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ABSTRACT

This thesis consists of five Chapters. Chapter 1 is devoted to the Introduction. We
investigate some basic properties of the exponential operators, in Chapter 2. Chapter
3, gives the proves of some exponential operator identities such as Weyl, Sack, Haus-
dorff and Crofton identities. In Chapter 4, we study the monomiality principle and its

properties.

Finally in the last chapter, as an application to Chapters 3 and 4, we investigate some
properties of Hermite polynomials in two variables, Hermite-Kampe de Feriet polyno-

mials, Laguerre polynomials in two variables and Hermite-Based Appell polynomials.

Keywords: Exponential operators, Weyl, Sack, Hausdorff and Crofton identities, Mono-

miality principle,Hermite-Kampe de Feriet polynomials, Laguerre polynomials in two

variables.
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0z

Bu tez bes boliimden olusmaktadir. Birinci boliim giris kismina ayrilmugstir.  Ikinci
boliimde iistel operatorlerin bazi ozellikleri incelenmistir. Uciincii boliimde Weyl,
Sack, Hausdorff ve Crofton 6zdeslikleri ispatlanmistir. Dordiincii boliimde tek ter-
imlilik prensipleri ¢alisilmistir. Son boliimde ise {iciincii ve dordiincii boliimiin uygu-
lamalar1 yapilmus, iki degiskenli Hermite polinomlari, Hermite-Kampe de Feriet poli-
nomlari, iki degiskenli Laguerre polinomlar1 ve Hermite-Based Appell polinomlari

gosterilmisgtir.

Anahtar Kelimeler: Ustel operatorler, Weyl, Sack, Hausdorff ve Crofton 6zdeslikleri,

Monomiallik prensipleri, Hermite-Kampe de Feriet polinomlari, iki degerli Laguerre

polinomlar1
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Chapter 1

INTRODUCTION

In Special functions appear in the solution of physical and engineering problems. One
of the most powerful tool in investigating the properties of special functions is the

Operational Method.

In this thesis, we start with exponential operators and study some operational identities
such as Weyl, Sack, Hausdorff and Crofton identities. We investigate some properties

of Hermite polynomials by of the above identities.

On the other hand, inspiring from the fact that every polynomial is quasimonomial,
we investigate the monomiality principle for one and 7-variable. As an application
of the operational identities and monomiality principle, we study Hermite-Kampe de
Feriet polynomials, Laguerre polynomials in two variables and Hermite-based Appell

polynomials.



Chapter 2

EXPONENTIAL OPERATORS

We give some basic properties, definitions and elementary properties of the Exponen-

tial Operators.
2.1 Shift Operators and Their Extensions

The Taylor expansion for the analytic function G (y) is given by

o)

Go+m=Y 26 (),

m=0

where the series converges to corresponding values of G in a neighborhood of y. If

u = 0, the basic operator is defined in the following way:

< Gm) (y4 . Gm "
Gorp =Y Ty D)y i)
m—0 m. =0 m.
Therefore, we get
Gly+p)=eG(y). @.1.1)

In the following examples, we see some simple applications of the above result.

Example 2.1.1 Considering
d
G (y)

and setting y = e* we get,

Therefore using (2.1.1), we get



G(e*™H) = G(e%H) =G (ye!). (2.1.2)

1

2.d
Example 2.1.2 Now consider " @ G (y). Setting y = —, we have

d _ddy 1d _,d

dw  dydw w2dy ° dy

Hence, we get

e“yzd%G(y) = e“da:VG<—l):G(—L>
w w4+ U

Now using (2.1.1), we obtain

e“yzfyG(y):G(l_yuy), 2.1.3)

where |y| < ﬁ

kd
Example 2.1.3 Considering " @ G (y) setting y = *| 71, we give the following gen-

eral result

WG () =G 4 bl < 214
e () ("\l/l—u(k—l)ykl) < =) (2.1.4)

In proving (2.1.4) let y = ——. It is clear that
yk-1




1 1
(y k! — (k= 1)) (ykr1) e (1- u(kl))k'l

y—k+l

B T, Y |
y (1= (k= 1) yk=1) &t VT— (k= 1)yt

2.1.1 An Extension Formula

For a given function g (y), we consider a more general shift operator,

d

M)y (2.1.5)

Using the same procedure as in the preceding section, we choose y = ¢ () such that

o) 4 =
s0) g = ap
d
% —g(y). (2.1.6)
Therefore,
d _ddy_ d
ap ~dyap *Yay
Since y = ¢ (f3), using (2.1.6) we obtain
¢ (B) =g((B)). (2.1.7)

Assuming a suitable initial value in order to guarantee the local invertibility of @(f3),

we deduce the definition of the shift operator (2.1.5) as follows

OB f(y) =B £ (p(B)) = f(@(B+n)). 2.1.8)

Letting B = ¢! (y), the inverse function of ¢ (), we rewrite (2.1.6) in the following

form

HOBF ()= f (0 (97" () +1)). (219)



2.2 Exponentials Relevant to the Sum of Operator

We take into account the following operator

E (y’“> — e“("(y)—i_p(y)diy) . (2'2'1)

and

=y ()t (u). (222)

Then we obtain the following theorem.
Theorem 2.2.1 The functions y () and t (1), which are given in (2.2.2) satisfy the
system of first-order differential equations

iy () =py(w), y(0) =y,

gt =ry)eu),  1(0)=1.

(2.2.3)

Proof. In fact, using (2.2.2), with g = 1, and r(y) = 0 and then using (2.1.9) with
f(y) =y, we get,
HPOEy =y (1), y(0)=.
On the other hand r(y) # 0 and assume f = 1 and therefore find
eu(r(y)er(y)d%)l —t(u), 1(0)=1.

Differentiating both sides with respect to i, we obtain

d o d () d

@t(ﬂ) = @e#( ymry ,)1
= (”(y)-l—p(y) C%,) e#(’(Y)+P(y)%)1
- r(y)t(u)+p(y)%g(u)



= r(y(u))(u)

This completes the proof. m
More generally, we have
L)) 2 p(r01p0)E) (0101 ) 1 (r01P0)E) |k (000 6)

_ 2

= v (wr(w)
Finally, the following equation is satisfied for any analytic function &

p d
OO ) = () e (). 224



Chapter 3

DISENTANGLEMENT TECHNIQUES

Considering the exponential operators ¢ and &, we generally have
e+ L o7

We study some cases of the operator ¢ t7.

3.1 Weyl Identity

In the case ¢ = uy and ¥ = /,Ldiy, we have the following theorem:

Theorem 3.1.1 The following equality

4 2 d
e'u(y+dy> = e%g“yeujy

holds true.

Proof. Using (2.2.4), we have

where y (W) and t (1) are given in (2.2.3).

Taking p (y) = 1 and r(y) =y in (2.2.2) and using (2.2.3), we get

d

@y(u)zl, y(0) =y,

which gives y (1) = 1 +y. From the second equation of (2.2.3), we have

%t(u) = (1) (),

which gives

(3.1.1)



Using (2.2.4), we get
d 2 2
OHED(y) = o Phly+p) = e Bt R (),

The proof is completed. m

The above result is substantially independent of the operators considered, provided

that their commutators satisfy suitable properties. In fact, setting

d
Cg:.u% -@:;ud_y7

then we have the following commutation relation:

d

(€, 21F (y) = {u%u%)—ud—yw}ﬂw

d
= F") —u—uyF
wy (UF') —p T ()
2 / /
= WYF'(y) —u [UF (y) + uyF’ (v)]
= WYF'(y) — u°F (y) — w>yF' (y)
= —WF(y).
Therefore,
(6,9] = —u.
Comparing with (3.1.1), we obtain

619 L ¢ g
el T =eTele”,

Hence, we state the more general result in the following theorem:

Theorem 3.1.2 [18] Let € and & be two operators satisfying the commutation rela-

tions
€, 2])=t, [t,¢]=[t,2]=0.

Then the Weyl identity holds:



3.2 Sack Identity

Now consider

Clearly,

(€, 217 (y)

Considering the operator

7 — ¢756% 07 (3.1.2)

d
¢ = Wy, @:.Uyd—~
y

{uy (uyj—y> - uyj—yuy} Z ()

d
u*y*F (y) — uy@uyﬁ ()

w2 F (y) — wy [0F () + W T’ (v)]

SE) (3.2.1)

Y

we get p(y) =y and r(y) =y in (2.2.2) and using (2.2.3), we obtain the following

system

vy =ym  y0)=y

g f (W) =y f(w) £0)=1

(3.2.2)

From the first equation of (3.2.2) we have

y(u) = yet.

