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Variational approach to the tunneling-time problem

Christian Bracher, Manfred Kleber, and Mustafa Riza
Physik-Department T30, Technische Universita¨t München, James-Franck-Straße, D-85747 Garching, Germany

~Received 23 February 1999!

Tunneling problems are characterized by different quantum time scales of motion. In this paper, we identify
a tunneling time scale, which is based on a simple variational principle. The method utilizes the stationary
eigenfunctions for a given one-dimensional potential structure, and it provides a truly local definition of the
tunneling time, independent of the asymptotic shape of the potential. We express the minimum tunneling time
in terms of the more common time scales obtained from the Larmor clock setup. Asymptotic formulas for both
the extreme quantum and the semiclassical limit are presented. As an experimental verification of the varia-
tional approach we demonstrate that the minimum tunneling time governs the time a particle requires to
traverse the barrier in a symmetric double-well structure.@S1050-2947~99!04209-2#

PACS number~s!: 03.65.2w, 73.40.Gk
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I. INTRODUCTION

In recent years, one of the most controversial debates
garding the foundations of physics dealt with the time sp
by a quantum particle traversing a given sector in spa
Even though the problem is not limited to potential barr
penetration, the issue became notorious as the ‘‘tunne
time problem.’’ Despite decades of discussion, no una
mously accepted solution emerged; rather, differing prop
als for the quantum-mechanical sojourn time abound@1–3#.
Lately, experiments indicating superluminal transmission
photons through ‘‘tunneling barriers’’ built of mismatche
wave guides@3–5# and multilayer mirrors@6# stirred re-
newed interest in the problem.

Thus, we are faced with the curious situation that to
seemingly definite and simple question, various answers
vail that are not necessarily compatible with each other
seems that much of the trouble in defining the tunneling ti
is rooted in our conception of a ‘‘clock.’’ The notion of a
external stopwatch timing some process without influenc
the event is an intrinsically classical idea, and one should
be surprised that this classical picture breaks down in
quantum limit. In fact, there is no unifying ‘‘clock principle’
in the quantum realm, but every attempt to identify the e
lution of some physical observable with the elapsed ti
leads to its own proprietary set of quantum time scales
motion. Evidently, the readings of these quantum clocks
supposed to match in the classical limit. However, there is
way to reverse this process and select a unique ‘‘prop
quantum clock. Rather, the tunneling time depends on h
one sets out to measure it.

Our subjective assessment of the situation deliver
mixed message. On the one hand, it obviously implies
the quest for a definite tunneling time is doomed to failu
Yet, it also opens the way for further alternative definitio
of the tunneling time. In order to be useful, rather than be
mere theoretical constructs these newly proposed quan
should be based on a physical property of the tunneling p
cess under consideration.

The possibility of tunneling is almost inevitably con
nected with the process of reflection. This wave-mechan
feature entangles the tunneling-time problem with the pr
ability and the duration of particle reflection from a potent
PRA 601050-2947/99/60~3!/1864~10!/$15.00
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structure. For example, in the case of symmetric poten
barriers, the Wigner phase time for tunneling@7# and for
reflection are identical quantities. The same property is va
for the corresponding phase times obtained from the Larm
clock approach@8–10#. Such a result is not easily inter
preted, in particular for extended barriers, where reflect
dominates and particles apparently are accelerated in tun
ing ~Hartman effect!. However, there is one situation whe
tunneling without reflection occurs@11#: In resonant tunnel-
ing through the central barrier of a symmetric double-w
potential, the quantum particle may oscillate between the
wells. This problem is unique in the sense that this transm
sion process periodically takes place with unit probabili
while reflection is absent.

In our contribution, we elucidate how the switching tim
which is observed in an experiment as a splitting of deg
erate energy levels in the symmetric double well, is co
nected to a general expressiontmin(E) for the tunneling time
that we will denote the minimum tunneling time as it yield
a time scale for stationary tunneling processes founded u
a simple variational principle. Having introduced the tim
scale, which is related in concept to the dwell timetS(E)
originally devised by Smith@12#, we proceed to derive ex
plicit expressions fortmin(E), including a representation in
terms of the set of Larmor clock times, the workhorse
comparisons between different quantum clocks. Sub
quently, we inquire into the properties of the minimum tu
neling time, in particular, its asymptotic behavior. Finall
the results of the theory are illustrated by means of so
simple examples.

