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Propagator theory of scanning tunneling microscopy
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We develop a quantum mechanical scattering theory for electrons which tunnel (@utiofo) the tip of a
scanning tunneling microscope. The method is based on propagetdgseen functionsfor quasistationary
scattering with the tip being an electron soufoe sink). The results for the tunneling current generalize the
Tersoff-Hamann approach of scanning tunneling microscopy. In contrast to previous calculations the present
theory relates the tunneling current to the potential distribution of the sample. Expressions for the corrugation
are available through a simple perturbation expansion scheme. Analytical model calculations are presented and
compared with existing resultsS0163-18207)05835-9

I. INTRODUCTION gator theory of STMSec. I) by makingexplicit use of the
fact that the tip is a localized sourdger sink of electrons.
From its first description by Binnigt al. in 1982% scan-  The results of Tersoff and Hamann are then obtained from
ning tunneling microscopy(STM) has rapidly evolved to the propagator theory in the limit of pointlike tips and large
become an important tool in surface analysis. As is wellseparation between tip and sample.
known, the device consists of a sharp metallic tip which is Since STM images reflect the patterns of the local elec-
placed at a distance of a few angstroms from a conductingon density of stated DOS) n(r;E), it can be very mislead-
sample surface. Due to their small spatial separation, thfhg to interpret a STM image only in terms of the geometri-
wave functions of the tip and the surface will overlap. There-ca| structure of the sample surfat%eOn the other hand, it
fore, a small voltageup to ~=2V) between tip and surface should be possible to relate the STM current to the potential
will induce a tunneling current which varies exponentially distribution U(r) felt by the scattered electron. This is in-
with the distance between tip and surface. For a fixed disgeed the case; a suitable simple perturbation expansion
tance the local variation in the tunneling current or, for fixedscheme will be elaborated in Sec. IIl. Finally, in Sec. IV we
current, the corrugatioftip-surface distandewill yield use- |l demonstrate the usefulness of the scattering theory as
ful information about the electronic structure of the SUrface,devek)ped in this paper by eva|uating the Corrugation amp"_
provided there is a reliable theoretical interpretation of theyde as a function of tip-surface distance for a simplified
STM current images. model surface. The article concludes with two appendixes:
Despite the advent of sophisticated scatteringappendix A deals with a useful eigenfunction expansion of
technique¥™ the original approach™® based on Fermi's Green functions. In Appendix B, we show that the golden

golden rule still remains an intelligible, successful, and pracryle result of Tersoff and Hamann presents a limiting case of
tical descrlptlon of STM. The evaluation of the tunnellng the more genera] Scattering approach_

current is based on the assumption that the electronic transi-
tions occur between unperturbed states of both electrodes

(tlp_and sampl)a Using Barde_en’s_ tunneling transfer Hamil- |, b ROPAGATORS AND SOURCE THEORY OF STM
tonian formalism and approximating the electron wave func-
tions by s waves of the form exp{«r)/r, wherer is the In this section we introduce the basic formalism of the

distance from the apex of the tip ardc the tip-dependent propagatoror Green functiopapproach to scanning tunnel-
binding momentum, the tunneling current is found to be proing microscopy. The principal idea behind this approach is
portional to the local electron density of sample states at théhe study of stationary wave functions of the entire tip-
Fermi level, evaluated at the position of the &ifhe final  surface system with nonvanishing current dengty. Inte-
result, known as Tersoff-Hamann theory of the STM, con-gration ofj(r) yields the total tunneling currerdt that rep-
tains the statistical occupation probabilities of the states ofesents the quantity of measurement in the STM setup. In
the two electrodes, and it recovers Ohm’s law in the weakperturbation theoryJ is calculated by applying Fermi's
bias limit. Later, the theory has been extended to takeyolden rule to the tunneling problem: The resulting matrix
nonisotropic tip and surface wave functions, particulggly elements of the “transfer Hamiltonian™ originally proposed
andd,z states, into account. by Bardeen contain an integral that combines real surface
From a quantum mechanical point of view electron tun-and tip states which do not carry any intrinsic current, and
neling is a scattering phenomenon where the electron is scatieir physical relevance is not immediately evident. The re-
tered across the tunnel junction. Scattering theory is morsults of both approaches are consistégpendix B. From a
appealing than the golden rule method, but mathematicallyechnical point of view, the main difference between the two
much more demanding, and until now it has not been thormethods consists in the description of the surface: While
oughly established how the scattering approach is related tdersoff-Hamann theory rests on theve functionsy(r) of
the golden rule approach. In this paper we develop a propahe sample, the source method proposed here is based on the
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potential distribution Wr) resulting from surface, tip and . 2 .
electric field. J= fﬁsdaj(r)-n(r):—glm Ld ra(r)y(r)|. (5
A. Inhomogeneous Schidinger equation Here,n(r) denotes the surface normal. We conclude that the

In our description of STM, we will disregard the electrical source terms(r) “causes” the current but is able to sustain
circuitry that is responsible for keeping a constant potentiafifferent current levels, depending on the choiceydf).
differenceV between tip and sample. For simplicity, we will Notably, o(r) may act as a source as well as a sink; under
consider the tip as a movable electron soufoesink of  time reversalsj(r)— #(r)*, the sign ofJ will change.
finite spatial extension contained in a volume elen®that Finally, we are going to construct the solution set to the
scans over the surface at either constant height or constaftodified Schrdinger equatiort2). Because the difference of
currentJ. It is natural to include the applied voltageinto ~ any two solutionsy(r) and x(r) to this linear inhomoge-
the surface-tip potentidll(r). Applying a voltage will shift —neous equation will satisfy the original Schinger equation
the occupation numbef§E) in the tip or sample regions by Wwe only need to know a single special solutigfr). Intro-
eV which in turn gives rise to a net multiparticle current.  ducing the propagatdor Green functionGy(r,r';E) (Ref.