From the second equation of (3.2.2), we have

which gives

%f(u) — et (n),



F(w) = e

Finally, using (2.2.4) we obtain

HOE) () = D (retty = N g ().

Theorem 3.2.1 Let ¢ = uy and 9 = /.Ly% be two operators. Then we have

eH—1

7 = T

Proof. Using (2.2.4), we have

E+7 eu(yﬂ'd%)

d

1
e =Y MY iy

et —uy
pye” —py d
= e H e‘uydy
w(eH=1)  d

et —1

— o1 %7,

This completes the proof. m

3.3 Hausdorff Identity and Applications

The Hausdorff identity (see [21]) is as follows:
Theorem 3.3.1 Let .# and N be two operators independent of the parameter L.

Then The Hausdorff identity
Py o

(3.3.1)

holds true.

10



Proof. Firstly, let us notice that .# and et commute, since the latter operator is a

power series in .Z .

From the Taylor expansion of the left-hand side of (3.3.1),

V% e M d ey
et e H Zn'd“n<e“ "N e H )|u:0-

On the other hand, obviously, we have
(e””///:/i/e*“//q lu=0 = A,
and

% <e”///JVe_“‘///> lu=0
o G X O T
_ (eﬂ//f [, N]e *7 ) lu=0 = [A,N],

hence, the other coefficients of (3.3.1) can be obtained by induction. m

Note that for every p € N, we have

wh S
1) - LI
1 @ 1
= ( +.Uﬁ+ )( )
= 1. (3.3.2)
For p =2, we have
&2 a2 s &2 dE
etazy = (eudyzye ”d.vz) e a? (1) :eudyzye Hay (1). (3.3.3)

Let 4 = d = > and A = y. For any twice differentiable function F (y), we have

2 2
A NF(y) = fﬂyyd]F@>

dy dy?
d2 !
= dyzyF () —yF"(y)

11



d{d

dy | dy
_ %[F(y)erF’(y)] —yF" (y)
= F'(3)+F () +yF" (y)—yF" (v)
— 2F’(y)=2diy(F()’))-
Hence,
[%,W]:z%.
Similarly,
AP 0) = [t
a4 [
= 2F"( )—%2F”(y>

= 0,
which implies
(LA, N],.#]=0
Using (3.3.1),
euf%ye_ % —y+2ui
dy

Therefore, for an analytic function

12

(3.34)

(3.3.5)

(3.3.6)



we have

e”jTl,@(y) :ff<y+2u—) (1). (3.3.7)

Let us choose .7 (x) = ™ in (3.3.7),

d2

a d
e‘udx2 o™ — eax+2,ua$ (1),

M = ax, </V:2;,Lai,
dx

d d
(A, N] ax2,uaa — ZHaEax P (x)

2a*uxP' (x) —2ua [aP (x) 4+ axP' (x)]

24 uxP' (x) — 2pa’P (x) — 2ua*xP' (x)

= —2[.La2.
Therefore,
[, N, #) = |[—pa*ax+ax2ua®]
=0
and

([ A, N, N|P(x) = —2,ua22uaix —2Ua d

y T (—2ua2) P (x)

= —4u*d’P (x) —2ua [0— 2ua*P’ (x)]

13



= —4u’d’P (x) +4ua*P' (x)

Finally, using (3.1.3) we get the following result

a2 d 2 d 2
e“daz o™ — ax+2uadx (1) — pHa eaer[JadX (1) — ptax

More generally we have,

o oo ‘um qm n
M o — Z el Z "M — o4 [.H—ax. (338)
) m! dxm”
m=

3.4 Crofton Identity

Definition 3.4.1 A generalization of (3.3.7) gives the Crofton identitiy which is stated

as follows:
i d-!
e g(y) =9 (y+t‘udyt—_1) (1) .
Proof. Using (3.3.3), we get

d da o d d
e.udyty — (e:udytye 'udyt)e'udyt (1)

where ¢’ = d, and 2 =y. Then, since [¢, Y] —td, r and [¢,[¢,2]] =0, (3.3.1)

implies that

d[ dl
€ AF0) = || FO)
t—1
= %{diyﬁ (y)}—yF(’) )
t—1
= jyt_l [F () +yF' ()] —yF" (y)

t—2
- % [diy (F (y) +yF' (y))} —yF ()

14



t—2
= BF )+ ()] —F )

and
d 4! a7 d
dy dy 1 dy Ty
P (y) P (y)

F(y)

[%ﬂ? [cg’ -@]]F (y) =

= 0.

Again, using (3.3.1),
dtfl

dy !

do g d
I‘Ldytye 'udyt :y+t“

e

d dt—]

Similarly, by use of the same techniques, we have

’udf t—1 p
e Byl = (y+t/~t ) (1) =y
dy 1

Hence, applying the operator (3.3.2) to the Taylor expansion of an analytic function

¢ (x), we can write that,

= 90 (0) 4
G(y) = k;) 0
d = (k) (0 d
e,udytg(y) — kgo k!()<€ud‘tyk>
= 4® (0) a1 \"



dt—l
Whence the result. m

Theorem 3.4.2 If € and & are two operators independent of the parameter L with

the condition €, 2] = 1, then the Crofton identity
MG (D) =G (P +1pue" ")

holds.

16



Chapter 4

THE MONOMIALITY PRINCIPLE

4.1 Definition and Basic properties

We start to this section by giving the definition of the monomiality:

Definition 4.1.1 [18] For the derivative operator R and the multiplication operator S,
a quasi-monomial polynomial set is the set {qi (y)},e Which satisfies the following

relations for all neN :

R(gr(v) =kqi-1(y), S ) =aqr1 (). (4.1.1)

The commutation relation below is satisfied for the operators R and S and therefore a

Weyl group structure is gained.

R.S1qi(y) = R(S(qx(») S (R (g (»))
= R(grt1 () =S (kgi—1 ()
= (k+1)qx(y) — kg ()
= kqr(y) +qr (v) —kqi ()

= 1g(y). 4.1.2)

If the considered polynomial set {g, (v)} is quasi-monomial, its properties can easily
be derived from the operators R and S. For instance,
(i) if R and S have a differential realization, then the polynomial g (y) satisfies the

differential equation

17



SR(qx(y)) = S(kqi-1(y))

= kqr(y). (4.1.3)
(ii) Let go (y) = 1, then gy (y) can be explicitly composed as
a1(y) = R'(1)

0(v) = R(R'(1))=R*(1)

a(y) = R(1), (4.1.4)

(iii) the last identity in (4.1.4) shows that the exponential generating function of gy (y)

can be stated as

SR(1) = Y S ()= Y SR
kD:oo . k=0
= L a0
and therefore,
hR o
=Y a0 (4.1.5)

4.2 Construction of the Derivative and Multiplication Operators

Theorem 4.2.1 [18] The relevant exponential generating function Z (t,y) , correspond-
ing to the quasi-monomial set gy (y) w.r.t. the operators R and S , satisfies the following

condition:
RZ(t,y) =tZ(t,y)

or equivalently:

Proof. In fact, we can write

18



RZ(t,y) = ReS(1)=R i —

k=0
o ik ook
= RZE%(Y)Z ZPR(‘]k()’))
k=0 k=0
Y kg )=t Y kg )
= —kgr—1(y) =t kqr—1(y
k:Ok! k:lk(k 1)’
ok
t
= tk;)EQk (y) =t (1) =tZ(t,y)

Now, we aim to extend the concept of quasi-monomiality to more general setting. Let
us consider {gx () };eny With go = 1 as a quasi-monomial family and Ry denotes the

corresponding derivative operator.

Theorem 4.2.2 [18] Assume that there exists an operator ¥ commuting with Ry such

that

e (g (y)) = P (1,2), 4.2.1)
and moreover, for a suitable operator S| (z), it satisfies the condition
e (g (y)) = Pa (,2) = (81 (2))" (1), (4.2.2)

where [Ro,S1(z)] =1 for all z. Then the polynomial family {®y (y,2) }ien IS quasi-

monomial with respect to the operators Ry = Ry and S (z) .

Proof. In fact, since Ry commutes with ¥, it also commutes with <Y 5o that

Ro(®c(y,2) = Roe** (qr(y)) = € Ro (qx (v))

= ke (o1 (v)) = ki1 (1,2)

and the operator R| = Ry satisfy the first monomiality condition. Furthermore, we

obviously have

S1(2) (@ (1:2)) = $1(2) (S1(2) (1) = ($1 () = Pry1 (172)

19



and the second condition also holds. m

Theorem 4.2.3 Consider the polynomial set {qy (y) } ;e With go = 1, and assume that
this family is quasi-monomial with respect to the operators Ry and So. Also consider

an operator ¥ satisfying [¥,Ro] = 0 and ¥ (1) = 1, and set

Dy (y,2) = e (g ()

Then the polynomial family {®y (y,2)},en has the “derivative operator” Ry = Ry.

