
Cooperative Multi-agent Systems for Single and

Multi-objective Optimization

Nasser Lotfi

Submitted to the

Institute of Graduate Studies and Research

in partial fulfillment of the requirements for the degree of

Doctor of philosophy

in

Computer Engineering

Eastern Mediterranean University

October 2015

Gazimağusa, North Cyprus

Approval of the Institute of Graduate Studies and Research

 Prof. Dr. Serhan Çiftçioğlu

 Acting Director

I certify that this thesis satisfies the requirements as a thesis for the degree of Doctor

of Philosophy in Computer Engineering.

 Prof. Dr. Işık Aybay

 Chair, Department of Computer Engineering

We certify that we have read this thesis and that in our opinion it is fully adequate in

scope and quality as a thesis for the degree of Doctor of Philosophy in Computer

Engineering.

 Asst. Prof. Dr. Adnan Acan

 Supervisor

Examining Committee

1. Prof. Dr. Tolga Çiloğlu

2. Prof. Dr. İbrahim Özkan

3. Asst. Prof. Dr. Adnan Acan

4. Asst. Prof. Dr. Mehmet Bodur

5. Asst. Prof. Dr. Ahmet Ünveren

i

ABSTRACT

Solving combinatorial and real-parameter optimization problems is an important

challenge in all engineering applications. Researchers have been extensively solving

these problems using evolutionary computations. In this thesis, three new multi-agent

architectures are designed and utilized in order to solve combinatorial and real-

parameter optimization problems.

First architecture introduces a novel learning-based multi-agent system (LBMAS) for

solving combinatorial optimization problems in which all agents cooperate by acting

on a common population and a two-stage archive containing promising fitness-based

and positional-based solutions found so far. Metaheuristics as agents perform their

own method individually and afterwards share their outcomes with others. In this

system, solutions are modified by all running metaheuristics and the system learns

gradually how promising metaheuristics are, in order to apply them based on their

effectiveness.

In the second architecture, a novel multi-agent and agent interaction mechanism for

the solution of single objective type real-parameter optimization problems is

proposed. The proposed multi-agent system includes several metaheuristics as

problem solving agents that act on a common population containing the frontiers of

search process and a common archive keeping the promising solutions extracted so

far. Each session of the proposed architecture includes two phases: a tournament

among all agents to determine the currently best performing agent and a search

ii

procedure conducted by the winner. The proposed multi-agent system is

experimentally evaluated using the well-known CEC2005 benchmark problems set.

The third architecture presents a creative multi-agent and dynamic multi-deme

architecture based on a novel collaboration mechanism for the solution of multi-

objective real-parameter optimization problems. The proposed architecture

comprises a number of multi-objective metaheuristic agents that act on subsets of a

population based in a cyclic assignment order. This multi-agent architecture works

iteratively in sessions including two consecutive phases: in the first phase, a

population of solutions is divided into subpopulations based on the dominance ranks

of its elements. In the second phase, each multi-objective metaheuristic is assigned to

work on a subpopulation based on a cyclic or round-robin order. The proposed multi-

agent system is experimentally evaluated using the well-known CEC2009 multi-

objective optimization benchmark problems set.

Analysis of the experimental results showed that the proposed architectures achieve

better performance compared to majority of their state-of-the-art competitors in

almost all problem instances.

Keywords: Multi-agent systems, Metaheuristics, Combinatorial Optimization,

Multiprocessor Scheduling, Agent Interactions, Multi-objective Optimization, Pareto

Optimality

iii

ÖZ

Bileşimsel ve gerçek parametreli en iyileme problemlerini çözmek tüm mühendislik

uygulamalarında önemli bir sorundur. Araştırmacılar uzun süredir evrimsel

algoritmaları kullanarak bu problemlerin çözümü üzerinde uğraşmaktadırlar. Bu

tezde, bileşimsel ve gerçek parametreli en iyileme problemlerini çözmek için üç yeni

çok ajanlı sistem mimarisi önerilip ve tasarlanmıştır.

İlk sistem mimarisi bileşimsel en iyileme problemlerini çözmek amacıyla

öğrenebilen çok ajanlı sistemi (LBMAS) tanıtır. Bu sistemde tüm ajanlar ortak nüfus

ve çift aşamalı arşiv üzerinden işbirliği yaparlar. Sistemdeki çift aşamalı arşiv

içerisinde uygunluk ve konumsal bakımından iyi olan çözümler bulunmaktadır.

Önerilen sistemde metaheuristic’ler ajan olarak kendi yöntemlerini yürütüp, daha

sonrasında bulunan sonuçları başkalarıyla paylaşıyorlar. Bu sistemde, bulunan

çözümler çalışan tüm Metaheuristic’ler tarafından değiştirilir ve sistem

metaheuristic’lerin ne kadar etkili olduklarını sınayarak öğreniyor.

İkinci mimaride, tek amaçlı gerçek parametreli en iyileme problemlerini çözmek için

çok ajanlı yeni bir sistem ve ajan etkileşim mekanizması öneriliyor. Önerilen çok

ajanlı sistemde çeşitli Metaheuristic’ler ortak nufüs ve ortak arşiv üzeride

çalışıyorlar. Ortak arşiv, şu ana kadar bulunan umut verici çözümleri içeriyor.

Önerilen mimarideki her adım iki aşamayı içerir: birinci aşamada tüm ajanlar

arasında en iyi performans gösteren ajanı bulmak için turnuva yapılıyor ve ikinci

aşamada ise arama prosedürü, kazanan ajan tarafından devam ettiriliyor. Önerilen

iv

çok ajanlı sistem tanınmış CEC2005 problem kümesindeki problemleri çözümü

üzerinden değerlendirilmiştir.

Üçüncü çok ajanlı mimaride çok amaçlı gerçek parametreli en iyileme problemlerini

çözmek için yeni bir işbirliği mekanizması sunulmuştur. Önerilen mimaride

metaheuristic ajanlar döngüsel bir atama sırasına göre alt nüfuslar üzerinde çalışırlar.

Bu çok ajanlı mimari ardışık iki faz üzerinden döngülenerek çalışır: ilk aşamada,

çözüm nüfus unsurları baskınlık değerine göre alt nufüslara ayrılırlar, ikinci aşamada

ise her çok amaçlı metaheuristic yuvarlak döngü usülüne göre bir alt nufüs üzerinde

çalışmak için görevlendirilir. Önerilen çok ajanlı sistem tanınmış CEC2009 deneysel

problemler kümesindeki çok amaçlı en iyileme problemleri kullanarak

değerlendirilmiştir.

Deney sonuçlarının analizi, önerilen mimarilerin hemen tüm deneysel problemler

üzerinde rakiplerinden daha iyi başarıma sahip olduklarını göstermiştir.

Anahtar Kelimeler: Çok ajanlı sistemler, Metaheuristic, Bileşimsel en iyileme, çok

işlemcili planlama, Ajan etkileşimleri, Çok amaçlı en iyileme, Pareto en iyilik

v

DEDICATION

DEDICATION

I would like to dedicate my thesis to my beloved parents, brothers and sisters who

were very supportive and always encouraged me.

vi

ACKNOWLEDGMENT

I would like to express my deepest gratitude to my supervisor Asst. Prof. Dr. Adnan

Acan for his excellent guidance, caring, patience and providing me with an excellent

atmosphere for doing this research.

I wish to thank my committee members Asst. Prof. Dr. Mehmet Bodur and Asst.

Prof. Dr. Ahmet Ünveren who were more than generous with their expertise and

precious time and always willing to help and give their best suggestions.

Finally, I would like to thank my parents and my brothers and sisters. They were

always supporting and encouraging me with their best wishes.

vii

TABLE OF CONTENTS

ABSTRACT .. i

ÖZ iii

DEDICATION ... v

ACKNOWLEDGMENTS .. vi

LIST OF TABLES .. xi

LIST OF FIGURES .. xiii

LIST OF ALGORITHMS .. xv

LIST OF SYMBOLS / ABBREVIATIONS ... xvi

1 INTRODUCTION .. 1

1.1 Introduction .. 1

1.2 Multi-agent systems ... 1

1.3 Metaheuristics .. 4

1.4 Combinatorial optimization problems .. 5

1.5 Single-objective optimization problems ... 5

1.6 Multi-objective optimization problems .. 6

2 STATE-OF-THE-ART IN MULTI-AGENT SYSTEMS... 8

2.1 Introduction .. 8

2.2 Multi-objective systems for single-objective optimization 12

2.2.1 An organizational view of metaheuristics ... 12

2.2.2 Cooperative metaheuristic system based on Data-mining and 13

viii

2.2.3 Coordinating metaheuristic agents with swarm intelligence 14

2.2.4 A multi-agent architecture for metaheuristics ... 15

2.2.5 Multi-agent cooperation for solving global optimization problems 16

2.2.6 Multi-Agent Evolutionary Model for Global Numerical Optimization 17

2.2.7 An Agent Based Evolutionary Approach for Nonlinear Optimization with

Equality Constraints.. 19

2.2.8 Agent Based Evolutionary Dynamic Optimization 20

2.2.9 An Agent-Based Parallel Ant Algorithm with an Adaptive Migration

Controller .. 21

2.3 Multi-agent systems for multi-objective optimization 22

2.3.1 Multi-agent Evolutionary Framework based on Trust for Multi-objective

Optimization ... 22

2.3.2 Co-Evolutionary Multi-Agent System with Sexual Selection Mechanism

for Multi-Objective Optimization ... 23

2.3.3 Crowding Factor in Evolutionary Multi-Agent System for Multiobjective

Optimization ... 24

2.3.4 Genetic algorithms using multi-objectives in a multi-agent system 24

2.3.5 Elitist Evolutionary Multi-Agent System .. 25

3 DESCRIPTION OF METAHEURISTICS USED WITHIN THE PROPOSED

MULTI-AGENT SYSTEMS ... 29

3.1 Single-objective metaheuristics used within the proposed multi-agent systems

 ... 29

ix

3.1.1 Genetic Algorithms (GA) .. 29

3.1.2 Artificial Bee Colony Optimization (ABC) ... 30

3.1.3 Particle Swarm Optimization (PSO) .. 32

3.1.4 Differential Evolution (DE) ... 33

3.1.5 Evolution Strategies (ES) .. 34

3.1.6 Simulated Annealing (SA) ... 35

3.1.7 Great Deluge Algorithm (GDA) .. 36

3.2 Multi-objective metaheuristics used within the proposed multi-agent systems.

 ... 37

3.2.1 Non-dominated Sorting Genetic Algorithm (NSGA II) 37

3.2.2 Multi-objective Genetic Algorithm (MOGA) ... 38

3.2.3 Multi-objective Differential Evolution (MODE)....................................... 39

3.2.4 Multi-objective Particle Swarm Optimization (MOPSO) 39

3.2.5 Archived Multi-objective Simulated Annealing (AMOSA)...................... 40

3.2.6 Strength Pareto Evolutionary Algorithm (SPEA2).................................... 40

4 LEARNING-BASED MULTI-AGENT SYSTEM FOR SOLVING

COMBINATORIAL OPTIMIZATION PROBLEMS .. 42

4.1 Introduction .. 42

4.2 The proposed multi-agent system for solving combinatorial optimization

problems ... 44

5 A TOURNAMENT-BASED COMPETITIVE-COOPERATIVE MULTI-AGENT

ARCHITECTURE FOR REAL PARAMETER OPTIMIZATION 47

x

5.1 Introduction .. 47

5.2 The proposed heterogeneous competitive-cooperative multiagent system for

real-valued optimization ... 50

6 A MULTI-AGENT, DYNAMIC RANK-DRIVEN MULTI-DEME

ARCHITECTURE FOR REAL-VALUED MULTI-OBJECTIVE OPTIMIZATION

 ... 56

6.1 Introduction .. 56

6.2 The Proposed Rank-Driven, Dynamic Multi-Deme and Multi-agent

Architecture .. 60

7 EXPERIMENTAL RESULTS AND EVALUATIONS ... 66

7.1 Evaluation of learning-based multi-agent system for solving combinatorial

optimization problems ... 66

7.2 Evaluation of Tournament-Based Competitive-Cooperative Multi-agent

Architecture for Real Parameter Optimization ... 72

7.3 Evaluation of Multi-Agent Architecture for Real-Valued Multi-Objective

Optimization .. 88

8 CONCLUSIONS AND FUTURE WORKS ... 98

REFERENCES .. 100

xi

LIST OF TABLES

Table 7.1. Algorithmic parameters for metaheuristics ... 68

Table 7.2. Completion time of task graph shown in Fig. 6 for all algorithms 68

Table 7.3. Completion time of applying MCP,CGL, BSGA and LBMAS on FFT and

IRR graphs ... 70

Table 7.4. Completion time of applying DLS, MH, SES and LBMAS on FFT and

IRR graphs ... 70

Table 7.5. Algorithmic parameters of the metaheuristic methods used within the

proposed system. .. 73

Table 7.6. Average fitness values of all algorithms used to solve CEC2005

benchmarks for D = 10 .. 75

Table 7.7. Average fitness values of all algorithms used to solve CEC2005

benchmarks for D = 30. ... 77

Table 7.8. Average fitness values of all algorithms used to solve CEC2005

benchmarks for D = 50 .. 77

Table 7.9. Wilcoxon signed test results for pairwise statistical analysis of CMH-MAS

against it competitors for problem all problem instances of size 10, 30 and 50 82

Table 7.10. Friedman aligned ranks for all (problem,algorithm) pairs for D=10. 84

Table 7.11. Friedman aligned ranks for all (problem,algorithm) pairs for D=30 85

TAble 7.12. Friedman aligned ranks for all (problem, algorithm) pairs for D=50 85

Table 7.13. Friedman Aligned Ranks statistics and the corresponding p-values over

all algorithms used to solve problem instances of sizes D=10, 30, and 50 86

Table 7.14. Time complexity of algorithms with D=10 .. 87

Table 7.15. Time complexity of algorithms with D=30 .. 87

xii

Table 7.16. Time complexity of algorithms with D=50 .. 88

Table 7.17. Algorithmic parameters of the metaheuristic methods used within the

proposed system ... 89

Table 7.18. Min, Max and Average IGD values of RdMD/MAS in 30 runs 90

Table 7.19. Average IGD values obtained by RdMD/MAS and its 13 competitors for

UF1, UF2 and UF3 .. 91

Table 7.20. Average IGD values obtained by RdMD/MAS and its 13 competitors for

UF4, UF5 and UF6 .. 91

Table 7.21. Average IGD values obtained by RdMD/MAS and its 13 competitors for

UF7 and UF8. ... 92

Table 7.22. Average IGD values obtained by RdMD/MAS and its 13 competitors for

UF9 and UF10 .. 92

Table 7.23. Friedman aligned ranks for all (problem, algorithm) pairs 97

Table 7.24. Friedman Aligned Ranks statistic and the corresponding p-value over all

algorithms .. 97

xiii

LIST OF FIGURES

Figure 1.1. Generic description of a multi-agent system ... 2

Figure 2.1. The RIO model of a multi-agent system of metaheuristics 13

Figure 2.2. The multi-agent system architecture.. 14

Figure 2.3. Multi-agent system based on coordination of population of SA agents .. 15

Figure 2.4. Conceptual description of levels in MAGMA ... 16

Figure 2.5. MANGO environment ... 17

Figure 2.6. The agent lattice model ... 18

Figure 2.7. AMA model ... 19

Figure 2.8. Agent lattice model .. 20

Figure 2.9. The APAA framework... 22

Figure 4.1. Architectural description of LBMAS concerning its metaheuristic agents

and the four functional agents .. 45

Figure 5.1. Architectural description of the proposed multi-agent system 51

Figure 5.2. Strategy agent for CMH-MAS .. 53

Figure 6.1. Architectural description of the proposed multi-agent system 63

Figure 6.2. Strategy agent for RdMD/MAS ... 64

Figure 7.1. A sample task graph representing a particular MSP 67

Figure 7.2. Solution representation for task graph in Figure 6.1 67

Figure 7.3. Comparison of LBMAS to other deterministic algorithms. 68

Figure 7.4. FFT (Up) and IRR (Down) task graphs .. 69

Figure 7.5. Improvement rate values for FFT4 (Up) and IRR (Down). 71

Figure 7.6. Reliability of LBMAS in 20 different runs ... 72

Figure 7.7. Evolution of solutions .. 72

xiv

Figure 7.8. Convergence speed plots of CMH-MAS and its components agents for

three randomly selected problems: F18 of size 10 (a), F10 of size 30 (b) and F22 of

size 50 (c). .. 79

Figure 7.9. Metaheuristics that won the tournament competitions at different stages

of CMH-MAS for problem F10 of size 10 (a), F18 of size 30 (b), and F8 of size 50

(c). .. 80

Figure 7.10. Convergence speed plots of CMH-MAS and same CMH-MAS with

random method strategy for F18 with size 30 ... 81

Figure 7.11. Pareto-Front found by RdMD/MAS for problems UF1 to UF10 94

Figure 7.12. Convergence speed plots of RdMD/MAS and its components agents for

UF5 .. 95

Figure 7.13. Convergence speed plots of RdMD/MAS and same RdMD/MAS with

random method strategy for UF5 ... 96

file:///C:/Users/FARSHID/Desktop/Farshid%20Thesis_2.docx%23_Toc367231296

xv

LIST OF ALGORITHMS

Algorithm 3.1. Genetic Algorithm ... 30

Algorithm 3.2. Artificial Bee Colony Algorithm ... 31

Algorithm 3.3. Particle Swarm Optimization Algorithm ... 32

Algorithm 3.4. Differential Evolution Algorithm .. 34

Algorithm 3.5. Evolution Strategies Algorithm ... 35

Algorithm 3.6. Simulated Annealing Algorithm ... 36

Algorithm 3.7. Great Deluge Algorithm .. 37

Algorithm 5.1. Strategy Agent ... 52

Algorithm 6.1. Strategy Agent ... 63

xvi

LIST OF SYMBOLS / ABBREVIATIONS

MAS Multi-Agent System

 Universe Set

MOP Multi-objective Optimization Problem

AMF Agent Metaheuristic Framework

RIO Role Interaction Organization

CBM Coalition–Based Metaheuristic

MAGMA Multi-Agent Metaheuristic Architecture

JMS Java Messaging Service

DA Directory Agent

MAGA Multi-Agent Genetic Algorithm

MacroAEM Macro Agent Evolutionary Model

HMAGA Hierarchical Multi-Agent Genetic Algorithm

COP Constrained Optimization Problems

AMA Agent-based Memetic Algorithm

AES Agent-based Evolutionary Search

APAA Agent-based Parallel Ant Algorithm

EMAS Evolutionary Multi-Agent System

selEMAS semi-elitist Evolutionary Multi-Agent System

LBMAS Learning-Based Multi-Agent System

GA Genetic Algorithm

SA Simulated Annealing

DE Differential Evolution

ACO Ant Colony Optimization

xvii

GDA Great Deluge Algorithm

TS Tabu Search

CE Cross Entropy

ES Evolutionary Strategy

PSO Particle Swarm Optimization

 Crossover Probability

 Mutation Probability

 Objective Function

 Personal Best

 Global Best

 Population Size

 Offspring Size

ABC Artificial Bee Colony

PMA Population Management Agent

MOO Multi-Objective Optimization

NSGAII Non-dominated Sorting Genetic Algorithm

MOGA Multi-Objective Genetic Algorithm

SPEA2 Strength Pareto Evolutionary Algorithm

MODE Multi-Objective Differential Evolution

AMOSA Multi-Objective Simulated Annealing

MOPSO Multi-Objective Particle Swarm Optimization

SPA Solution Pool Agent

DAG Directed Acyclic Graph

MSP Multiprocessor Scheduling Problem

FFT Fast Fourier Transformation

xviii

IRR Internal Rate of Return

FAR Friedman Aligned Ranks

0

1

Chapter 1

1 INTRODUCTION

1.1 Introduction

Solving combinatorial and real-parameter optimization problems is an important task

in almost all engineering applications. The optimization problems which this thesis

deals with are combinatorial- and real-parameter optimization problems. Researchers

have been extensively solving these kinds of problems using evolutionary

computations and metaheuristics. In this thesis, three new multi-agent architectures

are designed and applied in order to solve combinatorial and real-parameter

optimization problems. A multi-agent system (MAS) includes a set of agents and

their environment in which the agents are designed to perform particular tasks. The

rest of this chapter is organized as follows: Fundamental issues of multi-agent

systems are presented in Section 1.2. Section 1.3 illustrates description of

metaheuristics briefly. Single-objective optimization, combinatorial optimization and

multi-objective optimization problems are explained in sections 1.4, 1.5 and 1.6

respectively.

1.2 Multi-agent Systems

Fundamentally, a multi-agent system (MAS) comprises a set of agents and their

environment in which the agents are designed to perform particular tasks. In this

respect, individual agents are computational procedures that perceive their

environment, make inferences based on the received percepts and their learned

2

experience and acts on their environment to reach predefined design goals [1]. A

generic description of a MAS is shown in Figure 1.1.

 Figure 1.1. Generic description of a multi-agent system

In intelligent MASs, individual agents are required to be autonomous that means

learning capability through interactions with the environment as well as adapting to

changes in the environment caused by agents’ actions internally and the

environments’ dynamic externally. Individual agents are also attributed to have other

important properties that are outside the scope of our descriptions. The full list of

intelligent agent’s properties can be found in [2].

An agent in a MAS can be considered as an entity with an architecture comprising

two fundamental components, namely the agents’ hardware and the agents’ software.

While the agents’ hardware is consisting of sensors and actuators to monitor and act

on the environment, the software includes procedures for processing the percepts,

making inferences on goal-based actions, updating knowledge base and maintaining

records on changes in the environment. Based on their architectural characteristics

and computational capabilities, agents are classified as reflexive, maintaining state,

goal-based and utility-based agents. A detailed description of agents in each of these

C
o

m
m

u
n

ic
at

io
n

 C

h
an

n
el

Agent

Software

Agent

Hardware

Percepts

Agent

Software

Agent

Hardware

Agent

Hardware

Agent

Software

V
is

ib
le

 P

ar
t

o
f

E

n
v
ir

o
n

m
en

t

Actions

Actions

Actions

Percepts

Percepts

1

2

n

3

categories can be found in [3]. Agents within our proposed systems in this thesis can

be described as utility-based agents with a particular goal of minimizing the

objective functions where the utility of a particular action (operator) is measured in

terms of the corresponding fitness value found through evaluation of the objective

functions. The detailed block diagrams description of individual utility-based agents

employed within the proposed frameworks are given in next chapters.

As indicated in Fig. 1, agents in a MAS are interacting and communicating with each

other through a communication channel that can be implemented either as a

centralized star model where each agent can communicate through a master agent or

as distributed inter-agent dialogs any pair of agents can exchange messages using

some protocols [4]. Obviously, the second method is general, multipurpose and

flexible, however it requires agent communication languages and dedicated message

passing protocols to be implemented on each individual agent. Star model is easier to

implement for small-size MASs, including reasonably small number of agents, since

one communication protocol needs to be implemented on all agents.

The third fundamental part of a MAS is the environment which is sensed and

changed by its agents to reach their goals. As a place to live and manipulate by the

agents, the environment is a shared common resource for all agents [2]. It takes the

role of specifying positions, locality, and limitations on actions of agents. Agent

environments can also be classified based on their spatial properties and accessibility

of attributes. A general description of agent environments and their categorical

properties can be found in [2].

4

The MASs proposed in this thesis implement adaptations of the above mentioned

architectural elements under the consideration of individual agent models, their

problem environment, goals and computational resources. Details of the proposed

MASs implemented for combinatorial optimization problems, single-objective real-

valued function optimization and multi-objective real-valued function optimization

are presented in next chapters.