A scattering theory of STM has to address the following195) that is a solution of

problem: Although the current densitgr) ,

E h V2—-U
+% (r)

. i% Gy(r,r';E)y=a(r—r’), (6)
(== 5[0 Vg(r) = §(r) Vip(r)"] (N

in a stationary environment does not necessarily vanish, thgfa\tlig]r:n ediately find a special solutio(r) of (2) by inte-
total flux through any closed surfaés is always zero. This '
fact immediately follows from the equation of continuity,
divj(r)=0. Therefore, it is not possible to treat a localized ¢(r):J A3’ a(r')Gy(r,r';E). (7)
stationary sourcéor sink) in the framework of the common S

Schralinger equation. We may, however, get rid of this _ . _ .
shortcoming by adding an inhomogeneous tefsource  Hence, the introduction of squrceeér) renders it possible to'
term”) o(r) to the ordinary Schidinger equation that van- US€ the powerful mathematical apparatus _of Green fg_nctlon
ishes outside the source reginThis approach is reminis- theory. The propagato&(r,r’;E) is a relative probability
cent of the introduction of heat sources into the heat diffu2mplitude that a particle arrives at pointif it has been
sion equation, but has rarely been applied to quantun§reated at point’ .*° If the corresponding travel occurs in
mechanics.(Recently, this idea was employed in intense-reality, then there must be a source of particles at the point
field laser-atom physics) Therefore, we first study the . Thed function in Eq.(6) will act as a point source local-

properties of the inhomogeneous S(ﬂ]nger equation_ ized atr=r’. All we have done so far is to introduce a
For simplicity, we will exclude magnetic fields; i.e., we general sources(r). o
assume that the e|ectromagnetic vector potem(ab van- We conclude this section with a comment on the normal-

ishes. We also require the source fieltt) to be real. From ization of the wave functiorb(r). Whereas solutions to Eq.
this assumption, it follows that the imaginary parfixfr)]  (3) may be normalized by a simple scaling procedure, this is

of any solutiony(r) of the stationary inhomogeneous Schro N0 longer possible for the inhomogeneous Sdinger equa-
dinger equation tion (2). Rather, the wave function depends on our choice of

the Green function in Eq(7). Hence, the solutior(r) is

selected by the boundary conditions imposed on
H(r)y=o(r) i) Gy(r,r’;E).

h2
—Vv2_
E+ 2mV u(r)

[whereU(r) includes the tip, sample, and applied potentials

. . . A . B. swave source model for STM
is also a solution to the ordinary Schlinger equation,

After these preliminaries, we are now in the position to
outline the scattering description of STM. Let us model the
Im[(r)]=0, 3 source properties of the tip by an inhomogeneityr) as
explained in the preceding section. Then, two competing
and hence remains totally unaffected by the presence of therocesses will occur: An electron may be transferred from an

72
_Vv2_
E+5-V2-U()

sourcea(r).** On the other hand, the modified equation of occupied tip state to an empty sample state or from an occu-
continuity that is obtained from Edq2) manifestly depends pied sample state to an empty tip state. At equilibrium con-
on the imaginary part: ditions both processes will compensate, and a fluctuating
temperature-dependent noise current prevails. The situation
V.j(r)= ﬁ Im[ (r)*V2y(r)]=— Ea(r)lm[w(r)]. obviously changes if an external potentialis applied: Un-
m h der idealized circumstances, tip and surface each show a

(4)  thermal equilibrium occupation probability

Assuming that the source is localized within a finite volume
elementS (with surfacedS), we find for the total currend f(E)=
throughdS by Gauss’ theorem

-1

, ®

1+ exd S CF
B kT
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but the tip or sample distributions will be shifted by the just a single tip state with enerdy. If tunneling occurs from

potential energyeV. We now calculate the partial currents more than a single tip state, the individual contributions have

Ji_.s andJg_,; due to both processes. to be added.

Let us first consider tunneling from the tip to the sample. It is possible to eliminate the Green functi@e(r,r’;E)

The corresponding tunneling rate for a tip state endétgg  in Eq. (15) and to expres$ in terms of the normalized eigen-

given by states yo(r) of the surface-tip system. For the necessary
transformations we refer to Appendix A. Equatitib) then

Jims=H(E)[1-f(E+eV)]Iou(E), (9 assumes the form

where the prefactor takes into account the different occupa- )
tion probabilities in tip and sample whereag(E) denotes _em 3

the “intrinsic” tunneling current from tip to surface. To cal- J=Z-[HE) = f(E+eV)]% Ld r o u(r)
culate it, we have to find the wave functiap,,(r) that (16)
describes the tunneling process, i.e., solves the inhomoge-

neous Schrdinger equatiori2) and, for reasons of causality, Here, the sum includes all eigenstatgs(r) of the tip-
behaves inside the Sample like an Outgoing wave. This task I§amp|e system whose ener@/y matches the t|p state energy
accomplished by employing the retarded Green functiore. From Eq.(16), Ohm's law is recovered in the usual Wfay

2

Grer.r';E) (Ref. 17 in Eq. (6): by expandingf (E) — f(E+eV) in the limit of small voltage
and temperature.
b [(r):fdsrla(r/)e (r.r":E). (10) Simple expressions fod are obtained for an idealized
o s e pointlike tip, i.e., as-spike source termr(r)=Ca&(r—r’). In

. . . i this case, the spatial integrations that appear in Bdg.and
Inserting this result into the current formutd), we find (16) are trivial. We then obtain for the total tunneling current
J(r") as a function of the tip position’:

2
Jout(E):_g Im jd3rJ’d3r’o(r)a(r')Gret(r,r’;E) .
S S
2
(1D J(r)=— 7 |CPIH(E)~ f(E+eV)]Im[Ge(r',r:E)]

This bilinear “matrix element” ing(r) for the intrinsic out- a7
going currentJ, (E) presents an important result of the

propagator description of STRA. or, alternatively{see Eq(A12)],

The partial tunneling currendg_,; that leads from the
sample back into the tip may be determined analogously. We

' 2
obtain J(r’):7|C|2[f(E)—f(E+eV)]n(r’,E). (18

Js1=H(E+eV)[1-1(E)Jin(E). 12 , o
o ) This result demonstrates that the total current for idealized
Here, Ji;(E) denotes the intrinsic tunneling current from pointlike s-wave tips is proportional to the imaginary part of
sample to tip. This absorption process is, in a sense, thye Green functiorG,.(r’,r’;E) which in turn is propor-
time-reversed counterpart to the emission process considerggna to the local density of stategr’;E) at the tip siter’
above: As a result, the incoming wayg,(r) is connected to  (A10).° Equation(18) bears great similarity with the result

the outgoing wave through time reversal, of Tersoff and Hamarfhfor the current. There, the propor-
. tionality constantC|? has been expressed in terms of the tip
Sin(r) = doulr)”. (13 curvatureR. However, one can argue that the introduction of