Moreover, the “multiplication operator” Sy (z) is given by

2
S (2) = So+z[¥, So] + % ¥, [, Sol] + ... 4.2.3)

Theorem 4.2.4 Consider the polynomial set {qk (y,zl, ...,zj) }ksN’ qo = 1, and as-
sume that this family is quasi-monomial with respect to the operators R; and S; =

S;(z1,-...2;) . Consider an operator ® satisfying [®,R;] =0, and et1® (1) = 1, with

Cr (3215-,2j) = €1 %q (n,21, ., 2)) -

Then the polynomial family {Ck (y,zl yoes Tt ) } has the "derivative operator" R =

neN

R;. Moreover, the "multiplication operator” Sj 1 = S| (zl, ...,zj+1) is given by

2

Ve
Si1 (215 2ju1) =S +2; [P, 5] +2—J' (@, [®,S;]] + ... (4.2.4)

Proof. Recalling (4.0.3), we have gy (y,z1, -..,2j) = S’]‘- (1,.--,¥;) (1), and consequently

(4.1.1) can be written as follows:
er.,_]CDS/; (ylvy]) (1) =Gy (yale--,ZjH) .
Applying the Hausdorff identity, we find
ezj+1‘135j (Zl,- B 7Zk) — (ezj+l‘1>Sj (Zl, ---,Zj) e—zj+1‘13) Lit1® (1)

and
2

i1 Ps; (z1,--2)) e NP =842 @, 5)] +% (@, [@,5;]] + -

20



= Oj+l1 (217---;Zj+1)-

Therefore
ezf+1¢Sj(zl,...,Zj) = Sjn (Zl?"'azj+1)ZQJ+1
P8 (21,002) = €S (gjn1) = Sir (g541) = iy
eZH‘q’S’J‘-(a,...,zj) = (Sj+1(Z1,-~,Zj+1))k(1):Ck()’?Zlv'"ijH)'

This completes the proof. m

Remark 4.2.5 Let A denote the space of analytic functions. The monomial set {yk}
k
can be transformed into the set {%—,} by substituting the Laguerre derivative & with

its antiderivative 9, U defined as below:

k

@*u):%,k:QLzm 4.2.5)

The linear transformation T is denoted as a differential isomorphism, since it preserves

linear differential operators.

We have,
d d yk d ykfl
dy dyk! dy” k!
d yk kyk_l
= —k— = 4.2.6
dy k' (k—1) ( )
which corresponds to
d _
Y =kt (4.2.7)
y
and furthermore
k k+1 k+1
g7 (D)=L =2 (4.2.8)
Y\ k! (k+ k! (k+1)!

21



which corresponds to

wh =yt 4.2.9)

KO- ,yt)} is said

to be quasi-monomial if 2t operators Ry, ,... Ry, and Sy, , ..., Sy, exist such that

/

Ryl%q,...k, ()’17~ .- 7)71‘) = kchkl—l,kz,...,kt (y17' .- 7yl) )

Ry.qi, ...k, (yl,---yr) = kt‘]kl,...,k,fl ()’1 yeee ,yt),

\s

Sy1Qk1,...,k, (ylv' .- 7yl) =qky+1ky,....k (y17' .. 7yl) y

Sy iy ks V13 ¥8) = iy b1 (V1525 01) -

From the above formulas it follows that

[RthyJ qk,,....k ()’17 oo 7)’1)

= R)’l (S)’I (qk1>--~7kt (y17' .. 7yl))) _Sy1 (Ry1 (le,...,k, ()’17 cee 7yt)>)

Ry, (qry+106, ke O15---31)) = Sy (Kt Gy =1 gy, g 15 - 21))
= (ki + 1)k ko ke 015 28) =K1 Gk ke, deg (V155 D2)
Lk, sy, ke V15 V)
which gives
Ry, Sy, ] =1,---,[R),.S),] = 1.

One can observe that the main properties of a polynomial family can be gained using

the above relations.

(i) Having a differential realization between the derivative and multiplication opera-
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tors, we get:

Sy, Ry, Gy ...k, (V1y---¥r)

= Sy [k =1 4grds 015 90) ] = K1k oo,y 15+ - 21)

SyfRytq](17~~-7kt (yl PR 7yt)
Sy, [y, 015 30)] = ke g (01,5 31)

1.e., we find ¢ (independent) differential equations satisfied by the polynomial family.

(i) Let go,..0 (y1,-..y:) = 1, the explicit expression of {q,, _x (v1,...y:)} is given by
qky,....k (ylv' . yt) = Sl}f} o S§; (1)
(iii) The exponential generating function of {q, _x (v1,...yr)}, assuming again

qo0...0 v1,...y) =1,

is given by
eZlSyl +-~v+ZtS,W (1) — Z . Z (ZlSyl) . (Zl‘Syt)
1Jen |
oo k—o kilk!..k
=) %) kl k2 k
= Zl ZZ Ztr kl k[
— .. ZFFF sh.55) (1)
k=0 k=0 1-R2: i
'
- ' kil k y"'F‘Ikl,...k,(yh...y,),
k=0 k=0 1- K2 1

Theorem 4.3.2 Let A, ..., %; be commuting operators (i.e., [%’i, %’j] =O0forall i,]j)

independent of the parameters 7, ...z;. Then the Hausdorff identity holds:
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eZle@]"F"""Zl%t(%/e—Zl(@l _"'_Zlﬂt

_ %+<Zz,[@,,1/) (Zz,z,[ ,,[%’j,%}]>

i=0 i =0
( Z lejzk A, e@],[@k, ]H) + .-
,j,k=0

Proof. By using Hausdorff identity,

ezl<%)l+»~~+zlf@t<%/e_zl<%l_~~-_Zf‘%}f

z)~ 9k

i(z1...t s
= k! dzk

9 77 e B A
- <eZ1ﬁ1+ +Ztﬁ;%e 219 Z;«/gt> |Z:0

G —
<621%1+...+Z;ﬁt%e Z]@1+...+Zt<@t> |Z:0 — %,

0
Jz

— [(%1 4., +%t)eZ1%1+‘..+Z;=@;%e—Z1%1—...—zp@,

( QB+t u By = Bit. +z,%> o

—E PR (B 4y By)e P

1

= ;)[%l’%]

a 5 <611%1+---+Zt«@t%e—11%1—---—Zp%’z)
Z

= [(%1+-- +%t)eZ1$1+...+z[%; (B + - +93;)=%/e_zl‘%)1_“'_zﬁ%

— T NDT (B By ..+ By e PN TE T (B 4 By -

t
= Z i %kaji/]
i,k=0

ezlﬂl+“'+le%t(%/e_21%l_'“_Zlf%t

- %+(Zz,[@,,%) (Zz,z] A @,,%}])

i=0 i =0
( ZOZIZjZk i %,,[%k, ]H) 4.
'\ /7
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This completes the proof. m
Theorem 4.3.3 Consider t operators ¥y, ,...,¥,, commuting respectively with

Ry, ,...,Ry,, and set

— Yy Tt

Oky ks 0153 V132055 21) oty 01y ) -

Assume that there exist t operators Sy y, (21,..2)s---,S1,y, (z1,---,2) such that

k ky
ﬁkl...,kt (y17"'yl;Z17"'7ZZ) == (Sl,yl (Zla"'7zl)) ! (Sl,yt (Zla"'7zl)) (1)

and, furthermore, for all z; ... z;,

[Rthl,YI (Zlv e ’Zf)} == [RynSl,)’r (Z17’ - ’Zf)} =1
Then the polynomial family Oy, i, (V1,... Y1321, - - .,%) IS quasi-monomial with respect

to the operators

Ry - Ry, S1y, (zl,...,z,),...,SLyt (Z1y---52t) -

Proof. It is straightforward that

R (ﬁkl...7kt (}’17- Y4 IR 7Zt)) - R621"P” +M+Ztlyﬂqkl7...7kt (yl,. . 7yl>

_ 71 Wy, + 42 Py
= ket t ”C[qu],w-,kt (ylu'--ayt)

and
(St (21, 52)) Oy 01, 903200 20)
= (S1y, (21, 2)) [(sw1 (et z) e (St (o ’Zt))k,} 0
= [ (Si zree2) 1 (S 2 ,20) ] (1)
= Okyt1, kg V1 V52055 2) -
|
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Theorem 4.3.4 [18] Consider the quasi-monomial set {le,..m (yl,...yt)} w.r.t. the
operators Ry, ,... Ry, and Sy, ,...,Sy,. Set qo..o(V1,...,y:) = 1 in the polynomial fam-
ily {Qk17-~~7kt (y1,-- .y,)} . For the operators ¥y, . Yy, independent of the parameters

