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ABSTRACT 

In this research one of the local search algorithms called the Concentric tabu search 

(CTS) is used to solve the traveling salesman problem (TSP). One of the well known 

NP-hard problems in combinatorial optimization is the TSP Problem and it is one of 

the most competently studied problems in the area of combinatorial optimization. 

Two different implementations of the Concentric tabu search (CTS): ring moves 

(RM) and all moves (AM) are used and compared with the traditional tabu search. 

For searching global optimal solutions for given TSP problems, Concentric tabu 

search was hybridized with Genetic Algorithm. 

Computational experiments showed that Concentric tabu search gives better 

performance than the traditional tabu search and also improves the execution of the 

Genetic Algorithm (GA) for the solutions of TSP problems. 

Keywords: Concentric Tabu Search, Tabu Search, Genetic Algorithm, Traveling 

Salesman Problem. 
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ÖZ 

Bu araştırmada yerel arama algoritmalarından biri olan Ortak Merkezli tabu arama 

(OMTA) yöntemi seyyar satıcı problemini (TSP) çözmek için kullanılmıştır. NP-Zor 

problemlerinden biri olan TSP için en iyi çözümlerin bulunması ile ilgili literatürde 

pekçok çalışmalar bulunmaktadır. Ortak Merkezli tabu algoritması için iki farklı 

yöntem bulunmaktadır : Halka Hamle (HH) ve Tüm Hamle (TH), bu çalışmada bu 

iki yöntem geleneksel tabu arama ile TSP çözümleri üzerinden karşılaştırılmıştır. 

Ayrıca OMTA Genetik Algoritma ile birleştirilerek TSP problemlerine en iyi 

çözümler bulunmaya çalışılmıştır. 

Yapılan deneyler ile OMTA geleneksel TS yönteminden daha iyi sonuçlar verdiği 

gösterilmiştir. Ayrıca Genetik Algoritma ile kullanıldığında TSP problemlerinin 

çözümünde Genetik Algoritma sonuçlarını iyleştirdiği gözlemlenmiştir. 

Anahtar Kelimeler: Ortak Merkezli Tabu Arama, Tabu Arama, Genetik Algoritma, 

Seyyar Satıcı Problemini. 
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Chapter 1 

INTRODUCTION 

The Traveling Salesman Problem (TSP) is one of the most well-known and 

significant combinatorial optimization problems (COP). The study of TSP is to 

search the minimal path to visit all cities in a given list only once a time and return to 

the first city. On other hand to its simple definition, solving the TSP is difficult since 

it is NP-complete problem and not proximal to any constant [7]. TSP can be solved 

with ease when there is minimum cities number, although, solving it will be very 

hard for big problems, required a large amount of calculating estimate time. Based on 

the framework of the cost matrix associated to the TSPs can be categorized into 

asymmetric and symmetric [4]. 

Tabu search (TS) algorithm explores the search space by manipulating moves to a 

solution in a way that fashion new solutions while trying to avoid reversing these 

moves for a confirmed number of iterations [3]. TS is a meta-heuristic algorithm, 

which can be applied for works out combinatorial optimization. TS has found its 

usefulness in a number of applications such as traveling salesman problem, 

scheduling, graph coloring, knapsack problems, etc. TS is now a reputable 

optimization technique and has gained high effectiveness in solving a broad range of 

optimization problems. Several works mentioned that TS provides best solutions to 

the given combinatorial optimization problem. Consequently, Tabu Search extremely 

used to find good solutions in particular, for large combinatorial problems [2].  
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Concentric tabu search (CTS) algorithm was proposed by Drezner [1] in 2002. The 

idea is to force the search to regions of the search space that are far away from the 

initial solution hoping to find a better local optimum [1]. As a variable neighborhood 

search approach, Concentric Tabu Search falls in the general framework of tabu 

search. Ring moves and All moves are two different types of the CTS which are 

suggested for solving combinatorial problems. In the former, search is undertaken in 

rings surrounding the center solution which is the starting solution, this continues 

from one ring (circle) to a larger one, and continues, until the search reaches a 

predefined radius [2]. In the latter, the rule of the search is allowed to proceed to a 

lower hamming distance solution under certain conditions. 

Genetic Algorithm exists within evolutionary algorithm class based on natural 

evolution which is based on the percept of the survival of the fittest. Genetic 

algorithm is best heuristic algorithms that have been employed more frequently to 

deal with the travelling salesman problem (TSP) problems [5]. GA start with a 

population of different solutions to the problem, a fitness function is used for 

calculating individual fitness, and then a new generation will be created during the 

selection process, crossover and then mutation. Genetic algorithm and after finds a 

fitter solution the algorithm then terminate. While the algorithm continues with new 

population whenever the termination condition is not met [6]. 

Since the simple genetic algorithm convergence speed is relatively slow. A satisfied 

local search technique required to enhance the quality of genetic algorithm 

individuals before inserting them into the population and improve the local search 

ability [9]. 
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In this research, Concentric tabu is hybridized with the genetic algorithm in order to 

maintain a balance between intensification and diversification during the search 

process [9].  

The experimental evaluations are implemented using several benchmark problems 

available on TSPLIB [21], the library of TSP instances. They are tested on the local 

and global search algorithms and the results obtained are presented. It is noticed that 

computational results show that the Concentric tabu search gives promising results. 

Moreover, integration between CTS and GA is adequate and effective compared to 

implementation of the genetic algorithm alone. 

The remaining part of this research is organized as follows: in Chapter 2, general 

gives a description of Tabu Search, Concentric Tabu Search, and Genetic Algorithm. 