guantities whose meaning becomes fuzzy on the scale of
atomic dimensions is questionable. The const&nt should
Jin(E)=—Jou(E). (14)  instead be thought of as a parameter that characterizes the
overall properties of the tip. As we shall show, the important
From the partial currentéd) and(12), we finally obtain the corrugation amplitudesz is not affected by this quantity.
following expression for the tunneling current in scanning We have seen that in the framework of source theory,
tunneling microscopy: expressions for the tunneling curreht Egs. (15) and (16)
are derived readily. At this point we should discuss how we
design the tunneling sourag(r): A given current carrying
wave functioney,(r) can be modeled by a series of pointlike
sources. To this end, E@7) is evaluated in the vicinity of
3 3 / ’ the tip (r=r’) with ¢(r)= ¢;i,(r). The evaluation will be
Jsd rJSd ro(no(r)Gre(r,re)|. (19 numerically with the exceptio% of a few analytically solvable
case<? The method is not restricted ®wave sources. For
Here, the retarded Green functidB..(r,r';E) for the instance, for point sources higher multipole waves can be
total potentialJ (r) that includes tip and surface potentials asgenerated from the-wave propagator by appropriate differ-
well as the applied voltage has to be used. It should also bentiation ofG(r,r’; E) with respect ta’. This technique has
pointed out that Eq(15) describes the current contribution of been outlined by Chéhand will not be discussed here.

Therefore, the intrinsic current merely changes its sign:

Jz—%[f(E)—f(EJre\/)]

X1m
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C. Example: Field emission Fm? [{ 2 ﬁzks)
eKZ,

After having studied the fundamental properties of the IMIM[Gr(r,0;E)]=— arni2 s
source theory approach to scanning tunneling microscopy, it = ° oK (23
is helpful to illustrate the physics that underlies the source _ . . o )
theoretical approach. For this purpose we discuss field emiganishes exponentially with B/ In the weak-field limit the
sion from a sharp atomic tip in the absence of a sample. Téeal part(22) of G(r,r’; E) is identical to thes-wave func-
avoid algebraic complications, we will do this for an ideal- tion (B5) used by Tersoff and Hamann for a single-atonftip.
ized pointlike s-wave tip; i.e., we will use a source term Besides its obvious relevance to the field emission

- f e - i problem?* the constant field Green functiof®9)—(21) may
a(r)=Cs(r—r’"). In this case, the tunneling wave functions ' ) _
will be proportional to the Green functid). Therefore, the also be used to discuss the dynamics of photodetached elec-

required energy Green function describes the motion of drons in an electrical fiel@® In Sec. IV, we will extensively

particle out of a zero-range quantum well in the presence oﬁ]rgggycgfulngngm'ss'on potentidl(r)=—Fz for STM
an electric field. Assuming the field to be constant, and align- ’

3 mF

ing its direction along the pOSitiV& axis we have IIl. RESOLUTION OF THE STM
V(z) = —Fz. The desired Green function then redlds AND SMALL-CORRUGATION LIMIT
m We now want to apply the scattering theory of STM to
Gefr, ' E)= ~ [Ci(a,)Ai’(a_) realistic surface-pp potentiald (r). For S|mpI|C|t.y', we as-
202 r—r’| sume ars-wave tip that scans over the surface; i.e., we em-
. _ ploy a §-function source ternu(r)=Cdé(r—r'). Here,r’
—Ci'(ay)Ai(a_)}, (190 denotes the position of the tip.
In this case, the expression for the tunneling curdént)
with becomes particularly simple. If we ignore the occupation
probability factor common to both theories, we find from Eq.
m 1/3 (17
at:_(W) [F(z+Z' =|r—r'|)+2E]. (20 2
(1) == 2 |CPIMGre(r' .1 iE)]. (24)
Here we have introduced the complex Hankel-type Airyrq calculate the current, it is therefore sufficient to know the
function Green functionG,(r,r';E) atr=r’. The determination of
Green functions belonging to an arbitrary three-dimensional
Ci(s)=Bi(s)+iAi(s) (21 potentialU(r) is, unfortunately, a task of formidable com-

plexity. Hence, we will devote a section of this article to a
in terms of the two real Airy functions Af) and Bi(s) as  Series expansion that allows us to obtain not only the Green
defined in Ref. 22. The complex function €j(has the de- function approximately but also the corrugation amplitude
sired property of behaving like an outgoing wave for 6. But first we will outline a very simple pictorial represen-
S— — o, tation of the scattering model that nevertheless is able to

It is essential to realize that the electron source emits ba€XPlain why STM is capable of atomic resolution.
listic electrons forE>0 whose dynamics is eventually gov-
erned by the Landauer conduction mechamérdowever,
for E<O0 the electron source corresponds to quasibound elec- This model starts out from the observation that the elec-
trons which will be emitted only after they have crossed thelfons emitted from the pointlike tip, located at, into a
(in our case triangularbarrier. It is the tunneling source h_omogeneous_electrlc field, i.e., in the idealized fleld.emls—
(E<0) which is relevant for both field emission and STM. Sion process discussed above, for.m a narrow current f|Iam¢nt

Given the simple structure of the problem, the expressiongtrrounding the escape path. With our choice of potential
(19) and (20) are still considerably complicated. Only for J()=—Fz, this is the positivez direction. We will ap-
weak fieldsF, less involved approximations to the exact proximate the exact solution, Eq4.9) and(20), to the field

. : . emission problem by inserting the principal asymptotic
Green function can be obtained. Let us consider the wnneg, " ¢ e Airy functiong? Let us denote the transverse
ing caseE<0. For simplicity, we shift the origin to the tip

A . L o components of andr’ by p andp’, respectively. We then
location; i.e., we are setting = 0. In the limit of a vanishing P yp p P y

o : find that the current distribution,(r,r’) decays exponen-
external electric field the real part & (r,0;E) passes into tially with increasing lateral distange,
the free particle Green functioB.((r,0; E) that is propor-
tional to the bound state of a particle inregularized three- p=|p—p'|= V(x=x")%+(y—y")?, (25)
dimensional zero-range potential,

A. Pictorial representation of STM

from the direct escape path, with the current approximately
assuming a Gaussian distribution. Shifting the tip into the
origin (r’'=0), we obtaif*

lim R G(r,0;E)]=— e (22 ,
F-0 o 2mh3r jr)<cexp(— kp?l2z), (26)
where# k= (—2mE)Y? represents the binding momentum at
with k=+—2mE/%. In the same limit, the imaginary part of the tip site. Equatiori26) could as well have been obtained
G,e(r,0;E) that is responsible for the tunneling current, from the expansion$22) and (23) but is valid along the
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modulations whose typical length scale is much smaller than
the spot width (2rz,/«)Y? will be averaged out and missed
in the STM image. This effect limits the resolving power of
the STM. The predictions of different modal$z) will yield
similar values ofzy, and their resolution estimates roughly
agree.