Zly---,2 , assume that:
[Py, Ry | = =[Py, R, ] =0, T Fa¥ (1) = 1.
Define the polynomial set

. _ u¥y, ++z¥
ﬁkl,...,kt V15 Y62l y2) = €170 Y7/ S D15--501)

Then, the Hausdorf{f expansions below results the desired multiplication operators.
Siyy = Sy + {Zl [y Syl +-+z [lP)’t’Syl]}

(Z ZlZ] ¥y, TY]’SYI]])+ -

,J=0

Sty = Sy+{z (¥, S ]+ +z[¥,,5,]}

(Z ZlZ] Py, le,aSyzH>+ o

i,j=0
Proof. Clearly,

Qkh...,k, (yla"'7yl‘) S§}7 5S§§(1)

ROREEEA _ .
el ° yquh“ ks ()’17~-7Yz)—ﬁk1,...,k, (yla"'7yt’zl7'~-7zt)-

Applying the Hausdorff identity, we find
ezllpyl +otu®y Syl youe 7S}’t

— ( z21¥y, + 4z )tSyw Syre*m‘l‘ylf...fzz‘{’yt) 621‘Py1+...+zl‘{’yt (1)
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ezllpyl otz Py, Syl elell’yl ——z'Yy,

t
= Syl + <ZZ1[‘{1”S);1 ) (Z ZZ,Z] i ‘P]’Syl:H> + o

i=0 i,j=0

= Siy

ezllyyl +~-‘+Zl\{lyz Sylele‘Pyl —..A,Ztlyyt

1 t
= Sy + (ZZ,’ (Wi, Sy,] > < Z Z”Z] i, lPhSytH) o

i=0 i,j=0

= Slayt'

The proof is completed. m
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Chapter 5

APPLICATIONS

5.1 Hermite Polynomials in Two Variables

Firstly, let us give the definition of Hermite polynomials in two variables which is due

to P. Appell and J. Kampe de Feriet [2]and followed by G. Dattoli et al. [10].

Definition 5.1.1 (i) The Hermite polynomials in two variables ij{m (a,b) are simply

the powers defined by

AN (a,b) = (a+b)*. (5.1.1)

ii) The Hermite polynomials in two variables .77, @ a,b) are defined by
k

[3] |
%{(2) (a,b) = Z k!

™ pp k2p
p:op!(k—Zp)!b a . (5.1.2)

(iii) The " order Hermite polynomials in two variables z%’j{(t) (a,b) are defined by

H

k!
A (ap)=Y — " ppakrt, (5.1.3)
e eb) Z{,p!(k—pt)!
Now, setting ¥ = % we get from (2.1.1) that
G (a)=Y F%W (a) =% (a+Db). (5.1.4)

Remark 5.1.2 (i) If we choose 9 (a) = d* in (5.1.4), we have

!
bD k t k
eYat = E—t!.@a

[o5)

(ii) If we choose 4 (a) = Y. cyd" in (5.1.4), we get
k=0
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ng che a—ch a+b
(i) If9 (a) = ¥ cxd" in (5.1.4), then
kf
bD% chae ch a+b ch% )(a,b)

"9 (a Z ) (a,b).
k=0

Taking into account the exponential operator with second derivative, we have

bD? o bt d (2k)
¢ g(aFk;)gdazk Zkvg
=Y 9™ (a). (5.1.5)
= k!
(iv) If 9 (a) = d* then for p = O, 1,2. .., [&] it follows that
b7k — Z 92pa

H Bkl
B pr '(k—2p)!

p

a2 =1 (a,b). (5.1.6)

W) IfY(a) = E cyd, then
k=0
[

Sk

]

b SN k! k-2
e’” Y (a) = ckae’” =Y cx y —————a" PP
= Z ck%’j{(z) (a,b).
k=0
More generally,
‘ = bP
PG (a) =Y =9 (a), (5.1.7)
— P!
p=0
and hence

(vi) If 4(a) = d* then for p=10,1, ... [];‘]
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H7dE = Y b o) &
PZOP!
Uy o
= — a7 (5.1.8)
(vii) If 9 (a) = E crak
k=0
b7 " kT Y d k—pt
e’ Y (a) = cae”” =Y ey ———bPa"?
k;) kZE) Eop!(k—pt)!
= Y a, )
=0

Remark 5.1.3 Note that, taking into account the t — th iteration of power, we have for

G(a)= E‘, cxd® that ([5])
k=0
o o bD o 1
(((eb@)bj> ) g(a) _ eb’@’g (a) _ Z bpi'g(l?t) (a)
p=0 1"

k
l‘

_ Vo k __ pPt kfpt
= Z cre a ;OCkPZO p' k pt
zlg%%f@m. (5.1.9)

5.1.1 Second-Level Exponentials

The second level exponentials are operators of the type

@) bl <1, (5.1.10)
with
. o (,b7)! o IbD
)t (a) = Z<"’ ,) %ﬂ(a)zze—'%”(a)
i ! i=0 !
= Zi%m+m. (5.1.11)

~

!

N
Il
o

A result relevant to this subject can be found in [7]. A different result is obtained by

considering the series
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In fact assuming 77 (a) = ): cxa® and using Remark (5.1.3),

o bﬁ_@p © 1 =
Z = Z—.chﬁi (a,b")
- p=0P" k=0
= Z Z ?) (a,b"). (5.1.12)

If we choose 7 (a) = a, for p=0,1,..., [ﬂ , we have

M — g () 4k
=0 °
-
_ k! 1 k—tp
& (k—tp)'t!
and, therefore
5]
(p) - k! tp k—t
A" (a,bP) =Y b Pa P, (5.1.13)
Stk !

5.1.2 Connection with the Heat Problem

The polynomials %’7{(2) (a,b) is related with the following heat problem considering

the analytic function .% (a) = ): cyak

=0
95— 98 inthe half-plane b > 0
(5.1.14)
S(a,0) =% (a).
The heat problem given in (5.1.14) admits the formal solution as
S(a,b) = "7 F (a). (5.1.15)

It is also known (see [20]) that the solution of (5.1.14) can be represented by the Gauss-

Weierstrass transform as follows

S(a,b) = N_/ 7 (p)e“Fay. (5.1.16)
Comparing (5.1.15) and (5.1.16), we get the following integral representation:
7% (g) = ) / Z(p)eFay (5.1.17)
2\/7b
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Expanding an analytic function .% (a) in a series .7 (a) = ¥, cxaX, we get
k=0

7T (@)= Y o (a,b). (5.1.18)
k=0

Furthermore, the Gauss-Weierstrass transform representation of the Hermite polyno-

mials %,7((2) (a,b) is given as follows:

2 (a,b) =

17 (a—7)?
e W dy, 5.1.19
. ?bl P T ay (5.1.19)

since etZ gk = %(2) (a,b).

5.2 Hermite-Kampe de Feriet Polynomials

The Hermite-Kampe de Feriet polynomials are %(2) (a,b) and they are denoted for

simplicity by 7% (a,b)

k
7 bpak 2p
=k! (5.2.1)
pz’op k—2p)!
Clearly for b =0,
7 bpak 2p
= kv_ k! k.
H1(a,0) + Z (k= 2p)! =a

The relation between the Hermite-Kampe de Feriet polynomials and the ordinary one

variable Hermite polynomials is given in the following equation:

1 )p k—2p
%(_) o) 3 D
2 P p (k—2p)!
1) (2a)k—2P
_ |
M (2a,—1) = = k! Z 2

Theorem 5.2.1 The polynomials 7 (a,b) are quasi-monomials with respect to the

operators

0 0
L=a+t2bs-, K=o (5.2.2)

d

. 2
k we note that K = £ commutes with ¥ = %. Further-

Proof. Assuming gy (a) =a
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more, since

o 2
eb%ak = ﬂa—;ak
=0 P! da*P
[%] bP k! o
= — a P = (a,b)
pgo p' (k—2p)'
and using (3.3.6),
e o?a" = 7 (a,b) = (a+2b%) (I)=L"(1). (5.2.3)

For any twice differentiable function f (a,b),

L0 = (2 (arm2) - (01262) 2) ra

d d . d
5,4+ 5 205 S —afa=2bfaa

= fla,b)+af,+2bfsa—afs—2bfsa = f(a,b).
Hence
[L,K]=1.

Therefore the hypotheses of Theorem 4.2.2 are satisfied for the operators in (5.2.2) and

thus (4.1.1) holds resulting quasi-monomial polynomials .77 (a,b) .