Traveling Salesman Problem will be detailed in Chapter 3. Furthermore, the 

Concentric Tabu Search (Ring Moves), Concentric Tabu Search (All Moves), and 

Genetic algorithm with Concentric Tabu Search will be outlined in Chapter 4. While, 

obtained experimental results will be discussed in Chapter 5. Finally, the research 

will end with a conclusion and recommendations for the future works in Chapter 6. 
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Chapter 2 

LOCAL SEARCH ALGORITHMS AND CONCENTRIC 

TABU SEARCH 

Local Search algorithms are among accepted technique of approximate algorithms 

for solving combinatorial problems. The search proceed from a solution to its 

neighbors by implementing small move to the solution in order to discover better 

solutions in the search space. In this work the CTS is used as a local search 

procedure. Furthermore, a combination of local search algorithm represented by 

Concentric Tabu Search Algorithm and an evolutionary algorithm that is Genetic 

Algorithm are presented. It’s noticed that without using local search algorithms in 

optimization problems, there is a less possible for the other algorithms to find the 

optimal solution. 

2.1 Tabu Search 

The Tabu Search (TS) was proposed by Fred Glover [2] in 1988. It was introduced as 

one of the most efficacious local procedures for solving combinatorial optimization 

in a number of areas such as traveling salesman problem (TSP). It is usually obtained 

by altering one solution to get the next (better solution) according to some 

neighborhood structure. Likewise, TS has a faster execution speed than other local 

search procedures because it does not revisit already seen solutions, considering 

them tabu. This is possible because each move is recorded to avoid revisiting already 

seen solutions. 
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No 
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Initial Solution 

Termination 

Criteria Satisfied? 

Evaluate solutions 

Generate a set of neighbor solutions 

Select the best admissible solution 

End 

Update tabu list 

Final Solution 

Tabu search procedure begins from a starting solution, and at every step to hopefully 

enhance the objective criterion value such a move to a neighboring solution is 

chosen. This is convenient to a local improvement procedure except for the fact that 

a move to a solution worse than the current solution may be acquires [8]. Figure 1 

shows the flowchart of the tabu search. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

             Figure 1: Tabu Search FlowChart 
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2.1.1 Tabu Search Parameters 

In the following parts, we will describe in details the elements of the Tabu Search 

algorithm: 

2.1.1.1 Short Term Memory 

Record a set of solutions latterly investigated to be discouraged in order to prevent 

revisiting an already seen solution. If hidden solutions show up on the tabu list, it 

cannot be returned until it reaches a termination point. It is used to prevent a search 

from becoming trapped in local minima.  

2.1.1.2 Long Term Memory 

This memory keeps characteristics of better solutions which will be employed in: 

 Intensification: attaching preference to certain characteristics of a group of more 

promising solutions. 

 Diversification: discouraging the characteristics of choices solutions so as to 

diversify the search to other regions of search space. 

2.1.1.3 Move 

Tabu search moves from one solution to another, been an improvement heuristic in 

search of a more promising solution. The technique of transitioning from one 

solution to another is predefined by a set of rules which is known as a move. The 

neighborhood of the current solution is the series of whole solutions that can be 

achieved from the solution using a pre-specified move. 

2.1.1.4 Tabu List (TL) 

To prevent revisiting already seen solutions, TS employs a tabu list in which tabu 

moves or characteristics are listed. Moreover, the word tabu is coined from this list 

of prohibited moves. Tabu lists with short length may not stop cycling outcomes in 
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information loss while on other hand, tabu lists with long length may overmuch 

expand neighborhood so that moves are fixed to some reach. In essence, if the tabu 

list is too short it leads to deteriorating the search results. In contrast, if the size of 

tabu list is too long this means it cannot effectively prevent cycling. 

Intensification of the search used to decrease the tabu list size whereas diversification 

tries to increase the size of the tabu list and penalize the frequent move. 

2.1.1.5 Aspiration Criteria 

Tabu constraints are subject to an important omission. In a situation where a tabu 

move has a sufficiently better assessment where it can be evaluated to a solution 

better than any seen yet, then its tabu categorization may be overruled.  Aspiration 

criterion is the rule that allows such an exception to exist [2]. 

Aspiration criterion which is frequently used is reverting to a solution better than the 

last found solution so far.  

2.1.1.6 Stopping Criterion 

 Some prompt stopping conditions are: 

 A given number of fixed iterations. 

 A given amount of Processor time. 

 No feasible moves into the locality of the current found solution. 

 Evidence can be given than an objective functions output is feasible. 

2.2 Concentric Tabu Search (CTS) 

Concentric tabu search (CTS) was proposed by Drezner [1] in 2002. The underlining 

idea is to push the search to parts of the solution space which are far away from the 

center solution with the hope of finding a better local optimum. For example, the 

distance (Hamming) between two solutions is the number of different variables with 
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different values [2]. The TSP seeks the best permutation of assigning between cities. 

For the TSP, the hamming distance use to find the number of cities that are assigned 

to different sites between best found solution and its neighbor. Furthermore, fitness 

value of tour that is assigned to cities (or the total length of the tour). 

The fundamental principle of the Concentric tabu search includes: A starting solution 

called the center solution of the search space. The neighborhood of every individual 

solution is defined in similar way as in standard tabu search [2]. In the specific case 

of the TSP, the neighborhood consists of all possible exchanges among cities. The 

search is performed in rings (circles) around the starting solution. If a solution which 

is better than the best found solution is detected, it replaces the starting solution and 

the search continues with that solution. Otherwise, the search makes a start by 

calculating solutions which are farther away from the starting solution. For any 

problem there is a fixed number of iteration, and once it is reached, the algorithm 

terminates [1]. 

2.2.1 Moves in Concentric Tabu Search (CTS) 

Two different types of CTS are proposed, these are: ring moves and all moves.  

2.2.1.1 Ring Moves (RM) 

The search is executed in rings (circles) around the starting solution, proceeding from 

smaller ring (circle) to a larger one, and this continues, until a pre-specified radius is 

reached. Randomly solution is selected which is a starting (center) solution. We keep 

three solutions, the first one contains the center solution and the other will fill under 

the specific condition, their aim is to forcing the search away from the center 

solution. Details are discussed in chapter 4. 
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2.2.1.2 All Moves (AM) 

In this approach, the concept of RM is replaced by another technique. A list of the 

best seen solutions is preserved (a list contains only the starting solution at the 

beginning). A set of members, whose surrounding solutions were not tested, is 

flagged. The iteration stops whenever there is no member in the list is flagged. See 

more details in chapter 4. 

