. [47], (d) Yang et al. [50], 

(e) He et al. [46] and (f) the proposed algorithm. The last row shows the difference 

between the original image and reconstructions of:(g) Yang et al., (h) He et al. and (i) 

The proposed algorithm, respectively. 

performance of the proposed algorithm is significantly better. SSIM simulations also 

validate the above observations and conclusions. 

Figure 3.7 compares a portion of the original Butterfly image to its reconstructions 

obtained with bicubic interpolation, Zeyde et al.[47], Yang et al.[50], He et al.[46] 

and the proposed algorithm. One can observe that the proposed algorithm is better 

able to reconstruct edges in this image as compared to the other algorithms (best 

viewed on a high-definition computer monitor). This is especially seen in  

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 
(g) 

 
(h) 

 
(i) 
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Figure 3.8: Visual comparison of the BSDS 198054 image (a) Original, and 

reconstructions of (b) Bicubic interpolation, (c) Zeyde et al. [47], (d) Yang et al. [50], 

(e) He et al. [46] and (f) the proposed algorithm. The last row shows the difference 

between the original image and reconstructions of:(g) Yang et al., (h) He et al. and (i) 

The proposed algorithm, respectively. 

reconstructing the curvy line around the butterfly's wing. The circular shapes on the 

butterfly's wings are reconstructed better than those of the other three algorithms. 

Fig. 3.8 (g), (h), (i) show respectively the difference between the original scene and 

its reconstructions from Yang et al. [50], He et al. [46] and proposed algorithm. 

Clearly the proposed algorithm has least amount of artifacts. 

Figure 3.8 conducts the same comparison with the BSDS 198054 image from the 

Berkeley Segmentation Dataset (BSDS). It can be seen that the edges in the proposed  
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Figure 3.9: Visual comparison of the Text image 1 (a) Original, and reconstructions 

of (b) Bicubic interpolation, (c) Zeyde et al. [47], (d) Yang et al. [50], (e) He et al. 

[46] and (f) the proposed algorithm. The last row shows the difference between the 

original image and reconstructions of:(g) Yang et al., (h) He et al. and (i) The 

proposed algorithm, respectively. 

algorithm's reconstruction are sharper than the edges in the reconstructions of the 

other algorithms. Fig. 3.8 (g), (h), (i) show respectively the difference images. It is 

obvious that proposed algorithm produces less artifacts around sharp features. 

As a final visual comparison, Fig. 3.9 shows reconstructions of Text Image 1. Similar 

to the cases in the last two figures, one can see that the difference image for the 

proposed algorithm is closer to zero when compared to these of the other two 
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algorithms. This clearly shows that the proposed algorithm produces a better 

reconstruction. 
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Chapter 4 

4 SINGLE IMAGE SUPER-RESOLUTION VIA SPARSE 

REPRESENTATION OVER DIRECTIONALITY 

STRUCTURED DICTIONARIES BASED ON THE 

PATCH GRADIENT PHASE ANGLE 

4.1 Introduction  

The work conducted in Chapter 3 considers the magnitude of the gradient operator to 

quantify patch intensity variations. The phase of the gradient operator carries 

directional patch information. Intuitively, this information can be quantified as a 

directional measure that quantifies patch directionality. In view of this, we define a 

dominant phase angle (DPA) measure based on the majority of the angles in the 

phase matrix of this operator [81]. Employing this measure as a classifier, one can 

cluster training patches based on their directionality and obtain directional cluster 

dictionaries. The applicability of such a measure for the purpose of super resolution 

requires studying the impact of resolution (scale) on the DPA values. The following 

sections include an empirical study on the scale-invariance of this measure. Then, we 

introduce a super-resolution algorithm based on selective sparse representation over 

DPA cluster dictionaries, where the same measure is used for model selection. 

Experiments conducted on several images show a competitive performance of the 

proposed algorithm compared with the state-of-art algorithms. Besides, the designed 

dictionaries are shown to inherit the intended directional structure of their respective 

clusters. 
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4.2 The Proposed Super-resolution Algorithm  

In this section, the DPA as an approximately scale-invariant patch measure is 

introduced and its behavior with respect to scale is empirically studied. Then, the 

training and testing stages of the proposed algorithm are detailed.  

4.2.1 Approximate Scale-Invariance of the Dominant Gradient Phase Angle 

Measure  

The phase is generally more informative than the magnitude and thinking about 

exploiting information in the phase of the gradient operator is promising. The phase 

matrix of the gradient operator is defined [74] as follows 

)arctan(
h

v

G

G
               (4.1) 

Where, 
hG  and 

vG  are horizontal and vertical gradients, respectively. Intuitively, 

the directional structure of an image patch can be characterized by phase values. The 

DPA in the phase matrix can be defined so that it describes the directionality. Thus, 

quantizing the phase matrix and establishing a histogram for the quantized angles is a 

requirement for this. If a certain angle value is repeated more frequently than half of 

the number of elements in the phase matrix, the patch can be considered a directional 

patch where the directionality of this patch is characterized by that dominant angle 

otherwise, it is considered as a non-directional patch. In this work, angles are 

quantized into values of 
0 , 

45 , 
90  and 

135 .  

The following experiment is conducted to investigate the impact of scale on DPA on 

the images shown in Fig. 3.1. Each image is divided into non-overlapping 6x6 

patches and filtered with a bicubic filter and downsampled by 2 in both dimensions 
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to obtain a LR version. Corresponding to DPA values of 
0 , 

45 , 
90  and 

135 , 

clusters 1C  through 4C  are defined respectively, while 5C  is defined for patches that 

do not have a specific directional nature. Then the DPA value of each HR and LR 

patch is calculated according to (4.1) and is used to cluster it into one of the clusters. 

The ratio between the number of LR patches correctly classified into a certain cluster 

and the total number of HR patches in that cluster is defined as the DPA scale-

invariance. For the images shown in Fig. 3.1, DPA scale-invariance ratios are listed 

in Table 4.1. From Table 4.1 it can be seen that the DPA scale-invariance ratios are 

generally greater than 50 %. For 5C , the DPA scale-invariance values are high and 

compared to the cases of 2C  and 4C , these DPA invariance values are high in 1C  

and 3C . 

4.2.2 Clustering and Sparse Model Selection with the Dominant Gradient Phase 

Angle Measure 

Training image patch pairs are classified into the aforementioned five clusters in this 

part. Then, the dictionary learning method of Yang et al. [50] is employed to train for 

coupled LR and HR cluster dictionary pairs. Features are extracted at the MR level 

from the LR image patches and used to train the LR dictionary. The DPA of each LR 

patch at the MR level is employed to classify it into a certain cluster. Then, the 

corresponding HR patch and the extracted MR features are inserted to the HR and 

LR training sets of that cluster, respectively. The main steps of the training stage are 

outlined in Algorithm 9. The intention in this work is designing cluster dictionaries 

that contain the intended directional structures of their respective clusters. 
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Table 4.1: Number of HR patches in a cluster (top) and cluster scale-invariance ratio 

(bottom). The listings of the cluster containing the largest number of image patches 

are in bold face. 

Image 
DPA Clusters 

𝐶0 𝐶45 𝐶90 𝐶135 𝐶𝑛𝑑 

Barbara 1819 580 466 508 3852 

  45.52 43.28 87.34 52.36 72.04 

BSDS 198054 555 126 130 163 3266 

  71.89 58.73 61.54 55.21 82.70 

Butterfly 126 224 269 47 1098 

  80.95 74.55 92.94 72.34 66.03 

Fence 624 49 252 12 827 

  68.91 65.31 59.52 66.67 76.54 

Flowers 453 249 412 185 3681 

  72.41 64.26 71.12 68.65 79.63 

Input6 529 404 951 441 9379 

  80.15 71.29 75.39 73.02 72.95 

Lena 894 171 157 474 5529 

  85.91 69.59 73.25 82.07 78.15 

Man 871 236 550 292 5276 

  72.10 68.64 75.45 75.34 76.12 

Starfish 101 119 228 149 1167 

  66.34 73.95 78.51 79.87 77.21 

TextImage1 288 1 8 3 11036 

  12.85 0.00 12.50 0.00 76.11 

Texture 6602 1319 74 97 3144 

  82.70 76.19 82.43 69.07 56.04 

ppt3 636 346 814 299 7497 

  78.77 62.14 86.98 61.87 86.27 

Average 74 67 78 68 76 

 

In the reconstruction stage, the MR image is then divided into overlapping patches. 

Then, the DPA of each MR patch is calculated and used to identify the cluster this 

patch belongs to. Afterwards, the sparse coding coefficients of the features extracted 

from the MR patch over the cluster LR dictionary are calculated and the  
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Algorithm 9 The Proposed Dictionary Learning Stage. 

INPUT: HR Training image set. 

OUTPUT: A set of directionally structured cluster dictionary pairs. 