Take into account that, the operational definition (5.2.3) implies the .7 (a,b) which

satisfy the partial differential equation as follows

i%( b)—iz%( b) (5.2.4)
8aka, _da2 x\a, . L.

Also,

2
e_b%a%ﬁ{ (a,b) = d~.
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5.2.1 Differential Equation
From (i) of Section 4.1, we have

K (i (a,b)) = kA (a,b),
which gives

d d d 92
(a+2b8a) (5) 4 (a,b) = aa—jﬁ(a b)+2b8 . (a,b)

or equivalently to

2

ai%i (a,b)+2a—— J 5 (a,b) = ki (a,b).

da da?

5.2.2 Exponential Generating Function

From item (iii) of Section 4.1,

" & i (a,b) = (1) = @42 55) 1),
p=0p

so we can use (3.1.3),

0
C = ag 9 =2bg—
da

€, 2] f(a,b) = aZbi—Zb ia f

Y Y - g gaa gaa g
= 2abg’fa—2bg (g +agfa)
= 2abg*f, —2bg’f —2abg’ f, = —2bg> f
[(57 9] = _2bg2

and

(5.2.5)

(€, 2],%) f(a,b) = (—2bg*ag+ag2bg®)f=—2abg’f+2abg’f=0

€, 2],2]f(a,b) = (—Zbgzzbg%Hbg%zbgz)f
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= —4b’g f,+2bg(0+2bg*f,)

= AP fa+ 40’8 fa=0

€,2],¢)=|%¢,2],2]=0.
Therefore, we can write

eg(a+2b%) (1) — ebgzeageZbg% (1) — eag+bg2‘

We have found the exponential generating function as

> gP
y %jﬁ (a,b) = ™8+08", (5.2.6)
p=0£"

5.2.3 Recurrence Relation
From (5.2.3), we have

Ai(ad) = KAilap)= (@t 23 ) Ai(ad)

= at%’i((a,b)—i—Zb%jﬁ((a,b)
= a4 (a,b)+2bL.H (a,b)

= a4 (a,b)+2bkH—1 (a,b).
Hence the recurrence relation is obtained as

%ﬁ-l (Cl,b) = a%c (Cl,b) +2bk%{—l (avb) :

5.2.4 Burchnall Identity

Theorem 5.2.2

dN" W (m a\'
(a+2ba—a> :Z(J%_,(a,b) <2b%) : (5.2.7)

=0

Proof. In this proof we need to use the Weyl identity. Multiplying the left-hand side
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of (5.2.7) by f;,—p, and summing over p, we find

[e5)

p p
Z g_ a_i_zbi — eg(a+2b%),
=D da
Letting
0
K=ga L=2bg—,
da
we see that
K,L] = —2bg?,
therefore we can write
eg(a+2b%) (1) _ ebgzeganbg% (1)

Now, by using (5.2.6) and expanding the exponential function, we obtain

oo p oo
ebg2+ag62bg% — Z g_% (a,b) Z ~ 7

Therefore

= D gpp
LYo i

I1p!

p=0P p=0P* =0
implying,
pp 9 \!
p
2b— | = _ 2b—
(a—l— baa) ;}(l)%’;, l(a,b)( b8a>
]

The Hermite-Kampe de Feriet (or Gould-Hopper) polynomials %(k) (a,b) satisfy the
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conditions of the quasi-monomiality where,

0 ak—l
L:%—.@a, K:a+kb8ak 1
It is clear that
pot k I \?
e ddkaP :%’j,( )(a,b) = (cH—ka (1).

The explicit expression of the polynomials %(k) (a,b) can be derived from the defini-

tion, since
bgfk > bt akt
e Bukapztgoﬁwap.
Using (5.1.8), we see that
b2t ] p! ki (k)
e da (lp = —‘map :% ((l,b). (528)
=0"" )

The exponential generating function can be found by multiplying both sides of (5.2.8)

P .
and by % summing over p,

Z g_'%(k) (a,b) = ebz?ak Z g—’ap = ebaa Z <ag') = ebaak eag
p=0 p: p=0 p: p=0 p:
_ v a_’aak; ag _  bs*+ag
| r
=or!da
The differential equation follows from
KLAY (a,b) = p 74" (a,b),
which gives
akfl 0 X
0 k 3k k k
= a%%”p( ) (a,D) —|—kbﬁ<%”p( ) (a,b) = p%”p( ) (a,b).

Note that %ﬁ,(k) (a,b) satisfies the differential relations
k Jd .k k
LA (a.b) = 5~ ") (a.b) = p#, " (a,b),

and
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from which we obtain

ak

W‘%’(k) (a.b) = p(p—1).(p—k+1)7," (a)

Finally, using the equalities
k—1

dak—1
A (a,b)

L)

o (asb) = K%(k) (a,b) = (a+kb

k—1

a1
= a%(k) (a,b)+ kbLk_lji’j,(k) (a,b)

) AY (a,b)

= a%ﬂ( )(a b) +kb——

and
L @) = pp—1)..(p—k+2) 25, (a.b)
_ p! (k)
B (p—k+1)!%*k+1’
we get

Pl @

(k) — g%
HpH(a,b)_aHp (Ll b)‘l—kbm p—k+1

(a,b).

5.3 Laguerre Polynomials in Two Variables

A polynomial set, for instance, is obtained by using the isomorphism given in Remark

4.1.5. Consider the below defined Laguerre polynomials in two variables:

]b’" Jal (—a)"

Z G Lm(@0) = (53.1)

which have a relationship with the ordinary Laguerre polynomials %, (a) by

v

Lm(a,1) =Ln(a), Ln(a,b)=b"% (g) . (5.3.2)

For simplicity, in the sequel we consider the polynomials
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Y i a™ipl
Zm(a,b) =Ly (—a,b) =m! Z 5

— (5.3.3)
=0 (m— 7)1 (j")

We call these polynomials as Laguerre polynomials in two-variables.
Theorem 5.3.1 The Laguerre polynomials %, (a,b) are quasi-monomials with re-
spect to the operators

J a, B.=b+9, !, (5.3.4)

A= 52952

where

7\ F (a) :/ff(r)dr.
0

Proof. In fact %, (a,b) satisfy the partial differential equation

d Jd d

%gm (Cl,b) = %aa—afm (a,b),
since
n m—p ,p
i.i”m (a,b) = 9 [m! b—az]
b db | ;=6 (m—p)(p!)
'm—l (m_p) bmfpflap
= m!
=y (m—p)(m—p—1)!(p!)?
m—1 bm—p—lap
= m(m-—1)!
=Dt Y Gy I
= mZu-1(a,b) =A.Zn(a,b)
On the other hand,

m—1 |
f (m—p)!(p—l)!p!]
m—1 bP paP=!
= (m=p)lp(p—1)1

m—1 p—p—14p

= m(m—1)! Z

1= (m—p—1)!(p!)?

39



=mLu—1(a,b) =A.Ln(a,b).

Then, considering the corresponding initial condition %), (a,0) = f‘n—”: in (5.3.1), we

have
m!

m
L (a,b) = P399 Ly (a,0) = P 3a%% (“—) . (5.3.5)

. . 9,9 .
In fact, A, =P = %a% obviously commutes with eP9a%%a . Furthermore, using Defi-

nition (5.3.3), recalling (5.3.4) and using the commutator between b and 7, I we can

write
_ e (TN P (9,9
Zmlab) = ot (m!>_kzlok!m! (8aa3a .
— Z bk (m,)Z m—k
= kim! (m—k)1)?
m m am—k
= b* =(b+2,' (1
b ) = b 2 )
Hence,

d

Zola) = heds (0] = (o4 7, () = B ().

On the other hand, clearly

INEN INCRY
[A*aB*]f(a7b) - {%aaa( @ ) (b—i_@a )%a% f(aab)

_d d J d J 0 18 0

= 30992 T 3at5a % F b aa05. ~ Y a0 5,

B 0 0 0 .0
= %abﬁﬁ—%af—b%afa—.@a %afa

= bfatabfaa+ f+afa—Dbfa—abfa—afa
= fla;b),
which gives
[Ai,B] =1.