2.3 Genetic Algorithm (GA) 

Genetic Algorithm (GA) was first proposed by the American Scientist John Holland 

in 1975 [5]. In artificial intelligence, GA is a search heuristic that imitates the 

survival of the fittest. It is one of the evolutionary search approaches which can give 

optimal or near to optimal solutions to combinatorial optimization.  

The underlining principle of GA is to produce a random initial population of 

solutions to the problem, called Chromosomes, and then enhances this population of 

solutions after some iterations known as Generations. Throughout every generation, 

the quality of each chromosome is calculated, by applying some measurements of 

quality (fitness). To produce the next generation of chromosomes, offspring are 

inspired by either modifying a chromosome using a mutation operation or mixing of 

two chromosomes from present generation that is using a cross over operation or 

doing both operations. A new set of solutions (generation) is created by selection 

operation, based on the quality values of some of the offspring and parents, and 

refusing other individuals so as to maintain a fixed size of the population. Fitter 

individuals have better chances of been selected for reproduction. After so many 

iterations, the GA converges to the fitter chromosome, that hopefully contains the 
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optimum or near to optimum solution [6]. Figure 2 illustrates the flowchart of the 

Genetic Algorithm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Genetic Algorithm Flowchart 
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2.3.1 Genetic Algorithm Parameters 

In the following parts, we will describe in details the components of the Genetic 

algorithm: 

2.3.1.1 Representation 

Chromosome representation is the simile between the real world and the evolutionary 

algorithms nature. This is shown in the connection between genotype and phenotype, 

where the encoding of the individuals within the evolutionary algorithms is called 

genotype while the phenotype is the feature of an individual resulting from its 

interactions with the environment. In order to obtain the minimal tour for a 

predefined list of m cities using GAs, the path representation is more natural for TSP 

[9]. For instance, suppose {1,2,3,4,5} are labels of nodes in a five nodes instance, 

then a tour {4-3-2-1-5-4} may be represented as (4,3,2,1,5). 

2.3.1.2 Evaluation/Fitness Function 

Also known as the fitness function is a measure of a solution’s quality. The use of 

evaluation function is to evaluate if an individual solution is good, then what is the 

level of goodness? The length of tour is the quality of an individual solution in the 

TSP. The fitness quality is calculated during the creation of an individual as shown in 

equation 2.1. After each individual is created its quality is evaluated [10].  

Fitness chromosome    =      
1

∑ 𝑡𝑖𝑛
𝑖=1

                    Eq. 2.1 

 

Where, 

n = total numbers of cities. 

t = distance between two cities. 
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2.3.1.3 Population 

The generated set of individuals in a given generation of an optimization problem 

which contains a fixed number solution is known as the population. The initial 

population for TSP is formed by random permutation of the cities. 

2.3.1.4 Selection Operation 

This is the technique used to choose the chromosome whose fitness value is good or 

better in order for the fitter individuals be parents of the next generation [10]. 

Consequently, the high quality individuals get a better chance to be parents as 

compared to individuals with low quality.  

2.3.1.4.1 Tournament Selection Mechanism 

In the Tournament selection technique a set of chromosomes (k) are selected for 

which more qualitative individuals are selected as parent. The number of 

chromosomes in the tournament is equal or less than the size of the population [11]. 

Figure 3 shows the steps of the tournament selection. 

 

 

 

 

 

Figure 3: Steps of the Tournament Selection Mechanism 

Individuals having the best fitness functions out of the k tournament contestants have 

better chances of being selected. This type of selection gives definite chances for not 

already chosen individuals to be chosen. 

 

Step 1: Randomly picking a point within the population, 

Step 2: Choose as many individuals as outlined by the size of the tour =k, 

Step 3: Arrange the individuals according to fitness,  

Step 4: Select the fittest two to be parents. 



13 
 

2.3.1.5 Crossover 

New chromosomes are recombined so as to determine the parents for the next 

generation after the completion the evaluation process. The most effective step for 

this procedure is called crossover [11]. If there is no recombination, parents and 

offspring are same. If there is recombination, offspring bringing about better parts 

than that of parent chromosome. If the rate of crossover is exact, then offspring are 

all brought about by using crossover operation. On the other hand, where there is 

none, all new individuals are created from exact copies of individuals from the old 

generation [10]. Crossover operation, tries to generate new chromosomes in order to 

obtain better parts from old individuals and perhaps the new individuals will have 

better quality. Ordered crossover operation is applied in this work to a pair of 

chromosomes. 

2.3.1.5.1 Ordered Crossover 

Two crossover points are randomly selected in this operation on two randomly 

selected parents. The genes of the selected parents between the cut points are 

transferred to the offspring. The genes which are not filled in an offspring are 

obtained from the other parent starting from the second crossover point and 

transferred to the offspring in the order they emerge. 

As shown in Figure 4 below, in offspring C1, since genes C, D, and E are obtained 

from P1, we obtain genes B, G, F, and A from P2. Starting from the second crossover 

point, which are to say that for the sixth gene, we copy genes B and G as the sixth 

and seventh genes respectively. We then turn around and copy genes F and A as the 

first and second genes respectively. 
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                                   P1 

    

 

 

 

 

 

       

                                                                       P2 

  

                          C1 

 

                           C2 

 

                              C1 

 

                              C2 

         Figure 4: Ordered Crossover 

2.3.1.6 Mutation 

This operation allows new individuals to be generated by choosing individuals with 

better fitness value from the population. After crossover is performed, mutation 

operation is done. During this process, an individual in the current population is 

randomly taken, switched and mutated [15].  

