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ABSTRACT 

This thesis investigates the different strategies for solving constraint satisfaction 

problems. The basic properties of constraint satisfaction problems are discussed. The 

different types of constraints are given. The constraint graph and cryptarithmetic 

constraint satisfaction problems are discussed. Such search techniques as 

backtracking search, local search, and constraint propagation for solving constraint 

satisfaction problems are presented. The forward checking in constraint satisfaction 

problems is used. Some constraint satisfaction problems such as map-coloring 

problem, cryptarithmetic problem, n-queens problems and Sudoku problem are 

solved.  

Keywords: Constraint satisfaction problem, Constraint graph, Backtracking search, 

n-queens problem, Local search, Constraint propagation, Forward checking 
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ÖZ 

Bu tez kısıtlama memnuniyeti sorunlarını çözmek için farklı stratejiler araştırıyor. 

Ayrıca, kısıtlama memnuniyeti problemlerinin temel özellikleri tartışılır. Bunun 

yanında, kısıtlamaların farklı türleri verilmiştir. Kısıtlama grafiği ve cryptarithmetic 

kısıtlama memnuniyeti sorunları tartışılır. Geriye arama, yerel arama ve kısıtlama 

memnuniyeti problemlerinin çözümü için kısıtlama yayılma gibi arama teknikleri 

sunulmuştur. Kısıtlama memnuniyeti problemlerinde ileri kontrol  yöntemi kullanılır. 

Harita renklendirme problemi, cryptarithmetic problemi, n-vezir problemi gibi bazı 

kısıtlama memnuniyeti problemleri ve Sudoku problemi çözülür. 

Anahtar Kelimeler: Kısıtlama memnuniyeti sorunu, Kısıtlama grafiki, Geri İzleme 

arama, n-vezir problemi, Yerel arama, Kısıtlama yayılımı, İleri kontrol 
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Chapter 1 

INTRODUCTION 

Artificial Intelligence (AI) is a special area of computer science that aims to create 

intelligent machines. AI has become an basic part of the technology industry. Alan 

Turing is a founder of AI, and in 1950 he made a simple machine to solve the 

mathematical problems (called the Turing Machine). Based on this idea, Turing 

wondered that if a computer’s reply was indistinguishable from a human, then the 

computer could be considered as a thinking machine [1-2]. AI is used in logistics, 

data mining, medical diagnosis, industry and many other areas [2]. 

The concept of constraint satisfaction problem (CSP) was proposed in 1970s. CSP is 

defined by a relation on a subset of the set of variables. CSP is ubiquitous in our 

everyday lives, in academic and industrial worlds. CSP is a mathematical problem 

defined as a set of objects whose state must satisfy a number of constraints. CSP has 

been used in many fields to represent various problems like N-queen game, the 

graph-coloring problem, design issues such as VLSI, the industrial application such 

as scene analysis and interpretation, planning, scheduling, and allocation of 

resources.  

A set of variables and a set of constraints are components of CSP. A finite and 

discrete domain of values is associated with each variable [3-4]. 
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A CSP can be considered as a search problem with the following incremental 

formulation: 

- Initial state: no value is assigned to the variables, i.e. empty assignment {}; 

- Successor function: the value is assigned to one of the unassigned variables with 

the condition that there is no violation of constraints. In other words, no conflict 

should take place between unassigned variable and the variables which have been 

assigned previously; 

- Goal: the process of assigning the values to the variables is complete, i.e. all the 

variables have values; 

- Past cost: every step should be with a constant cost which is irrelevant. 

In order to solve a CSP, the following two steps should be performed: 

- constraint propagation: the arc consistency is propagated on the graph. It is 

intended to constrain values and determine the possible inconsistencies in order to 

make sure that each arc is consistent. The values that can never be the parts of any 

solution should be eliminated; 

- searching is carried out to explore the valid assignments of values to variables.  

There are different types of constraints in CSPs: 

- Unary constraints consist of a single variable, and an arc representing this 

constraint is originated and terminated at the same node; 

- Binary constraints consist of pair of variables. These constraints can be represented 

as a graph in which each node depicts a variable, and each arc depicts a constraint 

between two neighbor variables (pair of variables); 
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- Higher-order constraints consist of three or more variables to be represented by the 

constraint hypergraph; 

- Soft constraints can represent the preference of one variable over another one by 

indicating the costs assigned to each of these variables. Soft constraints are useful in 

constraint optimization problems. 