1.3 Metaheuristics

Solving optimization problems is a challenging issue in almost all engineering

applications. Optimization algorithms are applied to solve these kinds of problems

and among them the metaheuristics are becoming more popular [6]. Most of

Metaheuristics are nature-inspired and they are divided to trajectory- and population

based type in which the trajectory-based metaheuristics deal with a single solution

and the population-based ones handle the population of solutions.

Metaheuristics implement some forms of stochastic optimization which comprises

the set of algorithms that employ random methods to find the global or near-global

optimal solutions. Metaheuristics are applied to solve wide range of optimization

problems [5].

Some of the well-known trajectory based metaheuristics are Simulated Annealing

[23], Great Deluge Algorithm [25], Cross Entropy [27] and Tabu Search [26].

Meanwhile the Genetic Algorithm [20], Ant Colony Optimization [24], Particle

Swarm Optimization [32] and Differential Evolution [21, 22] are considered as

population-based metaheuristics. Principles and basic descriptions of metaheuristic

5

algorithms used in this thesis and in the proposed multi-agent systems are discussed

later in chapter 3.

1.4 Combinatorial Optimization Problems

A combinatorial optimization problem is the particular kind of problems in which a

solution of problem comprises a combination of unique components chosen from a

finite and determinate set [5]. The objective of these kinds of problems is to find the

optimal combination of components. Travelling Salesman Problem, Knapsack

Problem and Set Covering Problem are the examples of combinatorial optimization

problems. As an example, in travelling salesman problem, there are a number of

cities and routes between the pairs of cities in which each route has a cost. The

salesman is going to find a lowest cost tour starting from a city, visiting all other

cities only once and come back to the same city. Therefore, in TSP problem, the

components are cities and the aim is to find optimal combination of these

components [5].

Combinatorial optimization problems can be solved by metaheuristics in order to

find optimal or near-optimal solutions.

1.5 Single-Objective Optimization Problems

Optimization is a process or method to find something as optimal as possible in

terms of objective functions. In single-objective optimization problems, there exist

only one objective function to be optimized and the aim is to either minimize or

maximize it using appropriate algorithms [7].

A general single-objective optimization problem is minimization or maximization of

 subject to and

6

 in which and indicate constraints that must be considered as is

being optimized. A solution of problem minimizes or maximizes the where x is

the n-dimensional decision variable vector and is the universe for x. The method

and approach to find the global optimal is called as global optimization [7].

1.6 Multi-objective Optimization Problems

Multi-objective optimization problem aims to find a vector of decision variables

which satisfies all constraints and optimizes all objective functions that are usually in

conflict with each other. Optimization process tries to find the acceptable values of

all objective functions to satisfy the decision maker.

A general multi-objective optimization problem is the minimization or maximization

of subject to and

 in which and indicate constraints that must

be considered as which it’s being optimized and contains all possible x

values [7].

The definition of “optimum” is changed when the problem deals with some objective

functions. In multi-objective optimization problems, the goal is to find good “trade-

offs” instead of a single solution in global optimization. The most commonly

accepted term for “optimum” in MOPs is Pareto Optimum [7].

A solution is Pareto optimal if and only if there is no in which

 dominates . Pareto

dominance is represented as in which v dominates u if and only if v is partially

less than u:

7

 (⋀). (1.1)

Based on the aforementioned concepts, the Pareto Optimal Set, , is defined as:

 | (1.2)

Meanwhile, for a given MOP, F(x), and , the Pareto Front is defined as:

 | (1.3)

Also, the non-dominated solutions are called as Pareto Front as well. Main goal of

multi-objective algorithms is to preserve the non-dominated points in objective space

and correspondence solutions in decision space and move towards the Pareto Front

set with maintaining the diversity at the same time [7].

8

Chapter 2

2 STATE-OF-THE-ART IN MULTI-AGENT SYSTEMS

2.1 Introduction

A multi-agent system includes a set of agents and their environment in which the

agents are designed to perform particular tasks. In this respect, individual agents are

computational procedures that perceive their environment, make inferences based on

the received percepts and their learned experience and acts on their environment to

reach predefined design goals [1]. A generic description of a MAS is shown in

Figure 1.1.

The important features of an agent in a multi-agent system are as following;

however, supporting all of them by an agent depends on tasks and environment [73].

- Autonomy: Agents are autonomous to decide about interactions.

- Reactivity: Agents observe the environment and interact against environment

changes.

- Pro-activeness: Agents acts on environment are goal-oriented to lead the

system into desired form.

- Social ability or communicative: Agents use communication languages to

interact with other agents.

- Learning or Adaptive: Agents learn according to past experiences and they

change their behavior accordingly.

9

- Local views: Agents don’t know whole system and they can see their scope

only.

- Decentralization: There is no controlling agent in the system.

According to [74], agents are grouped into 5 classes in terms of intelligence and

capabilities as following:

- Simple reflex agents: This kind of agent acts only based on current

perception. If the environment is not fully observable, this agent is not able to

be successful.

- Model-based reflex agents: This kind of agent chooses the action in the same

way with reflex agents but it stores some information about un-observable

environment to handle partially observable environments.

- Goal-based agents: This agent is kind of model-based agent and stores

information about desired environment. This way, it chooses the acts to lead

the system toward desired goals.

- Utility-based agents: This agent knows how to measure goodness of states

and how to distinguish between goal- and non-goal states.

- Learning agents: This agent initially starts to operate in un-known

environment and then learn gradually how to deal with the system.

Meanwhile, the agent architecture is divided into three groups as following [73]:

- Deliberative Architectures: This architecture represents the symbolic model

of the world explicitly and decides via logical reasoning.

10

- Reactive Architectures: This architecture doesn’t have any kind of central

symbolic world model and also doesn’t use any complex symbolic reasoning.

- Hybrid Architectures: Reactive agent is not so efficient, because it makes the

decision quickly without a formal search. In contrast, deliberative agent uses

much time to choose the best behavior. Therefore, an efficient and quick

architecture can be made by combination of these two architectures.

In intelligent MASs, individual agents are required to be autonomous that means

learning capability through interactions with the environment as well as adapting to

changes in the environment caused by agents’ actions internally and the

environments’ dynamic externally. An agent in a MAS can be considered as an entity

with an architecture comprising two fundamental components, namely the agents’

hardware and the agents’ software. While the agents’ hardware is consisting of

sensors and actuators to monitor and act on the environment, the software includes

procedures for processing the percepts, making inferences on goal-based actions,

updating knowledge base and maintaining records on changes in the environment.

Based on their architectural characteristics and computational capabilities, agents are

classified as reflexive, maintaining state, goal-based and utility-based agents.

Agents in a MAS are interacting and communicating with each other through a

communication channel that can be implemented either as a centralized star model

where each agent can communicate through a master agent or as distributed inter-

agent dialogs any pair of agents can exchange messages using some protocols [4].

The third fundamental part of a MAS is the environment which is sensed and

changed by its agents to reach their goals. As a place to live and manipulate by the

11

agents, the environment is a shared common resource for all agents [2]. It takes the

role of specifying positions, locality, and limitations on actions of agents. Agent

environments can also be classified based on their spatial properties and accessibility

of attributes.

Multi-agent systems and evolutionary algorithms can be integrated for solving

difficult problems; hence, such a system is called agent-based evolutionary

algorithms. There are three types of frameworks as follows [73]:

1. Agents are responsible for their actions and the system behavior

2. Agents represents the solutions

3. Sequentially use of multi-agent system and evolutionary algorithm

First type agents guide the system to solve the problem by specifying the actions and

system behavior. The agents in this framework can use evolutionary algorithms for

learning and improving the system efficiency. In [75], authors proposed a multi-

agent system which uses genetic algorithm to determine a set of functions for each

agent. Meanwhile, in the [76, 77] authors use evolutionary algorithms as learning

algorithms within the multi-agent systems.

In the second type, an agent represents a candidate solution; so, in evolutionary

algorithm a population of solutions can be considered as a population of agents.

However, an agent can contain other information as well such as learning techniques.

In such a system, agents cooperate and compete with neighbors to increase their

fitness. The number of neighbors an agent can cooperate with can be four [78], eight

[79] or all agents in the entire environment [80];

12

In the third framework, multi-agent system and evolutionary algorithm are used

iteratively or sequentially to solve a problem. As an example, in the [81] for solving

dynamic job-shop scheduling problem, authors applied multi-agent system for initial

task allocations and then used genetic algorithms for optimizing the scheduling.

The rest of this chapter is organized as follows: The state-of-the-art in multi-agent

systems for single-objective optimization is presented in Section 2.2 and Section 2.3

illustrates the related works on multi-agent systems for multi-objective optimization.

2.2 Multi-agent systems for single-objective optimization

Multi-agent systems including metaheuristics as individual agents are widely used to

provide cooperative/competitive frameworks for optimization. Many efforts have

been done on this field and there exist some outstanding literatures in this context [4,

8]. It has already been shown through several implementations that multi-agent

systems with metaheuristic agents provide effective strategies for solving difficult

optimization problems. This section covers the state-of-the-art approaches of multi-

agent systems for single-objective optimization.

2.2.1 An organizational view of metaheuristics

Meignan et al. proposed an organizational multi-agent framework to hybridize

metaheuristics algorithms [8]. Their agent metaheuristic framework (AMF) is

fundamentally developed for hybridization of metaheuristic based on an

organizational model. In this model, each metaheuristic is given a role among the

tasks of intensification, diversification, memory and adaption. This organization

model is named as RIO (Role Interaction Organization) and an illustrative

description of its architectural model is given in Figure 2.1.

13

Figure 2.1. The RIO model of a multi-agent system of metaheuristics

The authors exploited the ideas and basic concepts of adaptive memory programming

(AMP) which unifies several metaheuristics concepts considering their common

characteristics [9]. The proposed multi-agent system based on this organizational

framework is used to develop a hybrid algorithm called the coalition–based

metaheuristic (CBM). CBM is used for the solution of vehicle routing problem and

the obtained exhibited that even though CBM is not as good as its competitors in

terms of solution quality, it provides close to optimal solutions in significantly small

computation times.

2.2.2 Cooperative metaheuristic system based on Data-mining

Cadenas et al. introduced a multi-agent system of cooperative metaheuristics in

which each metaheuristic is implemented as an agent and they try to solve a problem

in cooperation with each other. A coordinating agent monitors and modifies the

behavior of other agents based on their performance in improving the solution

quality [10]. Individual agents communicate using a common blackboard part of

which is controlled by each agent and they record their best solution found so far on

the blackboard. The blackboard is monitored by the coordinator agent to decide on

the performance of agents to derive conclusions on how to modify their behavior.

Organization

1

Role 1

Role 1 Role 1
Organizational Level

Agent Level

Agent 1 Agent 2

14

The coordinator agent uses a fuzzy rule from which inferences are derived based on

the performance data of individual agents. A block diagram description of this multi-

agent system is presented in Figure 2.2.

Figure 2.2. The multi-agent system architecture proposed in [10]

The authors applied the above-mentioned multi-agent system for the solution 0/1

knapsack problems and experimental results exhibited that the proposed cooperative

system generates slightly better solutions compared to application of non-cooperative

nature-inspired metaheuristics. It is also reported by the authors that the

computational cost of extraction of fuzzy rules can be too large.

2.2.3 Coordinating metaheuristic agents with swarm intelligence

Another cooperative multi-agent system of metaheuristics is proposed by M.E.

Aydin through creating a population of agents with search skills similar to those of

simulated annealing (SA) algorithm [11]. SA agents carry out runs on their own

individual solutions and their accepted solutions are collected into a pool which is

further manipulated by a coordinating metaheuristic for the purpose of exchanging

information among SA agents’ solutions and preparing them new seeds for the next

iteration. Architectural description this method is shown in Figure 2.3.

Fuzzy
Coordinator

Metaheuristic n

Metaheuristic 3

Metaheuristic 2

Metaheuristic 1

Problem

Instances

Blackboard

15

 0th Generation 1th Generation 2th Generation

)0(0X)0(0
'X)1(0X)1(0

'X)(2 tX)(0
' tX

)0(1X

)0(2X

)0(NX)0('
NX)1(NX)1('

NX)(tX N)(' tX N

Figure 2.3. Multi-agent system based on coordination of population of SA agents

The coordinating metaheuristics considered in this approach are evolutionary

simulated annealing, bee colony optimization, and particle swarm optimization. The

authors used this multi-agent system for the solution of multidimensional knapsack

problem. It has been observed that multiple SA agents coordinated by PSO resulted

in the best solution quality. In addition to this, number of inner SA iterations has a

significant effect on the performance of overall multi-agent system.

2.2.4 A multi-agent architecture for metaheuristics

The multi-agent metaheuristic architecture (MAGMA) proposed by Milano et al. is a

multi-agent system containing four conceptual levels with one more agents at each

level [12]. Agents at level-0 are solution constructors while agents at level-1 apply a

particular metaheuristic for the improvement of solutions constructed at level-0.

Basically, the search procedures of level-1 agents are iteratively applied until a

termination condition is satisfied. Level-2 agents are global observers such that they

decide on strategies to direct the agents towards promising regions of solution space

and to get rid of locally optimal solutions. The authors have experimentally

demonstrated that these three levels are enough to describe simple (non-hybrid)

multi-agent systems of metaheuristics capable of solving difficult optimization

problems. Block diagram description of MAGMA is given in Figure 2.4.

SA

SA

SA

SA

SA

SA

SA

SA

SA

SA

SA

SA

16

 Figure 2.4. Conceptual description of levels in MAGMA [12]

The level-3 shown in Figure 2.4 represents the presence of coordinating agents that

are responsible for communication and synchronization. Implementation of this level

aims the development of high-level cooperative multi-agent systems in which

hybridization of multiple metaheuristics is possible. Multilevel structure and the

multi-agent system organization of MAGMA allow all direct communications

between all levels, however only some of them are implemented in [12]. The authors

used iterated local search (ILS) within MAGMA framework for the solution

MAXSAT problems with 1000 variables and 10000 clauses and their results

exhibited that the resulting system achieved the best solutions with higher frequency

compared to random restart ILS method.

2.2.5 Multi-agent cooperation for solving global optimization problems

Another coordination- and cooperation based multi-agent system named MANGO

[13] was proposed for solving global optimization problems. MANGO is a Java-

based multi-agent framework implemented by APIs capable of running on different

machines and share the results based on message passing mechanism. MANGO

provides directory service, yellow pages service and message types, permitting agent

developers to choose any coordination mechanism according to requirements. Each

agent is a Java program performs specific tasks in parallel. In this framework,

 Level 3 Coordination Level

 Level 2 Strategic Agents

 Level 1 Solution Improvers

 Level 0 Solution Builders

1

4

5 6

3

2

17

cooperation is carried out over the service oriented architecture. The search agents

who provide the search mechanisms are service providers and who request services

are service consumers. MANGO implements the communication in two levels: low-

level is done over Java Messaging Service (JMS) dealing with network protocols and

high-level exchanges the messages between agents which are provided by using

mailboxes. This way, agents can check their own mailbox whenever they want.

MANGO environment as a distributed system is illustrated in Figure 2.5.

MANGO includes a special agent named by directory agent (DA) taking

responsibility for managing communication resources and providing two types of

services. First type manages JMS communication resources and the second type is

the directory service. MANGO can use any of optimization algorithms for the agents

and the agent designer decides which algorithm should be applied [13]. The authors

of MANGO did not provide a detailed test of the system using hard numerical

optimization benchmarks, hence its success for practical cases is not known.

2.2.6 Multi-Agent Evolutionary Model for Global Numerical Optimization

The Multi-Agent Genetic Algorithm (MAGA) proposed by Liu et al. is designed to

solve the global numerical optimization problems [82]. An agent in MAGA is used

to represent a candidate solution of the problem being solved and energy value of the

Directory Agent

Directory Agent Code

MANGO API

JMS Provider

Agent 1

Directory Agent Code

MANGO API

Agent N

Directory Agent Code

MANGO API

Figure. 2.5: MANGO Environment [13]

18

agent is the negative value of the corresponding objective function. The aim of agent

is to increase the energy value as much as possible. The agent lattice in MAGA is

illustrated as Figure 2.6. All agents live in the lattice environment and they compete

and cooperate with their neighbors in order to minimize the objective function value.

 Figure 2.6. Agent lattice model [82]

Moreover, authors proposed the Macro Agent Evolutionary Model (MacroAEM) in

which the sub-functions form macro agents with three new behaviors (competition,

cooperation and selfishness) to optimize the objective functions. Consequently, the

authors integrated the MacroAEM and MAGA in order to form a new algorithm

named by Hierarchical Multi-Agent Genetic Algorithm (HMAGA). Theoretical

analysis showed that the HMAGA is able to converge to global optima. Meanwhile,

experimental evaluation of MAGA and HMAGA indicated good performance when

the dimensions are increased from 20 to 10,000; so that, it can find good solutions for

large scale optimization problems at a low computational cost [82].

1, 1

2, 1

…

Lsize.

1

1, 2

2, 2

…

…

…

Lsize,

2

1,

Lsize

2,

Lsize

… …

… Lsize,

Lsize

19

2.2.7 An Agent Based Evolutionary Approach for Nonlinear Optimization with

Equality Constraints

Barkat ullah et al. proposed an agent-based evolutionary algorithm for solving

constrained optimization problems (COPs) [83]. In the proposed multi-agent system,

the agents use a new learning method which has been designed to deal with equality

constraints in the early generations. In the later generations, agents use other learning

processes to improve their performance. Authors proposed an agent-based Memetic

algorithm (AMA) for solving constrained non-linear optimization problems which

integrated agent concept with memetic algorithms. An agent in this system represents

a candidate solution and tries to improve its fitness using a self-learning method. The

agents are considered in a lattice environment to communicate and exchange

information with neighbors. Figure 2.7 shows AMA learning process.

Figure 2.7. AMA model [83]

In this method, the constraints are handled without any penalty functions or

additional parameters and the experimental results illustrated that the performance of

proposed algorithm is promising [83].

Population

of agents

Goal

Achieved?

Modified

agent

population

Changing

operators

No
Stop

Yes

20

2.2.8 Agent Based Evolutionary Dynamic Optimization

Yan et al. proposed an agent-based evolutionary search (AES) algorithm for solving

dynamic 0-1 optimization problems [84]. The proposed approach inspired of living

organisms updates the agents to track the dynamic optimum. In the proposed method,

all agents in the environment compete with their neighbors and collect knowledge in

order to learn and increase the energy function. In this algorithm, for maintaining the

diversity, some immigrations and mapping schemes are used. In AES, each agent

represents a candidate solution using a 0-1 array and the agent energy value is equal

to objective function value [84]. Agents are placed on a lattice environment and

interact with their neighbors as shown in Figure 2.8.

 Figure 2.8. Agent lattice model [84]

Two agents can communicate if and only if there is a line between them. In the

procedure of AES, all parameters are initialized and every agent in the lattice is

evaluated. Afterwards, one behavior among competitive and learning is executed for

each agent in the lattice repeatedly until some termination criteria are satisfied. For

(1, 1)

(2, 1)

(1, 2)

(2, 2)

… …

(Lsize, 1) (Lsize, 2) …

…

…

…

(Lsize, Lsize)

…

(2, Lsize)

(1, Lsize)

21

each agent, there are eight agents in its neighborhood to carry out the competitive

behavior in terms of energy value. The aim of learning behavior is to improve energy

value of each agent by applying the mutation and crossover operators [84].

Evaluation of this method shows good enough performance in solving dynamic

optimization problems [84].

2.2.9 An Agent-Based Parallel Ant Algorithm with an Adaptive Migration

Controller

Lin et al. in [85] proposed an agent-based parallel ant algorithm (APAA) for solving

numerical optimization problems. In order to improve the algorithm’s performance

and enhance different parts of solution vector, the method uses two cooperating

agents to reduce the scale of the problem handled by each of them. Each agent in

APAA owns tunable and untenable vectors in which tunable vectors are optimized

by an ant algorithm. Outstanding tunable vectors from an agent are moved to other

agent as new untenable vectors in which the migration strategy is adjusted based on

stagnation degree in optimization process. For solving the migration problem, a

stagnation-based asynchronous migration controller was proposed by authors. APAA

is convenient for solving large-scale problems and architectural framework is shown

in Figure 2.9. The algorithm divides the solution vector X into two sub-vectors X1

and X2 in which the union of X1 and X2 is X. Meanwhile, each of A1 and A2 agents

optimizes X1 or X2. It means that if X1 is tunable vector of A1, X2 is untenable for it.

Evaluations of APAA showed better and faster results for benchmark functions in

high dimensional spaces.

22

 Figure 2.9. The APAA framework [85]

2.3 Multi-agent systems for multi-objective optimization

This section covers the state-of-the-art approaches of multi-agent systems for multi-

objective optimization.

2.3.1 Multi-agent Evolutionary Framework based on Trust for Multi-objective

Optimization

Jiang et al. proposed a novel multi-agent evolutionary framework based on the trust

value for solving multi-objective optimization problems [14]. The authors considered

individual solutions as intelligent agents in the proposed architecture. Also, the

evolutionary operators and control parameters are represented as services, and

intelligent agents choose services in each generation based on their trust values in

order to produce new offspring agents. A trust value measures the suitability of the

services for solving a particular problem. Once a new offspring is created, it starts to

compete with other agents in its environment. A particularly selected service

provides a positive outcome when the created offspring via that service can survive

to the next generation; otherwise, the service affords a negative outcome. The trust

SAMC

SAMC

Agent A1 Agent A2

 X1 X2 X1 X2

A1 Ready

A2 Ready

23

value of services is calculated based on the count of positive and negative outcomes

achieved so far. In order to balance between exploration and exploitation capabilities

of the proposed approach, services are selected with probabilities that are

proportional to the trust values. The authors implemented their methodology within

state-of-the-art MOO metaheuristics NSGAII, SPEA2 and MOEA, and have shown

that improvements are achieved with respect to the hypervolume measure.

2.3.2 Co-Evolutionary Multi-Agent System with Sexual Selection Mechanism

for Multi-Objective Optimization

Drezewski et al. introduced a co-evolutionary multi-agent system (SCoEMAS) with

sexual selection method based on Pareto domination [15]. In this system, the Pareto

front includes a population of agents which are created from co-evolutionary

interactions between sexes. Each sex has particular criteria and the agents belonging

to a sex are evaluated based on the associated criteria. The system has one resource

that is shared by the agents and environment. SCoEMAS includes a set of sexes, set

of actions and a set of relations. The set of actions comprises operators for killing

agents, searching for domination, distribution of resources, searching for partners,

recombination, and migration. Meanwhile, the relation set models a competition

between species to get the available resources. SCoEMAS realizes the sexual

selection mechanism in which each agent has a vector of weights that are used for the

selection of a recombination partner. This proposal has a comprehensive description

of an evolutionary MAS, however its initial implementation exhibited poorer

performance compared to NSGAII and SPEA2 algorithms. Drezewsky et al.

introduced another work on MAS for MOO that is based on inspirations from host-

parasite mechanisms and the corresponding method is named as HPSoEMAS [16].

Many components of this approach are similar to those of SCoEMAS and its

24

performance compared to existing well-known metaheuristics is also close to that

SCoEMAS.

2.3.3 Crowding Factor in Evolutionary Multi-Agent System for Multiobjective

Optimization

Dorohinicky et al. proposed an evolutionary multi-agent system (EMAS) in which a

new parameter called the crowding factor is introduced [17]. The main idea of

EMAS is the integration of evolutionary algorithms to a MAS at population level

such that the agents are able to generate new agents by using recombination and

mutation operators or die and became eliminated from the system. The fitness of

agents is expressed in terms of the amount of gained non-renewable resource called

life energy. Therefore, the agents with high life energy have more chance to be

selected for recombination and, in contrast, the low life energy increases the

possibility of death. The crowding factor represents the degree of closeness of agents

in terms of the similarity of solutions they represent. EMAS is implemented with a

mechanism of reducing life energy of agents having solutions close to each other.