II. COMMON APPROACHES

It is instructive to first present a brief overview of som
common definitions for the tunneling time, which we w
use to motivate our proposal oftmin(E). We also state the
results of the Larmor clock model in a compact fashi
@8–10# for reference purposes.~As indicated above, nothing
is implied by not mentioning some of the major approach
to the tunneling-time problem in this section.!

A. The Bohmian dwell time

Here, we are concerned with a nonrelativistic descript
of one-dimensional stationary quantum motion. Hence,
1864 ©1999 The American Physical Society
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object of interest is the continuous, doubly degenerate s
trum of eigenstatesCE(x) of the stationary Schro¨dinger
equation~for the sake of simplicity, let us omit any vecto
potential!:

F2
\2

2m

]2

]x2
1U~x!GCE~x!5ECE~x!. ~1!

To each solutionCE(x), we assign as a functional the~spa-
tially constant! probability currentj @CE# defined as usual by

j @CE#5
\

m
ImFCE* ~x!

]

]x
CE~x!G . ~2!

Now, a conceptually simple definition for the time spent b
quantum particle in the intervala,x,b may be given by
the following scheme:

tD@CE#5
1

u j @CE#u Ea

b

dxuCE~x!u2. ~3!

Formally, tD@CE# denotes the time required by the curre
j @CE# @Eq. ~2!# to replace the particles present in the interv
~the barrier! a,x,b. This scaling invariant expression
therefore inspired by a hydrodynamical model of quant
mechanics, so it should not come as a surprise that in
framework of the Bohm interpretation of quantum mecha
ics, the tunneling time takes on form~3! @13#.

B. Smith’s dwell time

The original approach by Smith@12# subtly differs from
the above development. Smith was interested in isolated
tential barriers, which are limited to the rangea,x,b; oth-
erwise, U(x) should vanish~see Fig. 1!. In this situation,
those special solutionsCE

˜(x), CE
—(x) of Eq. ~1!, which

behave as outgoing waves forx˜6`, play a prominent
role. Clearly, outside the barrier these eigenstates are ent
fixed by the reflection and transmission amplitudes of
potentialU(x) (k252mE/\2):

CE
˜~x!}H eikx1uR~E!ueir(E)e2 ikx ~x,a!

uT~E!ueid(E)eikx ~x.b!,
~4!

CE
—~x!}H uT~E!ueid(E)e2 ikx ~x,a!

e2 ikx1uR~E!ueis(E)eikx ~x.b!.
~5!

In passing we note that the complex reflection and transm
sion amplitudesR(E) andT(E) are not completely indepen
dent, but subject to restrictions imposed by unitarity requ
ments. These not only enforce the equality of the left-ha

FIG. 1. A finite-range potential barrierU(x) extending from
x5a to x5b.
c-

t
l

he
-

o-

ly
e

s-

-
d

and right-hand transmission amplitudesT(E) in Eqs.~4! and
~5!, but also interrelate reflection and transmission quanti
@10#:

uR~E!u21uT~E!u251, ~6!

r~E!1s~E!5p12d~E!. ~7!

Later on, we will connect these relations to the readings
the Larmor clock.

In the asymptotic sectorsx,a andx.b we may interpret
the total currentj @CE# for eigenstates~4! and ~5! as the
difference of an incoming currentj inc and a reflected curren
j refl . In Smith’s original definition of the dwell time, in Eq
~3! the total currentj @CE# is replaced by the incoming cur
rent j inc . Consequently, Smith’s dwell timestS

˜(E) and
tS
—(E) ~which generally differ for nonsymmetric barriers!

are linked to our definition oftD@CE# via the transmission
probability uT(E)u2 of the barrier:

tS
˜~E!5

1

j inc
E

a

b

dxuCE
˜~x!u25uT~E!u2tD@CE

˜#. ~8!

@An analogous relation holds fortS
—(E).#

Obviously, unlike prescription~3!, Smith’s original defi-
nition of the dwell timetS(E) works only for finite-range
potential barriersand outgoing waves, i.e., it implicitly de-
pends on the asymptotic behavior ofCE(x). Hence, it is not
a local time scale in the sense that knowledge ofU(x) in the
rangea,x,b suffices to determine the tunneling time,
criterion that is met by the definition oftD@CE# in Eq. ~3!.
Thus, we will continue to work with the latter expressio
which we nevertheless refer to as dwell time in the follo
ing.