Maximum constraint satisfaction problem (Max-CSP) and weighted constraint 

satisfaction problem (WCSP) are two main types of CSP.  

While solving Max-CSP it is necessary to take into consideration that some 

constraints can be violated during the process that solution of the problem is found. 

In Max-CSP all the constraints are to be equally important, and the purpose is to find 

the assignment which is able to maximize the satisfied constraints. Several real world 

problems can be formulated as Max-CSP, for example, planning, scheduling, 

warehouse location problem and max-cut problems. In order to solve the Max-CSP, a 

value for each variable from each domain must be assigned in such a way that the 

maximum of constraints is satisfied. However, a high complexity in a Max-CSP is 

requiring a combination of heuristics and combinatorial methods of search to be 

solved in an appropriate time. Formally speaking, a Max-CSP is difficult and 

interesting problem for mathematicians, operational researchers and computational 

scientists [5]. 

There are various search algorithms in AI, and the backtracking algorithm is the 

basic uninformed search algorithm for solving CSP. This algorithm uses constraint 
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propagation technique. In this algorithm, the variables and their values are chosen by 

applying the heuristic approach. The variables are represented in some order. The 

unassigned variable is chosen and the value to this variable is given which should be 

consistent with all the variables. The values should be assigned to the variables one-

by-one. This process continues until no more assignment is made, i.e. every variable 

has a value, then it is decided that the solution is found or the backtracking to the 

initial variable is performed.   

The backtracking algorithm is effective in many coloring (for example, map 

coloring) problems. 

One of the disadvantages of the backtracking algorithm is that sometimes exploring 

the entire search space can’t be successful for the real-world CSPs.  

A distributed CSP can be considered as a general framework for dealing with 

problems in multi-agent systems. In a distributed CSP the variables and constraints 

are distributed among multiple agents, and the agents must communicate with each 

other to satisfy all constraints. The agents must assign values to their variables so that 

all the constraints are satisfied [6-7]. The multi-agent systems can be used for 

distributed interpretation problems, distributed resource allocation problems, 

distributed scheduling problems etc. 
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Chapter 2 

REVIEW OF EXISTING LITERATURE ON 

CONSTRAINT SATISFACTION PROBLEMS 

In [8] the expansion of the constraint satisfaction problem (CSP) universally 

quantified variable called a Quantified Constraint Satisfaction Problem (QCSP) is 

discussed. The algorithm of QCSP with discrete non-Boolean domains is given. The 

problem is solved by expanding the search algorithm from standard CSPs to QCSP. 

The generalization of CSPs to QCSP increases the expressiveness of the framework, 

but at the same time the complexity of the reasoning task raises from NP-complete to 

PSPACE-complete. PSPACE-complete problems are modeled for the 

implementation in game playing and planning. This algorithm shows how the value 

can be interchangeably exploited in QCSPs. 

[9] is about probabilistic algorithm for solving k-SAT and CSP. The algorithm 

randomly creates an initial task and then leads by those conditions that are not 

satisfied to select random literal from such a condition and try to find a satisfying 

task by flipping the conformable bit. If a satisfying task is not available after using  

O(n) steps, so it will start again. This is the best known algorithm of 3-SAT known 

until now.  
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The combination of global and local searches in which the abstraction of a constraint 

satisfaction problem is created by local search, and afterwards the global search tries 

to exploit it [10]. It is proved that the cluster-based abstraction provides better results 

in searching problems. 

In [11] a machine called Turing machine with atoms (TMA) is determined, and this 

determination is represented as CSP. The determination problem is solved by TMA 

to characterize the classes of structures to make available from words with atoms. 

The Distributed Partial Constraint Satisfaction Problem (DPCSP) as a new 

framework for transaction with over-constrained cases in distributed CSPs is 

presented in [12]. It is foreseen DPCSP to have the great possibility in different 

applications. Two new algorithms called the Iterative Distributed Breakout (IDB) 

and the Synchronous Branch and Bound (SBB) are discussed. Both algorithms are 

intended for solving Distributed Maximal Constraint Satisfaction Problems 

(DMCSPs) which belong to an important category of DPCSP. Both algorithms are 

tested. The result shows that SBB is better when the optimal solution is looked for, 

and IDB is more suitable for the cases when one wants to get an optimal solution 

satisfying all constraints. 

In [13] proposed filtering techniques are necessary to solve the constraint satisfaction 

problems. These techniques can sharply minimize the search particularly on hard and 

large problems. One of the most useful filtering techniques is arc consistency, 

because this technique easily removes the values which are suitable for neither 
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solution. The filtering techniques which are more meaningful than arc consistency in 

cases when the set of constraints do not change, are studied and compared. 