The authors have studied the effects of crowding factor on the quality of Pareto

fronts using simple test problems and they demonstrated the positive impact of lower

crowding factors on extraction of better Pareto fronts. However, the obtained results

are not compared to results of any state-of-the-art methods.

2.3.4 Genetic algorithms using multi-objectives in a multi-agent system

A multi-agent system consisting of several heuristics within the genetic algorithm

framework is proposed by Cardon et al. for the optimization of Gantt diagrams in

job-shop scheduling problem. The goal of the optimization task is the minimization

of delays and completion of jobs according to deadlines given in problem

description. The skeleton of the proposed model is based on the contract-net protocol

25

that aims to discover a good scheduling through agent negotiations. Authors used

appropriate methods for selection, crossover and mutation operators [18]. The MAS

starts with a task distribution to individual agents and each agent of this system

includes a genetic algorithm as its main search mechanism. The communications

among agents using the contract-net protocol leads the system to optimize the

scheduling according the above mentioned objective function. Experimental results

have been reported over 5 instances of job shop scheduling problem and illustrations

showed that the delay decreases quickly. No comparison to other methods or other

multi-agent systems in literature is provided by the authors.

2.3.5 Elitist Evolutionary Multi-Agent System

Siwik et al. proposed a semi-elitist evolutionary multi-agent system (selEMAS) for

the purpose of avoiding stagnation and preserving agents representing high-quality

solutions [19]. Elitism ensures that non-dominated solutions will survive in the next

generation. Also for maintaining diversity of solutions in selEMAS, self-adapting

niching and distributed crowding methods are used. The goals of agents in selEMAS

are to survive and create offspring. This way, agents collects non-renewable

resources called life energy and as long as their life energy is upper than death

threshold, they stay alive. Meanwhile, when the amount of life energy is more than

reproduction threshold, they can compete with other agents to produce offspring.

Experimental results using one particular test problem exhibited that significant

improvements are achieved compared to non-elitist EMAS method.

The multi-agent system (MAS) proposed in chapter 3, 4 and 5 possesses novel

properties compared to the above pioneering implementations. The multi-agent

system in chapter 3 includes several metaheuristics as problem solving agents acting

on a common population and it also maintains a two-stage common archive keeping

26

the promising solutions in fitness value and in spatial distribution. The proposed

MAS approach runs in consecutive sessions and each session includes two phases: in

the first phase a particular metaheuristic is selected based on its fitness value in terms

of its improvements achieved in objective function value and the second phase lets

the selected metaheuristic conduct its particular search procedure until some

termination criteria are satisfied. In all phases and iterations of the proposed

framework, all agents use the same population and archive in conducting their search

procedures. This way, agents cooperate by sharing their search experiences through

accumulating them in a common population and common archive. The proposed

MAS includes dedicated agents to initialize parameters, retrieve data from common

population and archive, and control communication and coordination of agents’

activities. The resulting MAS framework is used to solve a hard combinatorial

optimization problem and analysis of the obtained results showed that the objectives

on the design of the proposed MAS are almost all achieved.

The MAS proposed in chapter 4 includes several metaheuristics as problem solving

agents acting on a common population and it also maintains a common archive

keeping the promising solutions extracted so far. The proposed MAS approach runs

in consecutive sessions and each session comprises two phases: the first phase sets

up a tournament among all agents to determine the currently best performing agent

and the second phase lets the winner to conduct its particular search procedure until

termination criteria are satisfied. In all phases and iterations of the proposed

framework, all agents use the same population and archive in conducting their search

procedures. This way, agents compete with each other in terms of their fitness

improvements achieved over a fixed number of fitness evaluations in tournaments,

and they cooperate by sharing their search experiences through accumulating them in

27

a common population and a common archive. The proposed MAS includes one

supervisory agent that controls communication and coordination of agents’ activities

through monitoring the common population and the common archive. The resulting

MAS framework is used to solve real-valued optimization problems within the well-

known CEC2005 benchmarks set. Analysis of the obtained results showed that the

objectives on the design of the proposed MAS are almost all achieved.

The MAS proposed in chapter 5 encompasses novel characteristics compared to the

above mentioned MO MAS frameworks. The proposed method comprises some

MOO metaheuristic agents acting on subsets of a common population. In addition to

an assigned subset of population elements, agents also maintain their local archives

keeping the non-dominated solutions extracted during a particular session. The

proposed method runs in consecutive sessions and each session includes two phases

as follows: First phase divides the common population into subpopulations according

to dominance ranks of its elements, so that, first subpopulation contains the solutions

with rank 1, elements of the second subpopulation have rank 2, and so on. In the

second phase, each MOO metaheuristic agent is assigned to one particular

subpopulation and starts improving its elements for the purpose of lowering their

ranks and making them closer to the best Pareto front found so far. Due to the round-

robin type assignment strategy, each metaheuristic operates on a different-rank

subpopulation in subsequent sessions. A session starts with a new assignment of

metaheuristics and ends when termination criteria are satisfied. In each session,

extracted non-dominated solutions are kept in local archives and all non-dominated

solutions found so far are combined into a global archive at the end of the session.

Upon completion of a session, updated subpopulations in each MOO metaheuristic

are combined together to update the common population and to recalculate the ranks

28

of individual solutions before starting the next session. This way, metaheuristic

agents share their experiences through improved solutions when collecting them in a

common population and a common global archive. The proposed MAS includes one

supervisory agent that controls communication and coordination of agents’ activities

through monitoring individual sessions, common population and the common

archive. The resulting MAS architecture is used to solve real-valued multi-objective

optimization problems within the well-known CEC2009 benchmarks set. Analysis of

the obtained results showed that the resulting MAS is in fact a powerful alternative

for the solution of hard numerical MOO problems.

29

Chapter 3

2 DESCRIPTION OF METAHEURISTICS USED

WITHIN THE PROPOSED MULTI-AGENT SYSTEMS

3.1 Single-objective metaheuristics used within the proposed multi-

agent systems

3.1.1 Genetic Algorithms (GA)

Genetic algorithms (GAs) are search and optimization algorithms developed based

on inspirations from principles of natural evolution. Their algorithmic and

computational descriptions are first developed by John Holland in 1975 [20, 35, 36].

Basically, GAs operate on a population potential solutions and representations of

individual solutions in the solution space are called chromosomes. Content of

chromosome is named as genotype of the corresponding individual, whereas the

evaluation of the underlying objective function for a chromosome is called the fitness

or phenotype. Starting from a randomly initialized population of solutions, GAs run

over consecutive generations and modify individual chromosomes through three

genetic operators, namely natural selection, crossover and mutation. Natural

selection operator works on the current population and selects individual to be used

by the crossover operator. Natural selection is a stochastic operator that favors

higher-fitness individuals to pass their genetic characters to future generations.

Crossover operator takes more than individual and mixes their genetic characters (or

allelic values) to generate a number of offspring, with the objective that offspring

30

will have better fitness values than their parents. Crossover is a kind of

intensification operator that does not introduce new genetic information into the

population. In fact, this task is performed by the mutation operator that assigns

random domain-specific allelic values to genetic location. Mutation is a

diversification operator and it is usually applied with a small probability. When a

new population of offspring is generated, it replaces the old population and a new

generation starts with the same sequential application of genetic operators.

Generations terminate when predefined termination criteria are satisfied. An

algorithmic description of GAs is given in Algorithm 3.1. Details of implementation

and problem specific representational issues of GAs can be found in [29].

Algorithm 3.1. Genetic Algorithms(Pop,PC,Pm),

1. Iteration = 1;

2. Pop = Initial population;

3. Fitness=fobj(Pop);

4. Best_Solution = Best-fitness chromosome within the Pop;

5. Termination_Cond=FALSE;

6. While not(Termination_Cond),

i. Mating_Pool=Selection(Pop);

ii. Offspring=Crossover(PC,Mating_Pool);

iii. New_Pop=Mutation(Pm,Offspring);

iv. New_Fitness= fobj(New_Pop);

v. Update the Best_Solution;

vi. Pop=New_Pop;

vii. Fitness=New_Fitness;

viii. Iteration=Iteration+1;

ix. Check(Termination_Cond);

7. End While.

8. Return Best_Solution found so far.

3.1.2 Artificial Bee Colony Optimization (ABC)

Bee colony optimization is a general-purpose population-based metaheuristic

inspired from the foraging behavior of honey bees [31]. Based on the natural

analogy, this method maintains a bee swarm of three different types of individuals,

namely workers (or employed bees), onlookers and scouts. Even though there are a

couple different implementations of ABC method, the basic principles are as follows:

31

all individuals have the same representation and each artificial bee, with its

strategically associated move operators, is a potential solution to the underlying

problem. The algorithm runs in two (or three) consecutive phases. In the first phase,

all bees of the swarm (named as employed bees) construct a new solution using one

or more of the available moves. The second phase, named as backward pass or

onlookers’ phase, solutions build in the first phase are sorted in non-increasing order

of their fitness values and some bees are further allowed to continue exploring the

search space. These onlooker bees are simply selected by roulette wheel selection

and onlooker bees may use specialized move operators to apply a kind of local

search around the potentially promising solutions. Finally, depending on the type of

implementation, a third phase of diversification moves may be performed by those

bees that either could not achieve sufficient performance over a specified life-time or

have significantly poor fitness compared to the best solution found so far. These bees

use mutation type move operators and are named as scouts. Algorithm 3.2 presents

the pseudocode of a generic ABC algorithm.

Algorithm 3.2. Artificial Bee Colony Algorithm(Input Problem),

1. B = Size of Bee Swarm;

2. Max_Iter = Max. number of iterations;

3. BS=Best Solution; % It is initially empty

4. BF=Best Fitness; % It is initially +Inf

5. DONE=False;

6. while not(DONE),

7. % First phase: Employed Bee phase or Recruitment Phase

For j=1 to B Do

Let each bee biB build a solution using one or more of the strategic operators from the

set of available moves. Evaluate the built solutions and get their fitness values;

8. % Second phase: Onlookers phase or Backward phase

Bees exchange the information about their constructed solutions and decide about which

of them can be used for further exploration for the purpose of refinement around

potentially promising solutions. This is implemented through sorting the constructed

solutions in non-decreasing order of their fitness values and allows a number of them to

continue the search. Onlooker bees are generally determined by roulette wheel selection;

9. % Third phase: Scout bees phase

 Those artificial bees that do not satisfy predefined performance criteria in their life time

are re-initialized randomly (or modified by mutation operators) to allow them to get rid

of their locally optimal valley;

 10. Update BS=Best Solution;

 11. DONE=Check_Termination(Iter,Max_Iter,BS);

 12. end while.

32

Performance of ABC algorithms has already been tested using real-valued and

combinatorial optimization problems and they are found competitive to well-known

metaheuristics for hard problem instances.

3.1.3 Particle Swarm Optimization (PSO)

Particle swarm optimization (PSO) is another well-known swam based optimization

algorithm developed based on observations on bird flocks’ behavior while they travel

over long distances. It is first introduced as a computational procedure by Eberhart

and Kennedy in 1995 [32, 33, 37]. PSO is a simple to implement algorithm that can

be described fundamentally as follows: in swarm of particles (birds), each individual

has two spatial components, namely the velocity, V, and the position, X. An

individual plans its trajectory by iteratively updating its velocity and position using

two kinds of information. The first one is on the accumulated personal-experience

(Pbest) that a single particle gains throughout its search history while the second

(Gbest) reflects the collective experience of all individuals within the swarm. The firs

kind of information is named as personal best whereas the second one represents the

global best solutions extracted so far. PSO is algorithmically presented in Algorithm

3.3.

Algorithm 3.3. Particle Swarm Optimization Algorithm(Input Problem)

1. Swarm_Size= Size of particle swar;

2. Swarm_Pos=Randomly initialize positions of particles considering the ranges of variables;

3. Swarm_Vel=Randomly initialize velocities of particles between Vmin and Vmax;

4. Fitness=Evaluate Fobj(Swarm_Pos);

5. Set Pbest solutions of particles and Gbest solution of swarm.

6. Term_Cond=False;

7. while not(Termination_Cond),

i. For each particle, calculate Vi+1= ω *Vi + C1*R1*(Xi-Pbest)+C2*R2*(Xi-Gbest), 0<ω<1 is the

momentum coefficient, C1 and C2 are two real constants and R1,R2[0,1] are two uniformly

selected random numbers;

ii. For each particle, set Xi+1=Xi+Vi+1;

8. Fitnessi+1=Evaluate Fobj(Swarm_Pos(Xi+1));

9. Update Pbest of each particle and Gbest of swarm;

10. Check(Term_Cond);

11. end while

33

3.1.4 Differential Evolution (DE)

Differential evolution, developed by Storn and Price in 1996 [21, 22], is also a

population based metaheuristic that is quite powerful for real-valued optimization

problems. Like GAs, DE generates new solutions using its algorithm specific

selection, crossover and mutation operators and it has numerous variations depending

on how arguments of these operators are selected and used. Starting with a randomly

built initial population of N individual solutions Xi, i=1,…,N, the conventional

implementation of DE starts by generating N mutant solutions Vi, one for solution

Xi, by adding the weighted difference of two randomly chosen solution Xr1 and Xr2

to a third randomly chosen solution Xr3 such that r1r2r3{1,2,…,N} and i{

r1,r2,r3}. Then, each individual Xi is crossed over with its mutant vector Vi to

generate a trial vector Ui as follows (3. 1):

(), ([0,1])
()

(), ([0,1])

i c

i

i c

V j if rand p or j
U j

X j if rand p and j

 (3. 1)

where pc[0,1] is the crossover probability, rand([0,1]) is a uniformly selected

random number in [0,1] and is a randomly selected index in{1,2,…,N}. Finally,

fitness of Ui is evaluated and it replaces Xi only if its fitness is better than that of Xi,

otherwise Xi keeps its presence within the population. A pseudo code of DE

algorithm is given Algorithm 3.4.

34

Algorithm 3.4. Differential Evolution Algorithm(Input Problem)

1. N=Population Size;

2. Pop= Randomly initialize XiPop considering the ranges of variables;

3. Fitness=Fobj(Pop);

4. Done=False;

5. while not(Done),

i. for i=1 to N,

ii. Randomly determine Xr1, Xr2, Xr3Pop such that ir1r2r3;

iii. RNum=rand(); // A uniformly distributed random number in [0,1]

iv. if RNum < CR, // 0<CR<1

v. Compute the mutant vector Vi=Xr1+F*(Xr2-Xr3), where F is the scaling factor;

vi. else

vii. Vi=Xi;

viii. Compute the trial vector Ui by crossing over Xi and Vi as described above;

ix. Evaluate the fitness of Ui;

x. if Fobj(Ui) is better than Fobj(Xi), then Ui replaces Xi;

xi. end for

xii. Check(Done);

6. end while;

3.1.5 Evolution Strategies (ES)

Evolution Strategies (ES) is the oldest evolutionary algorithm developed in 1960s for

the purpose of continuous numerical optimization [30]. It is one of the well-known

metaheuristics for which a mathematical analysis of convergence exists and it is

among the known powerful algorithms for numerical optimization problems. ES

works on a population P of individual solutions represented as N-dimensional vectors

in RN, where N is the number variables under consideration. ES has unique

recombination, mutation and selection operators with parameters that are adaptively

changed depending on the varying fitness landscape topology throughout the

execution of algorithm. In principle, ES works as follow: first one or more

individuals are selected from the current population and their offspring are generated

using duplication and recombination operators. Then, offspring are mutated to obtain

a population of new solutions. This way, starting with a population of individuals,

a new population containing offspring is generated and, in general >. The

selection procedure, called as environmental selection, selects individuals from a

35

combined population + solutions to build the population of next generation. An

algorithmic description of the ES algorithm is presented in Algorithm 3.5.

Algorithm 3.5. (
+
,)-Evolution Strategies Algorithm(Input Problem)

1. Set values of

and ;

2. Set =Number of solutions to be used recombination;

3. Initialize P=(Xi,Si,Fobj(Xi)), 1 ≤ i ≤ , where Si is the set of strategy parameters (e.g., step sizes for

variables) for the i-th solution Xi;

4. Fiti=Fobj(Xi), 1 ≤ i ≤ ;

4. Done=False;

5. while not(Done),

6. for i=1 to ,

7. (S’,X’)=Select_Mate(,P);

8. Si’’=s_recombine(S’,X’);

9. Xi’’=x_recombine(S’,X’);

10. Si’’’=s_mutate(Si’’);

11. Xi’’’=x_mutate(Xi’’);

12. Fi
’
=Fobj(Xi’’);

13. end for;

14. Set PU=P{(Xi’’’,Si’’’), 1≤i≤;

15. P=Environmental_Select(PU);

16. Check(Done);

17. end while.

3.1.6 Simulated Annealing (SA)

Simulated annealing (SA) is a trajectory based optimization method developed by

Kirkpatrick, Gelatt and Vecchi in 1980s [23]. This algorithm is inspired from thermal

equilibrium of particle systems and procedures used in annealing of metals. It is

known that, at sufficiently high temperatures metals pass to liquid state and particles

freely move around within a container. Then, if the metal is allowed to cool down

sufficiently slowly so that it is allowed to reach thermal equilibrium at each

temperature step, particles reach to a specific arrangement at which the internal

energy of the metal takes its minimum value. This arrangement of particles is called

the ground state. Hence, physical annealing is actually a procedure of minimizing the

internal energy of the particle system under consideration. This physical process is

transformed into a computational procedure, the simulated annealing algorithm for

which a proof of global convergence with probability one is also available [38]. SA

36

is successfully used for the solution of hard numerical and combinatorial

optimization problems. SA’s main drawback is its slow convergence for hard

problems due to large number of moves required at temperature step to get closer to

thermal equilibrium. A pseudo code for SA is given in Algorithm 3.6.

Algorithm 3.6. Simulated Annealing Algorithm(Input Problem)

1. T=T0 ; % Compute or estimate the initial temperature;

2. NT = Maximum number of new solutions (moves) to be generated at each temperature step;

3. Set cooling coefficient α;

4. Set conditions for termination;

5. S=Initialize the starting solution randomly;

6. Done=False;

7. while not(Done),

8. for i=1 to NT,

9. S’=Make_Move(S); % Generate S’ from S using an available move.

10. =Fobj(S)-Fobj(S’);

11. if <0,

12. S=S’;

13. else

14. R=exp(-/T);

15. if R>rand(0,1),

16. S=S’;

17. endif

18. endif

19. end for

20. T=α*T;

21. Check(Done);

22. end while.

3.1.7 Great Deluge Algorithm (GDA)

Great Deluge algorithm is a trajectory-based optimization algorithm that is similar to

simulated annealing (SA) except for its dynamically adjusted level-based acceptance

mechanism [25, 39]. The algorithm starts with a randomly constructed initial solution

and has three fundamental parameters to be set initially. These are the estimated

value of fitness for a globally optimal solution, the maximum number of iterations

and the initial value of the level parameter. Usually, the initial value of the level

parameter is set equal to the fitness of the initial solution. Throughout the execution

of GDA, the value of the level parameter is decayed linearly or nonlinearly, and the

37

acceptance of new solutions depends on the level parameter. The basic GD algorithm

is described in Algorithm 3.7.

Algorithm 3.7. Great Deluge Algorithms(Input Problem)

1. Iter = 0; % Initialize the iteration counter

2. SIter = Build an initial solution;

3. Compute Fobj(SIter);

4. Sbest=SIter; Fbest= Fobj(SIter); % This the best solution found so far;

4. Max_Iter= Set the maximum number of iterations;

5. FGbest = Estimate the fitness of a globally optimal solution;

6. Level(Iter)= Fobj(SIter);

7. Set the level decay parameter, ΔLevel = (Fobj(SIter) − FGbest)/Max_Iter;

8. NILength = Not improving length limit; /*This is one of termination conditions when the algorithm

 gets stuck at a locally optimal solution.*/

9. Set Not improving counter to zero, NICount = 0;

10. Done = False;

11. while(not(Done)),

12. Generate a new solution, SIter+1, starting from SIter, using the available operators;

13. Compute FNew = Fobj(SIter+1);

14. if Fbest>FNew;

15. Sbest=SIter+1;

16. Fbest = FNew;

17. NICount=0;

18. elseif FNew ≤ Level(Iter),

19. NICount = 0;

20. else

21. SIter+1=SIter; % Reject the move

22. NICount = NICount + 1;

23. If NICount NILength,

24. DONE = 1;

25. end if;

26. end if;

27. Level(Iter+1) ← Level(Iter) − ΔLevel;

28. Iter ← Iter + 1;

29. If Iter == Max_Iter,

30. DONE ← 1;

31. end if;

32. end while.

3.2 Multi-objective metaheuristics used within the proposed multi-

agent systems

3.2.1 Non-dominated Sorting Genetic Algorithm (NSGA II)

Non-dominated sorting genetic algorithm (NSGAII) is a well-known evolutionary

multi-objective optimization algorithm developed in 2002 by K. Deb et al. [42].

NSGAII applies elitism and crowding operators to preserve high-quality solutions

and increase spread along the Pareto front. NSGAII starts with a randomly initialized

38

population and computes the ranks of solutions such that the rank of a solution is the

number of other population elements dominating this particular individual. In fact,

each rank represents a particular Pareto front in objective space. Accordingly, all

solutions are sorted in increasing order of their ranks and they are assigned a rank-

fitness proportional to their levels or fronts. Then, the algorithm uses the computed

fitness-ranks and applies selection, crossover and mutation operators to create the

offspring population. At the end of each generational step, parent and offspring

populations are combined, ranks of solutions are computed and the new population is

filled from ranked-sets in increasing order of rank values. If the number of elements

of the latest rank exceeds the remaining space to be filled, the some of its elements

are eliminated based on crowding distance criterion. The above described procedural

steps are repeated until predefined termination criteria are satisfied. For the problems

having strong parameter interactions, NSGAII is effective in extracting Pareto fronts

closer to the optimal one. A detailed description of the NSGAII algorithm can be

found in [42].

3.2.2 Multi-objective Genetic Algorithm (MOGA)

MOGA is another evolutionary multi-objective optimization algorithm for

approximating the Pareto-Front based on ranking niche formation strategies [43].

The rank of the j-th individual is computed as the number of other individuals

dominating it plus 1; hence all non-dominated solutions are assigned rank 1.

Consequently, fitness values of individuals are determined using interpolation of

rank values. The second distinctive feature of MOGA is its implementation of niche

size, δshare, in objective space. δshare represents a measure on the distance between

two individuals so that they may decrease each other’s fitness values. Given a

solution set S in objective space, MOGA first computes minimum (mq) and

39

maximum (Mq) values along each objective axis q. Then, the number hypercubes of

size δshare that can be placed within the hyperparallelogram with corners (m1,…,mk)

and (M1,…,Mk) is computed, which facilitated the computation of δshare from a

simple comparison of volumetric equality idea. Experimental work on a real-world

engineering problem showed that MOGA is successful on gradual improvement of

Pareto fronts.

3.2.3 Multi-objective Differential Evolution (MODE)

In general, multi-objective implementations of differential evolution are based on

extension of the single-objective differential evolution (DE) algorithm. MODE,

proposed by Xue et al. [45], has similarities with the DE variant DE/best/1/bin. The

proposed method implements a Pareto based approach for the selection of the best

individual as follows: if the trial solution is dominated, then the best is randomly

chosen from subset of non-dominated solutions. If the trial solution is non-

dominated, then it is chosen as the best individual. For the purpose of population

management, the authors used a (μ+λ)-selection strategy, Pareto ranking and

crowding distance mechanisms are used to get solutions that have a well spread

along the computed Pareto Front. MODE is used to solve unconstrained problems of

high dimensionality and it is shown to generate improved solutions compared to

SPEA algorithm.

