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Variational approach to the tunneling-time problem
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Tunneling problems are characterized by different quantum time scales of motion. In this paper, we identify
a tunneling time scale, which is based on a simple variational principle. The method utilizes the stationary
eigenfunctions for a given one-dimensional potential structure, and it provides a truly local definition of the
tunneling time, independent of the asymptotic shape of the potential. We express the minimum tunneling time
in terms of the more common time scales obtained from the Larmor clock setup. Asymptotic formulas for both
the extreme quantum and the semiclassical limit are presented. As an experimental verification of the varia-
tional approach we demonstrate that the minimum tunneling time governs the time a particle requires to
traverse the barrier in a symmetric double-well struct{i84.050-294®9)04209-2

PACS numbgs): 03.65—-w, 73.40.Gk

[. INTRODUCTION structure. For example, in the case of symmetric potential

barriers, the Wigner phase time for tunnelifig] and for
In recent years, one of the most controversial debates réeflection are identical quantities. The same property is valid
garding the foundations of physics dealt with the time Spen{or the corresponding phase times obtained from the Larmor

by a quantum particle traversing a given sector in spaceS!ock approachi8-10]. Such a result is not easily inter-
Even though the problem is not limited to potential barrierpreted, in particular for extended barriers, where reflection

. . . " . dominates and particles apparently are accelerated in tunnel-
penetration, the issue became notorious as the “tunnelin

thg (Hartman effect However, there is one situation where
time problem.” Despite decades of discussion, no unaniz gl o '

. i o tunneling without reflection occufd 1]: In resonant tunnel-
mously accepted solution emerged; rather, differing proposy,g through the central barrier of a symmetric double-well

als for the quantum-mechanical sojourn time abolhe3]. otential, the quantum particle may oscillate between the two
Lately, experiments indicating superluminal transmission Oiye|ls. This problem is unique in the sense that this transmis-
photons through “tunneling barriers” built of mismatched sjon process periodically takes place with unit probability,
wave guides[3—5] and multilayer mirrors[6] stirred re-  \yhile reflection is absent.
newed interest in the problem. _ o In our contribution, we elucidate how the switching time,
Thus, we are faced with the curious situation that to aynhich is observed in an experiment as a splitting of degen-
seemingly definite and simple question, various answers presrate energy levels in the symmetric double well, is con-
vail that are not necessarily compatible with each other. lhected to a general expressiog,(E) for the tunneling time
seems that much of the trouble in defining the tunneling timgnat we will denote the minimum tunneling time as it yields
is rooted in our conception of a “clock.” The notion of an 4 time scale for stationary tunneling processes founded upon
external stopwatch timing some process without influencing, simple variational principle. Having introduced the time
the event is an intrinsically classical idea, and one should NA{cale, which is related in concept to the dwell timgE)
be surpriged_ that this class_ical pic.ture breaks d(_Jwr_1 in th%riginally devised by Smitli12], we proceed to derive ex-
quantum limit. In fact, there is no unifying “clock principle”  pjicit expressions forr,,(E), including a representation in
in the quantum realm, but every attempt to identify the €voteyms of the set of Larmor clock times, the workhorse for
lution of some physicz_il observable with the _elapsed tim%omparisons between different quantum clocks. Subse-
leads to its own proprietary set of quantum time scales Ofyently, we inquire into the properties of the minimum tun-
motion. Evidently, the readings of these quantum clocks Ar@eling time, in particular, its asymptotic behavior. Finally,

supposed to match in the classical limit. However, there is N@ne results of the theory are illustrated by means of some

way to reverse this process and _selet_:t a unique “proper’simme examples.
guantum clock. Rather, the tunneling time depends on how
one sets out to measure it. 1l. COMMON APPROACHES

Our subjective assessment of the situation delivers a ) ) ) )
mixed message. On the one hand, it obviously implies that It is instructive to first present a brief overview of some
the quest for a definite tunneling time is doomed to failure.common definitions for the tunneling time, which we will
Yet, it also opens the way for further alternative definitionsus€ to motivate our proposal of,n(E). We also state the
of the tunneling time. In order to be useful, rather than beindesults of the Larmor clock model in a compact fashion
mere theoretical constructs these newly proposed quantitie§—10 for reference purpose¢As indicated above, nothing
should be based on a physical property of the tunneling proS implied by not mentioning some of the major approaches
cess under consideration. to the tunneling-time problem in this sectipn.

The possibility of tunneling is almost inevitably con-
nected with the process of reflection. This wave-mechanical
feature entangles the tunneling-time problem with the prob- Here, we are concerned with a nonrelativistic description
ability and the duration of particle reflection from a potential of one-dimensional stationary quantum motion. Hence, our

A. The Bohmian dwell time
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Ux) and right-hand transmission amplitude&E) in Eqgs.(4) and
! (5), but also interrelate reflection and transmission quantities
i [10]:
Ly IR(E)[*+|T(E)]*=1, ()
'a b
FIG. 1. A finite-range potential barridd(x) extending from p(E)+o(E)=7m+28(E). 7

Xx=a to x=Dh.

object of interest is the continuous, doubly degenerate speé-ater on, we will connect these relations to the readings of

trum of eigenstatesVg(x) of the stationary Schobinger  the Larmor clock.

equation(for the sake of simplicity, let us omit any vector  In the asymptotic sectoss<a andx>b we may interpret

potentia): the total currentj[ W] for eigenstateg4) and (5) as the
difference of an incoming curren,. and a reflected current
jrefi- In Smith’s original definition of the dwell time, in Eq.