This completes the proof. m
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Remark 5.3.2 The differential isomorphism T = T, has been introduced in Remark
(4.1.5). Also, the Laguerre polynomials and the Hermite polynomials and their rela-
tions have been discussed in [3] . One can realize that under the action T,, the La-
guerre polynomials £, (a,b) correspond to the Gould-Hopper polynomials %”m(l) (a,b) =

(a+b)" ie.,

1, (ap) = Y (m>b’"‘kTa a*
L () ()
B i (m>bmka_k_ | m akbmfk
=0 \k k! =0 (m—k)1 (k)
= %u(a,b)
5.3.1 Differential Equation
From
(92 d
(b+2;") 2934 L(a,b) =mZy, (a,b)

one can find that

(b+2,") (%a%) Z(a,b)

= (b—F.@;l) (%amgm—l (avb))
= (b—{—.@;l) (mZy—1(a,b)+m(m—1)2, 2(a,b)a)
= mZu—1(a,b)b+m(m—1).%,_»(a,b)ab

+ 2. 'mLp 1 (a,b) +m(m—1) D, L, 5 (a,b)a

= mZy—1(a,b)b+abm(m—1)%Ly_s(a,b)+ Ln(a,b)+

N aZn-1(a,b) m(m—1)
+m(m—1) — m(m—l)gm(a’b)
= biéf( b)+ ba—zf( b) + iﬁ( D)
- aa m\4&, a aaz m\4, aaa m\4,
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2

d d
= Qr+b)§;-+ab5;5 iﬁnﬁhb»

Hence, .%, (a,b) satisfy the differential equation

2

J )
baﬁiﬂm (a,b)+ (b+a) %fm (a,b) =m%,, (a,b). (5.3.6)

Note that, from the homogenity property, -4, (a,b) also satisfy the Euler equation

d d
a%afm (a,b) + b%iﬂm (a,b) =m%, (a,b).

5.3.2 Ordinary Generating Function

In Section 4.1, (iif) implies that

Zm(a,b) =B (1). (5.3.7)
We get
Y " Zulab) = Y g"Br()=Y " (b+2,")" (1)  (538)
m=0 m=0 m=0
1
= 1).
l—g(b—l—@cz_l) ()
Furthermore,
1 B 1 B 1
- -1~ _
1-g(b+%.") 1 —gb—g%a (1—gb)<1—lfj@al>
R T <N N S R
B l—gbsgz){l—gb] Za

Recalling the operator Z,° in Remark 4.2.5, we obtain

[ —— g 1°a 1 ga
2: R— eh@
l—gbs_oll—gb} st 1—gb

and

1

ga
@, |gh| < 1.
e |gb|

i g"%n(a,b) =

m=0

5.3.3 Exponential Generating Function

Assume that % (a,b) = 1. Then we can write the following form as

42



& Zu(ab) = r & (5. (1)" (1)
= B = os(0+20") (1), (5.3.9)
Now we will use the Weyl identity. Considering the operators
o =bg, B=g9,",
we see that
[ B f(a,b) = [bg%;" —87; 'be] f(a,b) =bg* P, [~ *bT; ' f =0
[bg,g_@a_l] = 0.
Thus, from the Weyl identity,

egb—O—g@a’1 :eoegbeg.@l;l (1) :egbi (g@afl)’ 1 :egbz (ga)

and,

(o]

Z —.,% (a,b) = %26y (—ga)

|
—0 n.

where % is introduced as the 0-order Tricomi function. In general,

aP
Z T r+p (5.3.10)
p:0

for every integer r.

Remark 5.3.3 The image of the exponential function under the isomorphism T results

the Tricomi function 6, (—a) since

Clearly,
J o _ d d & (—ga)) 9o & glpar!
“9a"3a 08 = _%a%l;) e __%al;)_k(k—l)!k!
_ Iy gy g’ pa’”!

da = (p-Dlpt = (p=Dlp(p-1)!



=) = g% (ag). (5.3.11)

5.3.4 Recurrence Relation

Now, we will follow some steps to derive the recurrence relation of the classical La-

guerre polynomials. Let us consider the relation

- 1 at
L (a)t" = s
Y Ln(a)t" = e

we get by taking derivative with respect to ¢ on both sides and making series manipu-

lations, we arrive to the following recurrence relation:
(m+1) Zps1(a) = 2m+1—a) % (a) —mZLy—_1 (a).

Replacing a by 7, and multiplying both sides by "t we get the following recurrence

formula:

1) Lo (=) 0 = (o4 5) () = ()

= (m4+1) L1 (—a,b) = [2m+1)b+a) Ly (a,b) —mb* L1 (a,b).  (5.3.12)

5.3.5 Laguerre-Type Exponentials

For every positive integer r, the r*"K —exponential function is defined in the following

way:
oy _ v Jald’)
ei1(a) = F,(e%) = =
@) ) ,;o p! 1;0(17!)2
= Ty (al) > af = T (@) & af
er(a) = T2 =T =7 = =
@) = 2 LZO p! ] LZO@!)Z] L7 Eey

erla) = T)=Y —y

For r =0, we have e (a) = ¢“. Consider the operator (containing r+ 1 derivatives):
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Dry=2a...2a2a2=S(r+1,1)D+S(r+1,2)a2*+---+S(r+1,r+1)d" 2",
where, S (r,k) denotes the Stirling numbers of the second kind.

Theorem 5.3.4 [18] The r'" Laguerre-type exponential e, (ka) is an eigenfunction of

the operator 9,2, for any k € C. In other words:
D Ley(ka) = ke, (ka).
One can easily see that 9. = % and we have:

Pe* = ket

Proof. Direct calculation yield that

o " a™ oo K ma™ 1
D ZLe (ka) = (.@a.@)mgbk 1)’ = @amz:"l i (m— 1)
= K"a" - K"ma™ ! o mi1 4"
n 9,;1 (m—l)'m‘_mzz"lm(m—l)'(m—l)' mzokm (m‘)2
= ke (ka)
= o a > K"ma™m !
DhLe(ka) = (YaPa) Z K" ——= = YaPa Z 5
m=0 (m') m—1m<m_1)'(m‘)
o Kmam o Kma™ 1

- -@mZ (m—1)2m! :m; (m—1)2m(m—1)!
00 kmam—l oo km—i—lam
= ) (m—1)13 L (m!)? = kez (ka)

DrLe(ka) = ke, (ka).

Clearly, the rfhK—eXponential function satisfies e, (0) = 1 for all r, and for a > 0 is an
increasing convex function. Moreover,

a

e"=ep(a)>er(a)>er(a)>--->e(a)>--- VYa>D0.
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According to [19], foreachr =1,2,3,..., we have
(2a2) = PD'd D', (2aDaP) = P'd P'd D'
5.4 The Isomorphism 7,

In Remark (4.1.5), consider the space of analytic functions of the variable a, as A = A,

and a differential isomorphism acting on this space as T = T; i.e.

9:%%@32%@; a— ",

T, (d) = 2, (1) = !/(a—(p)tld(p:a—. (5.4.1)
0

Note that

&3
~
=3
I
ol
I
ol
1N}

=]
~

~

Il
[}
—~

~
~—

[\)

\
i

=
~
S
~—
[
aok
~
=
[
gk
1N}

<

Il
(e}
—~
N

Il
(e
—~

~
~—
W

5.4.1 Iterations of The Isomorphism 7,

Using the isomorphism 7" = Tj,,a demonstration for a set of generalized Laguerre

derivatives can be as below:
T.YEL = T,(2a2)f(a)=(2a22 ' 2a2?) f(a) = 2a29 ' Daf,
= 24997 [fu+afud = DaD |f +af. — ]l = PaD |af,]

= Dalfu+afud = D [afa+a* fua] = fa+ afua+ 20 a0+ 0 faaa

= D+3a2*+d*D* = DL,
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T.9L = T,(2a2a2)f(a)=(2a2a22 ' Pa?) f (a) = PaPaP? D' Daf,

= 2042029 " f,+afud = DaDaD (f +afs— f) = DaPaD (af,)

= Pa2a(fu+afw) = 242 (af.+a*fu)
= 9a(fu+afaa+20faa+ 0 faaa)
= D(afa+a faa+20" faa+ @ faaa) = fa+ Tafaa+ 60> faaa + @ faaaa
= D47aP*+64*°D* + > D* = AL
and in general by induction
T"'9.2 =151 (92a49) = 2a90D - --aD = B (5.4.2)

where the last operator contains k+ 1 ordinary derivatives. The above relation provides
a useful demonstration for the the generalized Laguerre derivatives using the iterations
of the isomorphism 7,. Also, the actions of 7, on all functions belonging to A = A,
can be observed. Considering the above mentioned definition, the following relation

can be derived.

r

2, () ==, T2, () =2;'(1)=2;" (1) =

r!

and, by induction,

T '971(1) = 9;;,1 () =2,:(1) =

5.5 Hermite-Based Appell Polynomials

The 3-variable Hermite polynomials (3VHP) .7, (a, b, c) are introduced in [6, p. 114
(22)] by

Hm (a,b,c) = m! (5.5.1)
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which are quasi-monomials under the action of the operators

L —|—2ba +3 o (5.5.2)
= a —+3c=— S.
da da?’
K — d
- da’
The following properties holds true:
d

mty (a,b,c) = LK(%(a,b,c)):L%(%(a,b,c))
mity (a,b,c) = L(miy,—1(a,b,c))

d 92
moy (a,b,c) = <a—|—2b&—a —1—366—612) (mity,—1 (a,b,c))

i+2ba—2+3 LA Ay (a,b,c) =0 (5.5.3)
a&a a2 co.)a3 m m(a,b,c) =0. S.