3.2.4 Multi-objective Particle Swarm Optimization (MOPSO)

Coello et al. proposed the multi-objective particle swarm optimization (MOPSO)

method that extends the standard PSO algorithm to deal with multi-objective

optimization problems [47]. This method maintains an external global repository to

store the non-dominated solutions extracted within the algorithm. MOPSO also uses

the concept of Pareto dominance to determine the flight direction. An important issue

40

in MOPSO algorithm is the generation of hypercubes in which coordinates of a

particle is defined with respect to its objective function values. These hypercubes are

then used to determine a repository element that acts as the global best solution in

velocity computation of the particle under consideration. For this purpose, fitness

values of hypercubes are first scaled inversely proportional to their cardinality and

the one from which the global best will be taken is determined through roulette

wheel selection. Detailed description of the MOPSO is presented in [47].

3.2.5 Archived Multi-objective Simulated Annealing (AMOSA)

Archived multi-objective simulated annealing (AMOSA), proposed by

Bandyopadhyay et al. [46], is a multi-objective optimization method based on the

standard simulated annealing algorithm (SA). Like the SA algorithm, AMOSA is

also a trajectory based method that maintains an archive to store the non-dominated

solutions found through algorithm execution. Archive size changes between a hard

limit HL that is the maximum size of the Archive on termination and a soft limit SL

that is the maximum size to which the Archive may increase before it is reduced size

HL with clustering. Acceptance of a new solution is based on three main criteria

according to the dominance relation among the new solution and its parent.

Accordingly, the acceptance probability of a new solution is computed using the

domination counts of new solution, its parent and the archive elements. A detailed

description of the AMOSA algorithm is presented in [46].

3.2.6 Strength Pareto Evolutionary Algorithm (SPEA2)

Strength Pareto Evolutionary Algorithm is an evolutionary multi-objective

optimization method proposed by Zitzler et al. [44]. The algorithm uses a regular

population and maintains an external archive for storage of non-dominated solutions.

Each archive element A(i) is assigned a strength value S(i) which is equal to the

41

number of population elements that are dominated by or equal to A(i). For archive

elements, S(i) also represents the fitness value FA(i) of A(i). For a population

element P(j), its fitness FP(j) is calculated from the sum of S(i) values of archive

members that dominate or equal to P(j). A one is added to this sum to avoid zero

fitness values. These fitness values, FA (i) and FP (j), are called the raw fitness and

they may cause ranking difficulties when most individuals do not dominate each

other. To solve this problem, SPEA2 introduces density information to differentiate

between individuals having identical raw fitness values and actual fitness of an

individual is taken as the sum of its raw fitness and the density information.

Following the actual fitness computation, external archive is updated by extracting

non-dominated solutions from union of population and old archive members. Finally,

a mating pool is formed using updated archive elements through binary tournament

selection and offspring individuals are generated with crossover and mutation

operators. Experimental evaluations over sets of well-known test problems

demonstrated that SPEA2 achieved a success similar to that of NSGAII.

42

Chapter 4

3 LEARNING-BASED MULTI-AGENT SYSTEM FOR

SOLVING COMBINATORIAL OPTIMIZATION

PROBLEMS

4.1 Introduction

Due to NP-complete computational complexity, solving hard combinatorial

optimization problems using exhaustive search methods is not computationally

feasible. Hence, metaheuristics like evolutionary algorithms are applied to reach a

near optimal solution within reasonable running times. Like evolutionary algorithms,

other nature- and bio-inspired metaheuristics have been developed and their success

for the solution of difficult combinatorial optimization problems is demonstrated

through experimental evaluations.

This chapter presents a novel multi-agent system in which a number of metaheuristic

agents act cooperatively through sharing their individual experiences gained

individually and the overall multi-agent system favors those agents based on their

performance in search for good solutions. The proposed learning-based multi-agent

system (LBMAS) is supported by a two-stage external memory archive. The first

stage stores promising solutions based on their fitness values. The second stage keeps

promising solutions that are apart from each other based on a defined dissimilarity

measure. Individual metaheuristics act one at a time and average improvement

43

achieved by each individual agent in fitness function is recorded. Then, to decide

which metaheuristic is the best to employ for the next turn, individual average

improvement of each agent is taken as its fitness and the agent selection is carried out

using roulette-wheel selection method. The proposed multi-agent system also

contains dedicated coordination agents for data and message transfer among agents,

retrieval of common population and the common archive elements, and initialization

of algorithm parameters. A detailed architectural description the proposed multi-

agent system is presented in Section 4.2.

The seven metaheuristics implemented within the framework of the proposed

approach are Genetic Algorithms (GAs) [20], Differential Evolution (DE) [21, 22],

Simulated Annealing (SA) [23], Ant Colony Optimization (ACO) [24], Great Deluge

Algorithm (GDA) [25], Tabu Search (TS) [26], and the Cross Entropy (CE) [27]

method. Detailed descriptions of these metaheuristics can be found in the associated

references. There are additional four agents implemented within the proposed

system. They are as follows, Problem Agent initializing the parameters of the input

problem, Solution Pool Agent handling all transactions with the common population,

Archive agent handling retrieval and update operations associated with the common

two-stage archive and the Manager Agent that handles coordination and performance

based employment of individual agents.

Next Section introduces a detailed description of the proposed multi-agent system of

metaheuristic agents. Experimental results in solving a well-known combinatorial

optimization problem are given in chapter 7.

44

4.2 The proposed multi-agent system for solving combinatorial

optimization problems

This section introduces the proposed learning-based multi-agent system (LBMAS)

and agent interaction mechanism for solving a single objective combinatorial

optimization problem, namely the multiprocessor scheduling problem. The proposed

multi-agent system allows collaboration of metaheuristic agents over a common

population and a two-stage common archive in such a way that promising solutions

are searched over different regions of the search space using the currently most

effective agent. In order to achieve the objectives of the proposed multi-agent

system, agents responsible for initialization, data retrieval, archive management and

agent coordination are also maintained within the system. Figure 4.1 illustrates the

architectural components and functional interactions within the proposed system.

This multi-agent framework includes 7 metaheuristic agents and 4 system agents.

When selected, each metaheuristic agent applies its own search strategy and returns

its discovered solutions to the manager agent. Then, the manager agent distributes

this data to solution pool and archive agent which they update the common

population and common archive respectively. Selection of metaheuristics is carried

out using roulette-wheel selection principle where fitness values of metaheuristics

are taken as their level of improvements in objective function. Initially all

metaheuristics have the same rate of being selected and these improvement rates are

increased or decreased based on performance of individual agents. In this respect,

when the average fitness improvement achieved by particular agent is positive, its

improvement rate is increased proportional to the improvement. On the other hand, if

the agent’s average improvement in fitness is not above a predefined percentage

45

threshold, then its improvement rate is decreased by a constant amount. However, the

improvement rates are not reduced below a lower limit. A second important

component of the proposed system, that is very effective on the overall performance

of the proposed system, is the two-stage external memory architecture which is first

proposed in [28].

 Figure 4.1. Architectural description of LBMAS concerning its

 metaheuristic agents and the four functional agents

In this architecture the first level acts as a short term memory keeping the promising

solutions considering their fitness values. Hence, elements of the first stage are

CE Agent

 Disk

Reads Sample Problem from

the File

Fitness Based

Archive
Positional

Based Archive

Problem

Definition

Read

Population-Based Heuristics

Single solution-Based

Heuristics

Solution-

Pool Agent

Problem

Agent

Manager

Agent

Archive

Agent

Solution

Pool

Problem Definition & Population

Problem

Definition

& Solution

Initialized

Solutions

Insert

Retrieve

Solutions

Insert

Retrieve

Update

Retrieve

New

Archive Update

Archive elements Retrieve Archive elements

Retrieve

GDA Agent

TS Agent

SA Agent

GA Agent

DE Agent ACO Agent

46

frequently updated each time a solution better than the worst element is extracted.

The second stage archive acts as a long term memory that is updated only after the

first stage archive is updated for a predefined number of times. Furthermore,

elements of the second stage archive are selected so that they are mutually dissimilar

based on a similarity measures. In the proposed system, hamming distance is used for

similarity measure and elements of second stage archive are required to be dissimilar

in at least half of their elements. This way, exploitation of promising solutions from

different regions of the solution space is achieved, that is a very important issue for

multimodal optimization problems.

As illustrated in Figure 4.1, the seven metaheuristic agents implemented within the

framework of the proposed approach are GAs, DE, SA, ACO, GDA, TS, and CE.

The other four agents implemented within the proposed system are as follows:

Problem Agent that handles all initialization procedures including the parameter

settings, update rules, and variable ranges. Solution Pool Agent handles all

transactions with the common population and associated communications with other

agents. Archive agent performs retrieval and update operations associated with the

common two-stage archive and the Manager Agent coordinates activities of agents

and carries out the performance based selection of individual agents. Most of the

critical operations for stable running of the proposed system are performed by the

Manager Agent.

The resulting MAS framework is used to solve a hard combinatorial optimization

problem and analysis of the obtained results showed that the objectives on the design

of the proposed MAS are almost all achieved. Evaluation and experimental results is

presented in chapter 7.

47

Chapter 5

A TOURNAMENT-BASED COMPETITIVE-

COOPERATIVE MULTI-AGENT ARCHITECTURE

FOR REAL PARAMETER OPTIMIZATION

5.1 Introduction

Real parameter optimization problems are of great importance in engineering

applications and they are widely solved by metaheuristics due to their

computationally simple search mechanisms, applicability in diverse range of

problems, and power to extract near optimal solutions using feasible computational

resources. In real parameter optimization, the objective is to find the global

minimum/maximum real value for a function of the form, where and

represent a solution vector and its component along the ith axis, respectively.

Usually, each is restricted to take its values from a specified domain . In most of

the practical cases, the size of search space and fitness-landscape complexity makes

the problem intractable for extracting the globally optimal solution. Consequently,

near-optimal solutions satisfying predefined acceptability criteria become the targets

of the optimization task.

Several metaheuristics that are particularly suited for the solution of real-valued

optimization problems have been designed and their successes are demonstrated

through solving difficult benchmark problem instances. Description of all available

48

metaheuristics developed for real-valued optimization is not an objective of this

study that is also impractical due to rapid developments in this hot research field.

Instead, we want to illustrate the effectiveness of a multi-agent architecture of

metaheuristic agents for single-objective real-valued optimization problems. In this

respect, we considered metaheuristics that are mostly cited in literature due to their

pioneering statue and published success for problems under consideration.

Particularly, metaheuristic agents with search mechanisms of evolution strategies

(ES) [30], simulated annealing (SA) [23], genetic algorithms (GA) [20, 29], artificial

bee colony optimization (ABC) [31], particle swarm optimization (PSO) [32],

differential evolution (DE) [21, 22] and great Deluge algorithm (GDA) [25] are taken

into account within the proposed multi-agent framework. Basic descriptions and

application principles of these metaheuristics will be presented in the following

sections.

A multi-agent system (MAS) is a social environment for a population of agents each

of which performs a goal-oriented task on the environment using their own operators.

Basically, each agent gets a set of percepts from their environment, processes the

percepts under light of their accumulated knowledge, and act on the environment

through their available operators to achieve a predefined design goal. MASs can be

categorized as homogeneous where all agents are identical in architecture and

capabilities or heterogeneous where each agent may have its own architectural

components and computational procedures [2]. In either of the two categories, a

multi-agent system is designed to carry out a particular task through social

interaction of its agents. This social interaction is also usually of two types, namely

cooperation or competition. Both of these social interactions require agents to use

communication mechanisms through which they can share or exchange information.

49

Details of popular multi-agent systems and their design approaches are given in the

next section. State-of-the-art literature on MASs designed for real-valued function

optimization is also presented in detail in sections below.

This chapter presents a heterogeneous MAS for the solution of real-valued single-

objective optimization problems. In the proposed framework, each agent performs

the function of conventional implementation of a particular metaheuristic. Agent

architectures are made of the data structures included in their associated

metaheuristic algorithm while the search operators provided by each metaheuristic

set up the action sets of corresponding agents. All agents work on the same

population and have a common memory. This way, agents exchange information

through using and sharing elements of the same population while they are sharing

their accumulated experience within the maintained common archive keeping the

most promising solutions found so far. Both cooperative and competitive interactions

take place within the proposed system: the system works in consecutive sessions and

at the beginning of each session agents compete with each other to get the task of

searching for new solutions, whereas each agent cooperates with the others by

sharing its extracted solutions within the common population and its accumulated

experience within the common archive. The proposed MAS is experimentally

evaluated using the well-known IEEE CEC2005 benchmark problems set that

includes 25 benchmark functions with different modal and fitness landscape

complexities [33, 34]. Comparative analysis of the obtained results showed that the

proposed framework performs significantly better than its state-of-the-art

competitors in almost all problem instances. Architectural, computational and

inferential implementation details of the proposed heterogeneous competitive-

cooperative multi-agent system are given in Section 5.2. Also, Description of

50

experimental suit, test problems, algorithm parameters and comparative analyses in

terms of quantitative and statistical computations is presented in chapter 7.

5.2 The proposed heterogeneous competitive-cooperative multi-

agent system for real-valued optimization

This section introduces the proposed multi-agent architecture and agent interaction

mechanism for the solution of single objective type of real-parameter optimization

problems. As briefly mentioned above, the proposed multi-agent system contains a

number of population- and trajectory-based metaheuristics that both compete and

cooperate in consecutive sessions to optimize a given objective function.

Architectural description of the proposed MAS is illustrated in Figure 5.1. Due to

different descriptions of benchmark problems, a problem agent is prepared to read

the problem files and initialize the problem parameters, such as number and ranges

of variables, as described in their associated definitions. The problem agent sends the

formalized description of the input problem to the Population management agent

(PMA) that is responsible from all management tasks over the shared solution pool

or common population. In this respect, the first task of the PMA is the initialization

of the solution pool. From then on, it handles all transactions related to the solution

pool and it is the only agent that can manipulate the shared population. For the

purpose of population management, PMA exchanges data and messages between the

strategy agent that controls and synchronizes the overall execution the proposed

multi-agent system. Communication between PMA and the strategy agent include

retrieval of population elements by the strategy agent when it is needed to relocate

them into an activated metaheuristic procedure, whereas the strategy agent sends the

results of individual metaheuristics to PMA to update the common population.

51

The strategy agent is the one that interacts with all other agents in the system to

organize tournament sessions, enable the winning agents and update the common

population and the archive. Depending on the needs of a metaheuristic agent in

action, it retrieves whole or part of the common population and sends the received

solutions to the corresponding metaheuristic agent. It also communicates with the

archive agent to get whole or subset of archive elements asked by a particular

metaheuristic agent and to return improved solutions to archive agent for the purpose

of updating the common archive. The strategy agent acts as the toolbox of the

proposed multi-agent system and an algorithmic description of its functions is given

in Algorithm 5.1.

Reads Sample Problem

from the File

Disk

Problem

Agent Read

 BCO Agent

GA Agent

PSO Agent ES Agent

DE Agent

Population Based Heuristics

Problem
Description

Population

Management

Agent
Strategy Agent

Problem

Insert Solutions

Retrieve Solutions

GDA Agent

SA Agent
Problem Parameters & Population

Problem Parameters

 & a Solution

Solution Pool Fitness Based

Archive

Archive

Agent

Initialized

Solutions

Insert

Retrieve

Update Solutions

Update Archive

New

Archive
Retrieve

Solutions

Archive elements

Insert

Solutions

Figure 5.1. Architectural description of the proposed multi-agent system

Trajectory Based Heuristics

52

Algorithm 5.1. Strategy Agent (Problem, Fitness_evaluation_count),

1. Initialization(Metaheuristic),

i. Initialize GA (Pop_size,Gen_size,PC,Pm);

ii. Initialize DE (Pop_size,Gen_size,PC,Pm);

iii. Initialize BCO(Bee Swarm,iteration);

iv. Initialize SA (Temperature value ,Coolingate ,Terminate_condition);

v. Initialize GDA (Estimated_quality,iteration);

vi. Initialize PSO (Pop_size,Gen_size);

2. Parameter initialization,

i. Tournament_count=10;

ii. Tournament_size = Fitness_evaluation_count / Tournament_count;

3. For i=1 to Tournament_count,

i. fitness-evaluation=0;

ii. For each metaheuristic agents,

i. Pop=Retrieve solution/solutions from Population_Management and archive agent;

i. If (metaheuristic is PSO),

 Global-best=Best_Solution in Archive;

ii. Previous_Fitness= fobj(Pop);

iii. Run metaheuristic(Pop) and increase fitness-evaluation counter accordingly;

iv. Population_Management.Update (obtained solutions);

v. Calculate improvement_rate for metaheuristic:

New_Fitness=fobj(Obtained_Pop);

Previous-best= Max(Previous_Fitness);

New-best=Max(New_Fitness);

Improvement_rate= ((Previous-best - New-best) / Previous-best)*100;

vi. Archive_Agent.Update(New_Archive)

iii. Winner_metaheuristic= One with Max(improvement_rate);

iv. Continue the running of winner_metaheuristic until fitness-evaluation=Tournament_size;

4. Return Best_Solution found so far;

Figure 5.2 presents the workflow and process of the algorithm used by strategy agent

in CMH-MAS.

The task of the archive agent is to answer calls from the strategy agent and update

the archive contents based on the results returned by the strategy agent. Archive size

is fixed and its initial contents are determined upon a dialog between the PMA and

the archive agent after PMA initializes the common population. Considering of

individual metaheuristic agents, as shown within two clouds in Figure 5.1, there are

two fundamental types, namely population- and trajectory-based, implemented in this

proposed system. While trajectory-based metaheuristics work on a single solution at

a time, population based metaheuristics manipulate the whole or a subset of the

population at every search step.

53

Depending on the metaheuristic agent in action, the strategy agent takes the

appropriate algorithm and problem parameters, archive elements and population

individuals and insert them into the skeleton of the corresponding computational

procedure. It is important to note at this point that, all metaheuristic methods

Start

Initialize Metaheuristics

(GA, DE, BCO, SA, GDA, PSO)

i <= Tournament_count

Initialize Parameters: Tournament count = 10, i=1

Tournament Size = Fintess_evaluation_count / Tournament_count

Fitness_evaluation = 0

For each Metaheuristics

Pop=Retrieve solutions from Population_Management and archive agent

Metaheuristic = PSO

Global_best = Best_Solution in Archive

Calculate improvement_rate for metaheuristic:

New_Fitness=fobj(Obtained_Pop);

Previous-best= Max(Previous_Fitness);

New-best=Max(New_Fitness);

Improvement_rate= ((Previous-best - New-best) / Previous-best)*100

Archive_Agent.Update(New_Archive)

Winner_metaheuristic= One with Max(improvement_rate)

Continue the running of winner_metaheuristic until fitness-evaluation=Tournament_size

i = i + 1

Yes

Yes

No

No

Return Best_Solution

found so far

End

Figure 5.2. Strategy Agent for CMH-MAS

54

implemented within this proposal are in their most basic form. In fact, one of our

objectives is to demonstrate that the proposed competitive and cooperative multi-

agent system, composed of basic implementations of metaheuristics, outperforms

almost all of the advanced state-of-the-art algorithms without bringing any

significant computational complexity.

Currently, the proposed multi-agent system includes 7 metaheuristic agents, namely

GA, DE, ABC, PSO, ES, GDA and SA, however the system is fully scalable since

the addition or deletion of a new metaheuristic agent requires simple modifications in

the strategy agent only. As mentioned in the description of metaheuristic methods,

the two trajectory-based algorithms used are GDA and SA while all the others belong

to the class of population based metaheuristics.

The proposed multi-agent system approach runs in consecutive sessions and each

session comprises two phases: the first phase sets up a tournament among all agents

to determine the currently best performing agent and the second phase lets the winner

to conduct its particular search procedure until termination criteria are satisfied. In all

phases and iterations of the proposed framework, all agents use the same population

and archive in conducting their search procedures. This way, agents compete with

each other in terms of their fitness improvements achieved over a fixed number of

fitness evaluations in tournaments, and they cooperate by sharing their search

experiences through accumulating them in a common population and a common

archive. The strategy agent controls communication and coordination of agents’

activities through monitoring the common population and the common archive. In

the tournament phase, each agent performs a fixed number of iterations over the

common population and gets a success score in terms the fitness improvements it

55

achieved by itself. The agent with the best score is the winner of the tournament.

Then, the winner agent is allowed to conduct its search algorithm using the common

population until either its procedure gets stuck at a locally optimal or the number of

generation is terminated. In both the tournament and the following computational

steps, a particular metaheuristic agent sends an inquiry to the strategy agent for the

delivery of algorithm parameters and population elements and it returns evolved

versions of solutions back to the strategy agent. New solutions are then sent to PMA

and archive agent to update the common population and archive. In both update

operations, elements of common population and archive that are worse than the new

solutions are replaced by the better ones. All metaheuristic agents in the proposed

system use the same real-valued vector representation of solutions; therefore there is

no need to convert solutions when they are exchanged between different agents of

the system.

Effectiveness of the resulting multi-agent framework in solving hard real-valued

optimization problems is investigated in both qualitative and statistical evaluations.

Results presented in chapter 7 include both self and comparative analysis of

experimental trials and, they clearly demonstrate that the objectives on the design of

the proposed MAS are almost all achieved.

56

Chapter 6

A MULTI-AGENT, DYNAMIC RANK-DRIVEN MULTI-

DEME ARCHITECTURE FOR REAL-VALUED MULTI-

OBJECTIVE OPTIMIZATION

6.1 Introduction

Real-world problems often are defined over a number of objectives which usually

contradict with each other [40]. In this respect, multi-objective optimization (MOO)

that provides a set of solutions, presenting a number of tradeoff alternatives among

the problem objectives, is of a great algorithm design challenge, particularly for

engineering applications. In real parameter multi-objective optimization, an

unconstraint minimization problem including m objective functions over is

defined as follows:

1

1

1

min ()

. . () ((),..., ())

(,...,)

...

X D

m

n

n

i i n

F X

s t F X f X f X

X x x R

x D and D D D

 (6.1)

For a multi-objective optimization problem, a set solutions representing all the

discovered tradeoffs among the problem objectives is commonly known as a Pareto-

optimal set in which Pareto-optimality is defined in terms of a dominance relation

between two solutions as follows: given two solutions u and v, u is said to dominate

57

v, u ≤ v, if u is not worse than v in all objectives and u is better than v for at least one

objective. For example, for a minimization problem, solution vector u is better than

solution vector v with respect to objective i, if fi(u) ≤ fi(v), and u dominates v if fi(u)

≤ fi(v), i and j for which fj(u) < fj(v). When neither u dominates v nor vice versa,

we say that the two objective vectors are non-dominated. The main goal, in the

solution of a MOO problem, is to obtain a Pareto global optimum set of feasible

solutions such that all solutions within this set are pairwise non-dominated. As often

done in literature, any set of non-dominated objective vectors is called a Pareto Front

[41].

