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Propagator theory of scanning tunneling microscopy

C. Bracher, M. Riza, and M. Kleber
Physik-Department T30, Technische Universita¨t München, James-Franck-Strasse, 85747 Garching, Germany
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We develop a quantum mechanical scattering theory for electrons which tunnel out of~or into! the tip of a
scanning tunneling microscope. The method is based on propagators~or Green functions! for quasistationary
scattering with the tip being an electron source~or sink!. The results for the tunneling current generalize the
Tersoff-Hamann approach of scanning tunneling microscopy. In contrast to previous calculations the present
theory relates the tunneling current to the potential distribution of the sample. Expressions for the corrugation
are available through a simple perturbation expansion scheme. Analytical model calculations are presented and
compared with existing results.@S0163-1829~97!05835-9#
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I. INTRODUCTION

From its first description by Binniget al. in 1982,1 scan-
ning tunneling microscopy2 ~STM! has rapidly evolved to
become an important tool in surface analysis. As is w
known, the device consists of a sharp metallic tip which
placed at a distance of a few angstroms from a conduc
sample surface. Due to their small spatial separation,
wave functions of the tip and the surface will overlap. The
fore, a small voltage~up to '62V! between tip and surfac
will induce a tunneling current which varies exponentia
with the distance between tip and surface. For a fixed
tance the local variation in the tunneling current or, for fix
current, the corrugation~tip-surface distance! will yield use-
ful information about the electronic structure of the surfa
provided there is a reliable theoretical interpretation of
STM current images.

Despite the advent of sophisticated scatter
techniques3–7 the original approach8–10 based on Fermi’s
golden rule still remains an intelligible, successful, and pr
tical description of STM. The evaluation of the tunnelin
current is based on the assumption that the electronic tra
tions occur between unperturbed states of both electro
~tip and sample!. Using Bardeen’s tunneling transfer Ham
tonian formalism and approximating the electron wave fu
tions by s waves of the form exp(2kr)/r, where r is the
distance from the apex of the tip and\k the tip-dependen
binding momentum, the tunneling current is found to be p
portional to the local electron density of sample states at
Fermi level, evaluated at the position of the tip.8 The final
result, known as Tersoff-Hamann theory of the STM, co
tains the statistical occupation probabilities of the states
the two electrodes, and it recovers Ohm’s law in the we
bias limit. Later, the theory has been extended to t
nonisotropic tip and surface wave functions, particularlypz
anddz2 states, into account.11

From a quantum mechanical point of view electron tu
neling is a scattering phenomenon where the electron is s
tered across the tunnel junction. Scattering theory is m
appealing than the golden rule method, but mathematic
much more demanding, and until now it has not been th
oughly established how the scattering approach is relate
the golden rule approach. In this paper we develop a pro
560163-1829/97/56~12!/7704~12!/$10.00
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gator theory of STM~Sec. II! by makingexplicit use of the
fact that the tip is a localized source~or sink! of electrons.
The results of Tersoff and Hamann are then obtained fr
the propagator theory in the limit of pointlike tips and larg
separation between tip and sample.

Since STM images reflect the patterns of the local el
tron density of states~LDOS! n(r ;E), it can be very mislead-
ing to interpret a STM image only in terms of the geomet
cal structure of the sample surface.12 On the other hand, it
should be possible to relate the STM current to the poten
distribution U(r ) felt by the scattered electron. This is in
deed the case; a suitable simple perturbation expan
scheme will be elaborated in Sec. III. Finally, in Sec. IV w
will demonstrate the usefulness of the scattering theory
developed in this paper by evaluating the corrugation am
tude as a function of tip-surface distance for a simplifi
model surface. The article concludes with two appendix
Appendix A deals with a useful eigenfunction expansion
Green functions. In Appendix B, we show that the gold
rule result of Tersoff and Hamann presents a limiting case
the more general scattering approach.

II. PROPAGATORS AND SOURCE THEORY OF STM

In this section we introduce the basic formalism of t
propagator~or Green function! approach to scanning tunne
ing microscopy. The principal idea behind this approach
the study of stationary wave functions of the entire t
surface system with nonvanishing current densityj (r ). Inte-
gration of j (r ) yields the total tunneling currentJ that rep-
resents the quantity of measurement in the STM setup
perturbation theory,J is calculated by applying Fermi’s
golden rule to the tunneling problem: The resulting mat
elements of the ‘‘transfer Hamiltonian’’ originally propose
by Bardeen contain an integral that combines real surf
and tip states which do not carry any intrinsic current, a
their physical relevance is not immediately evident. The
sults of both approaches are consistent~Appendix B!. From a
technical point of view, the main difference between the t
methods consists in the description of the surface: Wh
Tersoff-Hamann theory rests on thewave functionsc(r ) of
the sample, the source method proposed here is based o
7704 © 1997 The American Physical Society
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56 7705PROPAGATOR THEORY OF SCANNING TUNNELING . . .
potential distribution U(r ) resulting from surface, tip and
electric field.

A. Inhomogeneous Schro¨dinger equation

In our description of STM, we will disregard the electric
circuitry that is responsible for keeping a constant poten
differenceV between tip and sample. For simplicity, we w
consider the tip as a movable electron source~or sink! of
finite spatial extension contained in a volume elementS that
scans over the surface at either constant height or con
currentJ. It is natural to include the applied voltageV into
the surface-tip potentialU(r ). Applying a voltage will shift
the occupation numbersf (E) in the tip or sample regions b
eV which in turn gives rise to a net multiparticle current.

A scattering theory of STM has to address the followi
problem: Although the current densityj (r )

j ~r !52
i\

2m
@c~r !!¹c~r !2c~r !¹c~r !!# ~1!

in a stationary environment does not necessarily vanish,
total flux through any closed surface]S is always zero. This
fact immediately follows from the equation of continuit
div j (r )50. Therefore, it is not possible to treat a localiz
stationary source~or sink! in the framework of the common
Schrödinger equation. We may, however, get rid of th
shortcoming by adding an inhomogeneous term~‘‘source
term’’! s(r ) to the ordinary Schro¨dinger equation that van
ishes outside the source regionS. This approach is reminis
cent of the introduction of heat sources into the heat dif
sion equation, but has rarely been applied to quan
mechanics.~Recently, this idea was employed in intens
field laser-atom physics.13! Therefore, we first study the
properties of the inhomogeneous Schro¨dinger equation.

For simplicity, we will exclude magnetic fields; i.e., w
assume that the electromagnetic vector potentialA(r ) van-
ishes. We also require the source fields(r ) to be real. From
this assumption, it follows that the imaginary part Im@c(r )#
of any solutionc(r ) of the stationary inhomogeneous Schr¨-
dinger equation

FE1
\2

2m
¹22U~r !Gc~r !5s~r ! ~2!