A technique which is based on simple structure with a minimal space requirement is 

offered in [14], and it is capable of bounding the worst-case performance better than 

pseudo-tree search.   

Many techniques exist for solving the constraint satisfaction problem. The modified 

branch and bound algorithm is proposed in [15] to show a solution of a constraint 

satisfaction problem in a problem of a map coloring. The adjacent areas in the map 

must not be of the same color. The branch and bound algorithm uses back jumping 

when it faces a dead-end in the search, and the variable ordering is used to help the 

searching process. In comparison with backjumping, the branch and bound algorithm 

shows better results using the technique of variable ordering. 

The tractable classes of CSPs are investigated in [16]. In order to solve constraint 

satisfaction problems, the complexity of generic algorithms are considered. 

Measuring of complexity of generic algorithms is done by a new parameter using of 

which derives a new complexity. The classical types of algorithms in polynomial 

time are used to solve tractable classes of constraint satisfaction problems.  

The extraction of domain values with interchangeable nature is an actual problem, 

and is used for constraint satisfaction problems. In [17] the basis for the extraction 

process is developed. The known constraint satisfaction algorithms can be adapted to 
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a proposed basis. The domain values can be exploited by a proposed backtrack 

procedure. The experimental results show that a proposed approach is accurate for a 

certain types of problems. 

In [18] it is determined that the constraint satisfaction problem is defined in first 

order. The characterizations of structures of first-order definability of constraint 

satisfaction problem are discussed. The first-order definability of constraint 

satisfaction problem leads to nondeterministic polynomial time (NP)-complete 

problem. The polynomial-time algorithm is given which is used to determine the core 

structures. 

Some solutions of constraint satisfaction problem require to make preferences among 

them, and this type of CSP is called weighted CSP (WCSP) which is discussed in 

[19]. One of the complete techniques used to solve such problems is a bucket 

technique. The bound for the optimal solution is calculated by implementation a 

heuristic method which is applied in case when the memory for the application of 

bucket elimination is very high. A memetic algorithm for weighted CSP is presented 

which provides better solutions in large instances than classical algorithms. The 

hybrid form of bucket elimination (BE) and mini-bucket (MB) with memetic 

algorithm is presented. 

In case constraint satisfaction problem has any solution, this is NP-complete task. 

There are many filtering techniques, and one of the useful of them is arc-consistency. 

In [20] the dynamic CSP is defined, and in order to achieve arc-consistency in 
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dynamic CSP, the algorithm is proposed. The advantages of the proposed algorithm 

are given. 

In [21] the proposed method reuses the previous solution of constraint satisfaction 

problem by local changing to produce a new solution for CSP. The idea and 

algorithm are given. The experimental results are compared to classical backtrack 

and dynamic backtracking methods, and show the effectiveness of this method.  

In [22] the constraint satisfaction problem is solved by DNA Computing. A new 

algorithm is suggested for above problem that uses JOIN operation which is applied 

using biochemical DNA manipulations. The EXTRACT manipulation can produce 

two types of errors called false negative and false positive errors. The affect of such 

errors to the propose algorithm is analyzed. The error probabilities can be decreased 

using technique whish was proposed by Karp. 

The combination of base algorithms which are described in terms of forward and 

backward moves is given in [23]. The forward move of one algorithm can be 

successfully combined with backward move of another algorithm and versus visa. 

The combination of tree search algorithms can be useful for some other algorithms.  
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Chapter 3 

BASIC PROPERTIES OF CONSTRAINT 

SATISFACTION PROBLEMS 

3.1 Basic definitions of CSP 

CSP is defined as a set of variables  𝐴 1 , 𝐴 2 , 𝐴 3 , … , 𝐴 m , and a set of constraints 

𝐵 1 , 𝐵 2 , 𝐵 3 , … , 𝐵 n . There is a nonempty domain 𝐷 i  of possible values for each 

variable 𝐴 i . Every constraint 𝐵 j  limits the values that variables can take, for 

example, 𝐴 1 ≠ 𝐴 2 . A state of the problem is defined as an assignment of values to 

some or all variables. An assignment does not break the constraints. A complete 

assignment for every variable is defined, and a solution to CSPs is a complete 

assignment that pleases all the constraints.  

Below the main components involved in a CSP are introduced:  

1) Variables: 𝐴 = 𝐴 1 , 𝐴 2 , 𝐴 3 , … , 𝐴 m . 