1. Obtain a LR image for each HR one by blurring and downsampling. 

2. Upsample each LR image to obtain a MR image. 

3. Divide the HR and MR images into patches. 

4. Extract features from the MR image by filtering. 

5. Divide feature images into column patches. 

6. Combine HR patches to form a HR training set and MR features to form a LR 

training set. 

7. for Each patch in the LR training set,, 

8. Calculate the DPA of the corresponding patch in the MR image, and identify 

the cluster number. 

9. Set the MR features and the HR patch to the LR and HR training sets of this 

cluster. 

10. end for 

11. Learn a pair of coupled dictionaries for each cluster. 

corresponding HR patch is then reconstructed by imposing these coefficients on the 

HR dictionary of the same cluster. At the end, the overplaying HR patches are 

reshaped and merged to form a HR image estimate. Algorithm 10 summarized the 

proposed reconstruction algorithm. 

As long as the proposed algorithm relies on designing cluster dictionaries, high 

redundancy is not demanded. In his work, 600-atom dictionaries are designed as a 

good compromise between computational complexity and representation quality. To 

meet these requirements, this value is empirically determined. The most 

computationally expensive stage in the sparse reconstruction framework is the sparse 

coding stage which relies on vector selection [82]. 
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Therefore, five compact dictionaries are used and expected to substantially reduce 

the sparse coding computational complexity and thus reduce the overall SR 

computational complexity, as compared to the case of using a single highly  

Algorithm 10 The Proposed Reconstruction Stage. 

INPUT: A LR image, cluster dictionary pairs. 

OUTPUT: A HR image estimate 

1. Upsample the LR image to the required resolution level (MR). 

2. Extract feature images from the MR image. 

3. Extract patches from the feature images and group them column-wise 

4. Divide the MR image into overlapping patches. 

5. for Each MR patch 

6. Calculate DPA of the MR patch. 

7. Determine the cluster this patch belongs to. 

8. Calculate the sparse coding coefficients of the corresponding features over 

the LR dictionary. 

9. Reconstruct a HR patch as the product of the HR dictionary and the 

calculated coefficients. 

10. end for 

11. Obtain a HR image estimate by merging overlapping HR patches. 

redundant dictionary. However, the DPA value of each MR patch should be 

calculated in the proposed algorithm. It can be seen that the proposed algorithm’s 

computation complexity is comparable to that of the algorithm of Yang et al.[50] 

where a 1000-atom dictionary pair is used. 

4.3 Experimental Results 

The performance of the proposed algorithm is examined and compared to bicubic 

interpolation, the algorithm of Yang et al. [50] which uses a single dictionary pair 

and the state-of-the-art algorithms of Peleg et al. [70] and He et al. [46]. The PSNR 

and SSIM [80] measures are employed for comparisons. In accordance with the 
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common practice in the literature, PSNR and SSIM are calculated exactly the same 

way as done in Section 3.4. 

The proposed algorithm uses a 55  patch size, and five cluster dictionary pairs. As 

done in Chapter 3, the Flickr image dataset [79] is used as a training set. Image 

patches are classified into the five clusters based on DPA. For each cluster 40,000 

patch pairs are randomly selected and used to train for a cluster dictionary pair. The 

same parameters with the same training data set are used to train for a 1000-atom 

dictionary for the algorithm of Yang et al. [50]. The default values suggested by the 

authors are used in the algorithms of Peleg et al. [70] and He et al. [46]. 

Example reshaped atoms in the HR cluster dictionaries of the proposed algorithm are 

shown in Fig. 4.1. The atoms of these dictionaries clearly inherit the directional 

structure of their respective clusters. Atoms of the first four dictionaries are generally 

perpendicular to the directions of 
0 , 

45 , 
90  and 

135  from left to right and top to 

bottom respectively and atoms in the fifth dictionary have a chaotic directional in 

accordance with the non-directional nature of 5C . 

PSNR and SSIM values of the test images shown in Fig. 3.1 are listed in Table 4.2. 

The performance of the proposed algorithm is shown with dictionaries of 600, 800 

and 1000 atoms, denoted by 600P , 800P and, 1000P respectively. The proposed 

algorithm outperforms the algorithms of Yang et al. [50] and Peleg et al.[70] with 

average PSNR improvements of 0.14 dB and 0.13 dB, respectively with 600-atom 

dictionaries. Meanwhile, it is competitive with the algorithm of He et al. [46]. The  
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Figure 4.1: Example reshaped atoms of HR dictionaries in 1C  through 5C .  
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Table 4.2: PSNR (dB) and SSIM of bicubic interpolation, the algorithms of Peleg et 

al. [70], Yang et al. [50], He et al. [46] and the proposed algorithm. 

Image Bicubic Peleg et al. Yang et al. He et al. 𝑷1000 𝑷800 𝑷600 

Barbara 
25.35 25.76 25.86 25.84 25.86 25.85 25.85 

0.7930 0.8359 0.8357 0.8372 0.8345 0.8352 0.8347 

BSDS 

198054 

24.75 26.76 26.85 26.98 27.10 27.11 27.08 

0.8267 0.876 0.8816 0.8839 0.8840 0.8839 0.8834 

Butterfly 
27.46 30.96 31.26 31.44 31.83 31.78 31.73 

0.8985 0.9227 0.9457 0.9463 0.9486 0.9487 0.9482 

Fence 
25.05 26.17 26.34 26.22 26.37 26.36 26.36 

0.7449 0.7967 0.8037 0.8045 0.8053 0.8048 0.8047 

Flowers 
30.42 32.57 32.76 32.98 32.95 32.92 32.91 

0.8828 0.8522 0.9005 0.9018 0.9010 0.9010 0.9008 

Input6 
28.08 30.03 30.15 30.24 30.32 30.33 30.29 

0.8523 0.8737 0.8976 0.8989 0.8991 0.8991 0.8988 

Lena 
34.71 36.59 36.36 36.58 36.37 36.37 36.36 

0.8507 0.8387 0.8631 0.8647 0.8631 0.8630 0.8630 

Man 
29.26 30.67 30.68 30.80 30.77 30.77 30.76 

0.8315 0.8729 0.8713 0.8739 0.8721 0.8723 0.8720 

ppt3 
26.85 29.71 29.68 29.79 30.08 29.96 29.89 

0.9372 0.9494 0.9604 0.9621 0.9639 0.9631 0.9623 

Starfish 
30.23 32.92 32.66 33.28 32.78 32.77 32.71 

0.8923 0.9165 0.9279 0.9325 0.9290 0.9287 0.9282 

TextImage1 
17.52 18.73 18.58 18.54 18.79 18.79 18.78 

0.7246 0.8118 0.7974 0.7953 0.8073 0.8068 0.8050 

Texture 
20.64 22.97 22.55 22.78 22.67 22.72 22.70 

0.8272 0.9032 0.8939 0.8997 0.8965 0.8976 0.8973 

Average 
26.69 28.65 28.64 28.79 28.82 28.81 28.78 

0.8385 0.8708 0.8816 0.8834 0.8837 0.8837 0.8832 

 

same result is concluded in terms of SSIM. It is clear that using more redundancy in 

the dictionaries of the proposed algorithm will not significantly improve the  
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Figure 4.2: Visual comparison of the Butterfly image. (a) Original and 

reconstructions with : (b) Bicubic interpolation, (c) Peleg et al. [70] (d) Yang et al. 

[50], (e) He et al. [46] and (d) The proposed algorithm. The last row shows the 

difference between the original and reconstructions of :(g) Yang et al., (h) He et al. 

and (i) The proposed algorithm. 

performance. Furthermore, the proposed algorithm is particularly superior in images 

which contain rich edges. 

In Fig. 4.2 the proposed algorithm is compared with bicubic interpolation and the 

algorithms of Peleg et al. [70], Yang et al. [50] and He et al. [46] for Butterfly image. 

Figure 4.2 (g), (h) and (i) show the differences between the ground-truth scene and 

its reconstructions from Yang et al., He et al. and the proposed algorithm, 

respectively. The result of bicubic interpolation is over-smooth and the 
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reconstructions of Peleg et al. and Yang et al. have sharper edges. He et al.'s 

algorithm has further sharper edges. However, the reconstruction in the proposed 

algorithm is the best to approximate the ground-truth scene with less artifacts. It can 

clearly be seen in the edges and details of the Butterfly's wing. The difference image 

of the proposed algorithm is the darkest one. 

Table 4.3: PSNR and SSIM comparisons for 5 clusters and 9 clusters. 