@whereU(r ) includes the tip, sample, and applied potentia#
is also a solution to the ordinary Schro¨dinger equation,

FE1
\2

2m
¹22U~r !G Im@c~r !#50, ~3!

and hence remains totally unaffected by the presence o
sources(r ).14 On the other hand, the modified equation
continuity that is obtained from Eq.~2! manifestly depends
on the imaginary part:

¹• j ~r !5
\

m
Im@c~r !!¹2c~r !#52

2

\
s~r !Im@c~r !#.

~4!

Assuming that the source is localized within a finite volum
elementS ~with surface]S), we find for the total currentJ
through]S by Gauss’ theorem
l

nt

he

-
m
-

he
f

J5 R
]S

da j ~r !•n~r !52
2

\
ImF E

S
d3rs~r !c~r !G . ~5!

Here,n(r ) denotes the surface normal. We conclude that
source terms(r ) ‘‘causes’’ the current but is able to susta
different current levels, depending on the choice ofc(r ).
Notably, s(r ) may act as a source as well as a sink; un
time reversalsc(r )→c(r )!, the sign ofJ will change.

Finally, we are going to construct the solution set to t
modified Schro¨dinger equation~2!. Because the difference o
any two solutionsc(r ) and x(r ) to this linear inhomoge-
neous equation will satisfy the original Schro¨dinger equation
we only need to know a single special solutionf(r ). Intro-
ducing the propagator~or Green function! GU(r ,r 8;E) ~Ref.
15! that is a solution of

FE1
\2

2m
¹22U~r !GGU~r ,r 8;E!5d~r2r 8!, ~6!

we immediately find a special solutionf(r ) of ~2! by inte-
gration,

f~r !5E
S
d3r 8s~r 8!GU~r ,r 8;E!. ~7!

Hence, the introduction of sourcess(r ) renders it possible to
use the powerful mathematical apparatus of Green func
theory. The propagatorG(r ,r 8;E) is a relative probability
amplitude that a particle arrives at pointr if it has been
created at pointr 8.16 If the corresponding travel occurs i
reality, then there must be a source of particles at the p
r 8. Thed function in Eq.~6! will act as a point source local
ized at r5r 8. All we have done so far is to introduce
general sources(r ).

We conclude this section with a comment on the norm
ization of the wave functionf(r ). Whereas solutions to Eq
~3! may be normalized by a simple scaling procedure, thi
no longer possible for the inhomogeneous Schro¨dinger equa-
tion ~2!. Rather, the wave function depends on our choice
the Green function in Eq.~7!. Hence, the solutionf(r ) is
selected by the boundary conditions imposed
GU(r ,r 8;E).

B. s-wave source model for STM

After these preliminaries, we are now in the position
outline the scattering description of STM. Let us model t
source properties of the tip by an inhomogeneitys(r ) as
explained in the preceding section. Then, two compet
processes will occur: An electron may be transferred from
occupied tip state to an empty sample state or from an oc
pied sample state to an empty tip state. At equilibrium co
ditions both processes will compensate, and a fluctua
temperature-dependent noise current prevails. The situa
obviously changes if an external potentialV is applied: Un-
der idealized circumstances, tip and surface each sho
thermal equilibrium occupation probability

f ~E!5F11expS E2EF

kBT D G21

, ~8!
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but the tip or sample distributions will be shifted by th
potential energyeV. We now calculate the partial curren
Jt→s andJs→t due to both processes.

Let us first consider tunneling from the tip to the samp
The corresponding tunneling rate for a tip state energyE is
given by

Jt→s5 f ~E!@12 f ~E1eV!#Jout~E!, ~9!

where the prefactor takes into account the different occu
tion probabilities in tip and sample whereasJout(E) denotes
the ‘‘intrinsic’’ tunneling current from tip to surface. To ca
culate it, we have to find the wave functionfout(r ) that
describes the tunneling process, i.e., solves the inhom
neous Schro¨dinger equation~2! and, for reasons of causality
behaves inside the sample like an outgoing wave. This tas
accomplished by employing the retarded Green funct
Gret(r ,r 8;E) ~Ref. 17! in Eq. ~6!:

fout~r !5E
S
d3r 8s~r 8!Gret~r ,r 8;E!. ~10!

Inserting this result into the current formula~5!, we find

Jout~E!52
2

\
ImF E

S
d3rE

S
d3r 8s~r !s~r 8!Gret~r ,r 8;E!G .

~11!

This bilinear ‘‘matrix element’’ ins(r ) for the intrinsic out-
going currentJout(E) presents an important result of th
propagator description of STM.18

The partial tunneling currentJs→t that leads from the
sample back into the tip may be determined analogously.
obtain

Js→t5 f ~E1eV!@12 f ~E!#Jin~E!. ~12!

Here, Jin(E) denotes the intrinsic tunneling current fro
sample to tip. This absorption process is, in a sense,
time-reversed counterpart to the emission process consid
above: As a result, the incoming wavef in(r ) is connected to
the outgoing wave through time reversal,

f in~r !5fout~r !!. ~13!

Therefore, the intrinsic current merely changes its sign:

Jin~E!52Jout~E!. ~14!

From the partial currents~9! and ~12!, we finally obtain the
following expression for the tunneling current in scanni
tunneling microscopy:

J52
2

\
@ f ~E!2 f ~E1eV!#

3ImF E
S
d3rE

S
d3r 8s~r !s~r 8!Gret~r ,r 8;E!G . ~15!

Here, the retarded Green functionGret(r ,r 8;E) for the
total potentialU(r ) that includes tip and surface potentials
well as the applied voltage has to be used. It should also
pointed out that Eq.~15! describes the current contribution o
.

a-

e-

is
n

e
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just a single tip state with energyE. If tunneling occurs from
more than a single tip state, the individual contributions ha
to be added.

It is possible to eliminate the Green functionGret(r ,r 8;E)
in Eq. ~15! and to expressJ in terms of the normalized eigen
statescE(r ) of the surface-tip system. For the necessa
transformations we refer to Appendix A. Equation~15! then
assumes the form

J5
2p

\
@ f ~E!2 f ~E1eV!#(

m
U E

S
d3r s~r !cm~r !U2

.

~16!

Here, the sum includes all eigenstatescm(r ) of the tip-
sample system whose energyEm matches the tip state energ
E. From Eq.~16!, Ohm’s law is recovered in the usual way8

by expandingf (E)2 f (E1eV) in the limit of small voltage
and temperature.

Simple expressions forJ are obtained for an idealize
pointlike tip, i.e., ad-spike source terms(r )5Cd(r2r 8). In
this case, the spatial integrations that appear in Eqs.~15! and
~16! are trivial. We then obtain for the total tunneling curre
J(r 8) as a function of the tip positionr 8:

J~r 8!52
2

\
uCu2@ f ~E!2 f ~E1eV!#Im@Gret~r 8,r 8;E!#

~17!

or, alternatively@see Eq.~A12!#,

J~r 8!5
2p

\
uCu2@ f ~E!2 f ~E1eV!#n~r 8,E!. ~18!