B. Series expansion of the corrugation

Let us now translate the qualitative picture sketched in the
previous section into a quantitative theory. We assume that
the total potentialJ(r) of the tip-sample system can be de-
composed into a dominating par{z) that is translationally
invariant along the surface, and a small paftr) that de-
FIG. 1. The “spotlight” model of STM. scribes the surface characteristics:

entire escape path, i.e., for a@b>0. It is worth noting that U(r)=V(2)+W(r). (28)

the approximatior(26) does no longer depend on the actualjyy(r) is to be expected small at least in simple and noble
field strengthF. The current distribution from a pointlike metals as their bulk electronic band structure hardly deviates
electron source is expected to be Gauséi@i.What we  from the free electron model, indicating small effective po-
have shown here is that E(R6) is a direct consequence of (gngig|s]

assuming a pointlike-wave tunneling source in the presence /(3 is responsible for thécomparatively large back-

of a homogeneous electric field. _ ground tunneling currenty(z') that does not change during

. From Eq.(26), we find that the mean spot diamefefz),  the surface scan at constant height, whilér) gives small
i.e., twice the mean radigw of the current distribution, IS correctionssJ(r’) to the tunneling current that render the
given byA(z) =(2mz/x)"". This means that at the “end of g rface structure, and therefore are of prime interest to STM.
the tunnel” atz,=—E/F, the width of the current distribu- \we will now evaluate these current contributions. For a

tion is given by pointlike tip, the tunneling current is proportional to the
imaginary part of the retarded Green functiGp(r',r’;E),
A(zp)=mhZkImF. (27)  Eq. (24), which therefore has to be evaluated. Due to sym-

metry considerations, it is quite simple and straightforward
Inserting realistic STM values af,=5A andE=—-4eV, o calculate the Green functioB(r,r’;E) of the bulk-
the width of the current distribution acquires the Valuevacuum transition potentia!(z)_ [|n the case of field emis-
A(ZO) =5.53 A. This is somewhat Iarger than the interatomicsion, it is known in closed form; see Ec(ig) and(ZO)] The
distancea in close-packed metals that is, e.g., in the case ofhree-dimensiona(3D) Green function for a 1D potential
golda=2.88 A. V/(z) can be obtained by integration from the corresponding
The formation of current filaments is not restricted to the1p Green functiorf® Here, we utilize an integral relation
field emission problem but can be extended to more compligerived from the defining equation of the Green funciiéh
cated potential shape#(z) that represent the overall struc- |f we decomposéJ(r) according to Eq(28), we find for the

ture of the bulk-vacuum transition at the sample surface, angreen functionG(r,r’;E) belonging to the total potential
therefore are translationally invariant along the surface. They(r):

simplest but also most prominent example is the step poten-
tial V(z) = V(0 (z) representing an abrupt transition. Clearly, G (r,r’;E)=Gy(r,r’;E)
one could also use realistic, more complicated models like

the self-consistent potential for jellium metal surfaces as de- j 3.1 " " "ot

. ) ; + .
rived by Lang and KohR® and even include image poten- drGy(r I BE)WIr Gy(r.r';B)
tials. Within these models, tunneling is more suppressed than (29)

in the uniform force field environment; hence, electrons
should move closer to the escape path, and the distributiolhe Green function approach is a convenient method for
width at the surfacé\(zy) should be reduced. calculating the current between the two electrodes of a STM.
The results obtained so far, can be interpreted in terms dt is not possible to mention all scattering approaches to
a simple pictorial model of the STMFig. 1): Electrons, STM based on Green function techniques. At the risk of
bundled into a current filament by the bulk-vacuum transi-being incomplete we only refer to the Tsukada apprdach
tion potentialV(z), are emitted from the tip and impinge with special emphasis on cluster-type tips, the Sautet-
onto the sample surface, giving rise to an electronic “spot-Joachim approaétwith a multichannel treatment of the elec-
light” of approximate diameterA(z,). The local current tron transfer, and th&-matrix method introduced by Datta.
densityj,(r,r’') along the surface is modulated by details of Modified Green function techniques were also used by Sacks
the potential characterizing the surface structure; thereforend Nogueraand by Doyer!. In contrast to previous meth-
the total integrated currerit(r’) will vary while scanning ods we do not use asymptotic Bloch waves which run along
the surface, and this variation in turn yields the STM imagethe metallic tip. We model instead the apex of the tip by a
From the aforementioned it is clear that surface potentialocalized tunneling source which emits electrons in a spa-
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tially narrow cone into the classically forbidden barrier. = 7(z')expiGp'}. This is an important result of the STM

Therefore our starting point is the calculation®{(r,r';E).  propagator theory: Fourier components of the periodic sur-
Relation(29) then presents an ideal iteration scheme for &ace potentiaW(r’) are mapped onto corresponding Fourier

perturbation expansion &(r',r';E). As we consider the components of the STM curred(r’). Therefore, the corru-

corrugative potentialV(r) to be small, we will be content gation currentsd(r’), Eq. (32), generated by Eq:33) has

here with the first-order Born approximation &,(r,r’;E) the form

that consists in replacinGy(r,r’;E) by Gy/(r,r’;E) on the

right-hand sidgRHS) of this equation. This procedure con-

veniently leads to a separation of the curréit’), Eq. (24), 8I(r') =2 nu (2 )expi(uGy+vGo)p'}.  (34)
into the noncorrugative currerdy(z’') and the corrugative o
part 5J(r'): (The prime indicates that the component »=0 has been
) . . left out) Once the connection between the functiens,(z)
J(r")=Jo(z")+83(r"), (30 andz,,(z') is established, STM images may be constructed
with from the potential distributionV(r’). We also conclude

from the results of the preceding section that the wave num-
2 berG,,=|uG;+ vG,| strongly influences the magnitude of
Jo(Z)="— %|C|2Im[GV(r’,r’;E)], (3)  the partial currents in Eq34).
Finally, we evaluate the corrugation amplitude(r’),
5 i.e., the change in tip-surface distance that is necessary to
8J(r')=——|C|? maintain a constant tunneling curreht Since this constant
h current mode is the preferred imaging method in STM, we
express the corrugation amplitudiz(r’) in terms of the
f d3r” Gy(r',r"; E)W(r"YGy(r",r";E)|. partial currentg31) and(32). If we expand the total current
J(r") into a Taylor series and neglect “small” contributions
(320  to the total current, we find that for small corrugation ampli-

tude, the relation approximately holds:
There are two interesting points to these expressions.