2) Domains: 𝑌, integers. 

3) Constraints: 𝐵 1 , 𝐵 2 , 𝐵 3 , … , 𝐵 n  Y n .  .  

4)  Problem: Find 𝑟 = 𝐴 1 , 𝐴 2 , 𝐴 3 , … , 𝐴 m Y^n  such that 𝑟 B i , for all 

1  i  n. 
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There should be the connections between variables, for example: d ≠  e,   d >

 e,   d +  e <  f. The following properties are defined: 

Constraint C def … between variables , 𝑒, 𝑓, … ; 

C def  D d   D e   D f   . .. (a subset of all tuples)  

Assume there are three variables {a, b, c}, and for the variable a we have the set of 

values {1,2,3,4}, and for variable 𝑏 we have the set of values {2,3,4} and for variable 

𝑐 we have a value {7}: 

The constraint a ≠  b  is defined as  {(1,2), (1,3), (1,4), (2,3), (2,4), (3,4)}.  

The constraint 𝑎 = 𝑏 is defined as {(2,2), (3,3), (4,4)}.  

The constraint a > b is defined as  {(3,2), (4,2), (4,3)}.  

The constraint a + b < c is defined as {(1,2), (1,3), (1,4), (2,2), (2,3), (2,4), (3,3)} . 

CSP can be classified with: 

1)    Discrete variables: 

- Finite domains: size r → O(r m )  complete assignments. 

- Infinite domains: strings, integers etc. 

The variable like starting day of a job is an example of discrete variable. 

2) Continuous variables: 

The class schedule, the airline schedule are the examples of continuous variables. 
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3.2 Types of constraint satisfaction problem 

The following types of CSP are known: 

1) A unary CSP: consists of a single variable. The following samples are related with 

the unary CSP: 

P ≠  red;  

D(X): X = 2;   

D(Y): Y > 5.   

  

2) A binary CSP: all constraints are binary. Every unary (non-binary) CSP can be 

converted into a binary CSP by entering an additional variable.  A binary CSP can be 

represented as a constraint graph that has a node for each variable and an arc between 

two nodes. The binary constraints are the edges between nodes.  

3.3 Constraint Graph 

It is beneficial to imagine a constraint satisfaction problem (CSP) as a constraint 

graph. The constraint graph is the graph represents the constraint, which 

communication between variables in the problem. This graph relies heavily on the 

impersonation that picks for a specific problem. Constraint graph has a node for each 

variable and an arc between two nodes. The constraints are the edges between every 

node. Constraint graphs are more beneficial when whole constraint propagation is 

performed by arc consistency.  

In Figure 1 the binary constraint graph and the matrix for binary constraints are 

represented. 
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Figure 1: Binary constraint graph and matrix for binary constraint 

Variables: {A, B, D, E}. 

Constraints: B (A, E) =  {(2, 3), (1, 2)}.  

                    B(B, E) =  {(2, 5), (3, 3), (1, 6)}.  

                    B(E, D) =  {(5,1), (6, 4), (4, 1)}.  

Map coloring is another famous problem of CSP. The problem can be defined in the 

following form:  

Variables (countries): {Germany (GE), Poland (PL), Czech Republic (CZ), Austria 

(AT), Switzerland (SUI), Hungary (HU), Slovakia (SK), Italy (IT), Slovenia (SL)}. 

Domain (colors): {red, green, blue, yellow}. 

Constraints: the adjacent areas must have different colors (e.g.: color of (GE) ≠ color 

of PL)). 



14 

A CSP is solved if the complete assignment satisfying all the constraints is 

determined. 

Figure 2 shows the initial (uncolored) and final (colored) map coloring CSP problem. 

  
Figure 2:  Initial (uncolored) and final (colored) map coloring CSP problem 

The map coloring problem can also be represented as a constraint graph. The nodes 

of the graph represent the variables, and the arcs represent the binary constraints or 

constraints. 
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Formulation for constraint graph: 

- Node = variable; 

- Arc = constraint; 

- Initial state: no variable has a color; 

- Successor state: select a value to one of the variables without a color or value;  

- Goal: all variables have a color or value. 

The Figure 3 shows the constraint graph of the uncolored map. 

 
Figure 3: Constraint graph of the uncolored map 
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Another example for map-coloring is the following: color this map by using three 

colors (green, red, yellow), and no adjacent areas have the same color: 

Variables: 𝐴, 𝐵, 𝐶, 𝐷, 𝐸, 𝐹, 𝐺. 