This result demonstrates that the total current for ideali
pointlike s-wave tips is proportional to the imaginary part
the Green functionGret(r 8,r 8;E) which in turn is propor-
tional to the local density of statesn(r 8;E) at the tip siter 8
~A10!.19 Equation~18! bears great similarity with the resu
of Tersoff and Hamann8 for the current. There, the propor
tionality constantuCu2 has been expressed in terms of the
curvatureR. However, one can argue that the introduction
quantities whose meaning becomes fuzzy on the scale
atomic dimensions is questionable. The constantuCu2 should
instead be thought of as a parameter that characterizes
overall properties of the tip. As we shall show, the importa
corrugation amplitudedz is not affected by this quantity.

We have seen that in the framework of source theo
expressions for the tunneling currentJ, Eqs. ~15! and ~16!
are derived readily. At this point we should discuss how
design the tunneling sources(r ): A given current carrying
wave functionf tip(r ) can be modeled by a series of pointlik
sources. To this end, Eq.~7! is evaluated in the vicinity of
the tip (r'r 8) with f(r )5f tip(r ). The evaluation will be
numerically with the exception of a few analytically solvab
cases.20 The method is not restricted tos-wave sources. For
instance, for point sources higher multipole waves can
generated from thes-wave propagator by appropriate diffe
entiation ofG(r ,r 8;E) with respect tor 8. This technique has
been outlined by Chen11 and will not be discussed here.
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C. Example: Field emission

After having studied the fundamental properties of t
source theory approach to scanning tunneling microscop
is helpful to illustrate the physics that underlies the sou
theoretical approach. For this purpose we discuss field e
sion from a sharp atomic tip in the absence of a sample.
avoid algebraic complications, we will do this for an idea
ized pointlike s-wave tip; i.e., we will use a source term
s(r )5Cd(r2r 8). In this case, the tunneling wave function
will be proportional to the Green function~6!. Therefore, the
required energy Green function describes the motion o
particle out of a zero-range quantum well in the presence
an electric field. Assuming the field to be constant, and ali
ing its direction along the positivez axis we have
V(z)52Fz. The desired Green function then reads21

Gret~r ,r 8;E!5
m

2\2ur2r 8u
$Ci~a1!Ai 8~a2!

2Ci8~a1!Ai ~a2!%, ~19!

with

a652S m

4\2F2D 1/3

@F~z1z86ur2r 8u!12E#. ~20!

Here we have introduced the complex Hankel-type A
function

Ci~s!5Bi~s!1 iAi ~s! ~21!

in terms of the two real Airy functions Ai(s) and Bi(s) as
defined in Ref. 22. The complex function Ci(s) has the de-
sired property of behaving like an outgoing wave f
s→2`.

It is essential to realize that the electron source emits
listic electrons forE.0 whose dynamics is eventually gov
erned by the Landauer conduction mechanism.23 However,
for E,0 the electron source corresponds to quasibound e
trons which will be emitted only after they have crossed
~in our case triangular! barrier. It is the tunneling sourc
(E,0) which is relevant for both field emission and STM

Given the simple structure of the problem, the expressi
~19! and ~20! are still considerably complicated. Only fo
weak fieldsF, less involved approximations to the exa
Green function can be obtained. Let us consider the tun
ing caseE,0. For simplicity, we shift the origin to the tip
location; i.e., we are settingr 850. In the limit of a vanishing
external electric field the real part ofGret(r ,0;E) passes into
the free particle Green functionGfree(r ,0;E) that is propor-
tional to the bound state of a particle in a~regularized! three-
dimensional zero-range potential,

lim
F→0

Re@Gret~r ,0;E!#52
m

2p\2r
e2kr , ~22!

with k5A22mE/\. In the same limit, the imaginary part o
Gret(r ,0;E) that is responsible for the tunneling current,
e
it
e
is-
o

a
of
-

l-

c-
e

s

l-

lim
F→0

Im@Gret~r ,0;E!#52
Fm2

8p\4k2
expS 2

2

3

\2k3

mF D ekz,

~23!

vanishes exponentially with 1/F. In the weak-field limit the
real part~22! of Gret(r ,r 8;E) is identical to thes-wave func-
tion ~B5! used by Tersoff and Hamann for a single-atom ti8

Besides its obvious relevance to the field emiss
problem,24 the constant field Green functions~19!–~21! may
also be used to discuss the dynamics of photodetached
trons in an electrical field.25 In Sec. IV, we will extensively
employ the field emission potentialU(r )52Fz for STM
model calculations.

III. RESOLUTION OF THE STM
AND SMALL-CORRUGATION LIMIT

We now want to apply the scattering theory of STM
realistic surface-tip potentialsU(r ). For simplicity, we as-
sume ans-wave tip that scans over the surface; i.e., we e
ploy a d-function source terms(r )5Cd(r2r 8). Here, r 8
denotes the position of the tip.

In this case, the expression for the tunneling currentJ(r 8)
becomes particularly simple. If we ignore the occupati
probability factor common to both theories, we find from E
~17!

J~r 8!52
2

\
uCu2Im@Gret~r 8,r 8;E!#. ~24!

To calculate the current, it is therefore sufficient to know t
Green functionGret(r ,r 8;E) at r5r 8. The determination of
Green functions belonging to an arbitrary three-dimensio
potentialU(r ) is, unfortunately, a task of formidable com
plexity. Hence, we will devote a section of this article to
series expansion that allows us to obtain not only the Gr
function approximately but also the corrugation amplitu
dz. But first we will outline a very simple pictorial represen
tation of the scattering model that nevertheless is able
explain why STM is capable of atomic resolution.

A. Pictorial representation of STM

This model starts out from the observation that the el
trons emitted from the pointlike tip, located atr 8, into a
homogeneous electric field, i.e., in the idealized field em
sion process discussed above, form a narrow current filam
surrounding the escape path. With our choice of poten
U(r )52Fz, this is the positivez direction. We will ap-
proximate the exact solution, Eqs.~19! and~20!, to the field
emission problem by inserting the principal asympto
forms of the Airy functions.22 Let us denote the transvers
components ofr and r 8 by r andr8, respectively. We then
find that the current distributionj z(r ,r 8) decays exponen
tially with increasing lateral distancer,

r5ur2r8u5A~x2x8!21~y2y8!2, ~25!

from the direct escape path, with the current approximat
assuming a Gaussian distribution. Shifting the tip into t
origin (r 850), we obtain24

j z~r !}exp~2kr2/2z!, ~26!

where\k5(22mE)1/2 represents the binding momentum
the tip site. Equation~26! could as well have been obtaine
from the expansions~22! and ~23! but is valid along the
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entire escape path, i.e., for allz.0. It is worth noting that
the approximation~26! does no longer depend on the actu
field strengthF. The current distribution from a pointlike
electron source is expected to be Gaussian.26,27 What we
have shown here is that Eq.~26! is a direct consequence o
assuming a pointlikes-wave tunneling source in the presen
of a homogeneous electric field.