First, we note that both partial currents carry the same pref- 3do(2)
actor; hence, the relative corrugation curréd(r')/Jy(z') J=J(r")=Jo(zp) + g | SAr)+8Ir). (39
no longer depends on the paramef€}?> whose physical z
meaning remains somewhat fuzzy but is a functional of L. ] ) )
solely the Green functio®,(r,r":E) and the corrugative Here_,zO is the mean t|p-Sl_Jrface dlst_an_ce, and the corrugation
potentialW(r ). Second, within this approximation, the cor- amplitudez’ —z,=52(r") is the deviation from the average
rugative currentsJ(r’), Eq. (32), depends linearly on the Value. We now rewrite the derivative dp(z'): Since the
perturbative potentialV(r’). This means that the corrugative currentJ(r’) is proportional to the local density of states
current be|onging toN(r’):EWi(r’) is a Simp|e superpo- n(r’,E), EQ(18), in the vicinity OfZé the current should rise
sition of the individual contributions caused WV.(r'). exponentially like exp(2z’), wherex represents the binding
This latter property renders the source method particularlynomentum at the mean tip positiag. Hence we have
attractive for the treatment of periodic surfaces. In this case,

X1Im

the potentialU(r) may be expanded into a discrete Fourier dJdo(2) ,
series: oz |- 2kJ0(2)- (36)
2y
U(r):z w,,,(2)expli(uG;+ vGy)p}. (33 Inserting this relation into Eq.35), we immediately obtain
wov the desired expression for the corrugation amplitddg '):

Here,G; andG, form a set of basis vectors of the reciprocal

surface lattice, angk,v are Miller indices. We emphasize 5z(r’)=—i aJ(r’) 37
that the translationally invariant componermigy(z) is 2K Jo(zp) '

straightforwardly identified with the bulk-vacuum transition

potential:V(z) = woo(2). The remaining, periodically chang- where the partial currentdy(z,) and 8J(r’) are given by
ing contributions form the perturbative potentid(r). Let  Egs.(31) and(32).
us now examine the contribution of a single Fourier compo-

nent of W(r) in Eq. (33) to the corrugative currendJ(r’),

Eqg. (32. We note that the unperturbed Green function

Gy(r,r’;E) occurring in this formula is, like the potential For the purpose of illustration, we now apply the scatter-
V(z) it is based on, invariant with respect to translationsing theory to a model potentidl(r) that imitates the struc-
parallel to the surface, i.e., in th& direction. Hence, the ture of a noble metal surface. To obtain realistic results it
Green functionGy(r,r’;E) will be a function of|p—p’|.  would be necessary to use the complete potehtial) of a
According to Eq.(32), the exponentially varying potential real surface that, in turn, would have to be obtained from
componentw(z)exiGp} will give rise to an exponentially either experiment or aab initio calculation. However, for a
alternating corrugation current  contributionsJ(r’) first study of the propagator theory a much simpler “toy

IV. EXAMPLES
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cations and — 1.5w¢(2) (at the interstitials This is due to
the fact that the primitive surface cell spanned by the basis
vectorsa; anda, contains two potential minima but only a
single maximum(Fig. 2).

Our simple §-sheet model now compresses the surface
potential into a single plane or sheet at=¢, i.e.,
wo(2)=Wyé(z—¢). Furthermore, we assume that the
p-invariant bulk-vacuum transition potentisl(z) is linear:

3
U(r)=—Fz+Wyd(z— ) Zl coG,- p. (40)

In this case the Green functio(r,r’;E), Eq. (19) and
(20), of the unperturbed system and hence the background

FIG. 2. The fcc (111) surface. Shown is a density plot of thecurrentJo(z’), Eq. (31) are known. Furthermore, two of the

model potentialW(r), Eg.( 39), together with a set of basis vectors three spatial inte_grations in th? calculation m(rl)_’ Eg.
a, anda, that span a primitive surface cell. (32), can be carried out analytically, and only a single nu-

merical quadrature has to be performed in order to calculate

problem” is more suitable because it avoids excessive nuthe corrugation amplitudéz(r'), Eq. (37).

merical computation that tends to distract attention from the

physical content of the theory. After having defined the B. Results from the 6-sheet model

model problem we will present some results obtained from pgatore we present numerical results from thesheet

it. model, we first note that according to E433) and(34) the
STM image will duly reflect the potential structure \8f(r);
A. &-sheet model i.e., the corrugation amplitudéz(r’) will obey

One of the most spectacular achievements of STM was 3
the atomic resolution of metal (111) surfaces of close- Voo ,
packed metals with fcc structure, notably of noble mefals. oz(p’,2')=n(z )Zl cosG,-p'. (41)
Owing to their high degree of symmetry, these surfaces are .
extremely smooth: The crystal may be considered to be built? the context of the5-sheet model, this property means that
of stacked hexagonally close-packed layers. The distance the corrugation amplitudéz(p’,z’), Eq. (41), is essentially
between adjacent surface atoms is giverabyA/+2 , where ~ fixed by the quantity;(z’) that depends on various param-
A denotes the bulk lattice constaiEor the noble metals, eters_of t_he model. In the fo!lowmg we will express the_cor-
one finds approximatelf~4.05 A, i.e..a~2.88 A) The ap- rug_atlon in terms of the maximum dlsplacem_ent of the_azp N
pearance of the surface is dominated by the uppertficst dgrmg a surface scan; according to the previous section, it is
layer. If one neglects the second- and higher-order layers, tHiiVen bY 6Z= 6Zmax— OZmin=4.5|7(2")|.
resulting density and potential distributions will possess hex-
agonal structure with maximum symmetry. The correspond-
ing plane group is denoted pBmm. We find that a basis of Before we start out with a survey of the dependence of the
the reciprocal lattice is given by corrugationéz on various parameters of th&sheet model
surface potentialW(r), Eqg. (39), in the field emission envi-
1 ronment[V(z) = —Fz], we state the quantities that remain
+1/\/3 fixed throughout this section. First, we will use a typical
energy value oE= —4 eV that is compatible with the work
The high degree of symmetry of the surface potential prefunction of noble metals, corresponding to a binding momen-
sents a severe restriction on the possible combinations afim #x of x=1.025A"1. Second, we assume for the
Fourier components. In particular, the lowest Fourier com-strength of the surface potentil,=1 eV A. This choice for
ponentgwith wave vectoiG=41/+/3a) which dominate the W, is not critical since the corrugative curredd(r’), Eq.
STM image are fixed up to a single functiany(z). We  (32), and hence the corrugation amplituéiedepend linearly
confine ourselves to these contributions. Noting that the spasn the quantity\W, in the limit of weak surface potentials
tially constant Fourier component bf(r) just represents the W(r). Therefore,W, is just a scaling factor that may be
bulk-vacuum transition potentid(z), we find subsequently fixed.
We begin with a study of the dependence of the corruga-
tion amplitude 6z on the tip-surface separation. Here, we
W(r) = wo(2) Z«l coG, - p, (39 place the corrugative potential at the position of the surface
Z, defined by the classical turning poigj= {= — E/F of the
where p=(x,y)" represents the configuration space surfacgotential V(z)=—Fz. By adjusting the field strength
vector. The resulting potential distributidf(r) is shown in  F=—E/{ we may simulate different tip-surface distances.
Fig. 2. We note that within a plane parallel to the surface, thel'he results of these calculations for selected fcc lattice con-
potential W(r) varies betweent 3 wy(z) (at the atomic lo- stantsA are shown in Fig. 3. Except for very small tip-