Ve(X)=EVe(X). (D) (3) the total currenj[W¢] is replaced by the incoming cur-
rent ji,.. Consequently, Smith’s dwell timesg' (E) and

To each solution?g(x), we assign as a functional tiigpa-  7s (E) (which generally differ for nonsymmetric barrigrs
tially constant probability currenj[ W ¢] defined as usual by are linked to our definition ofp[Wg] via the transmission
probability | T(E)|? of the barrier:

h? 9°
—ﬁﬁ_}—U(X)

. 2

) h d
ITPel= m WECO- Te(x)

1 (b
_’E=.—fdx‘lf_’x2=TE2 vel (8
Now, a conceptually simple definition for the time spent by a s (E) Jinc Ja Ve COP=ITEF Vel ®)

guantum particle in the interval<x<b may be given by

the followi h : .
© foflowing scheme [An analogous relation holds fafg (E).]

1 b Obviously, unlike prescriptiori3), Smith’s original defi-
o[ Vel = mf dx|We(x)|?. (3)  nition of the dwell timers(E) works only for finite-range
I1¥ellJa potential barriersand outgoing waves, i.e., it implicitly de-
Formally, 7o[ W] denotes the time required by the currentP€Nds on the asymptotic behavior'dg(x). Hence, it is not
i[We] [Eq.(2)] to replace the particles present in the interval2 local time scale in the sense that knowledg® X) in the
(the barriey a<x<b. This scaling invariant expression is "angea<x<b suffices to determine the tunneling time, a
therefore inspired by a hydrodynamical model of quantun'iterion that is met by the definition afo[ We] in Eq. (3).
mechanics, so it should not come as a surprise that in th&1us, we will continue to work with the latter expression,
framework of the Bohm interpretation of quantum mechan-YVh'Ch we nevertheless refer to as dwell time in the follow-

ics, the tunneling time takes on for(8) [13]. Ing.
B. Smith’s dwell time C. The Larmor clock
The original approach by Smitfi2] subtly differs from One of the most fruitful approaches to the tunneling-time

the above development. Smith was interested in isolated p@roblem is the Larmor clock model first put forward by Baz’
tential barriers, which are limited to the rangecx<<b; oth-  [14]. Here, we employ the notation used in refined treatments
erwise, U(x) should vanish(see Fig. 1 In this situation, of this gedanken experimefi8—10]. Optical analogues of
those special solution¥ 2 (x), Wg (x) of Eqg. (1), which  these time scales have been accessed in experiments using
behave as outgoing waves far— =, play a prominent frustrated internal reflection of light5,16].

role. Clearly, outside the barrier these eigenstates are entirely Formally, we obtain the Larmor time scales through the
fixed by the reflection and transmission amplitudes of thdollowing setup. Consider the finite-range potentiglx) de-

potentialU(x) (k?=2mE/#?): picted in Fig. 1. We now perturb the barrier potential by
" LB ik superimposing an infinitesimal variational step potential
R e +[R(E)|e"®e ™ (x<a) V(x) covering the barrier:
WE (x)e i 8(E) mikx 4
IT(E)]e™ e (x>b), V(X)=VO(x—a)O(b—x). )
|T(E)|edBgikx (x<a)
We (%)= e—ikx+|R(E)|eia(E)eikx (x>b). ®) Then, the Larmor times are defined as the logarithmic de-

rivatives of the reflection and transmission amplitudes
In passing we note that the complex reflection and transmisR(E,V) and T(E,V) of the barrier with respect to the per-
sion amplitudesk(E) andT(E) are not completely indepen- turbation strengtlv atV=0. It is somewhat surprising to see
dent, but subject to restrictions imposed by unitarity requirethat this linear-response theory leads to a set of two complex,
ments. These not only enforce the equality of the left-handr, respectively, four real tunneling time scales:
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the two-dimensional state space of eigenfunctidhgx) in

ih  JRT(E,V \ : ,
T8 (E)+iTR(E)=— ;V ) the interval a<x<b. Hence, for some special solutions
R™(E) V=0 WE. (X) of Eq. (1) the dwell timerp[ W] assumes its mini-
ap(E) JIn|R(E)| mum value, which we shall denote as the minimum tunnel-
=— v +ih v (10 ing time 7,;»(E) in the potential structurt (x) for the inter-
J J val a<x<b:
Y(E)+ir2(E) ih OT(E,V) L X
T |7 TN VR H
T T T(E) NV V=0 Tmin(E): min WJ dX|\I’(X)|2 . (15)
HY =EW¥ a
. d8(E) i dIn|T(E)| 11
=— i .
Y v Correspondingly, we call any eigenstate-. (x) of Eq. (1)

that minimizes Eq(15) a minimal wave function of the po-
Equivalent definitions hold for wave$'g (x) [Eq. (5] im-  tential barrietU (x) in the intervala<x<b. We should point
pinging on the right-hand side of the barrier. Unitarity re- oyt that no maximum value of the dwell time functional
strictions(6) and(7) imposed on their parent amplitudes im- 7, _] exists as it diverges for solutionkg(x) that do not
ply corresponding sum rules for the Larmor time scales:  carry any currentj[Wg]=0. This happens, e.g., for real

solutions of Eq.(1). For the sake of clarity, we remark that

2 2 —
[R(E)|*7R(E) +[T(E)|*r3(E)=0, (120 the term “minimal tunneling time” refers to the origin of
. _ this time scale in a variational procedure. We do not claim
TR (E)+ 787 (E)=27%(E). (13)  that 7,,,(E) presents a universal lower bound for tunneling-

) ) _ time proposals that are based upon a different principle.
Therefore, only three independent Larmor time scales exist. As an immediate consequence of its definitidrs), we

We also note that for symmetric potential barridd¢x)  note that the minimum tunneling time,,,(E) does not

=U(—x), Eq. (13) implies that the Larmor clock readings present an additive quantity. Assume that the intealx

for reflected and transmitted waves coincide} "(E)  <p is split into two subintervala<x<c and c<x<b.