Image  600P -5Clusters 600P -9 Clusters 

Barbara 25.85 25.90 

  0.8347 0.8352 

BSDS 198054 27.08 26.90 

  0.8834 0.8811 

Butterfly 31.73 31.46 

  0.9482 0.9467 

Fence 26.36 26.35 

  0.8047 0.8029 

Flowers 32.91 32.76 

  0.9008 0.8993 

Input6 30.29 30.20 

  0.8988 0.8988 

Lena 36.36 36.32 

  0.863 0.8625 

Man 30.76 30.73 

  0.872 0.8715 

ppt3 29.89 30.19 

  0.9623 0.9627 

Starfish 32.71 32.73 

  0.9282 0.9274 

TextImage1 18.78 18.74 

  0.805 0.8037 

Texture 22.7 22.69 

  0.8973 0.8960 

Average 28.78 28.75 

  0.8832 0.8823 
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4.3.1 The Performance of The Proposed Algorithm with More DPA clusters 

In this experiment, we investigate the performance of the proposed algorithm with 

increasing the number of DPA clusters. In this setting, we quantize the angles into, 0, 

22.5, 45, 67.5, 90, 112.5, 135, 167.5. This means having eight directional clusters 

with the aforementioned orientations with the ninth cluster being non-directional. 

Simulation results are shown in Table 4.3. In view of this table, it can be seen that 

increasing the number of clusters will not improve the performance. This is because 

the accuracy of DPA in model selection degrades with increased cluster numbers. 
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Chapter 5 

5 IMAGE SUPER-RESOLUTION VIA SPARSE 

REPRESENTATION OVER MULTIPLE LEARNED 

DICTIONARIES BASED ON EDGE SHARPNESS AND 

GRADIENT PHASE ANGLE 

5.1 Introduction 

Based on the success of the SM and DPA classifiers presented in Chapters 3 and 4, it 

seems promising to combine the two measured together. This can be done by first 

clustering training data based on SM. Then, using DPA as a secondary classifier to 

further classify data in each SM cluster. A pair of coupled dictionaries is learned over 

the cluster training patches for each cluster. Correspondingly, the same two criteria 

(SM and DPA) are together employed as a sparse model selection mechanism in the 

reconstruction stage [83]. 

Experimental results conducted on natural images validate a competitive 

performance of the proposed algorithm as compared to the state-of-the-art super-

resolution algorithms. This result is quantitatively validated in terms of the PSNR 

and SSIM quality measures. Visual comparison results come in line with quantitative 

results. 

5.2 The Proposed Super-Resolution Algorithm 

The image gradient operator is believed to be crucial to the perception and analysis 

of natural images [84, 85, 86]. In this section, first SM of image patches is employed 

as a criterion to classify image patches into three main clusters based on their 
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sharpness. Then, based on directional structure of the patches, DPA is employed to 

further cluster them into several sub-clusters. To select the most relevant cluster 

dictionary pair for each LR patch during the reconstruction stage, these two measures 

are used in the same manner. 

5.2.1 Approximate Scale-Invariance of the Image Patch Sharpness and 

Dominant Gradient Phase Angle Measures 

In this work, three SM clusters 1C , 2C  and 3C  are employed for SM intervals of [0, 

10], [10, 20] and [20, 255] respectively. The bounds of two cluster intervals are set to 

uniformly divide the remaining SM range and the lower bound of the third internal in 

such a way that it contains very sharp patches. Based on this, patches are classified as 

un-sharp, moderately sharp and very sharp. More clusters can be defined for finer 

classification. However, this will deteriorate the ability of SM in correctly estimating 

which cluster a given patch belongs to, as noted in chapter 3. We then employ the 

DPA measure (specified in Chapter 4) as a secondary classifier.  

To investigate the impact of scale on SM and DPA the following experiment is 

conducted on each of the test images shown in Fig. 3.1. Each image is divided into 

non-overlapping 66  patches. A LR image is obtained by applying a bicubic filter 

on the HR image and downsampling it with a scale factor of 2 in both dimensions. 

The LR image is then upsampled to the MR level via bicubic interpolation. Each MR 

image is also divided into non-overlapping 66  patches. First, three clusters are 

defined according to SM intervals of [0, 10], [10, 20] and [20, 255]. 
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These are denoted by 1C , 2C  and 3C , respectively. The bounds of these intervals are 

empirically selected. The lower bound of the SM interval of $C_3$ is made high in 

order to capture very sharp features. Then, the remaining interval is uniformly split 

into two intervals. Afterwards, SM values of all HR and MR patches of an image are 

calculated. Each patch is classified into a cluster based on its SM value. HR patches 

classified into each cluster are counted and the number of their MR counterparts 

which are correctly classified into the same cluster is also counted. The SM 

invariance is defined as the ratio between the number of MR patches correctly 

classified into a certain cluster and the total number of HR patches classified into the 

same cluster. 

Similar to SM, five clusters are defined via the DPA. These are denoted by 
0C , 

45C

,
90C , 

135C  and 
ndC  respectively. The first four are directional clusters whereas 

ndC  is non-directional. The directionality of the cluster is indicated with the 

superscript. For each patch, angles in the gradient phase matrix are quantized to 
0 , 

45 , 
90  and 

135 . Similar to the first part of the experiment, each of the MR and 

HR patches is classified into one of the DPA clusters. The DPA is calculated as 

specified in chapter 4. The DPA scale-invariance is defined as the ratio between the 

number of MR patches correctly classified into a certain DPA cluster and the total 

number of HR patches in that cluster. SM and DPA invariance ratios are listed in the 

left and right sides of Table 5.1, respectively. 

In view of Table 5.1, it is clear that SM is, in general, strongly scale-invariant for the 

first (unsharp) and the last (sharpest) clusters. This is particularly true for the case of 
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images rich with texture, edges and corners. Another observation is that the unsharp 

cluster 1C  contains significantly more patches than other two clusters. 

Table 5.1: Number of HR patches in each cluster (top) and the cluster scale 

invariance ratio (bottom). Clustering is done by SM for 1C  through 3C  and DPA for 

0C  through 
ndC . The largest number of patches in a cluster with the corresponding 

percentage is in bold face. 

Image 
SM Cluster DPA Clusters 

𝐶1 𝐶2 𝐶3 𝐶0 𝐶45 𝐶90 𝐶135 𝐶𝑛𝑑 

Barbara 3686 1583 1956 1819 580 466 508 3852 

  99.84 39.67 12.88 45.52 43.28 87.34 52.36 72.04 

BSDS 198054 1686 1228 1326 555 126 130 163 3266 

  99.41 15.80 66.52 71.89 58.73 61.54 55.21 82.70 

Butterfly 833 329 602 126 224 269 47 1098 

  98.32 72.34 76.58 80.95 74.55 92.94 72.34 66.03 

Fence 698 448 618 624 49 252 12 827 

  99.71 21.65 28.64 68.91 65.31 59.52 66.67 76.54 

Flowers 3064 1257 659 453 249 412 185 3681 

  99.61 39.46 47.04 72.41 64.26 71.12 68.65 79.63 

Input6 4075 4215 3414 529 404 951 441 9379 

  99.48 41.02 36.70 80.15 71.29 75.39 73.02 72.95 

Lena 5752 1114 359 894 171 157 474 5529 

  99.90 52.33 30.36 85.91 69.59 73.25 82.07 78.15 

Man 4181 1989 1055 871 236 550 292 5276 

  99.71 29.36 23.98 72.10 68.64 75.45 75.34 76.12 

ppt3 7027 950 1615 636 346 814 299 7497 

  98.72 68.32 74.30 78.77 62.14 86.98 61.87 86.27 

Starfish 967 432 365 101 119 228 149 1167 

  99.28 62.96 31.51 66.34 73.95 78.51 79.87 77.21 

TextImage1 5188 490 5658 288 1 8 3 11036 

  49.67 17.35 34.54 12.85 0.00 12.50 0.00 76.11 

Texture 474 850 9912 6602 1319 74 97 3144 

  81.65 62.35 78.97 82.70 76.19 82.43 69.07 56.04 

Average 92.35 40.88 53.72 73.88 66.97 78.31 68.43 76.19 
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The fact that many patches are classified into the unsharp cluster suggests a possible 

usage of a simple interpolation technique for super-resolving these patches. This is 

because patches of low SM values can have high frequencies. Still, these frequencies 

are negligibly small in magnitude. Interpolation is therefore an effective technique to 

handle such patches. About DPA invariance, it is noted that the invariance ratio for 

all the images in all clusters is generally higher than 50 %, especially for the clusters 

containing the majority of patches. 

To further investigate the invariance of SM and DPA, a similar experiment is 

conducted while using the two measures for clustering. Clustering is carried out in 

two levels. In the first level, image patches are clustered into 1C , 2C  and 3C  based 

on SM values. In the second level, patches of each of the three SM clusters 1C , 2C  

and 3C  are further clustered based on their DPA value into the five aforementioned 

DPA clusters (
0C  through 

ndC ). In total, 15 clusters are obtained. These are 

denoted by 
0
1

C  though 
ndC
3 , where the subscript denotes the SM cluster and the 

superscript denotes the DPA cluster. Fig. 5.1 illustrates this two-level clustering 

process. Then, the scale-invariance of SM and DPA together is calculated as the 

number of MR patches correctly classified in a specific cluster and the total number 

of HR patches in that cluster. Scale-invariance ratios for the images set shown in Fig. 