From Eq.~26!, we find that the mean spot diameterD(z),
i.e., twice the mean radiuŝr& of the current distribution, is
given byD(z)5(2pz/k)1/2. This means that at the ‘‘end o
the tunnel’’ atz052E/F, the width of the current distribu
tion is given by

D~z0!5Ap\2k/mF. ~27!

Inserting realistic STM values ofz055 Å and E524 eV,
the width of the current distribution acquires the val
D(z0)55.53 Å. This is somewhat larger than the interatom
distancea in close-packed metals that is, e.g., in the case
gold a52.88 Å.

The formation of current filaments is not restricted to t
field emission problem but can be extended to more com
cated potential shapesV(z) that represent the overall struc
ture of the bulk-vacuum transition at the sample surface,
therefore are translationally invariant along the surface. T
simplest but also most prominent example is the step po
tial V(z)5V0Q(z) representing an abrupt transition. Clear
one could also use realistic, more complicated models
the self-consistent potential for jellium metal surfaces as
rived by Lang and Kohn,28 and even include image poten
tials. Within these models, tunneling is more suppressed
in the uniform force field environment; hence, electro
should move closer to the escape path, and the distribu
width at the surfaceD(z0) should be reduced.

The results obtained so far, can be interpreted in term
a simple pictorial model of the STM~Fig. 1!: Electrons,
bundled into a current filament by the bulk-vacuum tran
tion potentialV(z), are emitted from the tip and imping
onto the sample surface, giving rise to an electronic ‘‘sp
light’’ of approximate diameterD(z0). The local current
density j z(r ,r 8) along the surface is modulated by details
the potential characterizing the surface structure; theref
the total integrated currentJ(r 8) will vary while scanning
the surface, and this variation in turn yields the STM ima
From the aforementioned it is clear that surface poten

FIG. 1. The ‘‘spotlight’’ model of STM.
l
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modulations whose typical length scale is much smaller t
the spot width (2pz0 /k)1/2 will be averaged out and misse
in the STM image. This effect limits the resolving power
the STM. The predictions of different modelsV(z) will yield
similar values ofz0, and their resolution estimates rough
agree.

B. Series expansion of the corrugation

Let us now translate the qualitative picture sketched in
previous section into a quantitative theory. We assume
the total potentialU(r ) of the tip-sample system can be d
composed into a dominating partV(z) that is translationally
invariant along the surface, and a small partW(r ) that de-
scribes the surface characteristics:

U~r !5V~z!1W~r !. ~28!

@W(r ) is to be expected small at least in simple and no
metals as their bulk electronic band structure hardly devia
from the free electron model, indicating small effective p
tentials.#

V(z) is responsible for the~comparatively large! back-
ground tunneling currentJ0(z8) that does not change durin
the surface scan at constant height, whileW(r ) gives small
correctionsdJ(r 8) to the tunneling current that render th
surface structure, and therefore are of prime interest to S
We will now evaluate these current contributions. For
pointlike tip, the tunneling current is proportional to th
imaginary part of the retarded Green functionGret(r 8,r 8;E),
Eq. ~24!, which therefore has to be evaluated. Due to sy
metry considerations, it is quite simple and straightforwa
to calculate the Green functionGV(r ,r 8;E) of the bulk-
vacuum transition potentialV(z). @In the case of field emis-
sion, it is known in closed form; see Eqs.~19! and~20!.# The
three-dimensional~3D! Green function for a 1D potentia
V(z) can be obtained by integration from the correspond
1D Green function.26 Here, we utilize an integral relation
derived from the defining equation of the Green function~6!.
If we decomposeU(r ) according to Eq.~28!, we find for the
Green functionGU(r ,r 8;E) belonging to the total potentia
U(r ):

GU~r ,r 8;E!5GV~r ,r 8;E!

1E d3r 9GV~r ,r 9;E!W~r 9!GU~r 9,r 8;E!.

~29!

The Green function approach is a convenient method
calculating the current between the two electrodes of a ST
It is not possible to mention all scattering approaches
STM based on Green function techniques. At the risk
being incomplete we only refer to the Tsukada approa3

with special emphasis on cluster-type tips, the Sau
Joachim approach4 with a multichannel treatment of the elec
tron transfer, and theS-matrix method introduced by Datta.5

Modified Green function techniques were also used by Sa
and Noguera6 and by Doyen.7 In contrast to previous meth
ods we do not use asymptotic Bloch waves which run alo
the metallic tip. We model instead the apex of the tip by
localized tunneling source which emits electrons in a s



r.

r

t

-

n
re

o

r-

e
-

ar
s

ie

a
e

n
-

po

on
l
n

l

ur-
ier

ted

m-
f

y to
t
we

t
s
li-

tion
e

s

er-

it

om

y

56 7709PROPAGATOR THEORY OF SCANNING TUNNELING . . .
tially narrow cone into the classically forbidden barrie
Therefore our starting point is the calculation ofGV(r ,r 8;E).

Relation~29! then presents an ideal iteration scheme fo
perturbation expansion ofGU(r 8,r 8;E). As we consider the
corrugative potentialW(r ) to be small, we will be conten
here with the first-order Born approximation toGU(r ,r 8;E)
that consists in replacingGU(r ,r 8;E) by GV(r ,r 8;E) on the
right-hand side~RHS! of this equation. This procedure con
veniently leads to a separation of the currentJ(r 8), Eq. ~24!,
into the noncorrugative currentJ0(z8) and the corrugative
part dJ(r 8):

J~r 8!5J0~z8!1dJ~r 8!, ~30!

with

J0~z8!52
2

\
uCu2Im@GV~r 8,r 8;E!#, ~31!

dJ~r 8!52
2

\
uCu2

3ImF E d3r 9 GV~r 8,r 9;E!W~r 9!GV~r 9,r 8;E!G .
~32!

There are two interesting points to these expressio
First, we note that both partial currents carry the same p
actor; hence, the relative corrugation currentdJ(r 8)/J0(z8)
no longer depends on the parameteruCu2 whose physical
meaning remains somewhat fuzzy but is a functional
solely the Green functionGV(r ,r 8;E) and the corrugative
potentialW(r 8). Second, within this approximation, the co
rugative currentdJ(r 8), Eq. ~32!, depends linearly on the
perturbative potentialW(r 8). This means that the corrugativ
current belonging toW(r 8)5(Wi(r 8) is a simple superpo
sition of the individual contributions caused byWi(r 8).