Domains: {green, red, yellow}.  

Constraints: A ≠ B, A ≠ C, B ≠ D, B ≠ C, C ≠ D, C ≠ E, C ≠ F, D ≠ F, E ≠ F, G ≠ F. 

Solution:A = red, B = green, C = yellow, D = red, E = red, F = green, G = yellow 

(Figure  4). 

 

 
Figure 4: Map coloring and corresponding constraint grap 

3) Higher-order constraints: consist of three or more variables to be represented by 

the constraint hypergraph. In the figure 5 the hypergraph coloring is represented. 
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Figure 5: Hypergraph coloring 

K = {1, 2, 3, 4, 5, 6}, H (K) =  (K, B). 

B = {{1}, {2}, {3}, {4}, {5}, {6}, {1,2}, {1,3}, {1,5}, {2,4}, {3,6}, {4,5},  

{1,2,3}, {1,2,4}, {1,2,5}, {1,3,5}, {1,3,6}, {1,4,5}, {2,4,5}, {1,2,3,5}}. 

3.4 Cryptarithmetic problem 

In cryptarithmetic problem, each letter stands for a different digit (or each letter 

could be one digit), 0 through 9. The purpose of the problem is to determine which 

digit represents which letter. 

Consider the following cryptarithmetic problem: 

                                                                 TOM 

+ NAG 

GOAT 

Formalization of cryptarithmetic problem as a CSP: 
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Variables: {T, O, M, N, A, G) 

Domain: {0,1,2,…,9} 

Number of variables: 6  

Constraints:  

              𝐵1 =∶ {T, O, M, N, A, G)  R 6  │0 ≤  T, … , G ≤  9} 

              B2 = {(T, O, M, N, A, G)   R 6 │100 ∗ T +  10 ∗ O +  M +  

                                                                 100 ∗ N +  10 ∗ A +  G =  

                                                                 1000 ∗ G +  100 ∗ O + 10 ∗ A + T =  

              B3 =  {(T, O, M, N, A, G)   R 6 │T ≠  0} 

              B4 =  {(T, O, M, N, A, G)   R 6 │N ≠  0} 

              B5 =  {(T, O, M, N, A, G)   R 6 │T, … , G  all different digits} 

             Solution: (7, 0, 6, 3, 5, 1)   R 6   

                                                                  706 

+ 351 

 1057 

Another cryptoarithmetic problem with one more variable is as follows: 

      HERE 

+       SHE 

   COMES 

Formalization of this problem as a CSP: 
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Variables: {H, E, R, S, C, O, M} 

Number of variables: 7  

Constraints:  

B1 =  {(H, E, R, S, C, O, M) R 7 │0 ≤  H, … . , M ≤  9} 

          B2 =  {(H, E, R, S, C, O, M) R 7 │1000 ∗ H +  100 ∗ E +  10 ∗ R +  E +             

                                                                                       100 ∗ S +  10 ∗ H +  E =  

                                                10000 ∗ C +  1000 ∗ O +  100 ∗ M +  10 ∗ E +  S}  

          B3 =  {(H, E, R, S, C, O, M) R 7 │H ≠  0} 

           B4 = {(H, E, R, S, C, O, M)  R 7 │S ≠  0}             

           B5 = {(H, E, R, S, C, O, M)  R 7 │H, … , M all different digits}  

Solution: (9, 4, 5, 8, 1, 0, 3)  R 7          

9454 

+ 894 

10348 

The following is a timetable scheduling example. There are three computer courses 

and three instructors who are able to teach these courses. The main problem is to 

arrange the courses and classes in order that the same teacher will not teach more 

than one course at the same time. 

Time: 

Course 1: from 8:30am – 9:30am 

Course 2: from 9:00am – 10:00am 
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Course 3: from 9:30am – 10:30am 

The constraints for instructors are: 

Teacher A can teach course 2, and course 3. 

Teacher B can teach course 1, course 2, and course 3. 

Teacher C can teach course 2. 

By considering above constraints, it is necessary to decide which courses should be 

taught by the instructors A, B, and C. 

The solution of the problem can be in the following form: 

Course 1: {B}; 

Course 2: {A, B, C}; 

Course 3: {A, B}. 

The following courses must not be arranged at the same time:  

Course 1≠Course 2; 

Course 2≠Course 3. 