3.1 are listed in Table 5.2. 
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Figure 5.1: The proposed 2-level clustering scheme. 

Table 5.2: Number of HR patches in each cluster (top) and the percentage of the 

corresponding LR patches correctly classified into the same cluster (bottom) by 

applying SM then DPA. The largest number of patches in a cluster with the 

corresponding percentage is in bold face. 

Image 
𝐶1 𝐶2 𝐶3 

𝐶1
0 𝐶1

45 𝐶1
90 𝐶1

135 𝐶1
𝑛𝑑 𝐶2

0 𝐶2
45 𝐶2

90 𝐶2
135 𝐶2

𝑛𝑑 𝐶3
0 𝐶3

45 𝐶3
90 𝐶3

135 𝐶3
𝑛𝑑 

Barbara 
421 175 252 167 2671 528 214 150 128 563 870 191 64 213 618 

61.28 72.00 88.89 77.84 76.19 40.91 21.96 61.33 59.38 13.50 4.60 1.57 57.81 5.16 19.74 

BSDS 198054 

 

52 20 55 18 1541 146 34 36 35 977 357 72 39 110 748 

63.46 40.00 54.55 33.33 90.07 23.29 14.71 19.44 20.00 9.31 62.75 54.17 35.90 47.27 38.64 

Butterfly 

 

29 57 54 10 683 21 48 76 11 173 76 119 139 26 242 

62.07 68.42 83.33 60.00 73.94 33.33 60.42 65.79 54.55 36.42 81.58 68.07 76.26 73.08 31.82 

Fence 

 

21 16 144 5 512 108 18 77 4 241 495 15 31 3 74 

14.29 75.00 52.08 60.00 79.88 37.96 5.56 19.48 25.00 8.30 31.72 6.67 12.90 0.00 9.46 

Flowers 

 

228 100 168 92 2476 135 84 143 55 840 90 65 101 38 365 

69.30 62.00 69.64 70.65 83.20 48.15 32.14 30.77 21.82 24.29 45.56 47.69 45.54 65.79 22.47 

Input6 

 

72 81 221 79 3622 174 132 314 153 3442 283 191 416 209 2315 

65.28 56.79 61.99 53.16 83.49 54.02 45.45 46.50 58.17 20.28 53.71 46.07 44.95 52.63 12.83 

Lena 

 

489 74 100 193 4896 298 65 49 195 507 107 32 8 86 126 

82.21 59.46 68.00 75.13 80.60 58.39 55.38 57.14 63.08 18.15 24.30 46.88 50.00 48.84 7.94 

Man 

 

316 99 236 115 3415 344 91 219 101 1234 211 46 95 76 627 

62.97 64.65 70.76 67.83 79.03 33.14 32.97 44.75 48.51 10.86 34.12 43.48 27.37 27.63 7.50 

ppt3 

 

88 213 244 151 6331 169 66 238 47 430 379 67 332 101 736 

38.64 49.77 63.52 43.71 91.31 73.37 75.76 60.08 55.32 34.42 60.69 67.16 74.40 61.39 41.85 

Starfish 

 

28 45 108 66 720 34 42 73 44 239 39 32 47 39 208 

53.57 68.89 81.48 74.24 75.97 55.88 64.29 61.64 79.55 38.91 41.03 43.75 25.53 41.03 15.87 

TextImage1 

 

0 0 0 0 5188 0 0 0 0 490 288 1 8 3 5358 

N.A. N.A. N.A. N.A. 47.96 N.A. N.A. N.A. N.A. 12.65 11.46 0.00 12.50 0.00 18.51 

Texture 

 

48 12 2 0 412 272 59 0 4 515 6282 1248 72 93 2217 

47.92 41.67 0.00 N.A. 52.18 44.49 35.59 N.A. 0.00 25.83 68.48 74.12 80.56 70.97 41.00 

Average 66.41 60.87 69.82 65.85 77.30 45.27 39.04 48.58 54.57 18.80 56.51 60.70 54.88 42.53 23.27 
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In view of Table 5.2, it can be seen that for images with sharp details such as texture 

and edges, SM and DPA in the clusters that contain the majority of patches are 

strongly scale-invariant. However, it is moderate for the other clusters. For the case 

of regular natural images such the Lena the overall scale-invariance is not as strong. 

The above findings point out that each of SM and DPA independent of each other 

approximately is scale-invariant. Accordingly, it is promising to combine the two 

quantities as an approximately scale-invariant measure for the purposes of 

classification and sparse model selection. 

5.2.2 Clustering and Sparse Model Selection with the Patch Sharpness Measure 

and Dominant Gradient Phase Angle 

The proposed algorithm is composed of two stages. The first one is the training 

stage, where a set of dictionary pairs is prepared. The second stage is the 

reconstruction stage where the best dictionary pair is selected to sparsely reconstruct 

HR patches from the corresponding LR patches. 

A HR image set is required for the training stage. A LR version of each HR image is 

obtained by filtering it with a bicubic kernel and then downsampling it by a scale 

factor of 2 in the two dimensions. Each LR image is then interpolated by a scale 

factor of 2 to the dimensions of the corresponding HR image known as the MR level. 

Then, features are obtained by applying feature extraction filters on the MR images, 

as done in [50]. Dictionary learning and sparse coding of the LR patches is done with 

these features. This is shown to be more advantageous than dealing with LR patches 

directly [2, 50]. 
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LR and HR patches corresponding to the same spatial location are handled as pairs. 

Each MR patch is then classified into a specific cluster based on its SM and DPA 

value. The HR patch in the pair is placed into the same cluster. The mean value of 

each HR patch is subtracted to allow for better dictionary learning. LR and HR 

patches of each cluster are used to train for a pair of coupled LR and HR cluster 

dictionaries, respectively. For this purpose, the method proposed in [50] is used. 

Algorithm 11 outlines the main steps of the training stage. In this setting, the purpose 

is to design cluster dictionaries that correspond to different sharpness natures, and 

have the desired directional structures. 

Algorithm 11 The Proposed Cluster DL Algorithm. 

INPUT: HR training image set. 

OUTPUT: A set of directional cluster dictionary pairs with varying sharpness. 

1. Divide each HR image into patches and combine them column-wise to form a 

HR training array. 

2. Blur and downsample each HR image to the LR and divide it into patches. 

3. Upsample each LR image to the MR level. 

4. Apply feature extraction filters on each MR image, reshape and column-stack 

them. 

5. For Each patch in the LR training array, 

6. Calculate SM and DPA of the MR patch, and find the cluster number. 

7. Add the MR patch to the LR training set of this cluster. 

8. Add the corresponding HR patch to the HR training set of this cluster. 

9. end for 

10. For each cluster, learn a pair of coupled dictionaries. 

In the reconstruction stage, a LR image is first upsampled using bicubic interpolation 

to the MR level. Features are extracted by applying feature extraction filters and then 

reshaped into the vector form. A certain patch overlap (for a patch size of 5x5, 4 

patch overlap) is allowed to assure local consistency between the reconstructed 

patches [50]. The SM and DPA values of each MR patch are calculated and the 
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cluster that the MR patch belongs to is identified. Using the dictionary pair of the 

identified cluster, first the sparse representation coefficient vector of the 

corresponding MR feature vector over the cluster LR dictionary is calculated. Then 

the HR patch is reconstructed by right-multiplying the cluster HR dictionary with the 

sparse representation coefficient vector. The same process is repeated for all MR 

patches. Eventually, the reconstructed HR patches are reshaped into the 2-D form 

and merged to constitute the HR image estimate. A summary of the proposed 

reconstruction algorithm is outlined in Algorithm 12. 

Algorithm 12 The Proposed Single-Image Super-resolution Algorithm. 

INPUT: A LR test image, cluster dictionary pairs. 

OUTPUT: A HR image estimate 

1. Divide the LR image into overlapping patches. 

2. Upsample the LR image to the required resolution level (MR). 

3. Apply feature extraction filters on the MR image. 

4. Divide the extracted features into overlapping patches and reshape them into 

vectors. 

5. for Each MR patch 

6. Calculate SM and DPA of the MR patch. 

7. Determine the cluster this patch belongs to. 

8. Sparsely code the features of the MR patch over the cluster LR dictionary. 

9. Reconstruct the corresponding HR patch by right-multiplying the HR 

dictionary of the same cluster with the sparse codes of the MR features. 

10. end for 

11. Merge overlapping patches to obtain a HR image estimate. 

5.2.3 Computational Complexity of the Proposed Algorithm 

The proposed algorithm separates the training and testing patches into 3 main 

clusters based on their SM values. Patches of the first cluster have small SM values. 

They may correspond to high frequencies but with very small magnitudes. Therefore, 

it is expected that a simple interpolation technique will suffice to super-resolve these 
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patches. As will be shown in the next section, bicubic interpolation seems as a good 

technique for that purpose. It has been revealed in Table 5.1 that a relatively large 

percentage of patches of a given image are located in this cluster. Employing bicubic 

interpolation to handle such patches is thus promising in significantly saving the 

computational cost as compared to the case of employing a dictionary pair for all 

clusters. 