The generating function,

oo m =] oo Cp%/n—3p(a7b>gm

%’in(a,b,c)% = ZZ

m=0 p=0 p!(m—3p)!

m=0
- pZO p! mZO%(a?b) !

_ eag+bg2+cg3. (554)

Also, the polynomials .7, (a, b, ¢) satisfy the following relations

0
%%n(avbac) = m’%ﬂ—l(aab7c)7
%%ﬂ (a,b,c) = m(m—1)3,_2(a,b,c),
%%(d,b,c) = m(m—1)(m—2)4,_3(a,b,c),
0 02 0 03
%%ﬂ (d,b,C) - W% (a,b,c), %%ﬂ (Cl,b,C) - ﬁ%ﬂ (d,b,C)

which in view of the initial condition
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Hm (a,0,0) =a™ (5.5.5)

gives the following operational definition for .74, (a,b, ),

33
9 23 o <ba2+ca 3)
eXp (bﬁ +Cw> (am> = ZO a r! a (am)
r=
82 k 83 r—k
= o () (b52) ()
= Y ) , (a™)
r=0k=0 r
_ ii 7 kaZkC a3r3km
S & (r—k)kir! da?* 93k
m—3r
_ i[i] bt m! ok 9% o33k
=0 ico )'k'm 3r—|—3k' da%k
5] ["57]

bR a3k (m — 3r + 3k)!

I
2
gl

(r—k)\k!(m—3r+3k)! (m—3r+k)!

r=0 k=0
3] le] o bkgm3r—2k
= | “
" =0 kgo r k! (m—3r—2k)! = H,, (a,b,c)
92 93
Hm(a,b,C):exp( 372 68_613) (@"). 556

The polynomial set {7, (x)} (m=0,1,2,...) is an Appell set (7, being of degree

exactly m ) if either
(i) %Qfm (x) =my_1 (x),m=0,1,2,..., or

(ii) there exists a formal power series <7 (p) = Y amﬁl—wf, ap # 0 such that

o)

o (p)exp(xp) = ¥ o (x) 2 (5.5.7)
m=0 :

m
It is clear from the above definition that &7, (x) = ¥ (7)am—ix*.
k=0

We recall some of the members of Appell family:

(i) If o (p) = ﬁ, then 47, (x) = %, (x), the Bernoulli polynomials [17].
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(ii) If o (p) = (ep—%rl), then <7, (x) = E,; (x), the Euler polynomials [17].

(iii) If 7 (p) = ﬁ, then .7, (x) = 2\ (x), the generalized Bernoulli polynomials

[13].

(vIf < (p) = (e%y])y then o7, (x) = EY (x), the generalized Euler polynomials [13].

WIf o (p) = V175 7, P* (NP —1) (e2P —1) ... (e¥? —1)] "', then 7, (x) is the
Bernoulli polynomials of order k [14].

(vi) If &7 (p) = p—ks, then <7, (x) = i (x), k > 1, the new generalized

£
Bernoulli polynomials [4].

(vii) If o (p) = 25[(eNP +1) (€2 +1) ... (¥ +1)] ", then 7, (x) is the Euler poly-

nomials of order k [14].

(viii) If o (p) =exp (€0+€1p+€2p> + -+ Eup1 P"1), €441 # 0, then 7, (x) is the
generalized Gould-Hopper polynomials [12], including the Hermite polynomials when

n = 1 and classical 2-orthogonal polynomials when n = 2.

(ix) If o (p) = W, then <7, (x) = A (x), the Miller-Lee polynomials [1],[8],

including the truncated exponential polynomials e,, (x), when k = 0 and modified La-

guerre polynomials f,ﬁ,") (x) [16], when m = o — 1.

(x)If o (p) = (ef—il), then <7, (x) = %, (x), the Genocchi polynomials [9].

To generate Hermite-based Appell polynomials associated with 3VHP %, (a,b,c), we

introduce the generating function
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Y (a,b,c;p) = o (p)exp(Lp)

= 4 (p) —|—2ba+3 o
= p)exp| (a 5 C&a pl.

Now, decoupling the exponential operator appearing in (5.3.3), by using the Berry

decoupling identity [11]
) ((_L)%%%)
Tt —otze\ 2 e? €, 7] = t%%, (5.5.8)

we get the generating function for Hermite-Based Appell polynomials ,».27, (x,y,z) in

the form
G (x,y.z:p) = o (p)exp(xp+yp*+zp’) = (p) Z «f“fin(x,y,Z)ﬁ
= !
=k m+k
= Zakk‘ZJf X,¥,2) .—ZZak%” X,¥,2) ‘k'
k=0 =0 m=0k=
Y Y st alord) L
- axIlm—k x y Y, 2
) (m—k)!k!
o m m m ©0 m
Y ) awty i (x,y,2) (k)% =Y s (x,y,Z)%- (5.5.9)
m=0k=0 : m=0 :

Differentiating (5.5.9) partially with respect to x,y and z, we get the following differ-

ential recurrence relations satisfied by the Hermite-Appell polynomials ,».o7, (x,y,7):

d

aﬁfﬂfm()@y,z) = m%%m—lcxv.%z)a

d

a_y%dm(xv)@Z) = m(m_1> e}iﬂfgymfZ(xa%Z)a

0

a_Z%QQ{m(x’y,Z) = m(m_1>(m_2) ,%dmf3(x7yaz)' (5510)

From relations (5.5.10), we observe that .47, (x,y,z) are solutions of the equations

0 9?2

a_y%%m (X,y,z) = a_xzﬁf%m (%)’;Z)a

0 a3

% D (X,,2) = 33 G (X,,2) 5 (5.5.11)

under the following initial condition
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%y (x,0,0) = Zak(> £ (x,0,0) = o7, (x)

Thus from (5.5.11) and (5.5.12), it follows that:

ox2
2 )
Mo m <y8x2 +Zax3>
— Xt
;0 (z)“r ,Z;) T
/ 92 p 93 I—p
w55 W 05) ()
- L(Nenr
= = pi
m o | 2 31-3
A a-r a9~ P
= ) (m>at2 )3 ISTIEAR: T e
S\t =010 (I—p)'pl!\~ Ix?p ox3=3p
then taking derivative on both sides 3/ — 3p times,
m a2p
Ar
= y
- B E Lo
(m—1)! m—t—31+3p
(m—1t—31+3p)!
== a y Z
S\t)" 5 & (—p)p(m—1—31+3p)!

2
07 xm—t—3l+3p
ox2p

m 1‘ 31

m _,)vypzl P
B Zé() Z Z pl(m—1—31+3p)!
(m

=0 p=0
—1—31+3p)! t=3lp
(m—1t—31+p)!

[5t] =5 ] (1 — 1)1Zlypxm—1-31-2p
Zb Np!(m—t—31—2p)!

z 2 ypxmftf3172p

(m—t—31—2p)!p!