=787 (E)=7¥(E). Then, from the variation in Eq(15) the inequality readily
Although it appears difficult to assign an unambiguousfollows:

physical interpretation to individual Larmor times, their ver-

satility renders them a powerful tool in the analysis of the (a0 E)= 7 (a,¢:E) + 7ryin(C, b E). (16)

tunneling-time problem. Most proposals for the tunneling

time may be restated as various combinations of the Larm

time scalesr4(E), 7¥(E),7&(E), and 73(E), which quali-

fies them for comparative studies of quantum clocks. Fo

example, Smith’s dwell time 5'(E) (8) adopts the form of a

weighed “y” Larmor time average:

0{)bviously, equality in Eq(16) should occur in the limit of
rg:lassical motion Ex>U(x)]. For particle tunneling, i.e.E
<U(x), the additivity property does not nearly hol(See
also, Sec. V B.

Unlike most other candidates for the tunneling time, our
contenderr,,,(E) shows the advantage of being a locally
determined quantity. Let us elaborate this notion: The com-
mon definitions of Smith’s dwell time 5’ (E) [Eqg. (8)] and
the Larmor timesrk~(E),7¥(E),7&(E), and 73(E) [Egs.
(10) and(11)] are all founded upon outgoing-wave solutions
and thus implicitly depend on imposed boundary conditions.
Any change of the potentidl (x) outside the ranga<x
<b will cause a different selection of outgoing wave states;
as a consequence, Smith’s dwell time and the Larmor times

Keeping these preliminary remarks in mind, we now pro-fOf quantum motion in the interva<<x<b will be affected.
ceed to define a variationally determined tunneling timeHence, these time scales depend on global properties of
scaler,(E). We start out our discussion from the Bohmian U(X). In contrast, by definitiori15) the minimum tunneling
result for the dwell timerp[ W] [Eq. (3)] that we motivated time 7yin(E) is wholly determined by the set of eigenfunc-
in Sec. Il A. There, we noted that this particular time scale isfionsWg(x) in the examined interval <x<'b. But this set is
a functional of the eigenstat#(x) of Schralinger equation ~completely fixed by the choice of ener@yand the topogra-
(1). However, it appears preferable to deal with a tunnelingPhy of the potential (x) in this interval. Thus, both,(E)
time that, apart from the particle enerydepends solely on and the corresponding set of minimal wave functions
the potential reliefU(x) in the interval of interesa<<x<b \I’,'f]m(x) are truly local quantities. This property makes them
[17]. (After all, this property holds true for classical trans- applicable in situations where no outgoing wave solutions
mission over the barrierin order to transform the functional exist; we present an example in Sec. VI.

o[ W] into a time scale independent of our choice of wave  Finally, we remark that the minimal eigenstats,,(x)
function W(x) in Eq. (3), we employ a simple variational are given, apart from physically irrelevant scalings
principle: Clearly, 75 V] is a positively definite quantity, — AW, by a unique pair of complex conjugate wave func-
which must be bounded from below; it continuously varies intions. [Note that in quantum mechanics, complex conjuga-

75 (E)=|RE)*rk~(E)+|T(E)[*7¥(E).  (14)

(In the case of symmetric potential barrierss(E) and
7¥(E) are also identical.In a similar vein, the minimum
tunneling timer,;,(E), which we are about to define, is ame-
nable to a description in terms of the Larmor times.

IIl. A MINIMUM TUNNELING TIME
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tion of the wave function corresponds to a time reversal opperformed symmetrically on(x) ands(x), leads to dimen-
eration, which merely changes the sign of the curjgritg] sional units[length)”? for these wave functions. Although
in Eqg. (2).] unusual, this normalization scheme has the advantage that

c(x) ands(x) do not depend on the interval boundarges

IV. EXPLICIT EXPRESSIONS andb.) - o -
To find the minimum tunneling time and minimum wave
From the variational principle stated in Ed.5), we now  functions, we form a general linear combination of the basis

derive an explicit representation for the minimum tunnelingfunctions Wg(x) = ac(x) + 8s(x), introduce it into the de-
time 7min(E) and the corresponding wave functios. (x)  fining equation of dwell time[Eq. (3)], and perform the
in terms of an arbitrary basis of eigenfunctions in the barrievariation of the complex parametets 8 [Eq. (15)]. This
regiona<x<b. For a finite-range barrier, we also may ex- straightforward procedure leads to simple and elegant ex-
press7in(E) in terms of the common Larmor time scales Pressions for the requested quantities. FQR(E), we find

(Sec. 11 Q.
o E) = %m( [Caxao? [ axsxr?