If there is no mutation, it means there is no change in offspring taking place after 

crossover. If mutation operation is performed, a part of the individual is changed. If 

mutation rate is exact, whole individual is mutated; while if there is none, nothing is 

mutated [10]. Mutation operation is applied to avoid plunging genetic algorithm into 

local minima, but it should occur rarely, because then GA will in effect shift to 

random search. Increasing mutation rate leads to gains in average option. It also leads 

to considerable improvement in result with very little cost. Nevertheless, it should 

happen less repeatedly. In this work, reverse Order mutation is applied to the pair of 

chromosomes. 

A B C D E F G 

       

C B G E F D A 

       

? ? C D E ? ? 

       

? ? G E F ? ? 

       

F A C D E B G 

C D G E F A B 
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2.3.1.6.1 Reverse Sequence Mutation 

In this approach, we select a series of X restricted by two randomly chosen points y 

and z, where y<z. Like crossover operation the gene order in the sequence will be 

reversed. Figure 5 below shows an example implementation of this operation [15].  

                                       

 

                                      P 

    

 

 

 

 

 

       

                                                                             C 

 Figure 5: Reverse Sequence Mutation 

2.3.1.7 Termination Condition for Genetic Algorithm 

Due to the fact that GA is a non-deterministic search approach, this makes it hard to 

properly determine the convergence of the algorithm. Moreover, the fitness of a 

population may stay fixed for a number of iterations since a better individual is not 

created. This implies the application of typical termination criteria becomes 

questionable. A prevalent used technique is to end the GA after a fixed number of 

iterations and then compare the fitness of the fittest individuals of the population 

with the problem determination. If no adequate individuals are found, the Algorithm 

might perhaps be restarted or a different search technique is used. 

 

 

 

 

 

1 2 3 4 5 6 

      

1 5 4 3 2 6 
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Chapter 3 

TRAVELING SALESMAN PROBLEM 

3.1 Travelling Salesman Problem (TSP) 

The TSP is the most famous combinatorial optimization. It is about finding the path 

of a salesperson who gets started from a location (initial location), visits a specific 

number of other locations and reverts back to the same starting point in such a 

fashion that the overall distance covered is minimum and every location is visited 

precisely once [13]. 

The idea of TSP originated from the Swiss mathematician Euler. TSP originated 

from his work ‘Studied the Knight’s tour Problem’ which he conducted in 1766. A 

significant amount of work was conducted in the 18
th

 century after Euler, by 

Hamilton W. from Ireland and Penyngton T. from Britain respectively. Their study 

was about finding paths and circuits on the graph of the dodecahedral, favoring many 

conditions. A vast majority of the works on TSP were done from 1800 to 1900. 

Consequently, Lawler, Shmoys, Lenstr, Kan and Rinnoy didn`t say anything 

regarding TSP. Then, M. Flood presented results relevant with TSP in the year 1940. 

After that Fulkerson, Dantzig, and Johnson found an approach for working out TSP 

in the year 1950. They showed the performance of the technique by working out a 

forty-nine city problem. Nonetheless, it seems noticeable, in the middle of 1960’s 

that the TSP was not able to be worked out in polynomial time by using LP. 

Consequentially, this category of problems became common as NP-hard (Non-
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Polynomial Hard) problems. Considerable advancement took place in the late 1970s 

and early 1980s, when Padberg, Grötschen, Rinaldi and others achieved to work out 

a TSP example with up to two thousand three hundred and ninety two (2392) cities, 

applying branch-and-bound cutting planes techniques. 

Later, TSP turns into an attractive combinatorial optimization problem and a lot of 

findings applied it as standard yardstick problem for heuristics. This problem is 

highly important for many experimental areas like operational research (OR) and 

computer science (CS). TSPLIB is the library of benchmark model examples for the 

traveling salesman problem which was published in 1991. After that, the library is 

used to compare available results on it with the outcomes of algorithms done by 

researchers. Accordingly, benchmark problems available in TSPLIB are used in this 

thesis. Results are compared as well. 

3.1.1 Definition 

The traveling salesman problem is defined as:  

TSP = (G, f, t): G = (V, E) an entire graph,  

Where, f is a function (V x V) → Z,   t ∈  Z,  

 The graph G is outlines a traveling salesman’s travel cost that doesn’t override t. 

Figure 6 shows a TSP instance for initial cities.  

 

 

 

 

 

Figure 6: Sample for locations of the given placement of the cities in the map 
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The distance between cities is calculated by using the Euclidean Distance as follows: 

x = (x1, x2, x3… xn), 

y = (y1, y2, y3… yn). 

Dxy = √(𝑥 − 𝑦)2                 (Eq. 3.1) 

{ Dxy is the distance between coordinate x and coordinate y, 

   x are locations of the city on coordinate x, 

   y are location of the city on coordinate y, 

  Table 1: Distance Matrix for ten cities 

0 107 241 190 124 80 316 76 152 157 

107 0 148 137 88 127 336 183 134 95 

241 148 0 374 171 259 509 317 217 232 

190 137 374 0 202 234 222 192 248 42 

124 88 171 202 0 61 392 202 46 160 

80 127 259 234 61 0 386 141 72 167 

316 336 509 222 392 386 0 233 438 254 

76 183 317 192 202 141 233 0 213 188 

152 134 217 248 46 72 438 213 0 206 

157 95 232 42 160 167 254 188 206 0 

The above distance matrix is used to calculate the length of a tour. The mentioned 

matrix sample is for TSP instance with 10 cities. Figure 7 shows a possible tour in a 

TSP with ten cities. 

 

 

 

 

 

Figure 7: Sample tour with edge distances for Ten Cities 
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To calculate the tour length, assume P = {p1, p2, p3… pn} as a feasible tour for n 

cities: 

L = (∑ 𝐷𝑐𝑖 𝑐𝑖+1 𝑛−1
𝑖=1 ) + 𝐷𝑐𝑖+1 𝑐1          (Eq. 3.2) 

 

The problem mystery in finding a lower or minimal path transcend through all points 

once. E.g. the Path1 {1, 6, 2, 7, 10, 9, 4, 5, 3, 8, 1} transcending all the points by 

calculating the distance between cities and sum of those based on the distance 

matrix. Path1 cost is 2017.  