This latter property renders the source method particul
attractive for the treatment of periodic surfaces. In this ca
the potentialU(r ) may be expanded into a discrete Four
series:

U~r !5(
m,n

vmn~z!exp$ i ~mG11nG2!r%. ~33!

Here,G1 andG2 form a set of basis vectors of the reciproc
surface lattice, andm,n are Miller indices. We emphasiz
that the translationally invariant componentv00(z) is
straightforwardly identified with the bulk-vacuum transitio
potential:V(z)5v00(z). The remaining, periodically chang
ing contributions form the perturbative potentialW(r ). Let
us now examine the contribution of a single Fourier com
nent ofW(r ) in Eq. ~33! to the corrugative currentdJ(r 8),
Eq. ~32!. We note that the unperturbed Green functi
GV(r ,r 8;E) occurring in this formula is, like the potentia
V(z) it is based on, invariant with respect to translatio
parallel to the surface, i.e., in ther8 direction. Hence, the
Green functionGV(r ,r 8;E) will be a function of ur2r8u.
According to Eq.~32!, the exponentially varying potentia
componentv(z)exp$iGr% will give rise to an exponentially
alternating corrugation current contributiondJ(r 8)
a

s.
f-

f

ly
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5h(z8)exp$iGr8%. This is an important result of the STM
propagator theory: Fourier components of the periodic s
face potentialW(r 8) are mapped onto corresponding Four
components of the STM currentJ(r 8). Therefore, the corru-
gation currentdJ(r 8), Eq. ~32!, generated by Eq.~33! has
the form

dJ~r 8!5(
m,n

8hmn~z8!exp$ i ~mG11nG2!r8%. ~34!

~The prime indicates that the componentm5n50 has been
left out.! Once the connection between the functionsvmn(z)
andhmn(z8) is established, STM images may be construc
from the potential distributionW(r 8). We also conclude
from the results of the preceding section that the wave nu
ber Gmn5umG11nG2u strongly influences the magnitude o
the partial currents in Eq.~34!.

Finally, we evaluate the corrugation amplitudedz(r 8),
i.e., the change in tip-surface distance that is necessar
maintain a constant tunneling currentJ. Since this constan
current mode is the preferred imaging method in STM,
express the corrugation amplitudedz(r 8) in terms of the
partial currents~31! and ~32!. If we expand the total curren
J(r 8) into a Taylor series and neglect ‘‘small’’ contribution
to the total current, we find that for small corrugation amp
tude, the relation approximately holds:

J5J~r 8!'J0~z08!1
]J0~z!

]z U
z
08
dz~r 8!1dJ~r 8!. ~35!

Here,z08 is the mean tip-surface distance, and the corruga
amplitudez82z085dz(r 8) is the deviation from the averag
value. We now rewrite the derivative ofJ0(z8): Since the
current J(r 8) is proportional to the local density of state
n(r 8,E), Eq.~18!, in the vicinity ofz08 the current should rise
exponentially like exp(2kz8), wherek represents the binding
momentum at the mean tip positionz08 . Hence we have

]J0~z!

]z U
z
08
' 2kJ0~z08!. ~36!

Inserting this relation into Eq.~35!, we immediately obtain
the desired expression for the corrugation amplitudedz(r 8):

dz~r 8!52
1

2k

dJ~r 8!

J0~z08!
, ~37!

where the partial currentsJ0(z08) and dJ(r 8) are given by
Eqs.~31! and ~32!.

IV. EXAMPLES

For the purpose of illustration, we now apply the scatt
ing theory to a model potentialU(r ) that imitates the struc-
ture of a noble metal surface. To obtain realistic results
would be necessary to use the complete potentialU(r ) of a
real surface that, in turn, would have to be obtained fr
either experiment or anab initio calculation. However, for a
first study of the propagator theory a much simpler ‘‘to
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7710 56C. BRACHER, M. RIZA, AND M. KLEBER
problem’’ is more suitable because it avoids excessive
merical computation that tends to distract attention from
physical content of the theory. After having defined t
model problem we will present some results obtained fr
it.

A. d-sheet model

One of the most spectacular achievements of STM w
the atomic resolution of metal (111) surfaces of clo
packed metals with fcc structure, notably of noble metal29

Owing to their high degree of symmetry, these surfaces
extremely smooth: The crystal may be considered to be b
of stacked hexagonally close-packed layers. The distanca
between adjacent surface atoms is given bya5A/A2 , where
A denotes the bulk lattice constant.~For the noble metals
one finds approximatelyA'4.05 Å, i.e.,a'2.88 Å.! The ap-
pearance of the surface is dominated by the uppermost~first!
layer. If one neglects the second- and higher-order layers
resulting density and potential distributions will possess h
agonal structure with maximum symmetry. The correspo
ing plane group is denoted byp6mm. We find that a basis o
the reciprocal lattice is given by

G1/25
2p

a S 1

61/A3D and G35G12G2 . ~38!

The high degree of symmetry of the surface potential p
sents a severe restriction on the possible combination
Fourier components. In particular, the lowest Fourier co
ponents~with wave vectorG54p/A3a) which dominate the
STM image are fixed up to a single functionv0(z). We
confine ourselves to these contributions. Noting that the s
tially constant Fourier component ofU(r ) just represents the
bulk-vacuum transition potentialV(z), we find

W~r !5v0~z! (
n51

3

cosGn•r, ~39!

wherer5(x,y)T represents the configuration space surfa
vector. The resulting potential distributionW(r ) is shown in
Fig. 2. We note that within a plane parallel to the surface,
potentialW(r ) varies between13 v0(z) ~at the atomic lo-

FIG. 2. The fcc (111) surface. Shown is a density plot of t
model potentialW(r ), Eq. ~ 39!, together with a set of basis vecto
a1 anda2 that span a primitive surface cell.
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cations! and21.5v0(z) ~at the interstitials!. This is due to
the fact that the primitive surface cell spanned by the ba
vectorsa1 anda2 contains two potential minima but only
single maximum~Fig. 2!.

Our simpled-sheet model now compresses the surfa
potential into a single plane or sheet atz5z, i.e.,
v0(z)5W0d(z2z). Furthermore, we assume that th
r-invariant bulk-vacuum transition potentialV(z) is linear:

U~r !52Fz1W0d~z2z! (
n51

3

cosGn•r. ~40!

In this case the Green functionGV(r ,r 8;E), Eq. ~19! and
~20!, of the unperturbed system and hence the backgro
currentJ0(z8), Eq. ~31! are known. Furthermore, two of th
three spatial integrations in the calculation ofdJ(r 8), Eq.
~32!, can be carried out analytically, and only a single n
merical quadrature has to be performed in order to calcu
the corrugation amplitudedz(r 8), Eq. ~37!.