1/2
j . (18

Note that the Cauchy-Schwarz inequality for integrdl8]
guarantees a positive definite radicand in this expression,
which is furthermore independent of the actually employed
WIs,c]=s(X)"c(X)—s(x)c(x)' =1. (17)  setof basis functions(x) ands(x), provided that condition
(17) is satisfied. A possible choice for a pair of conjugate
This property may always be achieved by a simple scalingomplex minimal wave functionslfﬁm(x) is given by the
operation ors(x). (Note that this normalization procedure, if linear combination,

A. Representation by eigenfunctions

pair of linearly independent real eigenstat¢s) ands(x) of
Hamiltonian(1) with energyE. Our treatment, which is very
general, only requires that the Wronskian determinant o
these solutions be normalized:

First, we show how to obtaif,;,(E) andwﬁin(x) from a —“bdx SX)e(x)
a

b 1/2 b
Ldgc(g)2 Jad§5(§)C(§)

WE (x)cc(x)—| ——— | exp! *+iarccos s(X). (19

" f :dg s(£)? \/ J :df C(f)zf abdfs(f)z

[We remark that this formula contains as phase the abstragi[ ¥ ] [Eq.(3)] may be expressed in terms of Larmor times
angle between the eigenstatgx) ands(x) in the normed  (10) and(11). Hence, by variation of the wave function, we
spacel?(a,b) of square-integrable functiojsFor the spe-  are able to represent the minimum tunneling timg,(E) in

cial case of symmetric barriefdJ(x)=U(—x), a=—Db],  terms of the transmission probability of the barrier and its set
expressiong18) and (19) may be considerably simplified. of Larmor clock time scales. A tedious calculation finally
Exploiting the symmetry properties of the potential, we mayleads to a fairly compact expression:

select even and odd-parity eigenstates as basis functions
c(xX)=c(—x) and s(x)=—s(—x) in these formulas. This

1
procedure yields Tmin(E) = WHR(ENZT%’A(E)TFSH(E)

2. Y(E)2+ 72 z 12
rmm<E>=47m\/ [Caxon? [Caxso? @0 HT(E)PrUE+ rA(E)THE. (22

Note that the whole set of left-hand and right-hand Larmor

. b ) _ b ) time scales enters this functional. In the same manner, the
W in(X) o f dés(é)c(x)xi f déc(é)s(x). minimal wave functionWE. () might be represented in
0 0 1) terms of the Larmor time scales and the outgoing waves
Y (x) and W (x). The relevant expression is, however,
) extraordinarily complicated, and we refrain from displaying
B. Connection to the Larmor clock it here.
If we restrict ourselves to potential barriddgx) that are
confined to the intervad<x<b (Fig. 1), we may use the set
of outgoing waves¥ ¢ (x),Wg (x) [Egs.(4) and (5)] as a
basis in the state space of eigenfunctidins(x). Note that Having explicit representatiofl8) for the minimum tun-
the integral appearing in the definition of the dwell time neling time 7,;,(E) [Eq. (15)] at hand, we now proceed to

V. ASYMPTOTIC BEHAVIOR
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establish the behavior of this tunneling time scale in the lim-~/374. [As d—0, v,;, may assume arbitrarily large values.
iting cases of extreme quantum dynamics and semiclassicahis unphysical behavior could be corrected by starting with
motion. To define these regimes, we may employ the moduthe proper relativistic wave equation instead of Sdimger

lus of the classical action function8},(a,b;E) as a charac- equation(1).]

teristic quantity of the barrier potentiél(x):

b B. The semiclassical limit
Sa(@,biE)= fa dxy2mE-U(x)]. (23 For|Sy(a,b;E)|>1, application of a semiclassical theory
is in order. We may distinguish between two entirely differ-
If |Sy(a,b;E)|<%, the wave function¥?<(x) is hardly af-  ent regimes, viz., quasiclassical transmission over the barrier

fected by the barrier. In the opposite regirf®(a,b;E)|  for E>U(x), and the case of barrier penetration whére

>, the problem is usually amenable to a treatment in the<U(X).
framework of the WKB approximation. For convenience, we introduce the action functional

S(x;E)=|Sy(a,x;E)| and the abbreviatiol (x;E):
A. The narrow barrier limit

X
Let us first study ultrathin barriers wittSy(a,b;E)|<%. S(x;E)= ’ ja dév2mE—-U(§)]], (25)
In this case, the radius of curvature of the wave function
We(x) in the barrier is large compared to the extensibn 2 1/4
=b—a of the interval of interest, so we may neglect qua- By=|——
y neg q 2 (xE) [2m|E—U(x)| (26)

dratic and higher terms iml in the Taylor expansion of
WPe(x) with respect tax=a. Under these circumstances, for
the calculation ofr,j(E) we may always employ the pair of
approximate eigenfunctions(x)=1 ands(x)=x—a as a
normalized function basis in Eq18). This linear approxi-

Let us now first inquire into the quasiclassical lintt
>U(x). Then, a pair of WKB solutionscykg(x) and
swke(X) Is given by

mation immediately yields Cuka(X) =3 (X E)cog S(X:E)/#], 27)
2
Toin(E) = %%—f—@(d“), (24) Swks(X)=2(X;E)si S(x;E)/f]. (28)