The cluster dictionary pairs of the proposed algorithm are learned off-line. During 

the testing stage, the proposed algorithm calculates the SM and DPA values of each 

patch. Due to the use of multiple pairs of dictionaries, one can use dictionaries with 

smaller number of atoms compared to the algorithms that employ a single dictionary 

pair such as Yang et al. [50]. Thus, the computational complexity of the sparse 

coding stage can be reduced. 

5.3 Experimental Validation 

In this section, the performance of the proposed algorithm is examined and compared 

to several super-resolution algorithms. These include the basic sparse representation-

based SR algorithm of Yang et al. [50] which employs one dictionary pair. Besides, 

we also include the SR algorithms of Peleg et al. [70] and He et al. [46] as state-of-

the-art techniques. These algorithms are different in nature. In order to have fair 

comparisons, care has been taken to ensure that the parameters used in the training 

and testing stages are as close to each other for all algorithms as possible. If a 

parameter is unique to a specific algorithm, the value suggested by the authors is 

used. Image SR results for a scale factor of 2 are presented. However, the proposed 

algorithm can easily be modified for other scale factors. 
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Dictionaries of the proposed algorithm are learned as specified in Algorithm 11. 

Example reshaped atoms of these dictionaries are shown in Fig. 5.3. Dictionary 

training for the proposed algorithm is done over the 1000-image Flickr dataset [79], 

along with several typical text images (Fig 3.4) as done in section 3.4. These text 

images are added to the training set to be sure about the availability of enough 

patches with relatively high SM values. The clustering of LR and HR training 

patches is carried out in terms of the SM and DPA of each LR patch, as outlined in 

Section 5.2. We then randomly selected 40,000 pairs of LR and HR training patches 

for each cluster. 600-atom dictionary pairs are designed for the proposed algorithm. 

As for the example atoms shown in Fig. 5.2, it can be clearly observed that the 

designed dictionaries inherit the sharpness nature and directionality of their 

respective clusters. It is notable that the atoms of the dictionaries in 3C  (shown in the 

last column of Fig. 5.2) are sharper than the corresponding ones in 2C  (shown in the 

second column) and those in 1C  (shown in the first column). One can clearly see that 

the first four sub-figures in the first column of Fig. 5.2 have atoms perpendicular to 

the 
0 , 

45 , 
90  and 

135  orientations, respectively. The same observation can be 

made about the corresponding sub-figures in the second and the third columns, even 

though they vary in sharpness. Moreover, the dictionaries in ndC
1

, ndC
2

 and ndC
3

 

exhibit a chaotic directional nature. This points out that the designed dictionaries are 

directionally structured in the specified orientations. 

For the algorithm of Yang et al.[50], a single dictionary pair with 1000 atoms is 

learned. For the learning, 40,000 pairs of LR and HR patches are randomly selected  
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Figure 5.2: Reshaped example atoms of the 15 HR cluster dictionaries. 
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from the same training set used by the proposed algorithm. We used the default 

design parameters and training image datasets for the algorithms of Peleg et al.[70] 

and He et al.[46] as specified by the authors. 

Similar to the experiment presented in Section 3.4, an experiment is carried out to 

examine the discrimination of the designed cluster dictionary pairs. For this purpose, 

patch pairs of the same training set are classified into the aforementioned 15 clusters 

of the proposed algorithm as illustrated earlier. For each cluster its training data is 

used as the testing patch pairs for this experiment. The HR patch in each cluster is 

reconstructed with every cluster dictionary pair based on its LR counterpart. HR 

patch reconstruction is done similar to the super-resolution problem. This means that 

the sparse coding coefficients of the MR patch are calculated. Then, a HR patch 

estimate is obtained by multiplying these coefficients with the HR dictionary. The 

mean value of the MR patch is added to this multiplicand to form an estimate of the 

HR patch. The MSE between the ground-truth HR patch and each of its 15 

reconstructions is recorded. For comparison, a HR patch in each cluster is also 

reconstructed with the single dictionary pair of Yang et al.'s [50] algorithm and 

bicubic interpolation. Results are listed in Table 5.3. 

In view of Table 5.3, it is clear that the dictionary pair of each cluster is the best to 

represent patches of that cluster as compared to the other cluster dictionary pairs, the 

single dictionary pair of Yang et al. [50] and bicubic interpolation. However, data in 

ndC
1  is an exception; bicubic interpolation is slightly better in representing them than 

the dictionary pair of this clusters. This is due to the fact that patches of this cluster  
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Table 5.3: MSE reconstruction quality for the patches in the 15 clusters with the dictionary pair of each cluster, the single dictionary pair of Yang 

et al. (SD) and with bicubic interpolation. 

Data in /  

Dict.s 

𝐶1 𝐶2 𝐶3 

SD 

Bicubic 

𝐶1
0 𝐶1

45 𝐶1
90 𝐶1

135 𝐶1
𝑛𝑑 𝐶2

0 𝐶2
45 𝐶2

90 𝐶2
135 𝐶2

𝑛𝑑 𝐶3
0 𝐶3

45 𝐶3
90 𝐶3

135 𝐶3
𝑛𝑑 

𝐶1
0 70.87 83.70 87.45 82.68 84.38 73.77 84.96 86.88 83.14 76.76 77.42 84.88 90.98 85.28 77.86 80.16 75.50 

𝐶1
45 42.67 33.95 42.66 46.08 42.32 43.71 35.54 42.80 48.45 38.87 46.84 38.88 47.23 51.19 41.28 40.89 37.09 

𝐶1
90 53.12 49.04 42.16 48.68 48.97 54.35 50.11 43.83 49.49 45.16 55.94 52.26 46.24 51.66 46.74 48.81 43.67 

𝐶1
135 46.23 50.25 45.54 36.53 46.52 46.29 51.98 46.11 38.39 41.41 50.73 55.02 50.67 41.22 44.01 43.66 40.44 

𝐶1
𝑛𝑑 18.45 18.25 18.07 18.56 16.19 18.60 18.31 18.10 18.68 17.05 19.77 19.68 20.08 19.59 18.78 18.50 14.10 

𝐶2
0 294.91 357.10 360.18 348.95 348.24 273.24 349.12 352.24 340.46 301.14 284.21 341.37 363.30 342.47 295.02 319.54 322.75 

𝐶2
45 244.56 189.00 241.04 267.02 241.97 238.61 174.87 232.78 273.36 197.22 247.26 186.62 249.62 281.14 202.75 214.17 226.96 

𝐶2
90 401.01 375.84 330.03 375.56 370.40 402.52 379.46 300.58 374.25 327.49 401.48 382.15 315.81 380.23 330.78 356.02 356.68 

𝐶2
135 244.08 270.39 244.61 189.59 242.92 234.20 271.63 235.03 175.64 197.54 249.78 283.57 248.34 186.83 204.56 215.05 227.32 

𝐶2
𝑛𝑑 455.99 459.41 454.35 457.50 455.56 445.35 456.67 440.76 449.47 389.45 456.52 462.21 462.67 457.80 413.17 442.64 455.15 

𝐶3
0 772.92 1056.32 983.82 995.49 956.85 704.33 1006.21 986.82 943.57 797.27 567.06 954.01 1000.68 937.18 675.07 808.46 930.51 

𝐶3
45 715.85 484.46 686.26 783.87 699.11 670.10 426.21 653.14 812.45 489.63 677.12 372.02 670.83 816.85 464.28 535.95 664.77 

𝐶3
90 1051.33 993.12 798.80 988.96 941.99 1053.50 999.48 727.89 975.10 783.75 1041.49 983.84 609.26 974.84 750.02 853.35 947.18 

𝐶3
135 698.56 782.26 702.75 478.65 691.11 650.64 789.91 649.97 423.39 502.11 674.45 829.74 673.11 371.36 470.26 539.85 663.32 

𝐶3
𝑛𝑑 1355.99 1388.08 1354.35 1377.77 1376.38 1310.95 1370.73 1303.05 1343.98 1167.29 1274.32 1336.74 1290.64 1323.30 1050.34 1301.60 1387.14 

 



79 
 

are unsharp and non-directional. This means that they have few high frequency 

components. Therefore, the designed cluster dictionaries are well-suited to represent 

patches of their own clusters. It can also be concluded that patches in sub-clusters of 

1C  (
0
1

C  through 
ndC
1

) may still be effectively represented with dictionaries of the 

other sub-clusters, the single dictionary pair of Yang et al.[50] or bicubic 

interpolation without a significant MSE difference. However, error levels for sharper 

clusters 2C  and 3C  are higher. Thus, dictionaries in the sub-clusters of 2C  and 3C  

are clearly more discriminative than the ones in 1C . This result suggests the 

possibility of employing bicubic interpolation to super-resolve patches in 1C . Given 

that there are a large percentage of patches in 1C  as seen in Table 5.1, this 

employment will significantly reduce the SR computational complexity without 

sacrificing the representation quality. In this setting, the proposed algorithm uses the 

sparse representation reconstruction only for patches of 2C  and 3C . 