B. Results from the d-sheet model

Before we present numerical results from thed-sheet
model, we first note that according to Eqs.~33! and~34! the
STM image will duly reflect the potential structure ofW(r );
i.e., the corrugation amplitudedz(r 8) will obey

dz~r8,z8!5h~z8! (
n51

3

cosGn•r8. ~41!

In the context of thed-sheet model, this property means th
the corrugation amplitudedz(r8,z8), Eq. ~41!, is essentially
fixed by the quantityh(z8) that depends on various param
eters of the model. In the following we will express the co
rugation in terms of the maximum displacement of the tipdz
during a surface scan; according to the previous section,
given bydz5dzmax2dzmin54.5 uh(z8)u.

1. Distance dependence of the corrugation

Before we start out with a survey of the dependence of
corrugationdz on various parameters of thed-sheet model
surface potentialW(r ), Eq. ~39!, in the field emission envi-
ronment@V(z)52Fz#, we state the quantities that rema
fixed throughout this section. First, we will use a typic
energy value ofE524 eV that is compatible with the work
function of noble metals, corresponding to a binding mom
tum \k of k51.025 Å21. Second, we assume for th
strength of the surface potentialW051 eV Å. This choice for
W0 is not critical since the corrugative currentdJ(r 8), Eq.
~32!, and hence the corrugation amplitudedz depend linearly
on the quantityW0 in the limit of weak surface potential
W(r ). Therefore,W0 is just a scaling factor that may b
subsequently fixed.

We begin with a study of the dependence of the corru
tion amplitudedz on the tip-surface separation. Here, w
place the corrugative potential at the position of the surf
z0 defined by the classical turning pointz05z52E/F of the
potential V(z)52Fz. By adjusting the field strength
F52E/z we may simulate different tip-surface distance
The results of these calculations for selected fcc lattice c
stantsA are shown in Fig. 3. Except for very small tip
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surface separationsz, the functional dependence ofdz on the
distancez is almost perfectly given by the expected exp
nential decay law. For a linear potentialV(z)52Fz, the
Green function method yields this dependence in the limi
weak fields analytically:

dz~z!}exp@2z~Ak21G22k!#. ~42!

As Table I shows, this approximation agrees almost perfe
with the numerical evaluation of Eq.~37! using the exact
Green function~19! for a constant electric field. The error
less than 1% for the three model surfaces considered with
lattice constantsA54 Å ~next-neighbor distancea52.83 Å!,
A57 Å (a54.95 Å!, andA510 Å (a57.07 Å!.

The most notable deviation occurs for very large str
tures, i.e., in the limitA→`. Obviously, the corrugation am
plitude dz(z) then acquires its maximum value. It is inte
esting to note that in this case,dz actually increases with the
tip-surface separationz, whereas the tunneling currentJ0(z),
Eq. ~31!, drops exponentially.

2. Effects of the lattice constant

Next we examine the dependence of the corrugation
plitude dz on the surface atomic spacing, i.e., the fcc latt
constant A, for fixed tip-surface distancez. Again, the
d-sheet potential coincides with the surface. We have p
formed numerical calculations for selected separations o
and surfacez52.5 Å, z55 Å, andz57.5 Å. The results are
plotted in Fig. 4.~Here, we note that in the limitA→`, the

FIG. 3. Dependence of the corrugation amplitudedz on the
tip-surface distancez for various values of the fcc lattice consta
A. ~Details are given in the text.!

TABLE I. Corrugation decay constantsa for different fcc lat-
tice constantsA. The values are extracted from Fig. 3. The la
column gives approximate values determined from Eq.~42!.

A a aapprox

4.00 Å 1.75Å21 1.74Å21

7.00 Å 0.76Å21 0.76Å21

10.0 Å 0.42Å21 0.42Å21
-

f
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cc

-

-

r-
ip

corrugation amplitude approaches values of around 1 Å
can be read off from Fig. 3.! We infer that with decreasing
next-neighbor distancea, the corrugation drops first slowly
then rapidly. Following the spotlight model, the transitio
between both regimes should approximately occur at in
atomic spacingsa equal to the current spot diameterD(z),
Eq. ~27!. A comparison with Table II shows that this asse
tion holds qualitatively.

3. A simple adsorbate model

Finally, we discuss a very simple model of an adsorb
structure: Let us fix the tip-surface distance atz055 Å; i.e.,
we assume a field strength ofF50.8 eV/Å. We now place
the perturbative potentialW(r ) at some distancez from the
surface and simulate in this manner an adsorbate struc
Figure 5 displays the corrugation amplitudedz as a function
of the distancez between surface and adsorbate layer for
four different periodicitiesA of the adsorbate potential a
ready examined in Fig. 3. Note that negative values oz
denote potential layers in the sector of classically allow
motion, i.e., below the surface.

Not surprisingly, in the tunneling region 0,z,z0 the
corrugation amplitudedz rises strongly with decreasing dis
tanceZ5z02z between tip and adsorbate layer. Again, to
good approximation, there is an exponential dependenc
dz on the tip-adsorbate separationZ. In fact, we may estab-
lish an analytical approximation for the corrugation amp
tudedz(Z) in the proximity of the tip (Z→0). For this pur-
pose, we employ the near-tip approximations~22! and ~23!

t

FIG. 4. Dependence of the corrugation amplitudedz on the fcc
lattice constantA for various values of the tip-surface distancez.
~Details are again given in the text.!

TABLE II. Distance dependence of the spot diameterD(z), and
corresponding fcc lattice constantsA.

z D(z) A

2.50Å 3.91Å 5.54Å
5.00Å 5.54Å 7.83Å
7.50Å 6.78Å 9.59Å
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of the exact field-emission Green functionGV(r ,0;E), Eqs.
~19! and~20!. Applying these expressions to the formula f
the corrugative currentdJ(r 8), Eq. ~32!, we obtain for the
corrugation amplitudedz(r 8), Eq. ~37!:

dz~r 8!'
m

\2k

exp@2Z~Ak21G22k!#

Ak21G2
W~r8!. ~43!

For the linear potential environment, this expression ho
quite well all the way down to the tunnel exit (Z5z) and
gives rise to the tip-surface distance decay law~42! of the
corrugation amplitudedz that was found before.

For z,0, i.e., structures below the surface, the expon
tial behavior ofdz(z) is no longer valid. There, an oscilla
tory structure prevails that ultimately may be traced back
the outgoing-wave boundary condition of the Green funct
GV(r ,r 8;E) ~see Appendix A!. One interesting feature
caused by this shift of character is the occurrence of co
gation inversion. Under this condition protrusions and d
pressions of the STM image will exchange their role. Th
even a simples-wave pointlike tip will show this strange
surface mapping behavior under appropriate circumstan
may be inferred from Fig. 5: There, a corrugation rever
occurs for large-scale structures (A→`) at z522.4 Å. We
should finally note that this condition manifestly depends
the periodicityA of the perturbative potentialW(r ).