1. Distance dependence of the corrugation

21

G]_/Z:? and G3:G1_Gz. (38)

3
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FIG. 3. Dependence of the corrugation amplituée on the FIG. 4. Dependence of the corrugation amplitutteon the fcc
tip-surface distancé for various values of the fcc lattice constant lattice constan® for various values of the tip-surface distante
A. (Details are given in the text. (Details are again given in the text.

surface separations the functional dependence 6z on the  corrugation amplitude approaches values of around 1 A, as
distance{ is almost perfectly given by the expected expo-can be read off from Fig. BWe infer that with decreasing
nential decay law. For a linear potenti®(z)=—Fz, the  next-neighbor distance, the corrugation drops first slowly,
Green function method yields this dependence in the limit okhen rapidly. Following the spotlight model, the transition

weak fields analytically: between both regimes should approximately occur at inter-
atomic spacings equal to the current spot diamet&({),
8z({)cexd — {(Ve*+G*—k)]. (42)  Eq.(27). A comparison with Table Il shows that this asser-

. L tion holds qualitatively.
As Table | shows, this approximation agrees almost perfectly

with the numerical evaluation of Eq37) using the exact
Green function(19) for a constant electric field. The error is
less than 1% for the three model surfaces considered with fcc Finally, we discuss a very simple model of an adsorbate
lattice constanté&=4 A (next-neighbor distanca=2.83 A), structure: Let us fix the tip-surface distancezgt5 A; i.e.,
A=7A (a=4.95A), andA=10A (a=7.07 A. we assume a field strength Bf=0.8 eV/A. We now place
The most notable deviation occurs for very large structhe perturbative potentiaV(r) at some distancé from the
tures, i.e., in the limiA—oo. Obviously, the corrugation am- surface and simulate in this manner an adsorbate structure.
plitude 6z(¢{) then acquires its maximum value. It is inter- Figure 5 displays the corrugation amplitude as a function
esting to note that in this caséz actually increases with the of the distance between surface and adsorbate layer for the
tip-surface separatiofy whereas the tunneling curredy({),  four different periodicitiesA of the adsorbate potential al-

3. A simple adsorbate model

Eq. (31), drops exponentially. ready examined in Fig. 3. Note that negative value< of
denote potential layers in the sector of classically allowed
2. Effects of the lattice constant motion, i.e., below the surface.

Next we examine the dependence of the corrugation am- NOt surprisingly, in the tunneling region<0f<z, the
plitude 8z on the surface atomic spacing, i.e., the fcc latticeCorrugation amplitudez rises strongly with decreasing dis-
constantA, for fixed tip-surface distance. Again, the (@NCeZ=2o—¢ between tip and adsorbate layer. Again, to a
s-sheet potential coincides with the surface. We have perd00d approximation, there is an exponential dependence of
formed numerical calculations for selected separations of i N the tip-adsorbate separati@n|n fact, we may estab-
and surface=2.5 A, =5 A, and¢=7.5 A. The results are lish an analytical approximation for the corrugation ampli-
plotted in Fig. 4.(Here, we note that in the limi—, the  tudedz(Z) in the proximity of the tip £—0). For this pur-

pose, we employ the near-tip approximatig28) and (23)

TABLE |. Corrugation decay constants for different fcc lat-

tice constantsA. The values are extracted from Fig. 3. The last TABLE Il. Distance dependence of the spot diamet¢t), and

column gives approximate values determined from &8). corresponding fcc lattice constarfis

A a Qapprox g A(Q) A
4.00 A 1.75A°1 1.74A°1 2.50A 3.91A 5.54A
7.00 A 0.76A°1 0.76A°1 5.00A 5.54A 7.83A

10.0 A 0.42K1 0.42A71 7.50A 6.78A 9.59A
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10 : : : : : : : electric field between tip and sample until it scatters at the
surface of the sample. The source theoretical approach using
propagator theory, leads to a consistent and straightforward
10° | T e e L ] mathematical formulation of this model.
\ ST - The method is compatible to the STM approach by Ter-
C =T - soff and Hamann which is based on time-dependent pertur-
—————————————— bation theory. Indeed, for very weak coupling between tip
and sample we were able to rederive the result that pointlike
s-wave tipso(r)=Cd4(r—r') will map the local density of
sample states(r’;E). However, for finite coupling between
an ultrasharg-wave tip and a sample surface, the propagator
—— theory predicts the tunneling current to be proportional to the
e A=T7A 1 local density of states of theombinedsystem(sample+ tip
S :\=12A + electric field. In addition, the source theory is visualized
e quite easily, allowing us to devise a simple pictorial model of
T E— 0 1 2 3 s 5 STM, the “spotlight model.” From a more technical point of
Surface-Sheet Distance ¢ [A] view, the source method grounds on the potential distribution

her th h le eigenf i h
FIG. 5. Imaging of adsorbates: The figure shows the dependenc&us(l;;”;aihzrbtagg éf Zﬁ&m&ﬁ:jgﬁ:ﬂgnctloﬁ;(r) that are

of the corrugation amplitudéz on the adsorbate-surface separation The use of potentials allows to set up a perturbation

for different fcc lattice constanta. Negative values indicate layers . , .

below the surface. The tip-surface distance is fixed,at5 A. Schemg for the tunneling qurremtr ) that lead.s to a series
expansion of the corrugation amplitudz(r’) in terms of

the corrugative surface potentiah(r). This procedure

shows several attractive features.