Solution approaches for multi-objective optimization problems can be put into two

categories: exact solution methods and approximation algorithms. Exact methods

aim to compute the complete optimal Pareto front whereas approximate solution

algorithms try to extract good solutions but with no guarantee of their Pareto

optimality. Exact methods such as branch-and-bound, branch-and-cut, and dynamic

programming have so far been successfully applied for the solution small size

problems with two objectives; however infeasible computational time requirements

of exact methods are the main cause of the popularity of state-of-the approximation

algorithms. Among several approximation algorithms for MOO, metaheuristic-based

approaches gain high popularity due to their low computational complexity and

success in extracting optimal or very close-to-optimal Pareto fronts for high-

dimensional difficult problems that are either specially designed experimental

benchmarks or originating from practical applications. Among numerous proposals

of MOO metaheuristics, some of those that are well-known by their success are non-

dominated sorting genetic algorithm (NSGA II) [42], multi-objective genetic

58

algorithm (MOGA) [43], strength Pareto evolutionary algorithm (SPEA 2) [44],

multi-objective differential evolution (MODE) [45], multi-objective simulated

annealing (AMOSA) [46] and multi-objective particle swarm optimization (MOPSO)

[47]. Brief descriptions of these algorithms are given in the following sections. The

method proposed in this chapter implements the above mentioned MOO

metaheuristics as individual agents of a multi-agent system (MAS) in which each

agent acts on a subset of the common population based on the dominance ranks its

elements.

A multi-agent system (MAS) is a social environment for a population of agents each

of which performs a goal-oriented task on the environment using their own operators.

Basically, each agent gets a set of percepts from their environment, processes the

percepts under light of their accumulated knowledge, and act on the environment

through their available operators to achieve a predefined design goal. MASs can be

categorized as homogeneous where all agents are identical in architecture and

capabilities or heterogeneous where each agent may have its own architectural

components and computational procedures [2]. In either of the two categories, a

multi-agent system is designed to carry out a particular task through social

interaction of its agents. This social interaction is also usually of two types, namely

cooperation or competition. Both of these social interactions require agents to use

communication mechanisms through which they can share or exchange information.

State-of-the-art literature on MASs designed for real-valued function optimization is

presented in detail in sections below.

This chapter presents a novel heterogeneous multi-agent and rank-driven dynamic

multi-deme architecture for the solution of multi-objective optimization. Proposed

59

architecture contains implementations of a number MO metaheuristics as individual

agents that cooperatively work on different-rank Pareto fronts for the purpose of

finding the optimal comprises of the objective functions. Agent architectures are

made of the data structures included in their associated metaheuristic algorithm and

the search operators provided by each metaheuristic constitute the action sets of

corresponding agents. There is one population which is divided into disjoint subsets

based on dominance ranks of its elements. The number of subsets and their

cardinality depends on level of iterations. It is clear that, the number of subsets is

larger on initial iterations and cardinality of lower-rank subsets is smaller than those

of higher rank subsets, and these conditions change in reverse direction as the

number of iterations increase. The proposed multi-agent architecture works

iteratively in sessions including two consecutive phases: in the first phase, a

population of solutions is divided into subpopulations based on dominance ranks of

individual solutions. In the second phase, each multi-objective metaheuristic is

assigned to work on a subpopulation based on a cyclic or round-robin order. Hence,

each metaheuristic operates on a different-rank subpopulation in subsequent sessions,

where a session starts with a new assignment of metaheuristics and ends when

termination criteria are satisfied. Individual agents have their local archives of non-

dominated solutions extracted in a session, while there is a global archive keeping all

non-dominated solutions found so far. At the end of each session, all subpopulations

are combined into one global population to be used for the initialization of the next

session. Similarly, all local archives are merged with the global archive to get the set

of all non-dominated solutions found by all metaheuristics through working on

subsets of different rank-levels. This way, the metaheuristics cooperate with each

other by sharing their search experiences through collecting them in a common

60

population and a common global archive. The proposed MAS is experimentally

evaluated using the well-known IEEE CEC2009 benchmark problems set that

includes 20 benchmark functions [48]. Comparative analysis of the experimental

results demonstrated that the proposed architecture achieves better performance than

majority of its state-of-the-art competitors in almost all problem instances.

Description of the proposed MAS in details is given in the next Section.

In the rest of this chapter, the proposed heterogeneous, dynamic rank-driven multi

deme MAS for real valued multi-objective optimization is described in detail in

Section 6.2. Also, in chapter 7 description of experimental suit, test problems,

algorithm parameters, results and comparative analyses in terms of quantitative and

statistical computations are presented.

6.2 The Proposed Rank-Driven, Dynamic Multi-Deme and Multi-

agent Architecture

This section describes the proposed multi-agent multi-deme architecture based on a

novel collaboration mechanism for the solution of multi-objective real-valued

optimization problems. As briefly mentioned above, the proposed system includes a

number of multi-objective optimization algorithms which operate as individual

agents. The multi-agent system works in consecutive sessions where each session is

composed of task distribution to agents, execution of the assigned tasks and

delivering the results to the associated agents to initialize and start the next session.

Architectural description of the proposed method is presented in Figure 6.1. In this

architecture, there is a problem agent to read formulation of the multi-objective

optimization problem and to initialize the related parameters such as number of

variables, variable domains and number of objectives. The problem agent sends the

61

problem description and its parameter values to the Solution Pool Agent (SPA)

which manages all the transactions associated with the shared global population. As a

first task, SPA initializes the solution pool with randomly built solutions and

computes their objective function values. The next operation carried out by SPA is

the computation of dominance ranks of solutions in the global population. In this

respect, the dominance rank of a solution s is the number of other population

elements dominating s. SPA also initializes the initial order of agents by simply

generating a random permutation of integers from 1 to N, where N is the number of

agents in the system. In subsequent sessions, agent order is changed by rotating this

permutation right by one step. Based on the retrieve message of the strategy agent,

SPA sends the global population, corresponding objective function values, rank

information and initial order of agents to be used for the task assignment purpose.

The archive agent deals with all transactions associated with the global archive and it

communicates with the strategy agent for initialization, retrieval and update

operations. Upon receiving the current sets of non-dominated solutions from MOO

agents through the strategy agent, archive agent unites its current contents with the

received sets and eliminates those dominated solutions from this combination. The

updated global archive is sent back to the strategy agent to be used as a shared

resource for all agents during their executions. The heart of the proposed system is

the strategy agent (SA) that communicates with all other agents and carries out task

assignments, data collection, data transfer and control of all agent activities. An

algorithmic description of SA’s functions is presented in Algorithm 6.1.

At the beginning of each session, SA receives the global population and dominance

ranks of solutions from SPA and then divides the solutions into subpopulations based

62

on their dominance rank orders. That is, solutions having a rank of 1 form the first

subpopulation and solutions having a rank of k form the k-th subpopulation.

Obviously, cardinalities of subpopulations changes from session to session and hence

number of solutions within a subpopulation may be a few while many solutions may

be grouped into another subpopulation. In order to balance the load of individual

agents and distribute global population elements evenly over subpopulations, two

variables, Min_AgPopSize and Max_AgPopSize, describing the minimum and the

maximum number of solutions in each subpopulation is defined. In this respect, if the

number of solutions in a subpopulation is less than Min_PopSize, then randomly

selected solutions from higher-rank subpopulations are copied to get a cardinality of

Min_PopSize. Similarly, if the number of elements in a subpopulation is larger than

Max_PopSize, then randomly selected elements are removed from this subpopulation

to reduce cardinality to Max_PopSize. Then after, SA sends each subpopulation to a

NSGAII

Archive

MOGA

Archive

SPEA2

Archive

MODE

Archive

IMOPSO

Archive

AMOSA

Archive

Multi-objective Metaheuristic Agents with Local Archives

Multi-objective Optimization Problem

Problem
Agent

P
ro

b
le

m
 D

es
cr

ip
ti

o
n

Solution Pool
Agent

Archive

Agent

Strategy

Agent

Solution Pool (All Solutions) Global Archive (Non-Dominated

Solutions)

Method Parameters & Solutions

Problem Description

Initialized

Solutions Insert Retrieve

Updated Solutions and Archives

Problem

Insert

Retrieve

Update

Insert Archive Solutions

Retrieve Solutions

New

Archive Update

Archive

Figure 6.1. Architectural description of the proposed multi-agent system

63

MOO agent in the order that is determined initially by SPA and updated by SA at the

beginning of each session.

Algorithm 6.1. Strategy Agent(MOO_Problem, Global_Pop, Rank_List, Agent_Set, Agent_Order),

1. If Global_Archive = ,

i. Global_Archive = Global_Pop(Rank_List(0)); // Initialization of global archive

2. For i=0 to Num_Agents-1, // Rank-driven task assignment

i. Agent_Pop(Agent_Order(i+1))=Global_Pop(Rank_List(i,:));

ii. if |Agent_Pop(Agent_Order(i+1))| < Min_Pop_Size,

iii. Insert randomly selected elements from higher rank subpopulations, in order, until

 the cardinality of Agent_Pop(Agent_Order(i+1)) is more than Min_Pop_Size;

iv. else if |Agent_Pop(Agent_Order(i+1))| > Max_Pop_Size,

v. Remove randomly selected (|Agent_Pop(Agent_Order(i+1))|- Max_Pop_Size) agents

 from Agent_Pop(Agent_Order(i+1)).

3. For i=1 to Num_Agents, // Initialize individual agents

i. Initialize_Agents(Agent_Set(i), Agent_Parameters(Agent_Set(i)),Agent_Pop(Agent_Order(i)));

4. For i=1 to Num_Agents, // Start running each individual agent

i. [Local_Archive(Agent_Set(i)),Local_Pop(Agent_Set(i))] =

 Agent_Set(i, Agent__Pop(Agent_Order(i),Session_Fevals);

5. Return Union(Local_Archive) to Archive Agent and Union(Local_Pop) to Solution Pool Agent;

Figure 6.2 presents the workflow and process of the algorithm used by strategy agent

in RdMD-MAS.

Each individual MOO agent in the system is implementation of a particular

metaheuristic. Agents have their own local populations and archives keeping the

solutions extracted with their own search strategy and the extracted non-dominated

solutions, respectively. It should be noted at this point that, all multi-objective

metaheuristic methods implemented in this thesis are in their most basic form.

Indeed, composing of basic implementations of metaheuristics without any

additional computational complexity and showing that resulting composition is

competitive to state-of-the-art modern algorithms is one of our objectives. After

receiving the task assignment message from SA, each MOO agent runs its underlying

search mechanism and sends the improved population elements and the local archive

contents back to SA when the termination criteria are satisfied.

64

Start

i <= Num_agents -1

Global_Archive = Global_Pop(Rank_List(0))

i = 0

Global_Archive =

|Agent_Pop(Agent_Order(i+1))| <

Min_Pop_Size

Insert randomly selected elements from higher rank subpopulations, in

order, until the cardinality of Agent_Pop(Agent_Order(i+1)) is more

than Min_Pop_Size

 i = i + 1

No

Agent_Pop(Agent_Order(i+1))=Global_Pop(Rank_List(i,:))

End

Yes

Yes

Yes

No

|Agent_Pop(Agent_Order(i+1))| >

Max_Pop_Size

Remove randomly selected (|Agent_Pop(Agent_Order(i+1))|-
Max_Pop_Size) agents from Agent_Pop(Agent_Order(i+1))

Yes

No

No

i = 1

i <= Num_agents

Initialize_Agents(Agent_Set(i),

Agent_Parameters(Agent_Set(i)),Agent_Pop(Agent_Order(i)))

 i = i + 1

Yes

No

i = 1

i <= Num_agents

[Local_Archive(Agent_Set(i)),Local_Pop(Agent_Set(i))] =
Agent_Set(i, Agent__Pop(Agent_Order(i),Session_Fevals)

Yes

No
 i = i + 1

Return Union(Local_Archive) to Archive Agent and

Union(Local_Pop) to Solution Pool Agent

Figure 6.2. Strategy Agent in RdMD/MAS

65

SA sends union of local populations to SPA and union of local archives to archive

agent to update global population and global archive. After then, a new session is

started as explained above.

Currently, the proposed multi-agent system comprises six metaheuristic agents,

namely MOGA, NSGAII, SPEA2, MODE, MOPSO and AMOSA. However the

system is fully scalable to add a new multi-objective metaheuristic or delete an

existing one. All metaheuristic agents in the proposed system use the same real-

valued vector representation of solutions; therefore there is no need to convert

solutions when they are exchanged between different agents of the system.

Effectiveness of the resulting multi-agent framework in solving hard real-valued

optimization problems is investigated in the next section. Results presented in

chapter 7 clearly demonstrate that the objectives on the design of the proposed multi-

agent system are almost all achieved.

66

Chapter 7

EXPERIMENTAL RESULTS AND EVALUATIONS

7.1 Evaluation of learning-based multi-agent system for solving

combinatorial optimization problems

This section presents experimental evaluation of the proposed method for the

solution of multiprocessor scheduling problem that is a hard combinatorial

optimization problem (MSP) [49, 50].

MSP is represented as a directed acyclic graph (DAG) consisting of a set of vertices

and a set of directed edges between the vertices. Vertices demonstrate the parallel

code partitions as tasks in which each task has its own execution time. Meanwhile,

each directed edge indicates the execution order and the required time to make

communication between tasks. This problem is aiming to schedule a DAG to a set of

homogeneous fully connected processors. The objective is to find an optimal

scheduling with minimum total completion time to run the task graph on

multiprocessors [49, 50]. Figure 7.1 represents a sample task graph representing a

particular MSP [49]. Entry and finish points of this task graph are t0 and t18

respectively.

Solutions for MSP problem can be represented using simple data structure like

Arrays. Figure 7.2 illustrates a sample solution for the task graph in Figure 7.1 [51].

In this representation, processors are assigned to tasks in which is assigned to.

67

Figure 7.1. A sample task graph representing a particular MSP [16]

Meanwhile, the tasks order should be feasible in the sense that for generating feasible

solutions, they are chosen randomly among the tasks which are ready to be executed.

Once a task is finished, its successors which don’t have other unfinished

predecessors can be added to the ready list.

t0 t2 t3 t1 t4 t5 t6 t11 t13 t12 t9 t10 t8 t7 t14 t15 t16 t17 t18

p0 p1 p2 p0 p1 p2 p1 p1 p1 p1 p0 p0 p0 p2 p0 p1 p0 p1 p1

Figure 7.2. Solution representation for task graph in Figure 7.1

Algorithmic parameters for metaheuristics used within the proposed multi-agent

system are given in Table 7.1 It should be noticed that, even though the

metaheuristics within the multi-agent system are executed several times, they are run

in small population size to reduce total computation time.

Table 7.2 presents completion time of the MSP mentioned in figure 7.1 using

LBMAS and 6 existent deterministic methods. The computed result is compared to

well-known deterministic methods including MCP [52], LAST [53], HLFET [54],

ETF [55], EZ [56] and LC [57].

 t0 0

 t1 4 t2 3

 t3 4 t4 5

 t6 4 t5 5

 t7 3 t8 6 t9 4 t10 2 t11 6 t12 6 t13 2

 t14 4 t15 3

 t16 5 t17 6

 t18 0

2

0 0

5
4 5

2 1
2

2 2
2 1 3

2 1 2
3

5 1
5

2 4 2

3 4
3

5
1

0 0

68

Table 7.1. Algorithmic parameters for metaheuristics
Metaheuristic

Agent
Algorithm Parameters

GA |Pop|= 50, PC= 0.7, Pm= 0.1, Selection_method: Tournament Selection

ACO

|Pop|=50, Decay-Factor= 0.1, Heuristic-Coefficient= 2.5,
Local-Pheromone-Factor= 0.1, Greediness-Factor= 0.9

DE |Pop|=50, PC= 0.8, Pm =0.2, CR=0.7, F= 1.0

CE Learning-Rate= 0.7

TS Stopping-criteria= 200 iterations without solutioan change.

SA T0=150, α=0.2, Tmin=0.1

GDA

Level= Fitness(Initial-sol), No-Improvement-Length limit=
Level-Decay= (Fitnesss(Initial-sol) - Estimated_Best) / Max Iterations

Table 7.2. Completion time of task graph shown in Figure. 6 for all algorithms
Algorithm LC EZ HLFET ETF LAST MCP LBMAS

Completion Time 39 40 41 41 43 40 39

Figure 7.3 presents the visual comparison of LBMAS to its competitors to provide a

better quantitative evaluation.

 Figure 7.3. Comparison of LBMAS to other deterministic algorithms

It can be seen that, the completion time found by LBMS is 39. That means that the

total running time of task graph shown in Figure 7.1 over 3 multiprocessors system is

39 units. It is clearly seen that LBMAS produced better scheduling than most of its

competing algorithms. In particular, identical results are obtained with LC, however,

LC assumes that the number of processors is unlimited, whereas LBMAS assumes

only 3 processors.

We continue the evaluation of LBMAS over two other useful benchmarks of MSP,

37

38

39

40

41

42

43

44

 LC EZ HLFET EFT LAST MCP LBMAS C
o
m

p
le

ti
o
n

 T
im

e

Algorithm

69

namely Fast Fourier Transformation (FFT) and Internal Rate of Return (IRR) [58].

FFT graph has three types of edge weights, so we deal with three problems FFT1,

FFT2 and FFT4. Figure 7.4 presents the FFT and IRR task graphs [58].

 Figure 7.4. FFT (Up) and IRR (Down) task graphs [58]

Table 7.3 shows the experimental results of LBMAS compared to two existing

remarkable evolutionary methods, namely BCGA [59], CGL [60], and the MCP

algorithm. LBMAS generated better scheduling for FFT and IRR graphs. In this

experiment the number of processors is assumed to be four.

Vertex# FFT-1 FFT-2 FFT-4

1 – 8 1 60 20

9 – 12 20 50 20

13 – 16 30 5 30

17 – 20 20 5 20

21 - 28 1 5 5

1

-

2

-

9

-

13

-

17

-

21

-

22

-

3

-

4

-

10

-

14

-

18

-

23

-

24

-

5

-

6

-

11

-

15

-

19

-

25

-

26

-

7

-

8

-

12

-

16

-

20

-

27

-

28

-

0

15

3

20

2

20

1

20

4

55

5

55

6

60

7

10

8

10

9

10

10

10

11

25

13

40

12

25

14

40

15

6

16

6

17

6

18

5

19

5

20

5

21

10

22

30

23

30

24

30

25

36

26

36

27

30

28

30

29

50

30

50

31

50

32

50

33

50

34

50

35

100

36

100

37

100

38

20

39

20
40

15

Cost = 50

70

 Table 7.3. Completion time of applying MCP,CGL, BSGA and LBMAS on

 FFT and IRR graphs
Graph Serial Time Nodes # Edges # MCP CGL BCGA LBMAS

FFT1 296 28 32 148 152 124 124

FFT2 760 28 32 205 270 240 193

FFT4 480 28 32 710 260 255 195

IRR 1330 41 69 600 600 580 475

Also, below in Table 7.4 we compare LBMAS to three more competing algorithms,

namely DLS [61], MH [62] and SES [63].

 Table 7.4. Completion time of applying DLS, MH, SES and LBMAS on FFT

 and IRR graphs
Graph Serial Time Nodes # Edges # DLS MH SES LBMAS

FFT1 296 28 32 175 175 173 124

FFT2 760 28 32 275 280 255 193

IRR 1330 41 69 600 710 650 475

In Table 7.3 and 7.4, LBMAS is evaluated upon four task graphs with certain number

of nodes (Tasks) and edges. Also, the serial running time of these graphs on a single

processor are given in the tables. It can be seen that, the completion time of

scheduling discovered by LBMAS for FFT1 is 124 which is equal to BCGA and

better than others. Also, LBMAS achieves better completion time for FFT2, FFT4

and IRR in comparison to all competitors. In other words, LBMAS is able to find a

scheduling of IRR on a set of four processors with completion time of 475, while the

total completion times found by MCP, CGL, BCGA, DLS, MH and SES are 600,

600, 580, 600, 710 and 650 respectively.

Figure 7.5 shows the improvement rate values for the problems FFT4 (up) and IRR

(down) adjusted by LBMAS during the execution. According to the Figure 7.5, TS

and GA metaheuristics have larger values as improvement rates for FFT4 and IRR

71

respectively, means that their chance to be selected is more than others. Five

metaheuristics are applied for solving multiprocessor Scheduling Problem.

Improvement rate cannot be lower than 10, in order to give small chance to worst

metaheuristics to be selected. This way, Roulette Wheel Selection mechanism will

not cause damaging convergence.

 Figure 7.5. Improvement rate values for FFT4 (Up) and IRR (Down)

As mentioned in previous sections, in LBMAS, metaheuristics are run several times

according to their improvement rates. Metaheuristics are executed in small sizes,

because they are supposed to run more times. This way, multi-agent system will be

quick without any time complexity problems. Figure 7.6 below shows the reliability

of LBMAS and demonstrates that our LBMAS obtains almost same results in 20

different runs for FFT4 graph. In this figure, the vertical axis values shows the

completion time of FFT4 graph and the horizontal values indicates the run number

which is totally 20 independent runs. It can be seen that in 12 runs out of 20 different

runs, the system reaches to 195 and in other 8 runs the obtained value is very close to

195. Therefore, the system is reliable without any outstanding fluctuation.

0

20

40

60

80

100

 ACO GA GDA DE SA CE
TS

Im
p

ro
v
em

en
t

R
at

e

Metaheuristic Algorithms

0

20

40

60

80

100

 ACO GA GDA DE SA CE
TS

Im
p

ro
v
em

en
t

 R
at

e

Metaheuristic

72

Figure 7.6. Reliability of LBMAS in 20 different runs

Finally, below in Figure 7.7, the evolution of solutions during applying

metaheuristics on IRR graph is illustrated. It can be seen that the completion time of

the best solution is reducing until the 475 is reached. In this figure, the vertical axis

values present the completion time of IRR and the horizontal axis values show the

sample number in which the total number of samples is 80. This figure shows that in

the early samples the speed of evolution is outstanding and then it is gradually

converged to 475.

Figure 7.7. Evolution of solutions

7.2 Evaluation of Tournament-Based Competitive-Cooperative

Multi-agent Architecture for Real Parameter Optimization

Performance evaluation of the proposed algorithm and exhibition of its comparative

success against state-of-the art metaheuristics are carried out over the difficult

problems in CEC2005 benchmarks [34]. Details of these benchmark functions could

not be given here due to space limitations, but definitions, categorization and fitness

landscape characteristics of all these functions are described clearly the reference

194

199

204

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

C
o
m

p
le

ti
o
n
 T

im
e

Run number

450

600

750

900

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76

C
o
m

p
le

ti
o
n

 T
im

e

Best solution while LBMAS running

73

given above. For each of the test functions, the number of independent runs and the

termination criterion, in terms of the number of fitness evaluations, are set the same

as the ones used in the corresponding reference so that fairness is guaranteed for

comparative evaluations. Algorithmic parameters of the proposed method are kept

the same for all the test functions and no interactive intervention is made throughout

the program executions. Additionally, number of variables for the test functions is

also taken the same as the ones specified in the corresponding references.

Algorithmic parameters of the metaheuristic methods used within the proposed

multi-agent system are given in Table 7.5. For the five population-based methods,

population size is set as 100, whereas the two trajectory based algorithms start from a

single solution when each time they are activated. All of the parameters in Table 1

are collected from well-known conventional implementations of the corresponding

metaheuristic algorithms. Implementation of the proposed system is carried out using

Matlab® programming language environment and a personal PC with 8 GB main

memory and 2.1 GHz clock speed. The precision for the floating-point operations is

set to 15 fractional digits.

Table 7.5. Algorithmic parameters of the metaheuristic methods used within the

proposed system
Metaheuristic

Agent

Algorithm Parameters

GA |Pop| =100, PC =0.7, Pm=0.1, Selection method: Roulette wheel

PSO |Swarm| =100, ω=0.8, C1=2.0, C2=2.0

DE |Pop| =100, PC =0.8, Pm =0.2, CR=0.7, F= 1.0

ABC |B| =100, Num. Scouts=|B|, Trials Limit=10.