TSP is categorized into two classes Symmetric TSP and Asymmetric TSP according 

to the types of graph and arrangement of distances. 

 Symmetric Traveling Salesman Problem: in STSP, the distance 

between two points is always the same in both directions and the cost of moving 

from point a to point b is equal to the cost of moving from point b to point a. 

Figure 8 and figure 9 below show an instance and the distance matrix regarding 

symmetric. 

 

 

 

 

  Figure 8: Example of symmetric TSP              Figure 9: Distance matrix for figure 8 

 

 

30 

1 

4 

2 

3 

12 

20 

34 42 
35 

    1 

   2 

    3 

    4 

0 

12 

34 

30 

12 

0 

35 

42 

34 

35 

0 

20 

30 

42 

20 

0 

1 2 3 4 



20 
 

 Asymmetric Traveling Salesman Problem: in ASTSP, the distance 

between two points is not the same or paths may not found in both directions. 

That is the cost of moving from point a to point b is not equal to the cost of 

moving from point b to point a. Figure 10 and figure 11 below show an instance 

and the distance matrix regarding asymmetric. 

 

 

 

 

 

Figure 10: Example of Asymmetric TSP        Figure 11: Distance matrix for figure 10 

The Symmetric traveling salesman problem samples from TSPLIB are taken and 

applied in this work. There are different techniques used for solving the traveling 

salesman problem. Practically, these techniques are divided into two groups: exact 

and approximation algorithms. 

 Exact algorithms: are approaches which use mathematical techniques such 

as Lagrangian Relaxation, Branch and Bound, Integer Linear Programming etc. 

 Approximation algorithms: are approaches which use heuristics and 

insistent progresses in the problem solving process. These are classified into two 

Constructive heuristics and Improvement heuristics such as Greedy, Heuristics, 

Nearest Neighborhood, Tabu Search, Evolutionary Algorithms, Ant Colony 

optimization, etc.  
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3.2 Related Works for TSP 

Since TSP is a field of combinatorial optimization and an NP-complete problem, 

there is no precise approach to solve this problem and obtain good results. A lot of 

algorithms are used to solve travelling salesman problem. Some of them have 

optimal solutions, while another’s have the near to optimal solutions. There are 

different heuristics methods which are used to explore the solution space for TSP. 

 A. Arananayakgi [14] the work proposed a solution to the travelling problem using 

genetic algorithm GA operators to minimize the overall distance and time. It is done 

by generating the fittest criteria using selection operation, crossover operation and 

mutation operation. The purpose of the proposed approach is to create fitter solutions 

in acceptable time. Consequently a new crossover approach, the Sequential 

Constructive Crossover method is used.  

Krishna, Ravindra , Gajendra [17] defined a rewarding method for working out the 

traveling problem. They used an enhanced heuristic algorithm Ant Colony 

Optimization. This work studies the precocious convergence and stagnation 

prevention by using initial ants’ distribution strategy and effective heuristic 

parameter updating according toentropy.  

 Thamilselvan, Balasubramanie [18] deals with TSP. both Genetic Algorithms and 

Tabu Search were tested separately and results were compared. After that, the two 

algorithms were combined together and the resulting performance was compared. 
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Fiechter [19] for solving the TSP a parallel tabu search was described. The memory 

concept was used as a work as well as a new approach of move. The outcome argues 

the efficiency of the algorithm in obtaining a near optimal solution to huge problems. 

For working out traveling salesman problem, the researchers applied different 

approaches and various local search algorithms. Furthermore, local search techniques 

usually adapted to enhance the outcomes in most works. This has been done by 

reason of the response of local search algorithm in combinatorial optimization 

problems. 
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Chapter 4 

CONCENTRIC TABU SEARCH FOR SOLVING 

TRAVELING SALESMAN PROBLEM 

4.2 Concentric Tabu Search Algorithms for TSP 

This chapter gives an insight to the proposed work for solving the travelling 

salesman problem by Concentric Tabu Search algorithm. Furthermore, a combination 

of local search algorithm represented by Concentric Tabu Search Algorithm and an 

evolutionary algorithm that is Genetic Algorithm are presented. 

4.1.1 Finding initial/center solution 

To implement a Meta heuristic Concentric Tabu Search algorithm basically we need 

to have an initial or center solution and it can be generated randomly. Throughout 

using Concentric Tabu Search algorithm for traveling salesman problem, selecting 

the initial feasible solution is one of the significant steps for obtaining an acceptable 

solution. CTS algorithm depends on the selecting of the initial solution. The 

Concentric Tabu Search moves in the direction of the selected original solution 

considering the neighborhood of the center solution to improve the search.  

4.1.2 Calculation of the fitness value 

Euclidean Distance formulation was described in Eq. 3.1 and Eq. 3.2. The distances 

between cities are calculated to obtain the tour length that salesman travelled. 

Distance matrix created by providing node coordination and by applying Euclidean 

formulation and the calculation of the total distance is extremely easy. 
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4.1 Algorithms Description 

This section illustrates the two various types of CTS that explained in the previous 

sections. Details below discuss how the algorithms are implemented to the travelling 

salesman problem. The figure 12 illustrates the principle of Concentric tabu search 

while the figure 13 show the flowchart of the Ring Move algorithm for TSP. 

 

 

 

 

Figure 12: Concentric Tabu Search Principle 

The figure above shows that the search is performed in rings around the starting 

solution. If a solution which is better than the best found solution is detected, it 

replaces the starting solution and the search continues with that solution. Otherwise, 

the search makes a start by calculating solutions which are farther away from the 

starting solution. For any problem there is a fixed number of iteration, and it is 

reached, the algorithm terminates. 
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Figure 13: Ring Move Algorithm Flowchart 
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 As it can be seen in Figure 13 there is a center solution randomly selected as a 

starting solution and it is the best found solution following that we have while loop 

which iterates through the Concentric tabu search, furthermore, there are three 

solutions which are Sol0, Sol1, and Sol2. Sot0 set to the center solution and the rest are 

empty.  