Nonlocal potentials from many-body electron effects and
long-range image potentials can be incorporated. Further-
more, the method is easily applicable to quite arbitrary bulk-

SHRA
10" \
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107

-

Corrugation Amplitude 5z [A]
\
S

107

10°

of the exact field-emission Green functi@(r,0;E), Egs.
(19) and(20). Applying these expressions to the formula for
the corrugative currendJ(r'), Eq. (32), we obtain for the
corrugation amplitudedz(r'), Eq. (37):

o [T ~2 vacuum transition potentialé(z), and efficient from a com-
5Z(r,)~£exr[ ZWKTH G K)]W(p')_ (43 putational point of view. Finally, for weak corrugative
2k Vr?+G? potentialsW(r), the corrugation amplitudéz(r’) depends

éinearly on W(r), permitting the composition of STM im-

ages. For periodic surface potentials, the latter property is
particularly useful: There is a one-to-one correspondence be-
tween like Fourier components of the surface potential

For the linear potential environment, this expression hold
quite well all the way down to the tunnel exiZ & ¢) and
gives rise to the tip-surface distance decay (@&) of the
corrugation amplitudesz that was found before. .

W(r) and the STM current imagé(r’).

For {<0, i.e., structures below the surface, the exponen )
As an example, we applied the propagator theory to the

tial behavior of5z(¢) is no longer valid. There, an oscilla- 5-sh gel Dl oy A |
tory structure prevails that ultimately may be traced back to -sheet model, a simple potent_| (r) |_m|'_tat|ng close-
acked fcc (111) surfaces, in a field emission environment.

the outgoing-wave boundary condition of the Green functiorﬁ " btained imation 1o th i
Gy(r.,r":E) (see Appendix A One interesting feature s a result, we obtained an approximation to the corrugation

caused by this shift of character is the occurrence of Corrugmplitude that can substantially differ from predictions based

gation inversion. Under this condition protrusions and deOn estimates of the local density of states at the tip site for a

pressions of the STM image will exchange their role. ThatSUOIden .bulk-vacuum transition. Remarkaply, 'ghe simple

even a simples-wave pointlike tip will show this strange S-wave tip _model may alsq account for STM imaging behav-

surface mapping behavior under appropriate circumstancdg' 8S striking as corrugation inversion. .

may be inferred from Fig. 5: There, a corrugation reversal There are at Iea_st three further aspects of this theory that
occurs for large-scale structures-Goc) at 7= —2.4A. We &€ worth considering in the future: First, the model should

should finally note that this condition manifestly depends o e examined also for sources of finite size and directed point-

A . - ike sources, comparable to the andd,z states proposed b
the periodicityA of the perturbative potentia(r). Chen?!! This exterﬁ)sion is strgigghtforvz\jard. Segon% one )e/x-

pects a semiclassical treatment of the Green function formal-

ism to be applicable and useful. Finally, the propagator
We have developed a theory of the STM imaging proceséheory should be applied to realistic surface potentials

that is based on the quantum mechanical scattering formalV(r) that might either originate from calculations or could

ism. Instead of dealing with the external electrical circuitryPe extracted from scattering experimefesg., low-energy

in STM, we employed a simplified approach that models theelectron diffraction (LEED)], and compared with corre-

tip by a suitable finite-size electron sour¢er sink) that  sponding STM images.

scans the sample surface at a certain potential difference

e_V. Introduci_ng a localized tunneling source into th_e Sehro ACKNOWLEDGMENTS

dinger equation allows for metastable tip states which decay

in the presence of a finite potential difference. After having We have benefited from valuable discussions with W.
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V. CONCLUSION
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Gref.I';E)= Iim+fdgw_ A7)

APPENDIX A: EXPANSION OF GREEN FUNCTIONS i =07 E._g+' 7
Using a well-known distribution relation

In this appendix we derive a useful eigenfunction expan-
sion of the retarded Green functi@.(r,r';E). As a result lim :
we will obtain the alternative expressiqa6) for the total 70+ XXy
tunneling current(11). For the simple case of pointlike _— .
s-wave tips, i.e.,5-function sourcess(r)=Ca(r—r'), the whereP denotes the Cauchy principal value of the integral,

! . : Eq. (A7) may be rewritten to yield
total tunneling currend(r’) is proportional to the local den- a. (A7) may W y

:73( %) Fimd(x), (A8)

sity of states\(r’;E). . Pe(r') he(r)
We start out from the retarded time-dependent propagator Gredr.r 'E):Pf de E-&
Kredr,t;r't'):
[id— H]K,olTtir/ 1) = S(r—1')8(t—t"), (A1) ‘”% Yu(r) u(r). (A9)

which vanishes fot<t’. It is intimately related to the time The sum in the second term comprises all stgiesvith
evolution operatot/(t,t’) of the system. In a stationary en- energy&,=E. Forr=r’, we obtain the important relation
vironment, one fin

1
i n(riE)=2 [§u(r)[7= = — IM[Gre(r' .1 ;E)].
y
Kredr tir' t")=— %®(t—t’)<r|U(t,t’)|r’). (A2) (A10)

) ) ) The local density of statas(r’;E) is therefore directly tied
This expression may be expanded into a complete set Qb the imaginary part of the Green function for the coupled
normalized eigenstates of the combined tip-sample Hamilsystem at=r’. It should be noted that IG(r’,r’;E)] is
tonianH, always negative.

We are now in the position to express the total curdgpt
Hipe(r)=EPe(r), (A3)  for an extended source(r) in terms of sample wave func-
tions. From Eqgs(11) and (A9),

3 * _ _ o
J d-r ‘//E’(r) l//é'(r)_a(g & )v (A4) Jout:_% Im{ j d3rf d3r’(r(r)a'(r’)Gret(r,r’;E)}
S S

to yield the representation 5

2 de
== |m‘79f E=F Jsd3rcr(r)¢g(r)

-in3 2]

2

[
Kl’et(rat;rrvt’): - %®(t_t,)

Ldaf o(r)(r)

X f dE ey (r') ().