The following shows which course(s) can be taught by which instructor(s) (according 

to the constraints): 

Course 1: {B};  

Course 2: {A, C}; 

Course 3: {A, B}. 
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There are some possible solutions for this problem, and below two of these solutions 

are given: 

First solution: 

Course 1= B; 

Course 2= A; 

Course 3= B. 

Second solution: 

Course 1= B; 

Course 2= C; 

Course 3= A. 
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Chapter 4 

SEARCH TECHNIQUES FOR SOLVING CONSTRAINT  

SATISFACTION PROBLEMS 

4.1 Backtracking search 

It is an algorithm to find all solutions for computational problems. After trying all 

possible variables in depth-first search we jump to the next variable. If a solution is 

not found, it is necessary to come back and take another way until the correct 

solution is found.  The backtracking search is useful for solving CSPs, for example, 

n-queens problem, Sudoku, crosswords, and many others. 

Solving a constraint satisfaction problem commonly means that one or more different 

ways to assign the value to each of the variables must be found so as no constraint is 

violated. Backtracking crosses the space of fractional solutions in a depth-first 

search, and is a regular search step for solving constraint satisfaction problems. 

The backtracking algorithm usually considers the variables in some finite order. 

Beginning with the first variable, the backtracking algorithm assigns a temporary 

value for every variable in the role so long as every assigned value is found to be 

regular with values assigned in the last. In case the algorithm marks a variable for 
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whatever none of the values in accordance with the precedent assignments, a dead-

end happens and a backtracking takes place.  

The algorithm halts when the solution is found, or no solution can be found after the 

backtracking process has been unsuccessful. 

4.2 n-queens problem 

This is a problem of positioning n chess queens on n × n chessboard in which no any 

two queens would be able to attack each other. There must be no any two queens 

positioned in the same diagonal, row, and column. Otherwise, if any two queens are 

in the same diagonal, row, and column, they will threaten each other.  

We need to formulate the constraint satisfaction problem which is given below: 

Variables: V i  for each row 𝑖; 

Domain: 𝑋 i =  {1, 2, 3, … , n }; 

Constraints: V i ≠  V j . 

                  V i − V j ≠ i − j 

                  V i − V j ≠ j − i 

For n-queens, there are n n different formations. 

For 4-queens, there are 256 different formations. 

For 8-queens, there are 16777216 different formations. 

For 16-queens, there are 18446744073709551616 different formations. 
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4.3 Search for 4-queens problem 

A trick: create step by step and use one queen for each step. 

States (nodes) compatible to configurations of 0, 1, 2, 3, 4 queens; 

Links (operators) compatible with the addition of a queen; 

Initial state: no queen put on the board; 

The components of 4-queens problem are defined below: 

Variables: represent the rows {r1, r2, r3, r4}.   

Values: represent the columns  {c1, c2, c3, c4}. 

Constraints: constraint relations (allowed combinations). All possible position to put 

queens without attacking each other: 

B(r1, r2) = {(1,3), (3,1), (1,4), (4,1), (2,4), (4,2)} 

B(r1, r3) = {(1,2), (1,4), (2,1), (2,3), (3,2), (3,4), (4,1), (4,3)} 

B(r1, r4) = {(1,2), (1,3), (2,1), (2,3), (2,4), (3,1), (3,2), (3,4), (4,2), (4,3)} 

 B(r2, r3) = {(1,3), (1,4), (2,4), (3,1), (4,1), (4,2)} 

B(r2, r4) = {(1,2), (1,4), (2,1), (2,3), (3,2), (3,4), (4,1), (4,3)} 

B(r3, r4) = {(1,3), (1,4), (2,4), (3,1), (4,1), (4,2)} 

Variables: the rows {1, 2, 3, 4}  

Values: the columns {x1, x2, x3, x4} 

For each column there are 4 possibilities to put queen: 
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x1 =  {1, 2, 3, 4} 

x2 =  {1, 2, 3, 4} 

x3 =  {1, 2, 3, 4} 

x4 =  {1, 2, 3, 4} 

- First step: 

The first queen is put onto the cell 2 in column x1. Afterward the following cells are 

excluded for the next queens to make the first queen unattacked. 

x1 = 2, so eliminate {x1 = 1, x1 = 3, x1 = 4, x2 = 1, x2 = 2, x2 = 3, x3 = 2,

x3 = 4, x4 = 2}  (Figure 6) (red circles mean that no queen is permitted to be put 

onto). 