The pair exchanges (neighborhood) are evaluated by swapping cities. For example 

TSP instances for 5 cities (1, 2, 3, 4, 5). S0 (center solution) may be {2, 4, 5, 3, 1} 

and has a fitness value (total sum of the tour). Figure 14 shows the exchanges pairs 

of the center solution. 

 

                                   

Figure 14: Exchange Pairs Example between Two Solutions 

If the fitness of an exchanged solution (neighborhood) is less than the fitness of the 

center (S0), the exchanged solution will be the best solution and the remaining 

neighbors are comparing to the best solution. If the hamming distance of an 

exchanged solution is P, it is ignored and the rest of exchanges are evaluated. On the 

other hand, if the hamming distance is P+1 or P+2, Sol1 or Sol2 are updated when 

needed. It is noteworthy that the original Sol0 is still used for the rest of the pair 

exchanges. Whenever the new best found solution found by examining all the 

neighbors of Sol0, the center solution is set to the best found solution and the loop 

will continue. Once all solutions in Sol0 are exhausted, move Sol1 to Sol0, Sol2 to 

Sol1, and clear Sol2. Contrarily increase the counter, whenever stopping condition not 

met, return to the loop. The figure 15 illustrates the flowchart of the All Move 

algorithm for TSP. 
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Figure 15: All Move Algorithm Flowchart 
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Figure 13 describes the steps of the All Move algorithm. As we can see there are no 

lists like in the Ring Move algorithm. A different technique is applied. Here, the list 

of best encountered solutions is only containing the center solution at the beginning 

and it is flagged. In the loop a flagged solution is checked, if it does not exist, then 

the algorithm will terminate with the current solution. Otherwise the flagged solution 

will be taken for exchanging pair wise and its flag is changed to zero. Like the Ring 

Move, a comparison between the fitness of the center solution and fitness of 

exchanged pairs is done, whenever the fitness of the neighborhood is better, the best 

one is updated and the remaining are evaluated in the same manner. Assuming that 

the exchanged one is fitter than the best encountered solution for the appropriate P, it 

replaces it and flagged. Where a new best found solution is found by examining all 

the neighbors of the selected solution, the center solution is set to the new best found 

solution and the loop is continued until stopping condition met. AM algorithm allows 

moves to a ring with smaller P; if they improve the best encountered value of the 

objective function for that P. Figure 16 shows flowchart of Genetic Concentric Tabu 

Search Algorithm. 
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Figure 16: Genetic Concentric Tabu Search Algorithm Flowchart 

In this algorithm, tournament selection is used as an operator for the selection. 

Tournament selection has been described in Chapter 2. Furthermore, ordered 

crossover has been used as discussed in section 2.4.1.5.1. Finally, reverse ordered 

mutation has been applied as a mutation operator and it’s explained in Chapter 2. 

Pending the procedure, randomly generate the initial population. Consequently, 

Yes 

No 

Yes 

Begin 

Initialization 

Termination 

Criteria Reached? 

Selection 

Evaluation 

CrossOver 

Mutation 

Concentric Tabu applied to 

best individual found by 

GA 

End 



30 
 

every individual in the population is evaluated. Whenever the termination rule is not 

met, individuals are selected for crossover and mutation operation. Fitter individual 

in the population is passed to local search (CTS) and new population is created. 

This is the Genetic Concentric tabu search algorithm heuristic which is an 

incorporation of Genetic algorithm GA and Concentric Tabu Search CTS techniques 

which are explained in Chapter 2. Moreover, local search algorithm, CTS is applied 

to the best individual found by Genetic algorithm to preserve a balance between both 

exploitation and exploration during the search process.  GA improve whole the 

population and the purpose of CTS is to improve on best solution. In combinatorial 

optimization, the requirement for local search techniques is significant in order to get 

better results, considering there is no guarantee for optimal solution without a local 

search algorithm. As a result, the local search algorithm by generating limited moves 

over the given solutions scheme obtain better solution than the given solution. 

Accordingly it’s noticed that without using local search algorithms in optimization 

problems, it is less possible for the EA to get the optimal solution.  
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Chapter 5 

EXPERIMENTAL RESULTS 

5.1 TSP Problems 

Computational results for the TSP are explained in this chapter. Experiments are 

obtained by using fifteen symmetric TSP benchmark problems which are as follows: 

kroE100, kroD100, kroC100, kroB100, kroA100, kroA150, kroA200, KroB150, 

kroB200, Berlin52, Bays29, Eil101, Lin105, Ch150, and Rat195. These are 

accessible from TSPLIB. Furthermore, each problem is tested ten times to know the 

capability of algorithms. 

 The structure and contents of the above symmetric are not different. The name of the 

problem is given in the first line of the problem description file, like Rat195. The 

type of the problem is given in the second line which is TSP. the next line give a 

comment of the problem followed by the information regarding the dimension line. 

For the problem which was mentioned above the dimension is 195. Later edge 

weight type is set, that is for example EUC_2D. Finally, the coordinates of cities are 

presented followed by EOF. 

5.2 Results for TSP 

Computational results are evaluated according to the components of algorithms 

which are discussed in the following parts. 
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5.2.1 Result for Tabu Search (TS) 

Table 2 below describes the results obtained for 15 problems available in the 

TSPLIB. Each problem was solved ten times. Results for all problems have been 

done by local search algorithm using tabu search.  