ES |Pop| (μ) = λ /2, λ = 4+[3ln n], ρ=0.3

SA T0=300, α=0.2, Tmin=0.1

GDA Level= fobj (Initial sol.), β=(fobj(Initial sol.) - Estimated_Best) / Max. Iterations

NILength=100

74

As mentioned above, the set of benchmark problems on which performance of the

proposed multi-agent system, named as CMH-MAS from this point on, is

comparatively evaluated is the CEC2005 problem set for numerical global

optimization. There are 25 problems within set, they are mostly generated from the

set of classical benchmarks through random shifting, random shifting and rotation,

and hybrid composition operations. Accordingly, there are 5 unimodal and 20

multimodal benchmark problems in this set and the set of multimodal problems

include 2 expanded and 11 hybrid composition problems. As illustrated in [34], some

of these functions have multimodal fluctuating landscapes that are hard for many

well-known metaheuristics. Detailed description of the problems within this set and

the experimental conditions under which the runs are performed are explained in

[34]. Accordingly, all results are averages over 25 runs and maximum number of

fitness evaluations is set to Problem_Size*1.0e+4. Problem sizes (number of

variables) for each benchmark problem instance is set as 10, 30 and 50, that means

1875 runs (625 runs for each problem size) performed totally for the 75 problem

instances. Results of other algorithms that are already used to solve these problems

are downloaded from [64] and average results of CMH-MAS are compared to these

average fitness values over 25 runs for all problems.

Table 7.6 illustrates the results of 11 algorithms which attended the CEC2005 contest

and CMH-MAS for problem size of 10 variables. It can be seen that CMH-MAS is

the best performing algorithm for 11 of the 25 problems and it shares the first

position with its competitors for other 4 problems. Particularly, for some of the

benchmark problems the average fitness score of the proposed method is much better

than its competitors. Considering the performance of CMH-MAS for unimodal and

multimodal problem instances, one can see that CMH-MAS has achieved the first

75

position for problems of both types. This shows that the proposed system is capable

locating good solutions over both single- or multi-modal fitness landscapes. Over a

number of problem instances, CMH-MAS does not take the first place among its

competitors, however for these 10 instances the proposed approach took the second

or the third position for 4 (F13, F14, F15, and F21), the fifth position for position 2

(F16 and F22), the sixth position for 2 (F10 and F17) and the seventh position 2 (F9

and F19) problems. In summary, among 12 competitors CMH-MAS took the either

fifth, seventh, or the seventh position for 6 problems from a set of 25 benchmarks.

 Table 7.6. Average fitness values of all algorithms used to solve CEC2005

 benchmarks for D = 10

Algorithm F1 F2 F3 F4 F5 F6

BLX-GL50 [30] 1.00E-009 1.00E-009 5.71E+002 1.00E-009 1.00E-009 1.00E-009

BLX-MA [31] 1.00E-009 1.00E-009 4.77E+004 2.00E-008 2.12E-002 1.49E+000

COEVO [32] 1.00E-009 1.00E-009 1.00E-009 1.00E-009 2.13E+000 1.25E+001

DE [33] 1.00E-009 1.00E-009 1.94E-006 1.00E-009 1.00E-009 1.59E-001

DMS-L-PSO [34] 1.00E-009 1.00E-009 1.00E-009 1.89E-003 1.14E-006 6.89E-008

EDA [35] 1.00E-009 1.00E-009 2.12E+001 1.00E-009 1.00E-009 4.18E-002

G-CMA-ES [36] 1.00E-009 1.00E-009 1.00E-009 1.00E-009 1.00E-009 1.00E-009

K-PCX [37] 1.00E-009 1.00E-009 4.15E-001 7.94E-007 4.85E+001 4.78E-001

L-CMA-ES [38] 1.00E-009 1.00E-009 1.00E-009 1.76E+006 1.00E-009 1.00E-009

L-SADE [39] 1.00E-009 1.00E-009 1.67E-005 1.42E-005 1.23E-002 1.20E-008

SPC-PNX [40] 1.00E-009 1.00E-009 1.08E+005 1.00E-009 1.00E-009 1.89E+001

CMH-MAS 3.78E-010 1.33E-010 2.61E-010 4.55E-010 1.08E-010 6.60E-011

F7 F8 F9 F10 F11 F12 F13

1.17E-002 2.04E+001 1.15E+000 4.97E+000 2.33E+000 4.07E+002 7.50E-001

1.97E-001 2.02E+001 4.38E-001 5.64E+000 4.56E+000 7.43E+001 7.74E-001

3.71E-002 2.03E+001 1.92E+001 2.68E+001 9.03E+000 6.05E+002 1.14E+000

1.46E-001 2.04E+001 9.55E-001 1.25E+001 8.47E-001 3.17E+001 9.77E-001

4.52E-002 2.00E+001 1.00E-009 3.62E+000 4.62E+000 2.40E+000 3.69E-001

4.20E-001 2.03E+001 5.42E+000 5.29E+000 3.94E+000 4.42E+002 1.84E+000

1.00E-009 2.00E+001 2.39E-001 7.96E-002 9.34E-001 2.93E+001 6.96E-001

2.31E-001 2.00E+001 1.19E-001 2.39E-001 6.65E+000 1.49E+002 6.53E-001

1.00E-009 2.00E+001 4.49E+001 4.08E+001 3.65E+000 2.09E+002 4.94E-001

1.99E-002 2.00E+001 1.00E-009 4.97E+000 4.89E+000 4.50E-007 2.20E-001

8.26E-002 2.10E+001 4.02E+000 7.30E+000 1.91E+000 2.60E+002 8.38E-001

1.01E-010 2.00E+001 1.28E+000 9.94E+000 7.54E-001 3.16E-009 2.40E-001

76

F14 F15 F16 F17 F18 F19 F20

2.17E+000 4.00E+002 9.35E+001 1.09E+002 4.20E+002 4.49E+002 4.46E+002

2.03E+000 2.70E+002 1.02E+002 1.27E+002 8.03E+002 7.63E+002 8.00E+002

3.71E+000 2.94E+002 1.77E+002 2.12E+002 9.02E+002 8.45E+002 8.63E+002

3.45E+000 2.59E+002 1.13E+002 1.15E+002 4.00E+002 4.20E+002 4.60E+002

2.36E+000 4.85E+000 9.48E+001 1.10E+002 7.61E+002 7.14E+002 8.22E+002

2.63E+000 3.65E+002 1.44E+002 1.57E+002 4.83E+002 5.64E+002 6.52E+002

3.01E+000 2.28E+002 9.13E+001 1.23E+002 3.32E+002 3.26E+002 3.00E+002

2.35E+000 5.10E+002 9.59E+001 9.73E+001 7.52E+002 7.51E+002 8.13E+002

4.01E+000 2.11E+002 1.05E+002 5.49E+002 4.97E+002 5.16E+002 4.42E+002

2.92E+000 3.20E+001 1.01E+002 1.14E+002 7.19E+002 7.05E+002 7.13E+002

3.05E+000 2.54E+002 1.10E+002 1.19E+002 4.40E+002 3.80E+002 4.40E+002

2.36E+000 1.35E+002 1.01E+002 1.18E+002 3.00E+002 7.26E+002 4.18E+002

 F21 F22 F23 F24 F25

6.89E+002 7.59E+002 6.39E+002 2.00E+002 4.04E+002

7.22E+002 6.71E+002 9.27E+002 2.24E+002 3.96E+002

6.35E+002 7.79E+002 8.35E+002 3.14E+002 2.57E+002

4.92E+002 7.18E+002 5.72E+002 2.00E+002 9.23E+002

5.36E+002 6.92E+002 7.30E+002 2.24E+002 3.66E+002

4.84E+002 7.71E+002 6.41E+002 2.00E+002 3.73E+002

5.00E+002 7.29E+002 5.59E+002 2.00E+002 3.74E+002

1.05E+003 6.59E+002 1.06E+003 4.06E+002 4.06E+002

4.04E+002 7.40E+002 7.91E+002 8.65E+002 4.42E+002

4.64E+002 7.35E+002 6.64E+002 2.00E+002 3.76E+002

6.80E+002 7.49E+002 5.76E+002 2.00E+002 4.06E+002

4.80E+002 6.62E+002 5.59E+002 2.00E+002 2.00E+002

For problem instances of size 30, there are 8 algorithms attended CEC2005 real-

valued optimization contest and Table 7.7 illustrates the average fitness values these

8 algorithms and CMH-MAS. For this set larger size problems CMH-MAS extracted

the best solutions and took the first place for 16 of 25 problems. The proposed

system performed significantly better than its competitors in terms of solution quality

also. For the remaining 9 instances CMH-MAS took the second position for 2 (F14

and F21), the F16) problems. It can be seen that, even for these 9 problems, CMH-

MAS is better than majority of its competitors for more than half of the instances.

Furthermore, it is still the case that the proposed system performed equivalently well

for both unimodal and multimodal problems.

Experimental results associated with problem size D=50 are presented in Table 7.7.

Two powerful competitors for CMH-MAS for this problem size are implementations

77

based on the evolution strategies with covariance matrix adaptation. Against these

two powerful competitors, CMH-MSA achieved the best average fitness scores for

17 of the 25 benchmark problems. The proposed systems took the third position for

only three problems, namely F5, F11, and F15. A comparison of results on Tables

7.6, 7.7, and 7.8 clearly indicates that the proposed system exhibits almost the same

level of success for problem sizes 10, 30, and 50. Hence, it can be claimed that the

proposed system is scalable.

 Table 7.7. Average fitness values of all algorithms used to solve CEC2005

 benchmarks for D = 30.
Algorithm F1 F2 F3 F4 F5 F6

BLX-GL50 1.00E-009 1.00E-009 3.11E+003 1.68E+001 3.33E+002 2.60E-007

BLX-MA 1.00E-009 8.72E-006 8.77E+005 3.97E+001 2.18E+003 4.95E+001

COEVO 7.97E-001 4.40E-001 3.67E+002 4.80E+003 8.34E+003 1.21E+003

DE 1.00E-009 3.33E-002 6.92E+005 1.52E+001 1.70E+002 2.51E+001

G-CMA-ES 1.00E-009 1.00E-009 1.00E-009 1.11E+004 1.00E-009 1.00E-009

K-PCX 1.00E-009 1.00E-009 5.79E+001 1.11E+003 2.04E+003 1.75E+000

L-CMA-ES 1.00E-009 1.00E-009 1.00E-009 9.26E+007 1.00E-009 1.00E-009

SPC-PNX 1.00E-009 6.95E-007 1.10E+006 8.13E-007 4.24E+003 1.52E+001

CMH-MAS 9.93E-011 1.85E-010 2.50E-010 1.85E+003 3.60E+001 1.29E-010

F7 F8 F9 F10 F11 F12 F13

1.00E-009 2.09E+001 1.51E+001 3.52E+001 2.47E+001 9.52E+003 5.15E+000

1.33E-002 2.07E+001 6.81E-001 9.06E+001 3.11E+001 4.39E+003 3.96E+000

1.41E-001 2.09E+001 1.31E+002 2.32E+002 3.77E+001 1.01E+005 9.02E+000

2.96E-003 2.10E+001 1.85E+001 9.69E+001 3.42E+001 2.75E+003 3.23E+000

1.00E-009 2.01E+001 9.38E-001 1.65E+000 5.48E+000 4.43E+004 2.49E+000

1.50E-002 2.00E+001 2.79E-001 5.17E-001 2.95E+001 1.68E+003 1.19E+001

1.00E-009 2.00E+001 2.91E+002 5.63E+002 1.52E+001 1.32E+004 2.32E+000

1.46E-002 2.09E+001 2.39E+001 6.03E+001 1.13E+001 1.31E+004 3.59E+000

1.58E-010 2.09E+001 1.12E+001 4.63E+001 3.76E+000 3.85E+002 1.83E+000

F14 F15 F16 F17 F18 F19 F20

1.21E+001 3.04E+002 8.87E+001 1.35E+002 9.04E+002 9.04E+002 9.03E+002

1.26E+001 3.56E+002 3.26E+002 2.79E+002 8.78E+002 8.80E+002 8.79E+002

1.32E+001 4.11E+002 3.81E+002 4.54E+002 1.06E+003 1.05E+003 1.06E+003

1.34E+001 3.60E+002 2.12E+002 2.37E+002 9.04E+002 9.04E+002 9.04E+002

1.29E+001 2.08E+002 3.50E+001 2.91E+002 9.04E+002 9.04E+002 9.04E+002

1.38E+001 8.76E+002 7.15E+001 1.56E+002 8.30E+002 8.31E+002 8.31E+002

1.40E+001 2.16E+002 5.84E+001 1.07E+003 8.90E+002 9.03E+002 8.89E+002

1.31E+001 3.68E+002 7.47E+001 8.54E+001 9.05E+002 9.05E+002 9.05E+002

1.25E+001 2.21E+001 1.48E+002 8.37E+001 8.15E+002 8.26E+002 8.16E+002

78

 F21 F22 F23 F24 F25

5.00E+002 8.74E+002 5.87E+002 8.77E+002 2.11E+002

5.00E+002 9.08E+002 5.59E+002 2.00E+002 2.11E+002

6.04E+002 1.16E+003 9.22E+002 1.10E+003 1.03E+003

5.00E+002 8.97E+002 5.34E+002 2.00E+002 7.30E+002

5.00E+002 8.03E+002 5.34E+002 9.10E+002 2.11E+002

8.59E+002 1.56E+003 8.66E+002 2.13E+002 2.13E+002

4.85E+002 8.71E+002 5.35E+002 1.41E+003 6.91E+002

5.00E+002 8.81E+002 5.34E+002 2.00E+002 2.13E+002

5.00E+002 5.06E+002 5.34E+002 2.11E+002 2.10E+002

 Table 7.8: Average fitness values of all algorithms used to solve CEC2005

 benchmarks for D = 50

Algorithm F1 F2 F3 F4 F5 F6

G-CMA-ES 1.00E-009 1.00E-009 1.00E-009 4.68E+005 2.85E+000 1.00E-009

L-CMA-ES 1.00E-009 1.00E-009 1.00E-009 4.46E+008 3.27E+000 1.00E-009

CMH-MAS 1.28E-010 1.48E-010 2.03E-010 8.91E+004 5.12E+002 3.03E-010

F7 F8 F9 F10 F11 F12 F13

1.00E-009 2.01E+001 1.39E+000 1.72E+000 1.17E+001 2.27E+005 4.59E+000

1.00E-009 2.00E+001 5.67E+002 1.48E+003 3.41E+001 8.93E+004 4.70E+000

1.77E-010 2.08E+001 1.35E+002 8.85E+001 5.32E+001 9.85E+002 3.85E+000

F14 F15 F16 F17 F18 F19 F20

2.29E+001 2.04E+002 3.09E+001 2.34E+002 9.13E+002 9.12E+002 9.12E+002

2.39E+001 2.50E+002 7.09E+001 1.05E+003 9.06E+002 9.11E+002 9.01E+002

2.14E+001 5.35E+002 6.53E+001 1.16E+002 8.38E+002 8.36E+002 8.37E+002

 F21 F22 F23 F24 F25

1.00E+003 8.05E+002 1.01E+003 9.55E+002 2.15E+002

5.00E+002 9.10E+002 6.37E+002 8.43E+002 4.77E+002

7.20E+002 5.01E+002 7.23E+002 2.16E+002 2.15E+002

To demonstrate the convergence of CMH-MAS compared to its component agents,

convergence graphs for three randomly selected functions of size 10, 30 and 50 are

plotted in Figure 7.8.a-c. It can be seen that convergence speed of CMH-MAS is

faster than those its component agents, particularly towards the end of iterations. A

fundamental observation is that while convergence plots of metaheuristic algorithms

get flat quickly and continues with small improvements in fitness values,

convergence plots of the proposed multi-agent system continues to decrease with a

sufficient degree of slope. This shows the capability of the proposed method in

escaping from locally optimal solutions.

79

(a)

(b)

(c)

Figure 7.8. Convergence speed plots of CMH-MAS and its components agents for

three randomly selected problems: F18 of size 10 (a), F10 of size 30 (b) and F22 of

size 50 (c)

In order to demonstrate how winners of tournament-based competitions are changed

along different sessions of the proposed system and how frequently a particular

metaheuristic wins the tournaments, steps when each metaheuristics wins are plotted

in Figure 7.9 for three randomly selected problems of sizes 10, 30 and 50. A basic

observation on this figure shows that a particular metaheuristics exhibits better

0 10 20 30 40 50 60
200

400

600

800

1000

1200

1400

1600

1800

2000

Fitness evaluation count = 100000 (60 Samples)

F
it
n
e
s
s
 v

a
lu

e

GA

PSO

SA

GDA

DE

BCO

ES

CMH-MAS

0 10 20 30 40 50 60
0

200

400

600

800

1000

1200

Fitness Evaluation Count= 300000 (60 Samples)

F
it
n
e
s
s
 V

a
lu

e

GA

PSO

SA

GDA

DE

BCO

ES

CMH-MAS

0 10 20 30 40 50 60
500

1000

1500

2000

2500

Fitness evaluation count = 500000 (60 Samples)

F
it
n
e
s
s
 v

a
lu

e

GA

PSO

SA

GDA

DE

BCO

ES

CMH-MAS

80

performance, in terms of the amount of improvement in fitness function, and wins

the tournament. Also, the same metaheuristic may win the tournaments multiple

times at different sessions of the proposed system. This is indeed an important

observation since changes in fitness landscape from beginning towards the end

search process requires different strategies to be implemented. This is in fact why

CMS-MAS is more effective than its component metaheuristic agents.

(a)

(b)

(c)

Figure 7.9. Metaheuristics that won the tournament competitions at different stages

of CMH-MAS for problem F10 of size 10 (a), F18 of size 30 (b), and F8 of size 50

(c).

0 1 2 3 4 5 6 7 8 9 10 11

x 10
4

0

1

2

3

4

5

6

7

8

Fitness Evaluation Size

M
e
ta

h
e
u
ri
s
ti
c
s

GDA

PSO

SA

ES

DE

BCO

GA

0 0.5 1 1.5 2 2.5 3

x 10
5

0

1

2

3

4

5

6

7

8

Fitness Evaluation Size

M
e
ta

h
e
u
ri
s
ti
c
s

GDA

PSO

SA

ES

DE

BCO

GA

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

x 10
5

0

1

2

3

4

5

6

7

8

Fitness Evaluation Size

M
e
ta

h
e
u
ri
s
ti
c
s

GDA

PSO

SA

ES

DE

BCO

GA

81

To present the convergence of CMH-MAS compared to same CMH-MAS without

our proposed strategy, convergence graphs for one randomly selected function of

size 30 is plotted in Figure 7.10. CMH-MAS is compared to CMH-MAS with

randomly selection of metaheuristics and the figure shows that convergence speed of

CMH-MAS is faster than it. This shows the good effect of applying proposed

strategy in our proposed multi-agent system.

Figure 7.10. Convergence speed plots of CMH-MAS and same CMH-MAS with

random method strategy for F18 with size 30.

For pairwise statistical tests of CMH-MAS and its competitors, nonparametric

Wilcoxon signed ranks test is selected to show that the phenotypic population

extracted by CMH-MAS is different from those of other metaheuristics under

consideration. In fact, both parametric and nonparametric statistical tests can be used

for this purpose. As it is clearly explained in the comprehensive tutorial of Derrac et

al [65], parametric tests are applied based on assumptions like normality,

independence, and homoscedasticity. Since these assumptions are hard to be

guaranteed for any stochastic search procedure, non-parametric tests that do not

require any of the above mentioned assumptions, are practically more preferable in

the statistical analysis of experiments. To compute the Wilcoxon signed test scores of

0 10 20 30 40 50 60
0

200

400

600

800

1000

1200

Fitness Evaluation Count (60 Samples)

F
it
n
e
s
s
 V

a
lu

e

CMH-MAS

Random Method

82

CMH-MAS against its competitors, the procedure presented in [65] is used and the

corresponding results are illustrated in Table 7.9 for the three problem dimensions. In

this table, each row shows the pairwise scores between the metaheuristic labeling the

row and CMH-MAS, where R+ is the sum of ranks corresponding to problem

instances for which CMH-MAS is better than the corresponding metaheuristic and

R- represents the sum of ranks for problems for which CMH-MAS is worse than its

competitor under consideration. The significance level (α) and the p-values are the

computed parameters that are used for handling the null hypothesis stating that

“CMH-MAS and its competitor are statistically similar”. Basically, if p-value is less

than α then the null hypothesis is rejected and smaller significance levels indicates

higher confidence on the rejection of null hypothesis.

 Table 7.9. Wilcoxon signed test results for

 pairwise statistical analysis of CMH-MAS

 against its competitors for problem all problem

 instances of size 10, 30 and 50
D = 10

Method R
R

α p-value

BLX-GL50 224 76 0.05 0.034491

BLX-MA 296 29 0.01 0.000328
COEVO 325 0 0.01 0.000012

DE 254 46 0.01 0.002964
DMS-L-PSO 194 82 0.1 0.088524

EDA 268 32 0.01 0.000748

G-CMA-ES 173 80 0.2 0.131132
K-PCX 239 61 0.05 0.010995

L-CMA-ES 266.5 33.5 0.01 0.000873

L-SADE 158 95 0.5 0.306465
SPC-PNX 266 34 0.01 0.000919

D = 30

Method R
R

α p-value

BLX-GL50 228 48 0.01 0.006194

BLX-MA 257 43 0.01 0.002235

COEVO 300 0 0.01 0.000018
DE 247 29 0.01 0.000916

G-CMA-ES 215 61 0.05 0.019183

K-PCX 256 69 0.05 0.011876
L-CMA-ES 279 46 0.01 0.001721

SPC-PNX 212 41 0.01 0.005506

D = 50

Method R
R

α p-value

G-CMA-ES 204 96 0.15 0.122865

L-CMA-ES 243 82 0.05 0.030311

83

Investigation of scores in Table 7.9 clearly indicates that null hypothesis is rejected

with strong confidences against all competitors of CMH-MAS for the three

experimental sets associated with dimensions 10, 30 and 50. There are three

exceptional cases for which α values are above 0.1 while the null hypothesis is still

rejected. These three cases correspond to comparisons with G-CMA-ES for D=10

and D=50, and comparison to L-SADE for D=10. It can be seen from Table 7.9 that

average fitness values for these algorithms and CMH-MAS are different, however

rank order of these algorithms and CMH-MAS are close to each other that causes the

α values become above 0.1.

In order to determine the order of CMH-MAS compared to its competitors, one-to-all

(or 1×N) Friedman Aligned Ranks Test is implemented for all experimental results

obtained from the three sets of benchmark problems. The computational procedure

followed for the implementation of this test is exactly the same as the one described

in [25]. Tables 7.10, 7.11 and 7.12 illustrate the Friedman aligned ranks of all

algorithms for all problem instances of sizes 10, 30 and 50, respectively. A table

entry (e.g. an aligned rank) the location of a (problem, algorithm) pair when all such

pairs are ranked from 1 to k.N, where k is the number of algorithms and N

corresponds to the number of problem instances. As explained in [65], the Friedman

aligned ranks test statistics, FAR, is computed and is compared for significance with

a
2 distribution with (k-1) degrees of freedom. The p-values computed using FAR

statistics are indicators of significant differences among algorithms under

consideration. Accordingly, Table 7.13 presents the FAR and the corresponding p-

values for all algorithms used to solve the CEC2005 problems of sizes D=10, 20 and

30. It can easily be seen that, compared to its competitors, the average values

84

associated with CMH-MAS is the smallest in all of the three cases indicating that

CMH-MAS is the best performing algorithm and it is significantly better than its

competitors for all problems of sizes 10, 30, 50. This is a clear indication on the

scalability and highly improved search capability of the proposed multi-agent

system. In addition to this, the p-values computed from the FAR statistics are very

close to zero that further indicates that there is significant difference among all

algorithms under consideration, which also implies that CMH-MAS is statistically

different than its competitors. This result is fully compatible with the conclusion

derived from Wilcoxon signed ranks test.