I
M=

N
Il
o

I
gE

Il
L=
/\/\/‘g/\
-~
N~ "
Q
~—~
: 3
N
T
o
=
bi
=)

i
=
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Therefore, we get

02 23
% (X,Y,2) = exp (y@ +z$) { G (x)} - (5.5.13)

For example, the Hermite-Bernoulli ,»%,, (x,y,z) and Hermite-Euler polynomials

#Em(x,y,7) are defined by means of the operational definitions

0?2 a3
#Bm (x,y,2) = exp ()’W +Zﬁ> {Bn(x)}, (5.5.14)
and
0?2 a3
#En (x,y,2) = exp (yﬁ +zﬁ) {Em (%)} (5.5.15)

For o7 (t) = (eftTI)’ 1.e. corresponding to the generating function for Bernoulli polyno-

mials %, (x) [17]

<)

@ t_ 0 exp (xt) = ) B (X);? 1| < 2m, (5.5.16)

m=0

we get the following generating function for Hermite-Bernoulli polynomials

0B (x,y,2) :
2L = Y i
e (xt +yt™ + a1 )—mgo 7B (3,3,2) — (5.5.17)

Next, for <7 (t) = ﬁ, i.e. corresponding to the generating function for Euler poly-

nomials E,, (x) [17]

(e,_zH) exp(at) = ¥ En(x)"

t| < =, (5.5.18)

m
m!’
m=0

we get the following generating function for Hermite-Euler polynomials - E,, (x,y,z) :

(et + 1) CXp ()Cl +yt2 +Zt3) = ZO %”Em (x7y> Z) % (5519)
m=

Again, for o/ (t) = ﬁ, i.e. corresponding to the generating function for Miller-

(1-1)
Lee polynomials %Slp) (x) [8, p- 21, (1.11)]

1 (o)
(1—1)P*! exp (xt) = Z%”)(x)t’”, it <1, (5.5.20)
- m=0
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we get the following generating function for Hermite-Miller-Lee polynomials

Jfgn(ip) (X,y, Z):

1 (o]
(1— )P P (t+32+2%) = ¥ wGlY (x,3,2)1", (5.5.21)
- m=0

which for p = 0, gives the generating function for Hermite-truncated exponential poly-

nomials ey, (x,y,2):

1 oo
= exp (xt +yt? +zt3) = Z wem(x,y,7)t" (5.5.22)
- m=0

and for p = B — 1, gives the generating function for Hermite-modified Laguerre poly-

nomials %fr(nﬁ) (x,¥,2):

a t)ﬁ exp (xt+yt2+zt3) = Z jff,ff) (x,,2)t™. (5.5.23)
- m=0

Further, we recall that the Bernoulli polynomials %), (x) are defined by means of the

following series:
2 (m Mk
B (x) = ,;:o (k> BpxX"", m=0, (5.5.24)

where %B,, = %,, (0) are the Bernoulli numbers defined by the generating function

=Y Z.—. (5.5.25)

Now, operating exp (yg—xz2 +z§—;> on both sides of (5.5.24), we find

92 J3 o (m 92 3 m—k
exp (yﬁ +z$) { By (x)} = k;) (k><%’pexp (yw —i-Zﬁ) {x } ,
(5.5.26)
which on using the operational definitions (5.5.15) and (5.5.7) on the L.H.S. and R.H.S.

respectively, yields the series defining the Hermite-Bernoulli polynomials ,»%,, (x,y,z)

in terms of 3VHP %, (x,y,z) as

%%m (X,y,z) = Z <I;:) t@pt%éﬂfk (x,y,z) : (5.5.27)
k=0

Similarly, from the series defining the Euler polynomials E,, (x):
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B m ofm _l m—k
_/;oz (k>Ek(x 2) , (5.5.28)

where E,, = 2"E,, (%) are Euler numbers defined by the generating function

2¢t > tm
_* __vyg, . 5.5.29
(2 +1) mz’o m! ( )

we get the series definition for Hermite-Euler polynomials zE,, (x,y,z) in terms of

3VHP /7, (x,y,z) as

m (X,,2) Zz ()Ek% ( %,y,z). (5.5.30)

Thus, we conclude that the series definition for Hermite- Appell polynomials .o, (x,y,z)
can be obtained from the series defining the corresponding Appell polynomials on re-

placing the monomial x” by the 3VHP %, (x,y,z).
5.5.1 Applications

Several identities involving Appell polynomials are known. The formalism developed
in the previous section can be used to obtain the corresponding identities involving
Hermite-Appell polynomials by operating exp (yg—xzz -I—zg—;) on both sides of a given

relation.

First, we recall the following functional equations involving Bernoulli polynomials
B (x) [15, p. 26]:

B (x+1)=Bp(x) = mx¥™ ' m=0,1,2,...,

p—1 p
Z( )%x) = px'7! p=2,34,...,
k=0 k

f), m=0,1,2,...;k=1,2,3,....

k—1
By (kx) = K'Y 2, (x+
(kx) 1;) X

. . 2 3 . .
Now, performing the operation exp (y% +zaa—x3> on the above equations and using

the operational definitions (5.5.6) and (5.5.14) on the resultant equations we get the
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following identities involving Hermite-Bernoulli polynomials ,»%,, (x,y,7):

P (x+1,9,2) = B (%,3,2)
ok 93 92 93
= exp (yw +Zw) %m <X—|— 1) —exXp <yw +Zﬁ> %m (X)
PR E P AN
= €eXp (yw +Z$) [f@m (X+ 1) - e@m (X)] = eXp (ya—xz +Z$> mx 1

= miy_1(x,y,2), m=0,1,2,... (5.5.31)

- n
Z (m) (x,,2)
— [n 02 93
= mz::o (m) exp (yw +Z$) By (x)
82 83 n—1 n 32 83 .
= exp (yw +z$) Z (m) By (x) = nexp (yﬁ —i-Zﬁ) X

m=0

S 3
- o

— A1 (n2), (M=2,3,4,..) (5.5.32)
and
o By (mx,m*y,m’z)
= exp <m yo.?—zz +m3z A ) {B, (mx)}
= exp <m yo.?zz +m3z;3)mn1 ;%" (X—F%)
, 0

m- 23 l
_ n—1 = _
= m l_Zéexp(myaz—sza 3)<%’n(x+m)

m—1

[

= mn_l Z %e@n (X+an7z)’ (n:071727-"7m:172737"')'
=0

(5.5.33)

Similarly, corresponding to the functional equations involving Euler polynomials E,, (x)

[15, p. 30]:

En(x+1)+E,(x) =2x",
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k—1
/
=k"Y (-1 'E - =0.1,2,....k odd
l:O( ) m(x+k)7 m b b b 0 b

we find the following identities involving Hermite-Euler polynomials ,,E, (x,y,z):

#En (x+1,9,2) + wEn(x,9,2) = 276, (x,,2). (5.5.34)
m—1
l
wEn (mx,mzy,m3z) = m' Z (—l)l wEn <x—|——,y,z> (n=0,1,2,...,modd)
=0 m
(5.5.35)

Further, we recall the following relations between Bernoulli and Euler polynomials

[15, pp. 29-30]

%m(x):z—ké(]l‘)%k B (x), (m=0,1,2,...)
Em(x):(’im_:ll) {%m (”1) B (g)} (n=012,..)
Em(kx):—%lg(—l)l%mﬂ (x+£), (m=0,1,2,...;k even).

Using the operational definitions (5.5.14) and (5.5.15), and performing the opera-
tion exp ( 8—2 —i—zéa—;) yield the following relations between Hermite-Bernoulli and

Hermite-Euler polynomials:

B (%,Y,7)
- (i)

- en(sZurs ) £ (D) ntn

m=0
82 3 n m l

= o gats a—) 3 (o) e B0 e (20 )

n m 82 83 l
= 27" 2" Y (=) exp ( +z—> E, <2x+ —)

mZ’O ) IZ() Y92 T 9.3 m

n m l
= 27" Z ) n— mznz (ZX+ ,)’aZ>

m=0

¢
(0
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n

=2") (n)%’nm wEn(2x,4y,82), n=0,1,2,... (5.5.36)
m

m=0

wEn(x,y,2)

02 a3
= exp ()’W +Za_x3) {En(x)}

82 83 2n+1 x+1 X
- %P (y8x2 +Zc9x3) n+1 {%HH ( 2 ) = P <§)}
on+l 0?2 a3 x+1 02 a3 X
i L e N e R G E 6]

2n+1 x+1 z X z
= {%"f@n—kl ( Y > — Bt <§’4XL’§)} (5.5.37)

748

#En (mx, m?y, m3z)

92 93
= €&xp (yw +Zﬁ) En (mx)

82 3 2m" m—1 ;
= eXp(}lw-f'Za 3) —(n+1)lz()(—1) Bn+1 (x+n—1)
om" m—1 82 3
- _(n_l_l)l;)(_l) exp(yW—FZa 3)Bn+l (X+—)
2 m—1

(5.5.38)

We consider the following recently derived recurrence relation involving Genocchi

polynomials ¥, (x) [9, p. 1038, (43)]
2" =9, 1 (x) + 9 (x),

which yields the following recurrence relation involving 3VHP .77, (x, y,z) and Hermite-

Genocchi polynomials %, (x,y,z):
HGni1(X) + Gy (x) =201 (x,3,2). (5.5.39)

Also, corresponding to the summation formula involving Genocchi polynomials %, (x)
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[9, p. 1038, (43)]

l
1
g x—l—p m[(—l)lgn+1(x+l+l)—gn+1 (X) s
we find the following summation formula involving 3VHP .77, (x,y,z) and Hermite-

Genocchi polynomials %, (x,y,z):

n
Z A (x+k,y,2)

= [(=1)"% %G1 (x+m+ 1,3,2) = 5 Gpy1 (x,3,2)]. (5.5.40)
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