Note that even though these functions are only approximate
In the narrow barrier limit, the maximum transmission veloc-solutions to the Schdinger equation, they show a spatially
ity Vvmin=d/7in(E) is, therefore, given by the universal ex- constant Wronskian determinant which is already normalized
pressionv ,=+3%/md. Note thatv,,, depends, apart from in the sense of Eq(17). Thus we may insert the pair
natural constants, only on the barrier widthbut is indepen-  cykg(X) andsykg(X) into Eq. (18) to obtain the WKB ap-
dent of the energ\E. This property may be viewed as a proximation to the minimum tunneling time in the limit of
consequence of the Heisenberg uncertainty relation; indeeduasiclassical transmission. After a few transformations, we
we may restate Eq(24) in the alternative form riv,,)d  find

b d 2
T ()= \/rcl(EF—[ LT:E)CO{%S(X;E)

2 b odx 2 2
} _[L—Vd(X;E) su{%S(x,E) } . (29

Here, 7 (E) denotes the classical time of flight fron=a to  Using this normalized pair of basis functions, from Eg)

x=Db, whereasv(x;E) represents the classical particle ve- we arrive after some reorderings at the following WKB ap-

locity in the potentialU(x). From Eq.(29) we infer that proximation for the minimum tunneling time in the thick

Tmin(E) indeed presents a valid quantum clock since it coin-barrier penetration limit:

cides with the classical transmission timg(E) in the limit

h—0. As expectedr "KB(E) =< 74(E) holds. 5 L
_Let us finally examine the tunn_eling caEe@_U(x). In T\r%ﬁB E)= exr{—|Sc|(a,b;E)|}

this case, we have to replace oscillating functi¢2® and 4\/[U(b)—E][U(a)—E] h

(28) by evanescent waves: (32

1 In the case of tunnelings,in(E) rises exponentially with the
Cwis(X) = 5 (X E)exd — S(X;E)/f], (30 width of the barried. The minimum tunneling time does not
show the accelerating effect of tunneling gaps predicted by
several other theories of the tunneling time and observed in
swrke(X) =2 (X;E)exd S(x;E)/#A]. (31 evanescent photon modp$,6]. We note that the minimum
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Here, we fix the prefactora and B by the requirement that

at the center of symmetry=0, ¥{?(0)=1 and ¥{°(0)’

=1 holds. With this choice, the Wronskian determinant of
both functions will be normalized at=0, which obviously
eases the connection to the developments of Sec. IV. States
(34) and(35) are eigenstates of the complete Hamiltort#n

“d -b -c

AE
@ (yy=| B — —_"|p(®
FIG. 2. A symmetric double-well potential structure built of HY (%)= Eq 2 )\Pn (%), (36)
parabolic potentials.
e Hma ; ; (0) =  AE, (0)
tunneling time is roughly inversely proportional to the modu- HY R () =| Ent —— | Vr7(X). 37

lus of the barrier transmission amplitufig(E)|.

The deformation of the well potential leads to a deviation
VL. APPLICATION TO DOUBLE-WELL STRUCTURES from the original eigenenergl,— E, that is, however, ex-

So far, our considerations regarding the minimum tunnelonentially small in the WKB sense. The same statement
ing time 7,,,,(E) have been of an entirely mathematical na-nolds for the splittingAE, caused by tunneling.
ture. Yet the preponderance of theoretical reflections over We now have to look for the connection with the tunnel-
practical applications has always been a troublesome aspdfg time through the central barrier. To this end, we examine
of the discussion about the tunneling-time problem. Therethe evolution of a state that starts out in the right potential
fore, it appears important to identify physical processes thaf/ell- From Eqs.(34) and (35) we infer that such a state for
permit us to extract the quantum time scales of motion in ad =0 is initially given by ¥{(x,0)= B¥ P (x) + a¥ {7 (x);
actual experiment rather than to content oneself with dts evolution is governed by Eqs36) and (37):
“gedankenversuch.” The time scale,;,(E) quite naturally

emerges in the quantum mechanics of double-well potentials YO(x,t)=2aB e EMW, (x)cosQt
as is elaborated below. +iW(—x)sinQ,}t (39
n nfts
A. Level splitting where Q,=AE, /#. It is seen that the electron population

Let us examine the following setufig. 2: The symmet-  Oscillates between both wells with a peridg =27/,
ric potentia"_j(x) is Composed of two wells centered around which means that the electron is forced through the central
x=*+b, which are separated by a central potential barrier. Afotential barrier in a tim& /2. Clearly,T,/2 is a time scale
X— =, outer barriers isolate the double-well structure fromthat characterizes quantum tunneling. Let us now show that
the environment. Each well gives rise to a discrete spectruntn is indeed intimately related to the minimum tunneling
of eigenstates with energids,, but since the structure is time 7yin(E) for the double-well potential structure.
assumed symmetric, the states in the left and right wells are
in resonance, and the double degeneracy of the eigenstates B. Connection to 7, (E)

will be lifted by the possibility of electron tunneling through Let us first represent the oscillation peridd in terms of

the central barrier. This causes a small shift of the eigenenéigenfunctioni%) and(35) of the potentialJ (x). A simple

ergiesE,, which will split into close doublet&, *AE/2  calculation starting from Eqg$36) and(37) shows tha{20]
separated by the level splittingE,,. Because these doublets

are composed of states of opposite parity, transitions be- (o 12 WITO (0 (01
[ axr 0w -~ WL 00X 0ls

0 2m E&O) _ Ege)

tween them may be enforced by electromagnetic dipole ra-
diation, which allows for a precise determination of the level
splitting. As a typical example, we refer to the fine structure
of the states of the ammonia molecule caused by oscillationr