Table 5.4 lists the PSNR (top) and SSIM (bottom) values of super-resolution 

reconstructions obtained with the aforementioned algorithms and setups with respect 

to the original ground-truth image. It is noted that we have conducted the simulations 

with source codes provided by the authors of [50], [46] and [70]. Two cases are 

shown for the proposed algorithm. In the first case, all the cluster dictionary pairs are 

used. This is denoted by (Prop.600). In the second case, any LR patch classified into 

1C  is super-resolved with bicubic interpolation. The second case is denoted by 

(Prop.600+bic). The proposed algorithm in both cases performs better than the 

algorithm of Yang et al.[50]. The proposed algorithm has average PSNR 

improvements of 0.42 dB and 0.35 dB over the algorithm of Yang et al.[50] for the 
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first and the second cases, respectively. These improvements validate the added-

benefit of using multiple cluster dictionary pairs instead of a single general 

dictionary pair. 

Table 5.4: PSNR (dB) and SSIM comparisons of bicubic interpolation, the 

algorithms of Peleg et al. [70], Yang et al. [50] and He et al. [46] and the proposed 

algorithm, respectively. 

Image 
Bicubic Yang et al. Peleg et al. He et al. Prop. 600 

Prop. 

600+bic 

Barbara 
25.35 25.86 25.76 25.84 25.86 25.87 

0.7930 0.8357 0.8359 0.8372 0.8353 0.8350 

BSDS 198054 
24.75 26.85 26.76 26.98 27.19 27.16 

0.8267 0.8816 0.8760 0.8839 0.8835 0.8810 

Butterfly 
27.46 31.26 30.96 31.44 32.07 31.93 

0.8985 0.9457 0.9227 0.9463 0.9511 0.9478 

Fence 
25.05 26.34 26.17 26.22 26.46 26.41 

0.7449 0.8037 0.7967 0.8045 0.8069 0.8031 

Flowers 
30.42 32.76 32.57 32.98 32.97 32.85 

0.8828 0.9005 0.8522 0.9018 0.9000 0.8980 

Input6 
28.08 30.15 30.03 30.24 30.38 30.35 

0.8523 0.8976 0.8737 0.8989 0.9001 0.8986 

Lena 
34.71 36.36 36.59 36.58 36.44 36.39 

0.8507 0.8631 0.8387 0.8647 0.8633 0.8630 

Man 
29.26 30.68 30.67 30.80 30.85 30.79 

0.8315 0.8713 0.8729 0.8739 0.8727 0.8702 

ppt3 
26.85 29.68 29.71 29.79 30.51 30.44 

0.9372 0.9604 0.9494 0.9621 0.9646 0.9629 

Starfish 
30.23 32.66 32.92 33.28 33.05 32.99 

0.8923 0.9279 0.9165 0.9325 0.9302 0.9292 

TextImage1 
17.52 18.58 18.73 18.54 18.89 18.87 

0.7246 0.7974 0.8118 0.7953 0.8124 0.8096 

Texture 
20.64 22.55 22.97 22.78 23.05 23.05 

0.8272 0.8939 0.9032 0.8997 0.9040 0.9039 

Average 
26.69 28.64 28.65 28.79 28.98 28.93 

0.8385 0.8816 0.8708 0.8834 0.8853 0.8835 
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In view of Table 5.4, one notices that the success of the proposed algorithm is 

particularly valid for images with sharp features such as text images, the Butterfly 

and the ppt3 images. Considering the Butterfly image, as an example, it can be seen 

in Table 5.1 that the majority of patches are located in 1C  and 3C  for which SM is 

highly scale-invariant. Besides, a high percentage of patches is located in 
ndC  for 

which DPA is strongly scale-invariant. In view of Table 5.2, the largest percentage of 

patches is located in cluster 
ndC
1  for which the scale-invariance of the two measures 

is strong. It can be seen generally that the scale-invariance of SM and DPA reported 

in Tables 5.1 and 5.2 is reflected to the PSNR and SSIM performances listed in Table 

5.4. 

It can be seen in Table 5.4 that the proposed algorithm is competitive with the state-

of-the-art algorithms of Peleg et al. [70] and He et al. [46]. The proposed algorithm 

has average PSNR improvements of 0.33 dB and 0.19 dB over the algorithms of 

Peleg et al. [70] and He et al. [46], respectively. For the case of employing bicubic 

interpolation for the LR patches of 1C , the average improvements are 0.28 dB and 

0.14 dB, respectively. SSIM simulations validate the above observations and 

conclusions. 

Figure 5.3 compares a portion of the original Butterfly image to its reconstructions 

obtained with bicubic interpolation, Peleg et al. [70], Yang et al. [50], He et al. [46] 

and the proposed algorithm. Amongst all reconstruction methods, the proposed 

algorithm's reconstruction is the best to approximate the ground-truth scene. The 

proposed algorithm is better able to reconstruct edges. This is particularly seen by 
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comparing the curvy line along the butterfly's wing and the patterns on the wing. Fig. 

5.3 (g), (h) and (i) show respectively the difference between the original scene and its 

reconstructions from Yang et al. [50], He et al. [46] and proposed algorithm. Clearly, 

the proposed algorithm has least amount of artifacts. 

 
Figure 5.3: Visual comparison of the Butterfly image: (a) Original, and 

reconstructions of (b) Bicubic interpolation, (c) Peleg et al. [70], (d) Yang et al. [50], 

(e) He et al. [46] and (f) the proposed algorithm. The last row shows the difference 

between the original image and reconstructions of:(g) Yang et al., (h) He et al. and (i) 

The proposed algorithm, respectively. 

Figure 5.4 conducts the same comparison with the Flowers image. Similar to the case 

of Fig. 5.3, the proposed algorithm is better able to conserve image details such as  
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Figure 5.4: Visual comparison of the Flower image: (a) Original, and reconstructions 

of (b) Bicubic interpolation, (c) Peleg et al. [70], (d) Yang et al. [50], (e) He et al. 

[46] and (f) the proposed algorithm. The last row shows the difference between the 

original image and reconstructions of:(g) Yang et al., (h) He et al. and (i) The 

proposed algorithm, respectively. 

curvy edges. This is clearly seen in the boundaries of the flower's leave. Fig. 5.4 (g), 

(h), (i) show respectively the difference images. It is obvious that proposed algorithm 

produces less artifacts around sharp features. 

As a final visual comparison, Fig. 5.5 shows reconstructions of the ppt3 image. One 

can make the same conclusions made in last two figures. It is obvious that the sharp 

boundaries of the letters and the hollow areas in the interior of the text are better 

reconstructed with the proposed algorithm. The other algorithms generate artifacts in  
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Figure 5.5: Visual comparison of the ppt3 image: (a) Original, and reconstructions of 

(b) Bicubic interpolation, (c) Peleg et al. [70], (d) Yang et al. [50], (e) He et al. [46] 

and (f) the proposed algorithm. The last row shows the difference between the 

original image and reconstructions of:(g) Yang et al., (h) He et al. and (i) The 

proposed algorithm, respectively. 

these regions. This observation can be verified by comparing the difference images 

between the ground-truth image and different reconstructions (Fig. 5.5 (g), (h), (i)). 

To inspect the representation capability of the designed cluster dictionaries, the 

following experiment is conducted on the images shown in Fig. 3.1. Four scenarios 

of SR are applied and the average PSNR and SSIM values of the reconstructed 

images are recorded. In the first scenario, SM is only used as a classification and 

model selection criterion. Three main clusters corresponding to SM intervals of [0, 
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10], [10, 20] and [20, 255] are considered. A 1000-atom dictionary pair is designed 

for each cluster. In the second scenario, the same operation is repeated with the same 

dictionaries by applying perfect model selection. In this context, perfect model 

selection is carried out by super-resolving each LR patch with each of the three 

cluster dictionary pairs. Then the super-resolved patch that is closest to the ground- 

Table 5.5: PSNR and SSIM values for the case of using 3 SM clusters, 3 SM clusters 

with perfect model selection, 15 clusters defined by SM and DPA and 15 clusters 

defined by SM and DPA with perfect model selection. 