Table 7.10. Friedman aligned ranks for all (problem, algorithm) pairs for D=10

Friedman Aligned Ranks

D = 10
Problem

 B

L
X

-G
L

5
0

B
L

X
-M

A

C
O

E
V

O

D
E

D
M

S
-L

-P
C

O

E
D

A

G
-C

M
A

-E
S

K
-P

C
X

L
-C

M
A

-E
S

L
-S

A
D

E

S
P

C
-P

N
X

C
M

H
-M

A
S

F1 185 186 187 188 189 190 191 192 193 194 195 184
F2 196 197 198 199 200 201 202 203 204 205 206 183
F3 21 298 13 17 14 20 15 19 16 18 299 12
F4 2 8 3 4 11 5 6 9 300 10 7 1
F5 124 132 148 125 130 126 127 256 128 131 129 123
F6 138 151 238 145 142 143 139 147 140 141 242 137
F7 175 214 177 209 178 222 172 215 173 176 182 171
F8 217 181 211 218 164 212 165 166 167 168 225 169
F9 115 111 240 114 106 152 110 108 254 107 146 118
F10 116 120 243 233 105 119 100 101 250 117 135 163
F11 150 227 235 136 228 221 144 234 180 231 149 134
F12 284 55 294 43 33 288 39 90 247 32 263 31
F13 207 208 223 220 161 229 179 174 162 156 213 157
F14 155 153 226 224 159 170 216 158 230 210 219 160
F15 276 246 257 239 25 270 95 289 88 28 237 53
F16 96 104 262 232 97 252 94 98 112 102 154 103
F17 76 89 259 81 77 113 85 70 293 80 84 82
F18 46 286 291 36 280 65 26 279 69 275 51 24
F19 45 278 287 35 269 92 23 277 66 267 27 274
F20 44 281 290 48 285 260 22 283 38 268 37 34
F21 266 273 255 56 75 54 57 295 30 50 265 52
F22 253 78 261 133 93 258 236 71 245 241 248 74
F23 67 282 272 47 244 68 40 292 264 79 49 41
F24 58 72 249 59 73 60 61 271 297 62 63 64
F25 109 99 42 296 83 86 87 121 251 91 122 29
Sum 3421 4329 5361 3337 3421 3876 2631 4418 4397 3439 3947 2573

Average 136.84 173.16 214.44 133.48 136.84 155.04 105.24 176.72 175.88 137.56 157.88 102.92

85

 Table 7.11. Friedman aligned ranks for D=30

D = 30

 Friedman Aligned Ranks

Instance

B
L

X
-G

L
5
0

B
L

X
-M

A

C
O

E
V

O

D
E

G
-C

M
A

-E
S

K
-P

C
X

L
-C

M
A

-E
S

S
P

C
-P

N
X

C
M

H

-M
A

S

F1 126 127 161 128 129 130 131 132 125

F2 134 139 159 144 135 136 137 138 133

F3 14 223 13 222 10 12 11 224 9

F4 3 4 7 2 8 5 225 1 6

F5 26 203 219 25 22 192 23 218 24

F6 48 60 217 57 46 49 47 53 45

F7 141 146 151 145 142 148 143 147 140

F8 153 150 154 160 122 119 120 155 156

F9 94 83 190 95 84 82 201 100 91

F10 62 97 191 101 55 54 210 78 70

F11 168 182 185 183 107 180 111 108 106

F12 19 18 221 17 220 16 21 20 15

F13 157 118 170 115 114 179 113 116 112

F14 117 123 152 158 124 162 163 149 121

F15 93 181 189 184 50 212 52 186 33

F16 61 194 198 187 44 58 56 59 199

F17 42 99 193 72 105 43 215 35 34

F18 174 102 197 175 176 75 110 178 68

F19 165 103 195 166 167 73 164 171 71

F20 169 104 196 172 173 76 109 177 69

F21 85 86 188 87 88 207 79 89 90

F22 77 98 200 92 51 214 74 81 27

F23 96 80 206 63 64 202 67 65 66

F24 205 28 211 29 209 32 216 30 31

F25 37 38 213 208 39 40 204 41 36

Sum 2466 2786 4376 2987 2484 2696 3002 2751 1877

Average 98.64 111.44 175.04 119.48 99.36 107.84 120.08 110.04 75.08

 Table 7.12. Friedman aligned ranks for

 all (problem, algorithm) pairs for D=50
Friedman Aligned Ranks

Problem G-CMA-ES L-CMA-ES CMH-MAS

F1 45 46 32

F2 43 44 33
F3 39 40 35

F4 2 75 1

F5 13 14 71
F6 37 38 36

F7 41 42 34

F8 31 30 50
F9 11 70 17

F10 5 73 7

F11 26 51 56
F12 74 4 3

F13 48 49 29

F14 47 52 28
F15 16 20 66

F16 25 54 53

F17 12 72 8
F18 60 57 23

F19 59 58 22

F20 61 55 24
F21 68 9 27

F22 62 63 10

F23 67 15 21
F24 69 64 6

F25 18 65 19

Sum 979 1160 711
Average 39.16 46.4 28.44

86

 Table 7.13. Friedman Aligned Ranks

 statistics and the corresponding p-values

 over all algorithms used to solve problem

 instances of sizes D=10, 30, and 50
D = 10

Algorithms Average values of Friedman
Aligned Ranks over all

problem instances

BLX-GL50 136.84
BLX-MA 173.16

COEVO 214.44

DE 133.48
DMS-L-PSO 136.84

EDA 155.04

G-CMA-ES 105.24
K-PCX 176.72

L-CMA-ES 175.88

L-SADE 137.56

SPC-PNX 157.88
CMH-MAS 102.92

FAR 83.159

p-value 0.0

D = 30

Algorithms Average values of Friedman

Aligned Ranks over all
problem instances

BLX-GL50 98.64

BLX-MA 111.44
COEVO 175.04

DE 119.48

G-CMA-ES 99.36
K-PCX 107.84

L-CMA-ES 120.08

SPC-PNX 110.04
CMH-MAS 75.08

FAR 453.51

p-value 0

D = 50

Algorithms Average values of Friedman

Aligned Ranks over all

problem instances
G-CMA-ES 39.16

L-CMA-ES 46.4
CMH-MAS 28.44

FAR 165.166

p-value 0

In order to evaluate the time complexity of CMH-MAS, the procedure described in

[41] is exactly followed. These rules aim to express time complexity of an algorithm

independent of the computing platform. According to this procedure, published in

CEC2005 competition framework, all competitors should provide three run-time

measurements, T0, T1 and T2. T0 is the time required to execute a given fixed code

by one million times repetition, T1 is the computational time to compute value of

CEC2005 benchmark F3, 200,000 times and T2 is the average running time of a

particular algorithm for the optimization of benchmark F3 over 5 times with 200,000

87

fitness evaluations. Consequently, the time complexity of the algorithm under

consideration is computed as (T2 - T1) / T0.

Tables 7.14, 7.15 and 7.16 illustrate time complexities of all algorithms participated

to CEC2005 competition and CMH-MAS for problem sets D=10, 30 and 50,

respectively.

Remembering from previous discussions that CMH-MAS’s time complexity is better

than G-CMA-ES, that was the winner of CEC2005 competition, for problem sizes

D=10 and D=30. Another observation on time complexity of our proposal is that it

increases gradually with increasing problem size. Hence, it is interesting that G-

CMA-ES has an smaller time complexity for D=50; however, time complexity of

CMH-MAS is in the order of L-CMA-ES for D=50. This can be seen as a clear

evidence that the time complexity of our proposal is closer to that of CMA-ES

algorithms in the worst-case.

 Table 7.14. Time complexity of algorithms with D=10
Algorithm T0 T1 T2 Time Complexity

BLX-GL50 90919 ns 22316 ns 11950 ns 10.689

BLX-MA 420 ms 1414 ms 4440 ms 7.20

CoEVO 1.3 s 2.0 s 22.1 s 15.5

DE 0.29 s 1.2 s 1.502 s 1.041

DMS-L-PSO 36.445 s 30.64 s 77.038 s 1.273

EDA 6.93 s 0.753 2.328 s 0.227

G-CMA-ES 0.4 s 17 s 32 s 37.5

K-PCX 0.24 s 1.25 s 34.37 s 138 s

L-CMA-ES 0.4 s 32 s 51 s 47.5

L-SaDE 40.071 31.68 68.80 s 0.826

SPC-PNX 0.610 s 26.797 s 136.04 s 179.102

CMH-MAS 0.2543 s 22.8 s 30.42 s 29.9599

 Table 7.15. Time complexity of algorithms with D=30
Algorithm T0 T1 T2 Time Complexity

BLX-GL50 9091 ns 82981 ns 20646 ns 13.5811

BLX-MA 420 ms 8630 ms 1345 ms 11.48

CoEVO 1.3 s 1.6 s 16.8 s 11.7

DE 0.29 s 7.64 s 8.492 s 2.9379

G-CMA-ES 0.4 s 24 s 41 42.5

K-PCX 0.24 s 24.60 s 105.75 s 338.12

L-CMA-ES 0.4 s 41 s 45 s 10

SPC-PNX 0.407 s 32.218 s 135.55 s 253.894

CMH-MAS 0.2543s 27.931 s 36.12 s 32.5902

88

 Table 7.16. Time complexity of algorithms with D=50
Algorithm T0 T1 T2 Time Complexity

G-CMA-ES 0.4 s 49 s 56 s 17.5

L-CMA-ES 0.4 s 49 s 68 s 47.5

CMH-MAS 0.2543 s 36.43 s 48.54 s 47.6134

7.3 Evaluation of Multi-Agent Architecture for Real-Valued Multi-

Objective Optimization

Performance evaluation of the proposed algorithm and exhibition of its comparative

success against state-of-the art metaheuristics are carried out over the difficult

problems in CEC2009 benchmarks [66]. Details of these benchmark functions could

not be given here due to space limitations, but definitions, categorization and fitness

landscape characteristics of all these functions are described clearly in the reference

given above. For each of the test functions, the number of independent runs and the

termination criterion, in terms of the number of fitness evaluations, are set the same

as the ones used in the corresponding reference so that fairness is guaranteed for

comparative evaluations. Algorithmic parameters of the proposed method are kept

the same for all the test functions and no interactive intervention is made throughout

the program executions. Additionally, number of variables for the test functions is

also taken the same as the ones specified in the corresponding references.

Algorithmic parameters of the metaheuristic methods used within the proposed

multi-agent system are given in Table 7.17. All of the parameters in Table 7.17 are

collected from well-known conventional implementations of the corresponding

metaheuristic algorithms. Implementation of the proposed system is carried out using

Matlab® programming language environment and a personal PC with 8 GB main

memory and 2.1 GHz clock speed.

89

Table 7.17. Algorithmic parameters of the metaheuristic methods used within the

proposed system
Metaheuristic

Agent

Algorithm Parameters

MOGA |Pop| = 40, PC =0.7, Pm=0.2, Gaussian_Sigma_Pm=20

MOPSO |Pop| = 40, C1=2.0, C2=2.0, ωmax=0.9, ωmin=0.4

MODE |Pop| = 40, Scaling_Factor=0.5, PC =0.7,

SPEA2 |Pop| = 40, PC =0.9, Pm=1.0/Num_Vars,

Distribution_Index=20

AMOSA Archive_Hlimit=20, Archive_Slimit=50, Max_Temp=200, Coolin_Rate=0.95,

Min_Temp=0.00025, Gamma=2.0, Hill_Climbing_Num=20,

NSGAII |Pop| = 40, PC =0.9, Pm=1.0/ Num_Vars,

Distribution_Index=20,

As mentioned above, the set of benchmark problems on which performance of the

proposed multi-agent system, named as RdMD/MAS from this point on, is

comparatively evaluated is the CEC2009 numerical MOO competition benchmarks.

There are 10 multi-objective unconstrained problems within this set; they are mostly

generated from the set of classical benchmarks through random shifting, random

shifting and rotation, and hybrid composition operations. Among these problems

UF1 to UF7 are two-objective and UF8, UF9 and UF10 are three-objective

problems. Detailed description of problems within this set and the experimental

conditions under which the runs are performed are presented in [66, 67].

Accordingly, all results are averages over 30 runs and maximum number of fitness

evaluations is set to 300,000. Based on the CEC2009 competition rules, problem size

(number of variables) for each benchmark problem instance is set as 30 and the IGD

(Inverted Generational Distance) values are used to compare performance of

algorithms. For this purpose, results of algorithms that participated in CEC2009

MOO competition are taken from [67] and average results of RdMD/MAS over 30

runs are compared to these published values for all problems. As stated in [67], the

maximum number of final Pareto-front solutions to be used for the computation of

IGD scores is 100 for two-objective problems and 150 for three-objective problems.

90

Table 7.18 illustrates the Min, Max and Average IGD values associated with the

proposed RdMD/MAS algorithm for the 10 benchmark problems over 30

independent runs for each problem.

 Table 7.18. Min, Max and Average IGD values

 of RdMD/MAS in 30 runs

Function Average Min Max Std
UF1 0.00531 0.00519 0.00601 0.00028

UF2 0.00669 0.00652 0.00723 0.00026

UF3 0.03283 0.03156 0.03933 0.00318

UF4 0.02347 0.02305 0.02649 0.00138

UF5 0.08422 0.07195 0.09329 0.00641

UF6 0.03931 0.02915 0.04893 0.00648

UF7 0.00912 0.00784 0.01078 0.02852

UF8 0.11232 0.11168 0.12447 0.01542

UF9 0.06875 0.06375 0.07763 0.00435

UF10 0.23856 0.17757 0.36231 0.07635

Results in Table 7.18 show that RdMD/MAS is a successful and robust algorithm

illustrated with small IGD values and their standard deviations. The largest IGD

values belong to test problems UF8 and UF10 problems, however the performance

order of RdMD/MAS are 6th and 2nd, among 14 algorithms, for UF8 and UF10,

respectively.

Tables 7.19, 7.20, 7.21 and 7.22 illustrate the ranking of all algorithms that took part

in CEC2009 MOO contest and RdMD/MAS with respect to the average IGD scores.

Based on the published results in [67], the best performing five algorithms in the

competition are MOEAD [68], MTS [69], DMOEADD [70], LiuLi [71] and GDE3

[72] in order. Hence, the winner of the competition was MOEAD. It can be seen over

the three tables that RdMD/MAS performed better than MOEAD in 5 of the 10 test

problems. The proposed MAS takes the first position for one test problem (UF4) and

takes the first, second or third positions in 80% of the ten benchmark problems.

Among 14 rank positions, the worst rank of RdMD/MAS is the sixth position that is

91

taken for test problem UF8. The proposed method took the second rank position for

the difficult three-objective test problem UF10 for which the achieved average IGD

score is significantly better than the competitors in lower ranks. Except the test

problem UF8, it can be seen that in those 5 problems for which MOEAD is better

than RdMD/MAS, ranks of the proposed algorithm are quite close to those of

MOEAD; whereas for the other test problems for which RdMD/MAS is better than

MOEAD, ranks of MOEAD are far from those of the proposed algorithm.

 Table 7.19. Average IGD values obtained by RdMD/MAS and its 13

 competitors for UF1, UF2 and UF3
Rank UF1 IGD UF2 IGD UF3 IGD

1 MOEAD 0.00435 MTS 0.00615 MOEAD 0.00742
2 RdMD/MAS 0.00531 MOEADGM 0.00640 LiuLiAlgorithm 0.01497

3 GDE3 0.00534 RdMD/MAS 0.00669 RdMD/MAS 0.03283

4 MOEADGM 0.00620 DMOEADD 0.00679 DMOEADD 0.03337
5 MTS 0.00646 MOEAD 0.00679 MOEADGM 0.04900

6 LiuLiAlgorithm 0.00785 OWMOSaDE 0.00810 MTS 0.05310

7 DMOEADD 0.01038 GDE3 0.01195 ClusteringMOEA 0.05490
8 NSGAIILS 0.01153 LiuLiAlgorithm 0.01230 AMGA 0.06998

9 OWMOSaDE 0.01220 NSGAIILS 0.01237 DECMOSA-SQP 0.09350
10 ClusteringMOEA 0.02990 AMGA 0.01623 MOEP 0.09900

11 AMGA 0.03588 MOEP 0.01890 OWMOSaDE 0.10300

12 MOEP 0.05960 ClusteringMOEA 0.02280 NSGAIILS 0.10603
13 DECMOSA-SQP 0.07702 DECMOSA-SQP 0.02834 GDE3 0.10639

14 OMOEAII 0.08564 OMOEAII 0.03057 OMOEAII 0.27141

 Table 7.20. Average IGD values obtained by RdMD/MAS and its 13

 competitors for UF4, UF5 and UF6
Rank UF4 IGD UF5 IGD UF6 IGD

1 RdMD/MAS 0.02347 MTS 0.01489 MOEAD 0.00587

2 MTS 0.02356 GDE3 0.03928 RdMD/MAS 0.03931

3 GDE3 0.02650 RdMD/MAS 0.08422 MTS 0.05917

4 DECMOSA-SQP 0.03392 AMGA 0.09405 DMOEADD 0.06673

5 AMGA 0.04062 LiuLiAlgorithm 0.16186 OMOEAII 0.07338
6 DMOEADD 0.04268 DECMOSA-SQP 0.16713 ClusteringMOEA 0.08710

7 MOEP 0.04270 OMOEAII 0.16920 MOEP 0.10310
8 LiuLiAlgorithm 0.04350 MOEAD 0.18071 DECMOSA-SQP 0.12604

9 OMOEAII 0.04624 MOEP 0.22450 AMGA 0.12942
10 MOEADGM 0.04760 ClusteringMOEA 0.24730 LiuLiAlgorithm 0.17555

11 OWMOSaDE 0.05130 DMOEADD 0.31454 OWMOSaDE 0.19180

12 NSGAIILS 0.05840 OWMOSaDE 0.43030 GDE3 0.25091
13 ClusteringMOEA 0.05850 NSGAIILS 0.56570 NSGAIILS 0.31032

14 MOEAD 0.06385 MOEADGM 1.79190 MOEADGM 0.55630

92

 Table 7.21. Average IGD values obtained by RdMD/MAS

 and its 13 competitors for UF7 and UF8

Rank UF7 IGD UF8 IGD

1 MOEAD 0.00444 MOEAD 0.05840

2 LiuLiAlgorithm 0.00730 DMOEADD 0.06841

3 MOEADGM 0.00760 LiuLiAlgorithm 0.08235
4 RdMD/MAS 0.00912 NSGAIILS 0.08630

5 DMOEADD 0.01032 OWMOSaDE 0.09450

6 MOEP 0.01970 RdMD/MAS 0.11232

7 NSGAIILS 0.02132 MTS 0.11251

8 ClusteringMOEA 0.02230 AMGA 0.17125

9 DECMOSA-SQP 0.02416 OMOEAII 0.19200
10 GDE3 0.02522 DECMOSA-SQP 0.21583

11 OMOEAII 0.03354 ClusteringMOEA 0.23830

12 MTS 0.04079 MOEADGM 0.24460
13 AMGA 0.05707 GDE3 0.24855
14 OWMOSaDE 0.05850 MOEP 0.42300

 Table 7.22. Average IGD values obtained by RdMD/MAS

 and its 13 competitors for UF9 and UF10
Rank UF9 IGD UF10 IGD

1 DMOEADD 0.04896 MTS 0.15306

2 RdMD/MAS 0.06875 RdMD/MAS 0.23856

3 NSGAIILS 0.07190 DMOEADD 0.32211
4 MOEAD 0.07896 AMGA 0.32418

5 GDE3 0.08248 MOEP 0.36210

6 LiuLiAlgorithm 0.09391 DECMOSA-SQP 0.36985
7 OWMOSaDE 0.09830 ClusteringMOEA 0.41110

8 MTS 0.11442 GDE3 0.43326

9 DECMOSA-SQP 0.14111 LiuLiAlgorithm 0.44691
10 MOEADGM 0.18780 MOEAD 0.47415

11 AMGA 0.18861 MOEADGM 0.56460
12 OMOEAII 0.23179 OMOEAII 0.62754

13 ClusteringMOEA 0.29340 OWMOSaDE 0.74300

14 MOEP 0.34200 NSGAIILS 0.84468

Comparisons between RdMD/MAS and MTS, which is the second best performing

algorithm in the contest, show that the proposed algorithm is better than MTS in 7 of

the 10 test problems. MTS’s performance is better for the test problems UF2, UF5

and UF10 only. Similar, evaluations compared to the third, fourth, and the fifth rank

algorithms of CEC2009 MOO competition exhibit that RdMD/MAS achieved

significantly better ranks than DMOEADD, LiuLi and GDE3 algorithms in 8, 7, and

6 test problems, respectively.

Figure 7.11 illustrates the plots of best computed Pareto-Fronts obtained by

RdMD/MAS against the optimal one (PF-True) published as a result of the

93

competition. The plots of computed Pareto fronts for two-objective test problems

include 100 non-dominated solutions whereas those for three-objective problems

cover 150 solutions. These solutions are selected based on the descriptions in [68] as

follows: Solutions on the computed Pareto front are clustered into 100 (150 for three-

objective case) classes and a member that is nearest to the PF-True from each class is

selected.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Objective1

O
b
je

c
ti
v
e
 2

UF1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Objective 1

O
b
je

c
ti
v
e
 2

UF2

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Objective 1

O
b
je

c
ti
v
e
 2

UF3

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Objective 1

O
b
je

c
ti
v
e
 2

UF4

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Objective 1

O
b
je

c
ti
v
e
 2

UF5

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Objective 1

O
b
je

c
ti
v
e
 2

UF6

94

 Figure 7.11. Pareto-Front found by RdMD/MAS for problems UF1 to UF10

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Objective 1

O
b
je

c
ti
v
e
 2

UF7

0

0.5

1

0

0.5

1

0

0.5

1

1.5

Objective 1

UF8. PF-True

Objective 2

O
b
je

c
ti
v
e
 3

0

0.5

1

0

0.5

1

0

0.5

1

1.5

Objective 1

UF8. Extracted PF

Objective 2

O
b
je

c
ti
v
e
 3

0

0.5

1

0

0.5

1

0

0.5

1

Objective 1

UF9. PF-True

Objective 2

O
b
je

c
ti
v
e
 3

0

0.5

1

0

0.5

1

0

0.5

1

Objective 1

UF9. Extracted PF

Objective 2

O
b
je

c
ti
v
e
 3

0

0.5

1

0

0.5

1

0

0.5

1

1.5

Objective 1

UF10. PF-True

Objective 2

O
b
je

c
ti
v
e
 3

0

0.5

1

0

0.5

1

0

0.5

1

1.5

Objective 1

UF10. Extracted PF

Objective 2

O
b
je

c
ti
v
e
 3

95

Plots of computed Pareto fronts against the optimal ones demonstrate that the set of

non-dominated solutions found by RdMD/MAS has a good spread and the computed

PFs are quite close to PF-trues. Considering the test problems UF5 and UF6 for

which there are local jumps out of the associated PF-trues, however these jumps also

occurred on all plots given in [68, 69, 70, 71, 72] and the magnitude of these jumps

for the computed PF of RdMD/MAS are significantly smaller than many of those

found by the competitors.

To demonstrate the convergence of RdMD/MAS compared to its component agents,

convergence graphs for UF5 are plotted in Figure 7.12. It can be seen that

convergence speed of RdMD/MAS is faster than those its component agents,

particularly at all level of iterations. A fundamental observation is that while

convergence plots of metaheuristic algorithms get flat quickly and continues with

small improvements in fitness values, convergence plots of the proposed multi-agent

system continues to decrease with a sufficient degree of slope. This shows the

capability of the proposed method in escaping from locally optimal solutions.