    Table 2: Result of the Tabu Search Algorithm 

# Problem Optimal Best Worst STDEV Error Average Time 

Avg. 
1 KroA100 21282 29381 36567 2202 0.3805 31222 16.78 

2 kroA150 26524 40887 46841 1672 0.5415 42860 20.11 

3 kroA200 29368 51884 59385 2636 1.4379 55661 25.03 

4 kroB100 22141 30095 33181 1687 0.3078 30445 16.20 

5 kroB150 26130 39668 46965 2414.2

62 

0.5181

02 

43885 18.81

6 
6 kroB200 29437 51390 57162 2132 1.4147 54448 24.72 

7 kroC100 20749 29333 32511 1021 0.4137 31181 17.70 

8 kroD100 21294 29054 32114 964 0.3644 30752 17.65 

9 kroE100 22068 30381 34419 1266 0.3766 31935 17.88 

10 Bays29 2020 2043 2088 11 0.0113 2068 9.24 

11 Berlin52 7542 8175 9513 455 0.0839 8854 8.728 

12 Eil101 629 764 831 19 0.2146 791 10.66 

13 Lin105 14379 20302 26371 1838 0.4119 22627 10.15 

14 Ch150 6528 9435 10069 182 0.4453 9924 12.36 

15 Rat195 2323 3686 4257 185 0.5867 3958 14.76 

Table 2 illustrates the outcomes of the tabu search technique. In the second column 

of the table above, name of the problem is given, followed by its optimal solution. 

The third column gives the best solution obtained by applying tabu search algorithm. 

Next column is the worst solution obtained during ten times run of the algorithm. 

Fifth column shows the standard deviation which is a measure of how wide values 

are dispersed from the average value while next column is a percentage of excess of 

the best solution and average solution over the optimal solution of ten runs. The 

column coming after that is the average solution over the best sol., while the last 

column is average of time of execution (in second) by the algorithm.   
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5.2.2 Result for Genetic Algorithm (GA) 

Table 3 below describes the results obtained for 15 problems available in the 

TSPLIB. The experiments were executed ten times for each problem. Initial 

population was generating randomly. Population size is 200, crossover probability is 

1.0 (i.e., 100%), mutation probability is 0.01 (i.e., 1%), and 3000 generations was set 

as the termination criterion.  

    Table 3: Result of the Genetic Algorithm 

# Problem Optimal Best Worst STDEV Error Average Time 

Avg. 
1 KroA100 21282 22562 25045 925 0.0601 23722 161.3 

2 kroA150 26524 29232 31833 834 0.1020 30328 829.7 

3 kroA200 29368 41052 47364 1872 0.3978 42721 2536 

4 kroB100 22141 23698 25193 513 0.0703 24242 185.8 

5 kroB150 26130 29770 31827 702 0.1393 30981 744.7 

6 kroB200 29437 39704 45110 1644 0.3487 41543 2481 

7 kroC100 20749 22706 24661 683 0.0943 23667 183.6 

8 kroD100 21294 23164 24599 577 0.0772 23516 187 

9 kroE100 22068 23532 26142 738 0.0663 24442 191.2 

10 Bays29 2020 2020 2182 46 0 2096 2.529 

11 Berlin52 7542 7544 8534 331 0.0002 8116 22.8 

12 Eil101 629 685 743 18 0.0893 708 184.2 

13 Lin105 14379 14632 16591 512 0.0195 15672 221.7 

14 Ch150 6528 7313 7911 193 0.1251 7654 191 

15 Rat195 2323 3134 3402 91 0.3418 3238 2305 

Table 3 gives the results of fifteen symmetric instances available on TSPLIB of size 

from 29 to 200. The goodness of the solution is precise to the total of runs. Only one 

problem, Bays29 of size 29 could be solved exactly at least once in ten runs within 

reasonable time using genetic algorithm. In table 3, the column ‘Problem’ refers to 

the problem name in TSP library; the column “Optimal” indicates the optimal 

solution available in TSP library; the columns ‘Best’, ‘Worst’, ‘STDEVP’ and 

‘Average’ present the best one, worst one, standard deviation and average of tour 

lengths of ten runs, respectively; the column ‘Error’ shows the percentage of excess; 

the column ‘Time Avg.’ indicates the average running time in seconds. 
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5.2.3 Result for Concentric Tabu Search Algorithm (CTS) 

In order to assess the efficacy of the proposed algorithm, fifteen traveling problems 

instances are deliberated. Evaluating the advantages of the algorithm and its 

performance we compared to the tabu search algorithm regarding to the tested 

problems. Initial solution is generated randomly; iteration size is 4000 for all 

experiments. The experiments illustrate that the proposed algorithm is more efficient 

in its ability of finding good solutions this is evident in its results. Table 4 and Table 

5 below; summarize the results obtained for 15 problems available in the TSPLIB. 

The experiments were performed ten times for each problem. As can be seen from 

the outcomes presented below the propose algorithm quality is better compared to 

tabu search. Furthermore, the Ring Move algorithm is relatively better than the All 

Move algorithm as it shown in results.  

    Table 4: Result of the Concentric Tabu Search (Ring Move) Algorithm 

# Problem Optimal Best Worst STDEV Error Average Time 

Avg. 
1 KroA100 21282 27585 31717 1239 0.296 30191 14.9 

2 kroA150 26524 38270 44442 1486 0.442 41304 28.9 

3 kroA200 29368 46265 53987 2127 0.575 50483 47.9 

4 kroB100 22141 28106 33102 1246 0.269 31001 24.8 

5 kroB150 26130 37853 45283 2394 0.448 41373 28.3 

6 kroB200 29437 46679 54573 2161 0.585 51283 84.8 

7 kroC100 20749 27250 32711 1521 0.313 29728 14.1 

8 kroD100 21294 27087 32197 1353 0.272 30495 21.8 

9 kroE100 22068 28991 31219 706 0.313 30065 24.9 

10 Bays29 2020 2152 2387 80 0.065 2304 2.61 

11 Berlin52 7542 8034 9440 420 0.065 8860 5.62 

12 Eil101 629 715 808 29 0.136 752 13.1 

13 Lin105 14379 20170 24536 1128 0.402 21840 14.2 

14 Ch150 6528 9397 10054 203 0.439 9801 27.6 

15 Rat195 2323 3504 3924 142 0.508 3697 44.3 

Table 4 prove that the suggested algorithm is more efficacious compared to the tabu 

search algorithm. As we can see the results of the proposed algorithm are better. 
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    Table 5: Result of the Concentric Tabu Search (All Move) Algorithm 