C. The Larmor clock

One of the most fruitful approaches to the tunneling-tim
problem is the Larmor clock model first put forward by Ba
@14#. Here, we employ the notation used in refined treatme
of this gedanken experiment@8–10#. Optical analogues of
these time scales have been accessed in experiments
frustrated internal reflection of light@15,16#.

Formally, we obtain the Larmor time scales through t
following setup. Consider the finite-range potentialU(x) de-
picted in Fig. 1. We now perturb the barrier potential
superimposing an infinitesimal variational step poten
V(x) covering the barrier:

V~x!5VQ~x2a!Q~b2x!. ~9!

Then, the Larmor times are defined as the logarithmic
rivatives of the reflection and transmission amplitud
R(E,V) and T(E,V) of the barrier with respect to the pe
turbation strengthV at V50. It is somewhat surprising to se
that this linear-response theory leads to a set of two comp
or, respectively, four real tunneling time scales:
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t R
y,˜~E!1 i t R

z ~E!5
i\

R˜~E!

]R˜~E,V!

]V U
V50

52\
]r~E!

]V
1 i\

] lnuR~E!u
]V

, ~10!

t T
y~E!1 i t T

z~E!5
i\

T~E!

]T~E,V!

]V U
V50

52\
]d~E!

]V
1 i\

] lnuT~E!u
]V

. ~11!

Equivalent definitions hold for wavesCE
—(x) @Eq. ~5!# im-

pinging on the right-hand side of the barrier. Unitarity r
strictions~6! and~7! imposed on their parent amplitudes im
ply corresponding sum rules for the Larmor time scales:

uR~E!u2t R
z ~E!1uT~E!u2t T

z~E!50, ~12!

t R
y,˜~E!1t R

y,—~E!52t T
y~E!. ~13!

Therefore, only three independent Larmor time scales e
We also note that for symmetric potential barriersU(x)
5U(2x), Eq. ~13! implies that the Larmor clock reading
for reflected and transmitted waves coincide:t R

y,˜(E)
5t R

y,—(E)5t T
y(E).

Although it appears difficult to assign an unambiguo
physical interpretation to individual Larmor times, their ve
satility renders them a powerful tool in the analysis of t
tunneling-time problem. Most proposals for the tunneli
time may be restated as various combinations of the Lar
time scalest R

y (E),t T
y(E),t R

z (E), and t T
z(E), which quali-

fies them for comparative studies of quantum clocks.
example, Smith’s dwell timet S

˜(E) ~8! adopts the form of a
weighed ‘‘y’’ Larmor time average:

t S
˜~E!5uR~E!u2t R

y,˜~E!1uT~E!u2t T
y~E!. ~14!

~In the case of symmetric potential barriers,tS(E) and
t T

y(E) are also identical.! In a similar vein, the minimum
tunneling timetmin(E), which we are about to define, is am
nable to a description in terms of the Larmor times.

III. A MINIMUM TUNNELING TIME

Keeping these preliminary remarks in mind, we now p
ceed to define a variationally determined tunneling ti
scaletmin(E). We start out our discussion from the Bohmia
result for the dwell timetD@CE# @Eq. ~3!# that we motivated
in Sec. II A. There, we noted that this particular time scale
a functional of the eigenstateCE(x) of Schrödinger equation
~1!. However, it appears preferable to deal with a tunnel
time that, apart from the particle energyE, depends solely on
the potential reliefU(x) in the interval of interesta,x,b
@17#. ~After all, this property holds true for classical tran
mission over the barrier.! In order to transform the functiona
tD@CE# into a time scale independent of our choice of wa
function CE(x) in Eq. ~3!, we employ a simple variationa
principle: Clearly,tD@CE# is a positively definite quantity
which must be bounded from below; it continuously varies
t.

s

or

r

-
e

s

g

the two-dimensional state space of eigenfunctionsCE(x) in
the interval a,x,b. Hence, for some special solution
Cmin

E (x) of Eq. ~1! the dwell timetD@CE# assumes its mini-
mum value, which we shall denote as the minimum tunn
ing timetmin(E) in the potential structureU(x) for the inter-
val a,x,b:

tmin~E!5 min
HC5EC

F 1

u j @C#u Ea

b

dxuC~x!u2G . ~15!

Correspondingly, we call any eigenstateCmin
E (x) of Eq. ~1!

that minimizes Eq.~15! a minimal wave function of the po
tential barrierU(x) in the intervala,x,b. We should point
out that no maximum value of the dwell time function
tD@CE# exists as it diverges for solutionsCE(x) that do not
carry any current,j @CE#50. This happens, e.g., for rea
solutions of Eq.~1!. For the sake of clarity, we remark tha
the term ‘‘minimal tunneling time’’ refers to the origin o
this time scale in a variational procedure. We do not cla
that tmin(E) presents a universal lower bound for tunnelin
time proposals that are based upon a different principle.