V. CONCLUSION

We have developed a theory of the STM imaging proc
that is based on the quantum mechanical scattering form
ism. Instead of dealing with the external electrical circui
in STM, we employed a simplified approach that models
tip by a suitable finite-size electron source~or sink! that
scans the sample surface at a certain potential differe
eV. Introducing a localized tunneling source into the Sch¨-
dinger equation allows for metastable tip states which de
in the presence of a finite potential difference. After havi
tunneled out of the source, the electron is guided by

FIG. 5. Imaging of adsorbates: The figure shows the depend
of the corrugation amplitudedz on the adsorbate-surface separati
for different fcc lattice constantsA. Negative values indicate layer
below the surface. The tip-surface distance is fixed atz055 Å.
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electric field between tip and sample until it scatters at
surface of the sample. The source theoretical approach u
propagator theory, leads to a consistent and straightforw
mathematical formulation of this model.

The method is compatible to the STM approach by T
soff and Hamann which is based on time-dependent per
bation theory. Indeed, for very weak coupling between
and sample we were able to rederive the result that point
s-wave tipss(r )5Cd(r2r 8) will map the local density of
sample statesn(r 8;E). However, for finite coupling between
an ultrasharps-wave tip and a sample surface, the propaga
theory predicts the tunneling current to be proportional to
local density of states of thecombinedsystem~sample1 tip
1 electric field!. In addition, the source theory is visualize
quite easily, allowing us to devise a simple pictorial model
STM, the ‘‘spotlight model.’’ From a more technical point o
view, the source method grounds on the potential distribut
U(r ) rather than the sample eigenfunctionscm(r ) that are
usually the base of STM calculations.

The use of potentials allows to set up a perturbat
scheme for the tunneling currentJ(r 8) that leads to a serie
expansion of the corrugation amplitudedz(r 8) in terms of
the corrugative surface potentialW(r ). This procedure
shows several attractive features.

Nonlocal potentials from many-body electron effects a
long-range image potentials can be incorporated. Furth
more, the method is easily applicable to quite arbitrary bu
vacuum transition potentialsV(z), and efficient from a com-
putational point of view. Finally, for weak corrugativ
potentialsW(r ), the corrugation amplitudedz(r 8) depends
linearly on W(r ), permitting the composition of STM im-
ages. For periodic surface potentials, the latter propert
particularly useful: There is a one-to-one correspondence
tween like Fourier components of the surface poten
W(r ) and the STM current imageJ(r 8).

As an example, we applied the propagator theory to
d-sheet model, a simple potentialW(r ) imitating close-
packed fcc (111) surfaces, in a field emission environme
As a result, we obtained an approximation to the corrugat
amplitude that can substantially differ from predictions bas
on estimates of the local density of states at the tip site fo
sudden bulk-vacuum transition. Remarkably, the sim
s-wave tip model may also account for STM imaging beha
ior as striking as corrugation inversion.

There are at least three further aspects of this theory
are worth considering in the future: First, the model sho
be examined also for sources of finite size and directed po
like sources, comparable to thepz anddz2 states proposed by
Chen.11 This extension is straightforward. Second, one e
pects a semiclassical treatment of the Green function form
ism to be applicable and useful. Finally, the propaga
theory should be applied to realistic surface potenti
W(r ) that might either originate from calculations or cou
be extracted from scattering experiments@e.g., low-energy
electron diffraction ~LEED!#, and compared with corre
sponding STM images.
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APPENDIX A: EXPANSION OF GREEN FUNCTIONS

In this appendix we derive a useful eigenfunction exp
sion of the retarded Green functionGret(r ,r 8;E). As a result
we will obtain the alternative expression~16! for the total
tunneling current~11!. For the simple case of pointlike
s-wave tips, i.e.,d-function sourcess(r )5Cd(r2r 8), the
total tunneling currentJ(r 8) is proportional to the local den
sity of statesn(r 8;E).

We start out from the retarded time-dependent propag
K ret(r ,t;r 8,t8):

@ i\] t2H#K ret~r ,t;r 8,t8!5d~r2r 8!d~ t2t8!, ~A1!

which vanishes fort,t8. It is intimately related to the time
evolution operatorU(t,t8) of the system. In a stationary en
vironment, one finds30

K ret~r ,t;r 8,t8!52
i

\
Q~ t2t8!^r uU~ t,t8!ur 8&. ~A2!

This expression may be expanded into a complete se
normalized eigenstates of the combined tip-sample Ha
tonianH,

HcE~r !5EcE~r !, ~A3!

E d3r cE8~r !!cE~r !5d~E2E8!, ~A4!

to yield the representation

K ret~r ,t;r 8,t8!52
i

\
Q~ t2t8!

3E dE e2 iE~ t2t8!/\cE~r 8!!cE~r !.

~A5!

~Since the system is semi-infinite, we expect a continu
spectrumE of energy eigenvalues, and additionally isolat
bound states. For the sake of brevity we ignore the lat
Bound states could, however, easily be included in the
culation.!

By Fourier transforming with respect to the time diffe
ence t5t2t8, we obtain the retarded energy-depend
Green functionGret(r ,r 8;E), the quantity of our prime inter-
est:

Gret~r ,r 8;E!52 i
\

lim
h→01

E
0

`

dt ei ~E1 ih!t/\

3E dE e2 iEt/\cE~r 8!!cE~r !. ~A6!

Here, we have to introduce a small positive parameterh in
order to ensure convergence of the integral.@Gret(r ,r 8;E) is
defined in the upper half of theE plane.# As we shall see, the
t-
es
n

-

or
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il-

s
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l-

t

choice of the retarded propagatorK ret(r ,t;r 8,t8) enforces the
asymptotic behavior ofGret(r ,r 8;E) as an outgoing wave
By t integration, we find

Gret~r ,r 8;E!5 lim
h→01

E dE cE~r 8!!cE~r !

E2E1 ih
. ~A7!

Using a well-known distribution relation

lim
h→01

1
x6 ih

5PS 1
xD7 ipd~x!, ~A8!

whereP denotes the Cauchy principal value of the integr
Eq. ~A7! may be rewritten to yield

Gret~r ,r 8;E!5PE dE
cE~r 8!!cE~r !

E2E

2 ip(
m

cm~r 8!!cm~r !. ~A9!

The sum in the second term comprises all statesm with
energyEm5E. For r5r 8, we obtain the important relation

n~r 8;E!5(
m

ucm~r 8!u252
1

p
Im@Gret~r 8,r 8;E!#.

~A10!

The local density of statesn(r 8;E) is therefore directly tied
to the imaginary part of the Green function for the coupl
system atr5r 8. It should be noted that Im@Gret(r 8,r 8;E)# is
always negative.