 
Figure 6: First step in 4-queens problem with one queen on chessboard and 

unattacked cells 

- Second step:  
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After the first queen is put, there is only cell [4] in column x2 to put the second 

queen. So second queen is put onto the cell [4], and so the following cells must be 

excluded for the next queens to make the first two queens unattacked. 

x1 = 2, x2 = 4, so eliminate {x1 = 1, x1 = 3, x1 = 4, x2 = 1, x2 = 2, x2 =

3, x3 = 2, x3 = 3, x3 = 4, x4 = 2, x4 = 4}  (Figure 7). 

 
Figure 7: Second step in 4-queens problem with two queens on chessboard and 

unattacked cells 

- Third step: 

There is only cell 1 of the column x3 to put the third queen. So the third queen is put 

on. After the third queen is put, the following cells must be excluded for the last 

fourth queen: 

x1 = 2, x2 = 4, x3 = 1, so eliminate {x1 = 1, x1 = 3, x1 = 4, x2 = 1, x2 =

2, x2 = 3, x3 = 2, x3 = 3, x3 = 4, x4 = 1, x4 = 2, x4 = 4}  (Figure 8). 
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Figure 8: Third step in 4-queens problem with three queens on chessboard and 

unattacked cells 

 

- Fourth step: 

The only cell to put the last fourth queen on is the cell 3 of the column x4. So the 

final form of one of the possible solutions of 4-queens problem is illustrated in 

Figure 9. 

 
Figure 9: One of the possible solutions of 4-queens problem 

The Figure 10 represents the sequence of steps (from starting to target) for a possible 

solution of 4-Queens problem. 
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Figure 10: The sequence of steps for the possible solution  

of 4-queens problem 

Finding all the solutions of n-queens problem can be reached just by using 

backtracking. 

The backtracking search can be also used to solve the 8-queens problem, where the 

problem is to arrange eight chess queens on a chessboard so that no queen attacks 

any another queen. So, the arrangement of queens should be carried out in the form 

that no queen will be attacked by any another queen on the chessboard. It can be 

easily calculated that there are 4,426,165,368 (8 8 ) possible ways to arrange queens 

on 8×8 chessboard, but there are only 92 possible solutions of this problem. In 

backtracking, any incomplete solution that contains any two queens attacking each 

other, should be rejected and it is needed to go back to take another way in order to 

get the correct solution.  

Below the backtracking algorithm for n-queens problem is presented: 

1) At the first column and first row start with the first queen. 
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2) Determine which position the first queen will attack. 

3) Go on with the second queen to be put at first row and second column. 

4) Continue until a correct position is found. Then move to step 8.  

5) If there is no permissible position on chessboard to put queen, reject to put. 

6) Go to the previous queen.  

7) Go back to step 4. 

8) Go on with the next queen. 

9) Determine which position will be attacked. 

10) Stop if it is the last queen. If it is not, go back to step 3. 

This is the advantage of a forward checking that no domain-specific initial state, or 

successor function or testing of a goal are required to perform the task. 

4.4 Formalization of 8-queens problem 

The 8-queens problem can be formulated as follows:  

State: Arrangement of 8 queens on a chessboard.  

Initial state: a chessboard is empty.  

Successor function: put queen in any cell of a chessboard. 

Goal: all eight queens on a chessboard and no queen attacks any another queen on 

the chessboard. 

First, there are eight possible cells to put the queen in the first row. It is shown in 

Figure 11. 
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Figure 11: The possible arrangements for first chess queen in 8-queens problem 

In the next stage, for each queen, there are many cells to be put, but the second queen 

must be put on those cells which will not be attacked by any another queen (Figure 

12). 
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  Figure 12: The possible arrangements for two chess queens in 8-queens problem 

A possible position for the third queen can be arranged on a chessboard in the form 

illustrated in Figure 13: 
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Figure 13: The possible arrangements for three chess queens in 8-queens problem 

In Figure 14, one of the possible solutions of 8-queens problem is represented. It is 

easy to see that none of any 8 queens is attacked by any another queen. The solution 

of the problem can be only reached by using backtracking search. 

4.5 Local search 

The local search is a helpful way for some optimization problems and consistency.  