# Problem Optimal Best Worst STDEV Error Average Time 

Avg. 
1 KroA100 21282 28491 31963 1150 0.3387 30409 15.38 

2 kroA150 26524 38604 45761 1978 0.4554 41922 29.61 

3 kroA200 29368 50915 57566 2277 0.7336 54754 25.33 

4 kroB100 22141 27833 32938 1560 0.2570 30421 15.29 

5 kroB150 26130 38865 44606 1918 0.4873 42010 29.73 

6 kroB200 29437 49200 53712 1298 0.6713 51278 24.72 

7 kroC100 20749 27678 31880 1546 0.3339 29916 15.09 

8 kroD100 21294 28802 30328 569 0.3525 29615 15.47 

9 kroE100 22068 27673 32122 1216 0.2539 30503 15.36 

10 Bays29 2020 2036 2102 21 0.0079 2072 1.667 

11 Berlin52 7542 8026 9195 331 0.0641 8547 3.302 

12 Eil101 629 754 828 22 0.1987 784 9.042 

13 Lin105 14379 20402 26282 1671 0.4188 21570 8.615 

14 Ch150 6528 9007 10045 296 0.3797 9742 16.15 

15 Rat195 2323 3507 3952 149 0.5096 3707 24.18 

Table 5 gives the results of fifteen symmetric problems of size from 29 to 200. All 

problems have better results compared to the tabu search algorithm. Only the results 

of problems: kroB100 of size 100, kroE100 of size 100, Berlin52 of size 52, Bays29 

of size 29, and Ch150 of size 150 could be solved better than the previous version of 

Concentric tabu search (Ring Move) algorithm as well as tabu search algorithm. 

Considering the result, outcome of the experiment is sensitive to the total of cities in 

the problem and total of iterations. Figure 15 illustrates how problems by using 

proposed algorithm and tabu search are converging to the optimal solution for the 

tested instances.  
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Figure 17: Results of TS, CTS (RM), and CTS (AM) for TSP 

5.2.4 Result for Genetic Concentric Tabu Search Algorithm (GCTS)  

In order to assess the proposed algorithm (GCTS), again the previous fifteen 

examples are considered. Control parameters are same as the parameters applied in 

traditional genetic algorithm and Concentric tabu algorithm. Local sarch algorithm 

applied only each fifty iteration to evolutionary process to keep the efficiency use of 

the hybrid algorithm and to reduce the computation time spent by local search 

algorithm. Ten runs were carried out to check the results obtained by GCTS. The 

result of the proposed algorithm was measured against the benchmark optimal 

solution, it can be noticed below in table 6 and in figure 16 that GCTS obtained 

better solution compaired to the other algorithms. Reported results show the effect of  

Concentric tabu local search algorithm with the genetic as a Metaheuristic algorithm. 

By combining the two, reaching the optimal or near-optimal solution became higher 

in the instances of the TSP problems considered. 
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   Table 6: Result of the Genetic Concentric Tabu Search Algorithm 

# Problem Optimal GCTS (RM) Time 

Avg. 

GCTS(AM) Time 

Avg. 
1 KroA100 21282 21727 85.83 22096 72.95 

2 kroA150 26524 28100 118.2 28089 101.6

3 
3 kroA200 29368 31217 296.1 31371 278.9

2 
4 kroB100 22141 22236 72.15 22179 52.15 

5 kroB150 26130 27418 147.6 27496 137.6

3 
6 kroB200 29437 31463 276 31679 177.7

3 
7 kroC100 20749 21159 42.86 21203 73.27 

8 kroD100 21294 21934 72.83 22349 62.11 

9 kroE100 22068 22913 32.8 22327 27.92 

10 Bays29 2020 2020 11.3 2020 10.24 

11 Berlin52 7542 7542 26.6 7542 32.24 

12 Eil101 629 632 51.58 635 35.72 

13 Lin105 14379 14828 27.23 14818 26.97 

14 Ch150 6528 6879 67.76 6893 33.90 

15 Rat195 2323 2568 118.7 2564 97.38 

Table 6 gives the results obtained by executing the GCTS algorithm on fifteen 

symmetric instances with cities between 29 to 200. It’s worth mentioning that all 

problems have optimal or nearest to optimal solution. Instances: Bays29 and 

Berlin52 could be solved completely. Third column show the result of applying the 

first version (Ring Move) of Concentric tabu while the fifth column illustrate the 

results of applying the second version (All Move) of Concentric tabu search 

algorithm. The column “Time Avg.” refers to the average running time in minutes. 

Figure 16 shows how the problems by using hybrid algorithm are converging to the 

optimal solution. 
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Figure 18: Results of the GCTS (RM) and GCTS (AM) for TSP 
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Chapter 6 

CONCLUSION 

In this research, Concentric Tabu Search Algorithm (CTS) has been proposed for 

work out the TSP as a cornerstone for heuristics designed for combinatorial 

optimization. Similarly, the CTS algorithm was compared to the traditional tabu 

search algorithm wherein the performance of CTS indicates its superiority over the 

traditional tabu search techniques. To enhance performance, CTS was combined with 

genetic algorithm in order to produce higher quality solutions. Consequentially, it 

can deduced that local search techniques cooperate with global search techniques to 

enhance the search space better in order to find more efficient solutions, considering 

that number of iterations have an effective role in finding optimal solution. 

Finally, future work should try to enhance the efficiency of the proposed algorithm in 

minimizing time, especially for GCTS. In addition to this, further tests of the 

algorithm on more convoluted problems are needed to give a more accurate 

estimation of characteristic of the proposed algorithm. 
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