We are now in the position to express the total currentJout
for an extended sources(r ) in terms of sample wave func
tions. From Eqs.~11! and ~A9!,

Jout52
2

\
ImH E

S
d3rE

S
d3r 8s~r !s~r 8!Gret~r ,r 8;E!J

52
2

\
ImHPE dE

E2E U ES
d3rs~r !cE~r !U2

2 ip(
m

U E
S
d3r s~r !cm~r !U2J

5
2p

\ (
m

U E
S
d3r s~r !cm~r !U2

. ~A11!

This simple result permits us to express the tunneling cur
in terms of the energy-normalized eigenfunctions of the t
surface system. For an idealized pointlike tip wi
s(r )5Cd(r2r 8), the current image will directly reflect the
local density of states:

Jout~r 8;E!5
2p

\
uCu2n~r 8;E!, ~A12!

a result already found by Tersoff and Hamann.8 It should be
noted thatJout always possesses positive sign and descri
therefore current flow from tip to sample, withs(r ) acting as
a source. To obtain the reverse process, we must use
advanced Green function

Gadv~r ,r 8;E!5Gret~r 8,r ;E!!, ~A13!

which behaves asymptotically like a wave coming in fro
the sample. We then find
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n~r 8;E!5
1

p
Im@Gadv~r 8,r 8;E!#, ~A14!

Jin52
2p

\ (
m

U E
S
d3rs~r !cm~r !U2

. ~A15!

s(r ) acts here as an electron sink. To describe the circ
stances in a real specimen, both competing processes ha
be weighted. A thermodynamic equilibrium weighing h
been employed in Sec. II.

APPENDIX B: SOURCE APPROACH
TO TERSOFF-HAMANN THEORY

It is rewarding to compare the result~15! of the source
theoretical scattering theory with the transfer Hamilton
method originally proposed by Tersoff and Hamann8 that has
become the standard theoretical description of scanning
neling microscopy. Let us first quickly review their expre
sion for the tunneling current: Assuming again that only o
tip state with energyE will contribute, one finds

J5
2p

\
@ f ~E!2 f ~E1eV!#(

m
uMmu2, ~B1!

where the sum covers all statesm whose energyEm equals
the tip state energyE. Obviously, the currentJ is calculated
according to the Fermi golden rule. The quantityMm , the
so-called transfer Hamiltonian matrix element, was first
rived by Bardeen8 to describe the tunneling current throug
metal-insulator-superconductor structures and contains
expression reminiscent of the current integral that invol
normalized wave functionsf(r ) andx(r ) of the unperturbed
semisystems: The wave functionf(r ) oscillates in the meta
part and decays exponentially within the barrier reg
whereasx(r ) is contained in the superconductor region a
leaks into the barrier from the other side. Using these no
tions, Bardeen obtained for the matrix elementM :

M52
i\2

2mE
]S

da@x~r !!¹f~r !2f~r !¹x~r !!#•n~r !.

~B2!

Here, ]S denotes a surface within the insulator layer th
separates both conducting regions. Again,n(r ) represents
the surface normal.

This expression was taken over by Tersoff and Haman
describe tunneling in the tip-sample system of STM. It
tempting to identifyf(r ) with the wave functions of the
sample that are ideally represented by the eigenstatescE(r )
of the complete tip-sample potentialU(r ), including the ap-
plied voltageV,

FE1
\2

2m
¹22U~r !GcE~r !50. ~B3!

Since the wave functionscE(r ) decay exponentially in the
tunneling sector, the potential of the tip region hardly infl
ences their structure.@It should be noted, however, that th
is not true in the rare case thatE represents an eigenenerg
of the isolated tip, in which casecE(r ) will grow exponen-
-
e to

n-

e

-

an
s

a-

t

to

-

tially in the tunnel region, and the tunneling currentJ is
strongly enhanced. This is exactly the condition of reson
tunneling.#

Unlike the sample states, the tip statex(r ) is not as easily
obtained as in Bardeen’s original problem of stacked laye
This is because the tip side in the STM setup represen
finite-size potential structure that does not support eig
states~except for isolated bound states that are respons
for resonant tunneling!. There is, however, a way to ge
around that problem that has implicitly been used by Ters
and Hamann, and it again relies on the introduction o
source terms(r ) as presented before in this article.

Let us state the main properties required of the funct
x(r ): It should be concentrated within the tip region, a
decay exponentially in the tunneling region, towards t
sample surface. Furthermore, in the vicinity of the integ
tion surface]S, it is required to be a solution of the station
ary Schro¨dinger equation of the system. A natural candida
for the wave functionx(r ) is therefore given by a real solu
tion of the modified Schro¨dinger equation~2!:

FE1
\2

2m
¹22U~r !Gx~r !5s~r !. ~B4!

In fact, thes wave originally used by Tersoff and Hamann

x~r !52C
m

2p\2

exp~2kur2r 8u!

ur2r 8u
, ~B5!

with \k5(2mF)1/2, is just the free-particle solution to
pointlike sources(r )5Cd(r2r 8) for an energyE52F
whereF denotes the work function of the surface, and the
fore, as shown in Sec. II, proportional to the free-partic
Green functionGfree(r ,r 8;2F). We again emphasize tha
according to Eq.~3!, the imaginary part of any solution o
Eq. ~B4! also solves the ordinary Schro¨dinger equation.
Hence, Eq.~B4! will support the sample statescE(r ) of Eq.
~B3!. From Eq.~7! we find that a suitable integral represe
tation of the tip wave functionx(r ) is given by

x~r !5ReF E
S
d3r 8s~r 8!Gret~r ,r 8;E!G . ~B6!

It is now easily proved that with this choice of wave fun
tions f(r ) and x(r ), both the source method and the co
ventional theory lead to the same result. To this end, we n
that in the case of STM, the integration surface]S in
Bardeen’s integral~B2! may be closed around the tip. B
virtue of Gauss’ theorem, and using Eqs.~B3! and~B4!, we
obtain

M52
i\2

2mE
S
d3r @x~r !!¹2f~r !2f~r !¹2x~r !!#

5 i E
S
d3r s~r !f~r !. ~B7!

Noting that f(r ) has to be replaced by the sample sta
cm(r ) and introducing Eq.~B7! into the Tersoff-Hamann
current formula~B1!, we end up with the expression
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J5
2p

\
@ f ~E!2 f ~E1eV!#(

m
U E

S
d3r s~r !cm~r !U2

.

~B8!

This is exactly the alternative current formula~16! that we
et

in
e.
rf

lm

l.

-

f

th

h

i

obtained in Sec. II. Hence, both approaches yield compat
results.31 However, the scattering approach has the merit
being more transparent than the conventional theory tha
based on a perturbation scheme and relies on the Bar
tunneling matrix element whose meaning is not immediat
clear.
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