Image 𝑆1 𝑆2 𝑆3 𝑆4 

Barbara 25.82 26.22 25.86 26.65 

  0.8345 0.8493 0.8353 0.8619 

BSDS 198054 27.16 27.93 27.19 28.45 

  0.8829 0.9001 0.8835 0.9089 

Butterfly 31.89 32.75 32.07 33.39 

  0.9483 0.9561 0.9511 0.9607 

Fence 26.35 27.12 26.46 27.62 

  0.8026 0.8265 0.8069 0.8405 

Flowers 32.92 33.80 32.97 34.43 

  0.8997 0.9099 0.9000 0.9135 

Input6 30.36 31.13 30.38 31.44 

  0.8991 0.9131 0.9001 0.9174 

Lena 36.30 37.17 36.44 37.50 

  0.8630 0.8714 0.8633 0.8739 

Man 30.77 31.43 30.85 31.88 

  0.8710 0.8874 0.8727 0.8958 

ppt3 30.18 30.99 30.51 32.08 

  0.9628 0.9679 0.9646 0.9709 

Starfish 32.79 33.77 33.05 34.45 

  0.9292 0.9407 0.9302 0.9453 

TextImage1 18.92 19.41 18.89 19.92 

  0.8136 0.8292 0.8124 0.8476 

Texture 22.70 23.74 23.05 24.75 

  0.8967 0.9177 0.9040 0.9342 

Average 28.85 29.62 28.98 30.21 

  0.8836 0.8974 0.8853 0.9059 
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truth HR patch in the MSE sense is selected. In the third scenario, SM and DPA are 

together used to design 15 cluster dictionary pairs. Each cluster dictionary has 600 

atoms. SM and DPA are then used together as a model selection criterion according 

to the proposed algorithm. The same process is repeated in the fourth scenario but 

with applying perfect model selection. Average PSNR and SSIM values for the four 

scenarios are listed in Table 5.5 and denoted by 1S , 2S , 3S  and 4S , respectively. 

In view of Table 5.5, it can be concluded that using 15 cluster dictionaries each of 

600 atoms defined by SM and DPA is better than using 3 SM cluster dictionaries of 

1000 atoms. This is the case for SM and DPA bases section and perfect model 

selection. 
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Chapter 6 

6 COMPUTATIONAL COMPLEXITY REDUCTION BY 

USING BICUBIC INTERPOLATION 

6.1 Introduction 

This chapter presents attempts to reduce the computational complexity levels of the 

proposed SR algorithms. The key idea in doing so is to employ bicubic interpolation 

on patches of insignificant HF components. In Chapters 3, 4 and 5 it has been shown 

that a high percentage of patches are located in clusters of low SM values and the 

non-directional clusters, respectively. Therefore, a simple reconstruction technique 

such as bicubic interpolation will efficiently reconstruct these patches. This means 

that the expensive sparse representation-based reconstruction will be reserved for 

patches of significantly HF components which form a minority of the overall 

patches. This will significantly reduce the SR computational complexity without 

sacrificing the reconstruction quality, as will be explained in the following sections.  

6.2 Bicubic Interpolation for Clusters of Low SM Values 

 In this experiment, we analyze the applicability of bicubic interpolation in super-

resolving patches of low SM clusters in the SM-based SR algorithm presented in 

Chapter 3 [87]. It is concluded in chapter 3 (Table 3.2) that clusters of low SM 

values have poor dictionary discrimination. This observation also motivates bicubic 

interpolation for such clusters. Setting the number of clusters to seven, it is 

interesting to investigate the performance of bicubic interpolation in super-resolving 

patches of the images in Fig. 3.1 in different clusters. For this purpose, six scenarios 
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are considered and labeled as 1S  through 6S . In the first scenario 1S , all LR patches 

in 1C  are super-resolved with bicubic interpolation, while others in the remaining 

clusters are super-resolved using their respective cluster dictionary pairs. In the 

second scenario 2S , patches in 1C  and 2C  are super-resolved with bicubic 

interpolation, and so on, till the scenario 6S  where only patches in 7C  are super-

resolved with the sparse framework, whereas patches in the other clusters are super-

resolved with bicubic interpolation. This also includes the case of using the sparse 

reconstruction with seven clusters, as proposed in [72]. For a set of test images, 

PSNR (top) and SSIM (bottom) values of the aforementioned scenarios are listed in 

Table 6.1. Besides, PSNR and SSIM values of the SR algorithms of Zeyde et al. [47], 

Yang et al. [50] and He et al. [46] are also shown in Tanle 3.3 before. 

In view of Table 6.1, it is evident that the scenario 4S  represents a good compromise 

between the performance and the computational complexity. We opt to adopt this 

scenario in this work. 4S  is 0.08 dB on average less than the algorithm in [72] 

(Prop.7). Beside, 4S  is superior to the algorithm of Zeyde et al. [47] and Yang et al. 

[46] with average PSNR differences of 0.39 dB and 0.09 dB, respectively. Also, 4S  

is competitive with the algorithm of He et al. [46]. SSIM values come inline with the 

PSNR performances. 

To analyze the reduction in computational complexity for each scenario, Table 6.2 

shows the percentage of LR patches that are super-resolved with bicubic 

interpolation, to the total number of patches. When applying 4S , 74.8 % of patches 
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are super-resolved with bicubic interpolation. This means a significant reduction in 

the computational cost of the algorithm presented in [87]. 

Table 6.1: PSNR (dB) and SSIM comparisons. 

Image Prop.7 S1 S2 S3 S4 S5 S6 

Barbara 25.87 25.82 25.82 25.85 25.85 25.85 25.84 

  0.8361 0.8353 0.8346 0.8342 0.8337 0.8335 0.8330 

BSDS 198054 27.05 27.23 27.22 27.18 27.14 27.10 27.02 

  0.883 0.8844 0.8827 0.8809 0.8795 0.8784 0.8773 

Butterfly 31.68 31.81 31.73 31.65 31.51 31.33 31.06 

  0.948 0.9478 0.9458 0.9443 0.9426 0.9402 0.9371 

Fence 26.41 26.37 26.34 26.30 26.28 26.24 26.22 

  0.8046 0.8046 0.8026 0.8001 0.7986 0.7968 0.7957 

Flowers 32.85 32.97 32.91 32.81 32.70 32.55 32.39 

  0.9005 0.9002 0.8990 0.8979 0.8972 0.8965 0.8959 

Input6 30.31 30.36 30.34 30.30 30.22 30.12 30.01 

  0.8991 0.8991 0.8982 0.8971 0.8957 0.8943 0.8927 

Lena 36.37 36.35 36.32 36.26 36.18 36.13 36.07 

  0.8634 0.8632 0.8629 0.8626 0.8623 0.8621 0.8619 

Man 30.76 30.81 30.78 30.71 30.62 30.52 30.40 

  0.8719 0.8721 0.8706 0.8691 0.8678 0.8663 0.8651 

ppt3 30.04 30.16 30.13 30.10 30.02 29.92 29.83 

  0.9634 0.9636 0.9628 0.9615 0.9595 0.9576 0.9564 

Starfish 32.82 32.87 32.85 32.76 32.57 32.31 32.06 

  0.9298 0.9299 0.9292 0.9277 0.9255 0.9231 0.9210 

TextImage1 18.85 18.92 18.91 18.91 18.88 18.84 18.78 

  0.81 0.8136 0.8124 0.8106 0.8068 0.8028 0.7973 

Texture 22.67 22.77 22.77 22.78 22.77 22.74 22.70 

  0.8963 0.8983 0.8982 0.8981 0.8977 0.8967 0.8953 

Average 28.81 28.87 28.84 28.80 28.73 28.64 28.53 

  0.8838 0.8843 0.8833 0.8820 0.8806 0.8790 0.8774 
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Table 6.2: Percentage of LR patches located in the low-sharpness clusters to the total 

number of image patches. 

Image C1 C1-2 C1-3 C1-4 C1-5 C1-6 

Barbara 43.8 67.2 82.4 90.4 95 97.7 

BSDS 198054 32.7 55.9 68.5 74.3 78.2 81.8 

Butterfly 36.2 49 57.8 64.9 71.9 78.4 

Fence 38.9 58.9 70.8 79.1 86.1 91.5 

Flowers 39.5 66.3 81 88.3 92.4 95.1 

Input6 23.4 46.4 65.4 78.1 86.6 92.1 

Lena 64.7 81.2 89.8 94.9 97.6 98.9 

Man 40.8 69.6 83.1 90.7 95.2 97.6 

ppt3 66.4 72.2 76.9 81.9 86.4 89.4 

Starfish 29.6 55.4 69.8 81.6 90.4 96.1 

TextImage1 39.2 44.7 49.8 55.4 61.9 69.8 

Texture 1.4 5.2 10.4 17.6 27.1 38.3 

Average 38.1 56.0 67.1 74.8 80.7 85.6 

 

6.3 Bicubic Interpolation for Low SM and Non-Directional Clusters 

 In this section, we attempt at reducing the computational complexity of the SM-

DPA SR algorithm presented in Chapter 5 [83]. The key idea for this reduction is to 

use bicubic interpolation to super-resolve patches of insignificant HF components, as 

mentioned in the previous section. This computational complexity can be further 

reduced by using bicubic interpolation to super-resolve un-sharp patches [88]. Table 

5.2 shows the scale-invariance ratios of Fig. 3.1.  From Table 5.2 one can notice that 

the SM cluster 1C  contains un-sharp patches with insignificant high frequency 

components. This suggests the possibility of using bicubic interpolation to super-

resolve such patches. Following the same logic, patches in 
ndC
2  are non-directional 

and can therefore be effectively super-resolved with bicubic interpolation. In 

contrast, 
ndC
3  is located in the sharpest SM cluster 3C , and its patches have 
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significantly high frequency components. So, bicubic interpolation will not 

effectively reconstruct patches in 
ndC
3

. 