The local search techniques are unfinished satisfiability algorithms which can get a 

solution of a problem.  
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Figure 14: One of the possible solutions of 8-queens problem 

The idea of a local search is looking into the range of full tasks of values to variables, 

and neighbors of an existing node are comparable variable tasks. It is required to go 

on from one node to any another node agreeing to a function. 
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4.6 Constraint propagation 

The constraint propagation methods are used to adjust a constraint satisfaction 

problem (CSP). The main idea of using constraint propagation is to find a feasible 

area of a point meaning that all the variables must satisfy the constraints. In another 

way, they are methods that impose a form of consistency which is a requirement 

concerning the consistency of a set of constraints and/or variables. The constraint 

propagation has different uses. First, it becomes a problem that is similar but easier 

to be solved. Second, it might prove satisfiability of problems. This is not ensuring to 

happen in general. Every time it happens for some certain kinds of problems and for 

some forms of constraint propagation. The famous constraint propagation technique 

is the AC-3 algorithm, which imposes an arc consistency. 

4.7 Forward checking 

It is similar to backtracking, but also deals with the future variable. Forward 

checking is always choosing those variables that haven’t chosen yet. 

For solving CSP, there is a forward checking algorithm which is an effective 

alternative to a backtracking. The forward checking is closely regarding to 

backmarking which is a vastly used improvement of normal backtracking. The 

backmarking helps understand a lately enter advance to the forward checking 

algorithm which is called a minimal forward checking. 

On the other hand, a forward checking it totally different from backtracking, and it is 

easier than backtracking. Because forward checking is checking the same nodes as 

backtracking, but a loss of time occurs to assign next nodes that might has never 
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been used. If there's no either useful value for present variable, back-track occurs to 

the past variable to define another value. A useful value for the present variable is a 

value that is not signed useless from the allocated variables. 

The constraint propagation is a heavier-duty copy of a forward checking. 

Nevertheless, whole arc consistency graph traverse is not needed to execute forward 

checking. Finally, the formation of the constraint graph can be utilized to facilitate 

the solution operation. 

Unfortunately, forward checking does not provide the premature disclosure for all 

the mistakes. In particular, it does not reveal fail between any two unassigned 

variables. 

4.8 Sudoku as a CSP 

Sudoku is a puzzle which is based on logic, and the numbers are placed in a 

particular order.  

A Sudoku is a matrix of 9×9 grid, divided into nine 3×3 sub-grids, and each sub-grid 

must contain the digits from 1 to 9, and also no column, row, and block must contain 

repeating digits from 1 to 9 (it must be distinct in every vertical line, horizontal line 

and 3×3 square). Firstly, some cells of a matrix 9×9 are filled with some digits, and 

the target is to fill the empty cells. It is required to use all possible outcomes of 

Sudoku until the solution reached. 

The formalization of a Sudoku game is as follows: 
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Variable: Y11, Y22, . . . . . . , Y99. 

Domain: {1, 2, . . . , 9}. 

Constraints:  

Column constraints: {Y11 ≠ Y12 , Y11 ≠ Y13, . . . , Y11 ≠ Y19} 

Row constraints: {Y11 ≠ Y12 , Y11 ≠ Y13, . . . , Y11 ≠ Y19} 

Block constraints: {Y11 ≠ Y12 , Y11 ≠ Y13, . . . , Y11 ≠ Y33} 

There are several types of Sudoku: 

1. Mini Sudoku; 

2. Alphabetical Sudoku; 

3. Akshara Sudoku; 

4. Hypersudoku.   

An example of Sudoku problem as a CSP is given below: some cells are filled with 

digits from 1 to 9 (Figure 15).  

One of 3×3 grids is filled with red numbers, and this grid contains all the numbers 

from 1 to 9 with no repetition of any number in each grid, column and row (Figure 

16). 
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Figure 15: The first state in Sudoku game filled with digits from 1 to 9  

 
Figure 16: The second state in Sudoku game without repetition of digits  

in the first grid  

The complete solution to Sudoku game is illustrated in Figure 17. 
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Figure 17: Complete solution to Sudoku game 
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Chapter 5 

CONCLUSION 

In this thesis, some strategies for solving constraint satisfaction problems are 

described. These problems have several possible solutions, and each problem has a 

different way to be solved. Constraint satisfaction problem is defined by a relation on 

a subset of the set of variables. In other words, the constraint satisfaction problem 

consists of a set of variables, a set of the values domain, and a set of constraints. In 

addition, the CSP can be viewed as a search problem with the initial state, successor 

function, goal, and past cost.  

A unary constraint, binary constraint, higher-order constraint and soft constraint are 

types of constraint satisfaction problem. CSPs are used in many fields such as graph-

coloring problem, optimization problems, n-queens problem, Sudoku and many 

others. There are some search techniques such as backtracking search, local search, 

and constraint propagation for solving CSP. The backtracking search is used to solve 

the n-queens problem. 
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