Figure 7.12. Convergence speed plots of RdMD/MAS and its components for UF5

To present the convergence of RdMD/MAS compared to same RdMD/MAS without

our proposed strategy, convergence graph for one randomly selected function of UF5

5 10 15 20 25 30 0

1

2

3

4

5

IGD sampling in each 10,000 Fitness evaluation

IG
D

 V
a
lu

e
s

RdMD.MAS

MOGA

NSGAII

SPEA2

MODE

IMOPSO

AMOSA

96

is plotted in Figure 7.13. RdMD/MAS is compared to RdMA/MAS with randomly

selection of metaheuristics and the figure shows that convergence speed of

RdMA/MAS is faster than it. This shows the good effect of applying proposed

strategy in our proposed multi-agent system.

Figure 7.13. Convergence speed plots of RdMD/MAS and same RdMD/MAS with

random method strategy for UF5

The last step of experimental evaluations is the Friedman Aligned Ranks Test that is

implemented over all average IGD scores achieved by the 13 algorithms in CEC2009

MOO contest and the proposed RdMD/MAS algorithm. The objective of this test is

of twofold: checking the statistical similarity of our results to those of others and

determining the order of RdMD/MAS compared to its all competitors. This test is

carried out according to the computational procedure described in [34]. Table 7.23

presents the Friedman aligned ranks of all algorithms for all problems. In this table,

all (problem, algorithm) pairs are ranked from 1 to K.N; where K and N are the

number of algorithms and problems respectively. As described in [65], the Friedman

aligned ranks test statistics, FAR, is calculated by the corresponding formula and is

compared for statistical significance with a distribution with (K-1) degrees of

freedom. The computed p-value with the distribution is used to indicate the

significant differences among the all algorithms under consideration. Consequently,

0 5 10 15 20 25 30
0

1

2

3

4

5

IGD Sampling in each 10000 Fitness Evaluation

IG
D

 V
a
lu

e
s

Random Method

RdMD/MAS

97

Table 7.24 shows the average rank values, FAR and the corresponding p-values. It is

clearly seen that, the average value with regard to RdMD/MAS is the smallest one

indicating that RdMD/MAS is the best performing algorithm. Meanwhile, the p-

value is very close to zero that implies that there is significant statistical difference

among results of all algorithms, which also means that RdMD/MAS is statistically

different than its competitors.

 Table 7.23. Friedman aligned ranks for all (problem, algorithm) pairs

F
u

n
c
ti

o
n

M
O

E
A

D

G
D

E
3

M
O

E
A

D
G

M

M
T

S

L
iu

L
iA

lg
o
ri

th
m

D
M

O
E

A
D

D

N
S

G
A

II
L

S

O
W

M
O

S
a
D

E

C
lu

st
e
r
in

g
M

O
E

A

A
M

G
A

M
O

E
P

D
E

C
M

O
S

A
-

S
Q

P

O
M

O
E

A
II

R
d

M
D

/M
A

S

UF1 49 51 55 56 58 63 65 66 93 99 115 121 122 50

UF2 72 82 70 69 83 73 84 75 97 90 95 100 105 71

UF3 30 113 45 47 34 41 112 111 48 68 108 101 133 40

UF4 107 61 94 54 88 85 102 96 103 80 86 67 91 53

UF5 11 3 140 1 7 74 135 128 29 5 19 8 9 4

UF6 10 127 139 18 106 21 131 117 31 46 37 44 23 14

UF7 52 89 60 104 59 64 79 116 81 114 77 87 98 62

UF8 15 125 124 36 22 16 24 28 123 92 136 120 110 35

UF9 32 33 118 43 38 17 27 39 130 119 134 76 126 26

UF10 109 57 129 2 78 12 138 137 42 13 20 25 132 6

SUM 487 741 974 430 573 466 897 913 777 726 827 749 949 361

AVG 48.7 74.1 97.4 43 57.3 46.6 89.7 91.3 77.7 72.6 82.7 74.9 94.9 36.1

 Table 7.24. Friedman Aligned

 Ranks statistic and the corresponding

 p-value over all algorithms

Algorithms

Average values of

Friedman Aligned

Ranks over all problem

instances

MOEAD 48.7

GDE3 74.1

MOEADGM 97.4

MTS 43

LiuLiAlgorithm 57.3

DMOEADD 46.6

NSGAIILS 89.7

OWMOSaDE 91.3

ClusteringMOEA 77.7

AMGA 72.6

MOEP 82.7

DECMOSA-SQP 74.9

OMOEAII 94.9

RdMD/MAS 36.1

FAR 34.5146

p-value 0.0010

98

Chapter 8

CONCLUSIONS AND FUTURE WORKS

Chapter 4 in this thesis presents a learning-based multi-agent system (LBMAS) of

metaheuristics for solving combinatorial optimization problems. Its effectiveness is

tested using the well-known multiprocessor scheduling problem (MSP) in

comparison to existing famous algorithms. Experimental results obtained using the

proposed method exhibit good improvements and showed that the search capability

achieved is better than most the competitors and is at least as good as a few of the

others.

Chapter 5 is about the design of a competitive-cooperative multi-agent system of

metaheuristics for the solution of real-valued single-objective optimization problems.

Its effectiveness is tested using a well-known set of benchmark problems and its

performance is comparatively evaluated against well-known modern optimization

algorithms.

Experimental results exhibited that significant improvements have been obtained

using the proposed algorithm and both the quantitative and statistical analyses put

CMH-MAS to the first position against its competitors.

Chapter 6 presents a new approach for the design of a cooperative multi-agent

system of metaheuristic agents for the solution of real-valued multi-objective

99

optimization problems. Basic descriptions of a number of metaheuristics for MOO

are implemented as individual agents. The global population is divided into

subpopulations using dominance ranks and each subpopulation is optimized by an

assigned agent where assignments change in a round-robin order. The effectiveness

of the proposed MAS is tested using a well-known set of benchmark problems and

its performance is comparatively evaluated against well-known modern MOO

algorithms. Experimental results exhibited that significant improvements have been

obtained using the proposed algorithm in comparison to well-known methods. Both

the quantitative and statistical analysis put the proposed approach, RdMD/MAS to

the first position against its competitors.

Further works are planned to use the proposed LBMAS with enhanced learning

algorithms and use the resulting systems to solve other types of optimization

problems. In addition to this, LBMAS is appropriate to be implemented on parallel

processor environments. Also, further research is planned to extend the proposed

MAS with additional MOO agents and consider its use for practical real-valued and

combinatorial optimization problems. Meanwhile, CMH-MAS and RdMD/MAS are

quite suitable to be implemented on parallel or graphics processors.

100

REFERENCES

[1] Stone, P., & Veloso, M. (2000). Multiagent systems: A survey from a machine

learning perspective. Autonomous robotics. 8, 345-383.

[2] Panait, L., & Luke, S. (2005). Cooperative multi-agent learning, The State of the

Art. Autonomous Agents and Multi-agent Systems. 387-434.

[3] Stuart, R. & Norvig, P. (2003). Artificial Intelligence: A Modern Approach (2nd

ed.). Prentice Hall, ISBN. 0-13-790395-2. chpt. 2.

[4] Sycara, K. P. (2015). Multi-agent systems: American association for artificial

intelligence. AI magazine. 19. no. 2.

[5] Luke, S. (2014). Essentials of Metaheuristics. second edition. available at

http://cs.gmu.edu/∼sean/book/metaheuristics

[6] Yang, X. (2011). Metaheuristic optimization: algorithm analysis and open

problems. Experimental Algorithms. LNCS. Springer, 21-32.

[7] Cello Coello, C. A., Lamont, G. B., & Van Veldhuizen, D. A. (2007).

Evolutionary Algorithms for Solving Multi-objective Problems. Second edition.

Springer.

http://cs.gmu.edu/~sean/book/metaheuristics

101

[8] Meignan, D., Creput, J. C., & Koukam, A. (2008). An organizational view of

metaheuristics. Proceedings of frist international workshop on optimization on

multi-agent systems. 77-85.

[9] Storn, R., & Price, K. (1997). Differential Evolution - A Simple and Efficient

Heuristic for Global Optimization over Continuous Spaces. Journal of Global

Optimization. 341–359.

[10] Cadenas, J. M., Garrido, M. C., & Munoz, E. (2008). Construction of a

Cooperative Metaheuristic system based on Data Mining and Soft-Computing.

Methodological issues: Proceedings of IPMU'08. 1246-1253.

[11] Aydin, M. E. (2013). Coordinating metaheuristic agents with swarm

intelligence. Journal of Intelligent Manufacturing. 991-999.

[12] Milano, M., & Roli, A. (2004). MAGMA: A Multi-agent Architecture for

Metaheuristics. IEEE Transactions on systems, man, and cybernetics. 33, 925-

941.

[13] Aydemir, F. B., Gunay, A., Oztoprak, F., Birbil, S. E., & Yolum, P. (2013).

Multiagent cooperation for solving global optimization problems: an extendible

framework with example cooperation strategies. Journal of Global

Optimization. Springer. 57, 499-519.

[14] Jiang, S., Zhang, S. J., & Ong, Y. S. (2012). A Multiagent Evolutionary

102

Framework based on Trust for Multiobjective Optimization. Proceedings of the

11th International Conference on Autonomous Agents and Multiagent Systems.

Spain. 299-306.

[15] Drezewski, R., & Siwik, L. (2006). Co-Evolutionary Multi-Agent System with

Sexual Selection Mechanism for Multi-Objective Optimization. IEEE Congress

on Evolutionary Computation. Canada. 769-776.

[16] Drezewski, R., & Siwik, L. (2006). Multi-Objective Optimization Using Co-

Evolutionary Multi-Agent System with Host-ParasiteMechanism. Lecture notes

in computer science, 6th international conference on Computational Science.

Springer. UK. 871-878.

[17] Kisiel-Dorohinicki, M., & Socha, K. (2001). Crowding Factor in Evolutionary

Multi-Agent System for Multiobjective Optimization. Proceeding of the

international conference on artificial intelligence.

[18] Cardon, A., Galinho, T., and Vacher, J. (2000). Genetic algorithms using multi-

objectives in a multi-agent system. Robotics and autonomous systems. Elsevier.

179-190.

[19] Siwik, L., & Natanek, S. (2008). Solving Constrained Multi-Criteria

Optimization Tasks Using Elitist Evolutionary Multi-Agent System. World

congress on computational intelligence. IEEE CEC 2008. 3358-3365.

103

[20] Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimization and

Machine Learning. Addison-Wesley Longman Publishing Co. Boston. USA.

[21] Price, K. V. (1999). An Introduction to Differential Evolution. New Ideas in

Optimization. McGraw-Hill. London.

[22] Storn, R., & Price, K. (1997). Differential Evolution - A Simple and Efficient

Heuristic for Global Optimization over Continuous Spaces. Journal of Global

Optimization. 341–359.

[23] Bertsimas, D., & Tsitsiklis, J. (1993). Simulated Annealing. 10-15.

[24] Dorigo, M., & Caro, G. D. (1999). The ant colony optimizationmeta-heuristic.

New Ideas in Optimization. New York. McGraw-Hill. 11–32.

[25] Dueck, G. (). New Optimization Heuristics, the Great Deluge Algorithm and the

Record-to-Record Travel. Journal of Computational Physics. 86-92.

[26] Chelouah, R., & Siarry, P. (2000). Tabu search applied to global optimization",

European Journal of Operational Research. 256-270.

[27] Naeem, M., Xue, S., & Lee, D. C. (2009). Cross-entropy optimization for sensor

selection problems. communications and information technology. ISCIT 2009.

396-401.

104

[28] Acan, A., & Unveren, A. (2014). A two-stage memory powered Great Deluge

algorithm for global optimization. Journal of Soft Computing. Springer.

[29] Caruana, R., Eshelman, L. J., & Schaffer, J. D. (1989). Representation and

Hidden Bias II: Eliminating Defining Length Bias in Genetic Search via Shuffle

Crossover. IJCAI. 750-755.

[30] Kruisselbrink & Willem, J. (2012). Evolution strategies for robust optimization.

Leiden Institute of Advanced Computer Science (LIACS), Leiden university.

[31] Teodorovic, D., Lucic, P., Markovic, G. & Orco, M. D. (2006). Bee colony

optimizations: principles and applications. Neural network applications in

electrical engineering. IEEE. Serbia. 151-156.

[32] Kennedy, I., & Eberhart, R. ()1995. Particle Swarm optimization. IEEE

international conference on neural networks. 1942-1948.

[33] Ballester, P. J., Jonathan, J. S., & and Gallagher, N. C. K. (2005). Real-

Parameter Optimization Performance Study on the CEC-2005 benchmark with

SPC-PNX. IEEE conference publications. 498-505.

[34] Suganthan, P. N., Hansen, N., Liang, J. J., Deb, K., Chen, Y. P., Auger, A., &

Tiwari, S. (2005). Problem Definitions and Evaluation Criteria for the CEC

2005 Special Session on Real-Parameter Optimization. Nanyang Technological

105

University. Singapore.

[35] Sivanandam, S. N., & Deepa, S. N. (2008). Introduction to genetic algorithms.

Springer verlog berlin Heidelberg. Germany.

[36] Haupt, R. L., & Haupt, S. E. (2004). Practical genetic algorithms. John wiley

and sons. New Jersey.

[37] Eberhart, R. C., & Kennedy, J. (1995). A new optimizer using particle swarm

theory. Proceedings of the Sixth International Symposium on Micro Machine

and Human Science. Japan.

[38] Dekkers, A., & Aarts, E. (1991). Global optimization and simulated annealing.

Mathematical Programming. 50, 367-393.

[39] Abuhamdah, A. (2012). Modified Great Deluge for Medical Clustering

Problems. International Journal of Emerging Sciences. 2, 345-360.

[40] Abraham, A., Lakhmi, J., & and Goldberg, R. (2005). Evolutionary Multi-

objective Optimization. Springer-Verlag London.

[41] Bosman, P. A. N. (2014). On Gradients and Hybrid Evolutionary Algorithms for

Real-valued Multi-objective Optimization. IEEE Transactions on Evolutionary

Computation. 16, 51-69.

106

[42] Deb, K., Agrawal, S., Pratap, A., & Meyarivan, T. (2002). A fast and elitist

multiobjective genetic algorithm: NSGA-II. Evolutionary Computation. IEEE

Trans. 6, 182–197.

[43] Fonseca, C. M., & Fleming, P. J. (1993). Genetic algorithm for multiobjective

optimization, formulation, discussion and generalization. Genetic Algorithms,

Proceeding of the Fifth International Conference. 416-423.

[44] Zitzler, E., Laumanns, M., & Thiele, L. (2001). SPEA2: Improving the strength

pareto evolutionary algorithm for multiobjective optimization. Evolutionary

Methods for Design Optimization and Control with Applications to Industrial

Problems. 95–100.

[45] Xue, F., Sanderson, A. C., & Graves, R. J. (2003). Pareto-based Multi-objective

Differential Evolution. The proceeding of the 2003 congress on Evolutionary

Computation (CEC’2003). Australia. 862-869.

[46] Bandyopadhyay, S., Saha, S., Maulik, U., & Deb, K. (2008). A Simulated

Annealing Based Multi-objective Optimization Algorithm: AMOSA. IEEE

Transactions on Evolutionary Computation. 12, 269-283.

[47] Coello, C. A., & Lechuga, M. S. (2002). MOPSO: A proposal for multiple

objective particle swarm optimization. The proceeding of congress on

Evolutionary Computation (CEC’2002). US. 1051-1056.

107

[48] Q. Zhang, A. Zhou, S. Zhao, P. Suganthan, W. Liu and S. Santosh Tiwari,

"Multiobjective optimization Test Instances for the CEC 2009 Special Session

and Competition", IEEE, CEC2009 Competition, 2009.

[49] M. A. Al-Mouhamed, "Lower Bound on the Number of Processors and Time for

Scheduling Precedence Graphs with Communication Costs", IEEE Transaction

Software Engineering, Vol. 16, No. 12, pp. 1390-1401, 1990.

[50] Wu, A. S., Yu, H., Jin, Sh., & Lin, K. Ch. (2004). Schiavone, G.: An

Incremental Genetic Algorithm Approach to Multiprocessor Scheduling. IEEE

Transaction on Parallel and Distributed Systems. 15, 824-834.

[51] Parsa, S., Lotfi, S., & Lotfi, N. (2007). An Evolutionary Approach to Task

Graph Scheduling. International Journal of Lecture Notes Computer Science.

ICANNGA 2007. Springer. 110-119.

[52] Wu, M. Y. (2000). MCP Revisited. Department of Electrical and Computer

Engineering. University of New Mexico.

[53] Baxter, J., & and Patel, J. H. (1989). The LAST Algorithm: A Heuristic-Based

Static Task Allocation Algorithm. Proceeding of International Conference on

Parallel Processing. 2, 217-222.

[54] Coffman, E. G. (1976). Computer and Job-Shop Scheduling Theory. John-

108

Wiley.

[55] Hwang, J. J., Chow, Y. C., Anger, F. D., & Lee, C. Y. (1989). Scheduling

Precedence Graphs in Systems with Inter-processor Communication Times.

SIAM Journal on Computer. 18. 244-257.

[56] Kim, S. J., & Browne, J. C. (1988). A General Approach to Mapping of Parallel

Computation upon Multiprocessor Architectures. Proceeding Of International

Conference on Parallel Processing. 2, 1-8.

[57] Sarkar, V. (1989). Partitioning and Scheduling Parallel Programs for

Multiprocessors. MIT Press. Cambridge.

[58] McCreary, C. L., Khan, A. A., Thompson, J. J., & McArdle, M. E. (1994). A

Comparison of Heuristics for Scheduling DAGS on Multiprocessors.

Proceedings of the 8th International Parallel Processing Symposium. 446-451.

[59] Rinehart, M., Kianzad, V., & Bhattacharyya, Sh. S. (2003). A Modular Genetic

Algorithm for Scheduling Task Graphs. Department of Electrical and

Computer Engineering, and Institute for Advanced Computer Studies.

University of Maryland.

[60] Correa, R., Ferreira, A., & Rebreyend, F. P. (1999). Scheduling Multiprocessor

Tasks with Genetic Algorithms. IEEE Transaction on Parallel and Distributed

109

Systems. 10, 825-837.

[61] Sih. G. C., & Lee, E. A. (1990). Scheduling to Account for Inter-processor

Communication Within Interconnection-Constrained Processor Network.

International Conference on Parallel Processing. 9-17.

[62] El-Rewini, H., & and Lewis, T. G. (1990). Scheduling Parallel Program Tasks

onto Arbitrary Target Machines. Journal of Parallel and Distributed

Computing. 9, 138-153.

[63] Ahmad, E., Dhodhi, M. K., Ahmad, I. (2010). Multiprocessor Scheduling by

Simulated Evolution. Journal of Software. 5.

[64] Benchmark functions (CEC'2005). Special Session on Real-Parameter

Optimization. IEEE. UK. 2-5.

http://sci2s.ugr.es/eamhco/cec2005_values.xls

[65] Derrac, J., García, S., Molina, D., & and Herrera, F. (2011). A practical tutorial

on the use of nonparametric statistical tests as a methodology for comparing

evolutionary and swarm intelligence algorithms. Swarm and Evolutionary

Computation. 1, 3-18.

[66] Zhang, Q., Zhou, A., Zhao, S., Suganthan, P., Liu, W., & Santosh Tiwari, S.

(2009). Multiobjective optimization Test Instances for the CEC 2009 Special

110

Session and Competition. IEEE. CEC2009 Competition.

[67] Zhang, Q., & Suganthan, P. N. (2008). Final Report on CEC’09 MOEA

Competition, Working Report. CES-887, School of Computer Science and

Electrical Engineering. University of Essex.

[68] Zhang, Q., Liu, W., & Li, H. (2009). The Performance of a New Version of

MOEA/D onCEC09 Unconstrained MOP Test Instances. CEC 2009.

Proceedings of the eleventh conference on congress on Evolutionary

Computation. IEEE. Norway. 203-208.

[69] Tseng, L. Y., & Chen, C. (2009). Multiple Trajectory search for

Unconstrained/Constrained Multi-objective Optimization, CEC 2009.

Proceedings of the eleventh conference on congress on Evolutionary

Computation. IEEE. Norway. 1951-1958.

[70] Liu, M., Zou, X., Chen. Y., & Wu, Z. (2009). Performance Assessment of

DMOEA-DD with CEC 2009 MOEA Competition Test Instances. CEC 2009.

Proceedings of the eleventh conference on congress on Evolutionary

Computation. IEEE. Norway. 1951-1958.

[71] Liu, H., & Li, X. (2009). The multiobjective evolutionary algorithm based on

determined weight and sub-regional search. IEEE. Normay. 1928-1934.

[72] Kukkonen, S., & Lampinen, J. (2009). Performance Assessment of Generalized

111

Differential Evolution 3 with a Given Set of Constrained Multi-Objective Test

Problems. IEEE. Normay. 2913-2918.

[73] Sarker, R. A., & Ray, T. (2010). Agent-Based Evolutionary Search. 1–11.

[74] Russell, S., & Norvig, P. (2003). Artificial intelligence: a modern approach.

Prentice Hall. Upper Saddle River.

[75] Vacher, J. P., Galinho, T., Lesage, F., & and Cardon, A. (1998). Genetic

algorithms in a multi-agent system. IEEE International Joint Symposia on

Intelligence and Systems. 17–26.

[76] Nunes, L., & Oliveira, E. (2004). Learning from multiple sources. Proceedings

of the Third International Joint Conference on Autonomous Agents and

Multiagent Systems. 3, 1106–1113.

[77] Iantovics, B., & Enăchescu, C. (2008). Intelligent complex evolutionary agent-

based systems. Proceedings of the 1st International Conference on Bio-Inspired

Computational Methods used for Difficult Problems Solving. 116–124.

[78] Liu, J., Zhong, W., & Jiao, L. (2010). A multiagent evolutionary algorithm for

combinatorial optimization problems. IEEE Transactions on Systems, Man and

Cybernetics. 40(1), 229–240.

[79] Barkat Ullah, A. S. S. M., Sarker, R., Cornforth, D., & Lokan, C. (2009). AMA:

112

A new approach for solving constrained real-valued optimization problems. Soft

Computing. 741–762.

[80] Hippolyte, J. L., Bloch, C., Chatonnay, P., Espanet, C., & Chamagne, D. (2007).

A self-adaptive multiagent evolutionary algorithm for electrical machine design.

Proceedings of the 9th annual conference on Genetic and evolutionary

computation. 1250–1255.

[81] Li, Q., & Du, L. (2009). Research on hybrid-genetic algorithm for mas based

job-shop dynamic scheduling. Second International Conference on Intelligent

Computation Technology and Automation. IEEE Press . 404–407.

[82] Liu, J., Zhong, W., & Jiao, L. (2010). Multi-agent Evolutionary Model for

Global Numerical optimization. Agent-Based Evolutionary Search. 5, 13-48.

[83] Barkat Ullah, A. S. S. M., Sarker, R., & Lokan, Ch. (2010). An agent based

evolutionary approach for nonlinear optimization with equality constraints.

Agent-Based Evolutionary Search. 5, 49-76.

[84] Yan, Y., Yang, Sh., Wang, D., & Wang, D. (2010). Agent based evolutionary

dynamic optimization. Agent-Based Evolutionary Search. 5, 97-116.

[85] Lin, Y., & Zhang, J. (2010). An agent-based parallel ant algorithm with an

adaptive migration controller. Agent-Based Evolutionary Search. 5, 161-177.

113