In view of Table 5.2, 1C  contains a high percentage of image patches. Besides, the 

scale-invariance of SM and DPA in 
ndC
2

 is particularly weaker than in the other 

clusters. In view of Table 5.3, it is concluded that the dictionaries in 1C  do not 

possess good discrimination. This observation is also valid for the cluster 
ndC
2 . The 

lack of dictionary discrimination in these clusters also motivates the applicability of 

bicubic interpolation in super-resolving their patches. Therefore, applying bicubic 

interpolation to patches in 1C  and 
ndC
2

, while the sparse representation-based SR is 

only applied to clusters 
0
2

C  though 
135
2

C  and 3C  is expected to substantially reduce 

the SR computational complexity without sacrificing the reconstruction quality. This 

scenario is also studied and denoted by ( bicP ) in Table 6.3. In this table, bicP  is 

compared with the proposed algorithm of Chapter 5 (denoted by P ) and the SR 

algorithms of He et al. [46], Peleg et al. [70]  and Yang et al. [50]. With this scenario, 

the proposed algorithm is still generally superior to the other algorithms with PSNR 

improvements of 0.16 dB, 0.16 dB and 0.29 dB over the algorithms of He et al. [46], 

Peleg et al. [70] and Yang et al. [50], respectively. SSIM values come inline with the 

PSNR performances. 
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Table 6.3: PSNR and SSIM comparisons. The best PSNR and SSIM results are in 

bold. 

Image Bicubic Yang et al. Peleg et al. He et al. Prop.600 Prop.600+Bic 

Barbara 25.35 25.86 25.76 25.84 25.86 25.87 

  0.793 0.8357 0.8359 0.8372 0.8353 0.8350 

BSDS 198054 24.75 26.85 26.76 26.98 27.19 27.16 

  0.827 0.8816 0.876 0.8839 0.8835 0.8810 

Butterfly 27.46 31.26 30.96 31.44 32.07 31.93 

  0.899 0.9457 0.9227 0.9463 0.9511 0.9478 

Fence 25.05 26.34 26.17 26.22 26.46 26.41 

  0.745 0.8037 0.7967 0.8045 0.8069 0.8031 

Flowers 30.42 32.76 32.57 32.98 32.97 32.85 

  0.883 0.9005 0.8522 0.9018 0.9000 0.8980 

Input6 28.08 30.15 30.03 30.24 30.38 30.35 

  0.852 0.8976 0.8737 0.8989 0.9001 0.8986 

Lena 34.71 36.36 36.59 36.58 36.44 36.39 

  0.851 0.8631 0.8387 0.8647 0.8633 0.8630 

Man 29.26 30.68 30.67 30.8 30.85 30.79 

  0.832 0.8713 0.8729 0.8739 0.8727 0.8702 

ppt3 26.85 29.68 29.71 29.79 30.51 30.44 

  0.937 0.9604 0.9494 0.9621 0.9646 0.9629 

Starfish 30.23 32.66 32.92 33.28 33.05 32.99 

  0.892 0.9279 0.9165 0.9325 0.9302 0.9292 

TextImage1 17.52 18.58 18.73 18.54 18.89 18.87 

  0.725 0.7974 0.8118 0.7953 0.8124 0.8096 

Texture 20.64 22.55 22.97 22.78 23.05 23.05 

  0.827 0.8939 0.9032 0.8997 0.9040 0.9039 

Average 26.69 28.64 28.65 28.79 28.98 28.93 

  0.839 0.8816 0.8708 0.8834 0.8853 0.8835 

 

To analyze the reduction in computational complexity in scenario bicP  compared to 

scenario P , Table 6.4 shows the percentage of patches for which the sparse 

representation-based SR is applied out of the total number of patches for each image, 

as denoted by ( Perc ). On average, only 26.93 % of patches are super-resolved with 

the sparse representation framework while the others are handled with bicubic 
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interpolation. Table 6.4 also shows the super-resolution execution times for each 

image with scenarios P and bicP . This is denoted by (Run Time). Simulations are 

conducted on an Intel Core i3-3220 3.30 GHz PC under Matlab R2013a 

environment. The average execution time for scenario P  is 451.06 seconds, while it 

is 233.60 seconds for scenario bicP . 

Table 6.4: Percentage of patches super-resolved with sparse representation in 

scenario bicP , and SR run times of P  and bicP . 

Image Perc P  Run Time bicP  Run Time 

Barbara 15.3 569.4 216.2 

BSDS 198054 17.1 297 116.5 

Butterfly 41.3 133.2 72.1 

Fence 25.3 119.6 61.8 

Flowers 12.4 343.8 135.4 

Input6 22.9 779.7 385.3 

Lena 10.3 531.7 193.4 

Man 13.4 491.1 193.7 

ppt3 21.7 542 300.5 

Starfish 18.8 113.5 51.9 

TextImage1 40.4 692.4 444 

Texture 84.3 799.3 632.4 

Average 26.93 451.06 233.60 
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Chapter 7 

7 CONCLUSIONS AND FUTURE WORK 

7.1 Conclusions 

This thesis aimed at improving the quality of sparse representation over a set of 

compact class dictionaries. This required the usage of certain classifiers to perform 

clustering of training and testing signals. A classifier is used to describe a certain 

signal class. In other words, each signal class should have a common property shared 

by its signals. The findings of this thesis are applied to the problem of single-image 

super-resolution. Therefore, another requirement imposed upon these classifiers is 

the scale-invariance. This means that a decision made about clustering a patch into a 

certain cluster should be as dependent of scale as possible. In this work, the 

magnitude and phase of the gradient operator are empirically shown to fit for these 

purposes. When applied to the super-resolution problem, the proposed sparse coding 

paradigms are shown to produce the state-of-the-art performance. In conclusion, the 

following ideas can be made through the work conducted in this thesis. 

 The proposed sharpness measure (SM) and dominant phase angle (DPA) 

classifier are used to separate image patches based on their spatial intensity 

variations, and directionality, respectively. Besides, they are shown to be 

approximately scale-invariant. This finding motivates their usage for 

clustering and model selection for the purpose of super-resolution. 
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 Super-resolution via sparse representation over multiple dictionaries trained 

over SM and DPA clusters is shown to produce results that are competitive 

with the state state-of-the-art super-resolution algorithms. This result is 

validated through experiments in terms of qualitative and quantitative 

comparisons. In terms of computational complexity, these two algorithms are 

comparable to the case for using a single, highly redundant dictionary. 

 Following on the above observation, a super-resolution algorithm is proposed 

via sparse representation over multiple dictionaries learned over clusters 

obtained by employing the two criteria: SM and DPA. This sparse coding 

paradigm uses many dictionaries. However, each dictionary is compact. 

Therefore, its computational complexity is still comparable to that of standard 

sparse coding. 

 A desirable character of the proposed classifiers is their capability in 

separating image patches of insignificant low frequency components. This 

character can be effectively exploited to reduce the computational 

complexity. This is done by allocating bicubic interpolation for super-

resolving such patches. Given the simplicity of bicubic interpolation and the 

fact that a large percentage of patches lies in the clusters of insignificant high 

frequency components, one can substantially reduce the computational 

complexity of patch reconstruction. In other words, the computationally 

demanding super-resolution via sparse representation framework is 

exclusively applied to patches of significant high frequency components, i.e., 

to a limited minority of image patches. This reduction in computational 

complexity is experimentally verified in terms of simulation run time. 
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7.2 Future Work 

To this end, the following is an account for possible future extensions that can be 

made on the work conducted in this thesis. 

 Perfect model selection curves provided in Chapter 3 and 5 suggest that 

there is still a room for improvement. However, this requires 

improvement in the prediction quality in the reconstruction stage. Further 

work can be done along this direction. Moreover, one may consider 

performing Naive Bayes or support vector machine (SVM) clustering. 

 The proposed super-resolution algorithms can be extended using better 

coupled dictionary learning algorithms. With the availability of such 

algorithms in the future, the same setting can be adopted. 

 In view of the conclusions made in Chapter 6, one can work towards 

developing a super-resolution algorithm that is based on bicubic 

interpolation along with the sparse representation framework which is 

applied in rare cases where bicubic interpolation is expected to fail. 

 It seems interesting to optimize the SM intervals in a more systematic 

manner. Further work can be made to formulate the interval bounds in an 

optimization problem where the objective function is to jointly maximize 

scale-invariance and to improve the reconstruction quality. 

 This work considered the usage of five DPA clusters. This number is 

shown to be a good compromise between reconstruction quality and 

scale-invariance. However, further work may still be done to find the 
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optimal number of DPA clusters and the way of quantizing the angles in 

the clusters. 
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