; - - : he wave functions¥(#°(x) are bound states, so their
which may be observed as maser radiation. A simple presen- . . . ) -

L s : , Wronskian determinant vanishes for o0; at the lower limit
tation is given in Feynman's textbog9) x=0, we chose the normalization of these functions in a wa

Let us become more specific. Assume thg},, denotes T y

i i i 0) _ (e
the Hamiltonian of a single well, say, the right one. Then, the®S to guarantee a unit Wronskian. Sin Ex

well eigenstates are given by =2mhIT,, we obtain from Eq(39):

(39

HuwerVn(X) = EqWn(X). (33 Tn:4%mJ'wdx\Ifge)(X)\Pgo)(X)_ (40)
0

Due to the presence of the other well, these eigenstates split

into states of definite parity ((x) and¥{”(x) of the com-  This expression is still exact. However, the functions in the
plete system: integrand implicitly dependvia their eigenenergi¢on T,,.
© To get rid of this dependence, we note that their true
V7 ()= Wa(x) +Wn(=x)], (34) eigenenergies deviate from their unperturbed vddyeonly
©) by an exponentially small amount, so it appears appropriate
W7 (X) = BLYn(X) = ¥p(=Xx)]. (39 to replace the bound states in Hd0) by a pair of eigen-
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functions c(x) and s(x) to U(x) with energyE, that are 1
normalized in the same way, i.eg(0)=s(0)'=1 and K= %V2m|E—U|, (46)
c(0)'=s(0)=0. Then, they show a unit Wronskian deter-
minant,W[s,c]=1 [Eq.(17)], and we obtain approximately and use a pair of fundamental solutioogx) and s(x) of
4 ) definite parity in the barrier regiofx|<b/2, which is nor-
T~ me dx A(X)S(X). (47  malized in the sense of E¢17):
0

1.
Note that this operation enforces the introduction of a cutoff c(x)=cogkx), s(x)= ;Sm(KX)' (47

d — unlike their counterpart® (#°)(x), the functionsc(x) . _
ands(x) are not genuinely bound states of the potential andHere, we assumg>U; for E<U, the trigonometric func-
thus diverge exponentially for— 2. [In the example of Sec. tions in Eq.(47) should be replaced by the corresponding
VII C, we found it practical to chooseé in a way as to mini- hyperbolic oned.Then, we obtain from E¢(20) for 7,(E):
mize the wave functio(x)? atx=d.] .
In form (4.1), the periodT,, may pe expressed by the mini- ﬂ\/m (E<U)
mum tunneling timer,i,(E,). We first remark that,,(E,) h K2
in the symmetric interval-d<x<d is given by Eq.(20):

1 mp?
Tmin(E) = ﬁ?

(E=U) (498
rmm(—d,d;En):%m\/f:dx c(x)zfoddx ax)2. (42)

m
—J(kb)?=sirfkb (E>U).
[Here, we exploited the parity properties @fx) ands(x).] fik? (xb) “

In connection with Eq(18), this allows us to express Eq.

(41) in terms of the time scales,,,(0,d;E,) and 7, In contrast, the corresponding dwell time’(E) [Eq. (8)]
(—d,g;Ey): [which for this symmetric barrier coincides with the Larmor
phase timer¥(E)] is only defined foE=0 and reads, using
T~ 7\ Tin( —d,0;E)* = 47in(0d;En)%. (43 the abbreviationk?=2mE/%2 andk3=2mU/42 [8],

\

Finally, we note thatr,,(0,d;E,) for opaque tunneling bar- ( mk 2kb( k2 —k?) + kS sinh 2«<b
riers is exponentially small compared to the minimum tun- P o T a (0<E<U)
neling time for the entire structure,,(—d,d;E,) [Eq. (32)] K 4k’k?+kgsintfib
and thus may be omitted. This yields the estimate mb 1+k2b2/3
Ts(BE)=\ 7T (E=U)

Ty~ 7 7min( —d,d; Ep). (44) ko 1+ k3b?/4
For tunneling barriers, the beat peridg in the double well mk 2kb(x?+k?) — kg sin 2«b (E>U)
is strictly coupled tor,,(E). Alternatively, we find for the | h K AKPK2+ ké sirfkb '
level splitting the expressionAE,~2h/m,(—d,d;E,). (49

[Again, we emphasize that there are proposals for the tunnel- o o
ing time, which may lead to results much smaller in valueFigure 3 shows that the minimum tunneling timg,(E) for
than 7,,,(—d,d;E,).] the square barrier smoothly rises with decreasing enkErgy

As expected, in the classical limi>U, 7,,,(E) merges into
VIl EXAMPLES t_he_ classica_l time of fI_ighﬁ-d(E)=b/vc|(E_),_whereas in _the
limit of particle tunneling E<U), the minimum tunneling
Let us now turn our attention to a few model potentialstime grows exponentially with botk andb, thus confirming
U(x) in order to illustrate the theory of the minimum tunnel- the asymptotic formulas put forward in Sec. V. F&r
ing time 7,in(E). We present some—occasionally surprising=U, r,;,(E) passes smoothly through its universal value for
— results regarding quantum motion through simple squar@arrow barriers(24). We note that the usual dwell time
barriers and double-spike structures. Furthermore, we assesg’(E) [Eq. (49)] in the tunneling regime is characterized by
the quality of the minimum tunneling-time estimate for the 5 radically different behavior.
level splitting in double well structurgSec. V) by numeri-

cal calculations for a parabolic double-well potential. B. Double delta spike

We now switch to a further example where the minimum
tunneling timer,;,(E) shows a rather peculiar behavior. The