(A5) = zﬁ—WE (A11)
M

(Since the system is semi-infinite, we expect a continuous

spectrumé of energy eigenvalues, and additionally isolatedTh'S simple result permits us to express the tunneling current

bound states. For the sake of brevity we ignore the latter” {€ms of the energy-normalized eigenfunctions of the tip-

Bound states could, however, easily be included in the caSU"faceé system. For an idealized pointlike tip with
culation) o(r)=Co(r—r"), the current image will directly reflect the

By Fourier transforming with respect to the time differ- local density of states:

Ldsf o (r)(r)

ence r=t—t’, we obtain the retarded energy-dependent o
Green functiorG¢(r,r’;E), the quantity of our prime inter- Joulr';E)= 7|C|2n(r’;E), (A12)
est:

a result already found by Tersoff and Ham&rhshould be
f * dr el (E+im noted thatl,; always possesses positive sign and describes

+ Jo therefore current flow from tip to sample, witi(r) acting as
_ a source. To obtain the reverse process, we must use the
XJ’ d€ e () * he(r). (A6)  advanced Green function

Here, we have to introduce a small positive parametén Gaalr, 1" E)=Grefr',;E)", (AL3)
order to ensure convergence of the integr@,(r,r';E) is  which behaves asymptotically like a wave coming in from
defined in the upper half of the plane] As we shall see, the the sample. We then find

Grexr,r';a:—}i—n[rg
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1 tially in the tunnel region, and the tunneling currehtis
n(r';E)=— Im[Gaa(r",r";E)], (Al4)  strongly enhanced. This is exactly the condition of resonant
tunneling]
2 Unlike the sample states, the tip statg) is not as easily
) (A15) obtained as in Bardeen'’s original problem of stacked layers.
This is because the tip side in the STM setup represents a

27
L
o(r) acts here as an electron sink. To describe the circumf-'n'te's'ze potential structure that does not support eigen-

stances in a real specimen, both competing processes haVes.ttgtes(except for isolated bound states that are responsible

; . N S for resonant tunneling There is, however, a way to get
Ege\;lvignh;ﬁgedAi;hgrergoﬁynamlc equilibrium weighing haSaround that problem that has implicitly been used by Tersoff

and Hamann, and it again relies on the introduction of a
source termo(r) as presented before in this article.
APPENDIX B: SOURCE APPROACH Let us state the main properties required of the function
TO TERSOFF-HAMANN THEORY x(r): It should be concentrated within the tip region, and
It is rewarding to compare the resylt5) of the source decay exponentially in the tu_nneling _r_eg_ion, towa_rds the
theoretical scattering theory with the transfer HamiltonianS@mple surface. Furthermore, in the vicinity of the integra-
method originally proposed by Tersoff and Hambtirat has tion surfacesS, it is required to be a solution of the station-

become the standard theoretical description of scanning tuf’y Schralinger equation of the system. A natural candidate
neling microscopy. Let us first quickly review their expres- for the wave functiony(r) is therefore given by a real solu-

sion for the tunneling current: Assuming again that only ondion of the modified Schidinger equatior(2):
tip state with energ¥ will contribute, one finds

Ld3ro(r)dm(r)

2

fi
E+==V2—U(r) [x(r)=0o(r). (B4)
2 2m
J=—[HE)-f(E+eV)]X M,[°, (B
" In fact, thes wave originally used by Tersoff and Hamann,
where the sum covers all stataswhose energy,, equals
the tip state energig. Obviously, the curreni is calculated B m exp(—«|r—r'])
according to the Fermi golden rule. The quantity, , the x(r)= _C27-rh2 Ir—r'| ' (BS)

so-called transfer Hamiltonian matrix element, was first de-
rived by Bardeehito describe the tunneling current through with fik=(2m®)¥2 is just the free-particle solution to a
metal-insulator-superconductor structures and contains gspintlike sourcec(r)=Cd8(r—r’) for an energyE=—®

expreSSion reminiscent of the current integral that inVOlvesNhere(I) denotes the work function of the Surface, and there-
normalized wave functiong(r) andy(r) of the unperturbed fore, as shown in Sec. II, proportional to the free-particle
semisystems: The wave functigh(r) oscillates in the metal Green functionGy.r,r';—®). We again emphasize that
part and decays exponentially within the barrier regionaccording to Eq(3), the imaginary part of any solution of
whereasy(r) is contained in the superconductor region anqu. (B4) also solves the ordinary Schfinger equation.
leaks into the barrier from the other side. Using these notarence, Eq(B4) will support the sample states(r) of Eq.
tions, Bardeen obtained for the matrix elemdft (B3). From Eq.(7) we find that a suitable integral represen-
tation of the tip wave functiory(r) is given by

i%2
M=— 5] dalx(n) Ve(r) = () Vx(r)*]n(r).
(B2) X(r)zRe{ Ld"‘r’o(r’)Gret(r,r’;E) : (B6)
Here, dS denotes a surface within the insulator layer that ) ) ) ) ]
separates both conducting regions. Agaif) represents It is now easily proved that with this choice of wave func-
the surface normal. tions ¢(r) and x(r), both the source method and the con-

This expression was taken over by Tersoff and Hamann tyentional theory lead to the same result. To this end, we note
describe tunneling in the tip-sample system of STM. It isthat in the case of STM, the integration surfag8 in
tempting to identify #(r) with the wave functions of the Bardeen's integralB2) may be closed around the tip. By
sample that are ideally represented by the eigenstaieg ~ Virtue of Gauss’ theorem, and using E¢B3) and (B4), we
of the complete tip-sample potentidr), including the ap-  ©Ptain
plied voltageV,

2

i [ . - 200 *
. M:_ﬁfd rix(r)*Vee(r)— o(r)Vax(r)*]
, s
E+ﬁv —U(I')

e(r)=0. (B3)

zifd?’r a(r)é(r). (B7)
S

Since the wave functiongg(r) decay exponentially in the
tunneling sector, the potential of the tip region hardly influ-
ences their structur¢lt should be noted, however, that this Noting that ¢(r) has to be replaced by the sample states
is not true in the rare case thtrepresents an eigenenergy #,(r) and introducing Eq(B7) into the Tersoff-Hamann

of the isolated tip, in which casgg(r) will grow exponen- current formula(B1), we end up with the expression



2

J

2
%[f(E)—f(EnLe\/)]% Ld3r (1), (1)

(B8)

This is exactly the alternative current formula6) that we
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obtained in Sec. Il. Hence, both approaches yield compatible
results®* However, the scattering approach has the merit of
being more transparent than the conventional theory that is
based on a perturbation scheme and relies on the Bardeen
tunneling matrix element whose meaning is not immediately
clear.
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