We begin with a study of the minimum tunneling time model potential barrier we have in mind consists merely of
Tmin(E) for the most popular, yet to some extent pathologicalwo delta “spikes” forming a symmetric quantum well:
barrier potential, the symmetric rectangular barrier:

A. Square barrier

U(X)=U[8(x—b/2)+ 8(x+Dbl2)]. (50)
U(x)=UB(x—b/2)O(b/2—x). (45)
Resonant tunneling through the potential spikes causes a
Let us introduce the wave numberin the barrier, conspicuous pattern in the transmission amplittige), and
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FIG. 3. Minimum tunneling timer,(E) [Eq. (48)] for a rect- FIG. 4. Tunneling times for motion through a symmetric poten-

angular barrier of widttb=6 A and heightU=2 eV as a function tial well demarcated by two identical delta spikes(x+b/2) as a
of the particle energf (solid line). For comparison, the classical function of energyE. Solid line: 7,,(E) [Eqg. (52)]. Dashed line:
time of flight 7,(E) (E>U), and the WKB approximation 7s (E)=7%(E) [Eq.(51)]. Note thatry(E) may exceed the dwell
7 WKB(E) [Eq. (32)] for barrier penetrationf<U) are additionally ~ time. (Parameters usetlil=4 eV A, b=6 A).

plotted (short line3. The entirely different behavior of the corre-

sponding dwell timerg'(E)=7%(E) [Eq. (49)] in the tunneling such a double well in a comparatively simple manner by

regime is evidenflong dashed ling matching parts of parabolic potentials:
r 2
we should thus expect that these resonances reveal them- m_w(x+ b)?2 (x<-—c)
selves also in the tunneling-time spectrum. Indeed, this prop- 2
erty holds for Smith’s dwell timerg’ (E) [Eq. (8)], which Mew? 5
here equals the Larmor time scalé(E) [Eq. (14)], and for U(x)={ Uo= —X (Ix|<c) (53

this particular barrier is given by 5

mTw(x—b)z (x>c).

2m Kb( 2+ 2K2) + k sinkb(2k sinkb— x coskb) .

s (E)= 7 4, 2 - 2 - For a continuously differentiable potential functibr{x), we
4k™+ k*(2k coskb+ « sinkb) (51 have to set=b/2 andUy= mw?b?/4 in Eq.(53). The shape

of this parabolic double well is depicted in Fig. 2.

) Here, we are interested in a calculation of the exact level

Here, k?=2mE/%?, and k=2mU/A? is a measure for the splitting AE, and corresponding minimum tunneling-time

strength of the spike potentials. _ estimate(44) for the lowest-lying doublet, which emerges
From Sec. IV we infer that the minimum tunneling time fom the unperturbed oscillator well ground state B

Tmin(E) for the well solely depends on the wave functions =7 /2. Clearly, the height), and the extension of the cen-

We(x) in the interior of the barriefx| <b/2, which are com- g tunneling barrier may be tuned by changing the well

pletely unaffected by the presence of the delta spikes! Thef%eparation B. As a useful first approximation tAE,, we

fore, 7n(E) is independent of the spike strength and  employ a semiclassical formula taken from Landau’s text-

hence given by its free-particle val(é8): book [21];
ho 1
m AEO:7eXp[_%|SC|(_a,a;E0)| . (54)
Tmin(E) = ﬁ\/(kb)z—sin2 kb. (52

Here, = a denote the turning points of classical motion, and
Sa(—a,a;Egp) represents the classical action for barrier pen-
In Fig. 4, we display both tunneling time scales as a functioretration(23). [Note that our less sophisticated estimega)
of E. As anticipated;m,(E) depends on the internal struc- is not directly applicable here as it has not been corrected for
ture of the potential(x) rather than its transmission prop- the effects of turning points. However, both expressions
erties T(E), which affect Smith's dwell timerg’(E) in a  agree in their exponential dependerice.
considerable manné8ec. Il B. [The Larmor time scales are  Despite its simple structure, the eigenstaté§™ (x)
entirely based on the transmission and reflection amplitudels=ds. (34) and (35)] of the double-well potential (x) [Eq.
T(E) andR(E) of U(x), see Eqs(10) and(11).] (53)] are available only through numerical computation.
They may be represented in terms of parabolic cylinder func-
tions[18] properly matched at= *c. In a recursive proce-
dure, we determined the exact eigenenergigsandE{® of
Finally, we would like to verify the connection between the lowest levels otJ(x) and compiled a list of the corre-
the minimum tunneling timer,,i,(E,) and the level splitting sponding level splittings\E, for several values of the di-
AE, in a symmetric double-well potentidl (x)=U(—x) mensionless separation parameier 2mw/Ab. Numerical
that we established in Sec. VI. For this purpose, we construatalues for the minimum tunneling time,;,(—d,d;Ey) [Eq.

C. Parabolic double well



1872 CHRISTIAN BRACHER, MANFRED KLEBER, AND MUSTAFA RIZA PRA 60

TABLE I. Numerical results for the level splitting in a symmetric parabolic double J#&d. (53)]. The
first column specifies a dimensionless measgre\2mw/#b for the separation of both wells; next, the
corresponding credtl, of the central potential barrier is given in termsfab. The following three columns
display the level splittingAE, for the oscillator ground staten&0) in units of Aw. The exact value is
presented in the left column, whereas the approximatioA By gained via the tunneling-time scheme is
stated in the central column. Semiclassical estini&® for AE, is shown in the right column. To the
extreme right, the relative error of the minimum tunneling time approach is displayed.

B Ug AE, (exac) AE, [via Tmin(E)] AE, (semicl) Relative error
3 1.125 4.86088 10?2 5.32624< 1072 4.46249% 1072 9.57x 102
4 2.000 2.9174810°° 2.98873« 1073 2.58577% 103 2.44x10°2
5 3.125 6.4658% 10°° 6.49829< 10°° 5.80656< 10°° 5.01x 108
6 4.500 5.6506% 10’ 5.65553< 1077 5.13431x 1077 8.69x 104
7 6.125 1.9759% 10 ° 1.97615<10°° 1.80841x10°° 1.23x10°%
8 8.000 2.78038 10 12 2.78040< 10 12 2.55579%< 1012 1.41x10°°

(42)] were established in a second series of calculations. T@(x) in the sector of interesti<x<b, whereas most con-
this end, carrying out the program of Sec. VI B we first de-tenders for the rank of the tunneling time scale, including the
termined properly normalized pairs of eigenfunctia(x) dwell time and the ubiquitous set of Larmor time scales,
ands(x) to U(x) with energyE,=%w/2. Next, we selected implicitly rely on boundary conditions imposed onto the un-
cutoffsd for the integration in Eq(41): Our simple criterion ~ derlying wave functions(Nevertheless, the minimum tun-
identified d with the minimum of the absolute value of the Neling time may be expressed as a functional of the set of
approximate solutiore(x) in the exterior sectok>b, i.e., Larmor clock readings.The variational principle leads to
we chose the largest value @&o thatc(d)c(d)’ =0.[These ~ SiMPle and elegant formulas far,,(E). Asymptotic expres-
cutoffs are usually located far in the outer barriers of theSions for the minimum tunneling time are available in the

double well, thus indicating good performance of approxi_semiclassical limit: In the case of classically allowed motion,
mation (41),,see Fig. 2. The minimum tunneling time then Tmin(E) gradually merges into the classical time of flight, and

was computed by integratiofd2) and subsequently con- thus matches a basic demand for a valid tunneling time scale.

. " For the opposite case of barrier penetration, the minimum
verted into an estimate fakE, by means of Eq(44). .tunneling time grows exponentially with the classical action

for barrier traversal32). litativel King7min(E) i
double wells of different separation and barrier penetrabiIity.ncq)ufha she(z)rtte?tr?aiat[r?e)IifS[iliﬁetf)l:‘ aec):)rsrggpilon(%;gmr(ne)taztable
For comparison, the exact level splittings=, are comple- state: Whereas,,(E) is inversely proportional to the modu-
mented with corresponding minimum tunneling-time esti-jys | T(E)| of the semiclassical transmission amplitude, the
mates(44) and the less accurate semiclassical form6l). jifetime of the metastable state grows WTR(E)| 2. At the

We infer that except for very shallow barrigigmall values ggme time, 7in(E) generally lasts much longer than the
of B), the tunneling-time estimate indeed presents a splendigemiclassical instanton or bounce tunneling time, which is
approximation to the true level splittingxtreme right col-  defined as the classical traversal time for a particle of energy

umn in Table }, thus confirming the significance ef,;,(E) —E moving in the inverted potential barrier U(x). The
as a measure for the duration of quantum motion in theseesults of Sec. VI suggest that the variationally defined tun-
structures. neling time 7,,,(E) corresponds to a periodical process
where a particle tunnels through a barrier in a coherent fash-
VIIl. CONCLUSION ion, whereas the decay of a metastable state proceeds in an

incoherent, irreversible manner.

Pursuing a variational approach to the long-standing Apart from the formal elegance of the variational method,
tunneling-time problem, in this paper we presented the conthe minimum tunneling-time approach has the advantage of
cept of the minimum tunneling time,,;,(E), a time scale of being related to experimentally accessible guantities. As a
guantum motion that holds for stationary one-dimensionaphysical process that allows for the determinatiorgf(E),
problems. It is defined as the minimum amount of time re-we identified the energy level splitting in a symmetric
quired by the probability current in order to replace the par-double-well potential caused by tunneling of particles
ticle number present in a given interval of spacex<b.  through the central potential barrier separating both quantum
Therefore, 7,,(E) bears a close relationship to the idea of wells. These level splittings, and thus the minimum tunnel-
the dwell time originally proposed by Smith, which essen-ing time for_ the double-well structure, are available from
tially represents an analogous quantity for outgoing wavesSPECtroscopic measurements. We finally remark that a quite
Both approaches are rooted in the hydrodynamical interpres-'m_'lar situation is realized in nature by electron exchange
tation of quantum mechanics advocated in particular b uring the scattering of protons on neutral hydrogen atoms
Bohm. 22].

As a major feature of the minimum tunneling-time ansatz,
we emphasized that the quantity,;,(E) represents a genu-
inely local time scale of motion that, apart from the particle One of us(C.B.) has benefited from the support of the
energyE, solely depends on the topography of the potentiat‘Studienstiftung des Deutschen Volkes.”
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