As an immediate consequence of its definition~15!, we
note that the minimum tunneling timetmin(E) does not
present an additive quantity. Assume that the intervala,x
,b is split into two subintervalsa,x,c and c,x,b.
Then, from the variation in Eq.~15! the inequality readily
follows:

tmin~a,b;E!>tmin~a,c;E!1tmin~c,b;E!. ~16!

Obviously, equality in Eq.~16! should occur in the limit of
classical motion@E@U(x)#. For particle tunneling, i.e.,E
!U(x), the additivity property does not nearly hold.~See
also, Sec. V B.!

Unlike most other candidates for the tunneling time, o
contendertmin(E) shows the advantage of being a loca
determined quantity. Let us elaborate this notion: The co
mon definitions of Smith’s dwell timet S

˜(E) @Eq. ~8!# and
the Larmor timest R

y,˜(E),t T
y(E),t R

z (E), andt T
z(E) @Eqs.

~10! and~11!# are all founded upon outgoing-wave solutio
and thus implicitly depend on imposed boundary conditio
Any change of the potentialU(x) outside the rangea,x
,b will cause a different selection of outgoing wave stat
as a consequence, Smith’s dwell time and the Larmor tim
for quantum motion in the intervala,x,b will be affected.
Hence, these time scales depend on global propertie
U(x). In contrast, by definition~15! the minimum tunneling
time tmin(E) is wholly determined by the set of eigenfun
tionsCE(x) in the examined intervala,x,b. But this set is
completely fixed by the choice of energyE and the topogra-
phy of the potentialU(x) in this interval. Thus, bothtmin(E)
and the corresponding set of minimal wave functio
Cmin

E (x) are truly local quantities. This property makes the
applicable in situations where no outgoing wave solutio
exist; we present an example in Sec. VI.

Finally, we remark that the minimal eigenstatesCmin
E (x)

are given, apart from physically irrelevant scalingsC
˜lC, by a unique pair of complex conjugate wave fun
tions. @Note that in quantum mechanics, complex conjug
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tion of the wave function corresponds to a time reversal
eration, which merely changes the sign of the currentj @CE#
in Eq. ~2!.#

IV. EXPLICIT EXPRESSIONS

From the variational principle stated in Eq.~15!, we now
derive an explicit representation for the minimum tunneli
time tmin(E) and the corresponding wave functionsCmin

E (x)
in terms of an arbitrary basis of eigenfunctions in the bar
regiona,x,b. For a finite-range barrier, we also may e
presstmin(E) in terms of the common Larmor time scale
~Sec. II C!.

A. Representation by eigenfunctions

First, we show how to obtaintmin(E) andCmin
E (x) from a

pair of linearly independent real eigenstatesc(x) ands(x) of
Hamiltonian~1! with energyE. Our treatment, which is very
general, only requires that the Wronskian determinant
these solutions be normalized:

W @s,c#5s~x!8c~x!2s~x!c~x!851. ~17!

This property may always be achieved by a simple sca
operation ons(x). ~Note that this normalization procedure,
tra

.
a
tio

t

e

-

r

f

g

performed symmetrically onc(x) ands(x), leads to dimen-
sional units@ length#1/2 for these wave functions. Although
unusual, this normalization scheme has the advantage
c(x) and s(x) do not depend on the interval boundariesa
andb.!

To find the minimum tunneling time and minimum wav
functions, we form a general linear combination of the ba
functions CE(x)5ac(x)1bs(x), introduce it into the de-
fining equation of dwell time@Eq. ~3!#, and perform the
variation of the complex parametersa,b @Eq. ~15!#. This
straightforward procedure leads to simple and elegant
pressions for the requested quantities. Fortmin(E), we find

tmin~E!5
2m

\ H E
a

b

dx c~x!2E
a

b

dx s~x!2

2F E
a

b

dx s~x!c~x!G J 1/2

. ~18!

Note that the Cauchy-Schwarz inequality for integrals@18#
guarantees a positive definite radicand in this express
which is furthermore independent of the actually employ
set of basis functionsc(x) ands(x), provided that condition
~17! is satisfied. A possible choice for a pair of conjuga
complex minimal wave functionsCmin

E (x) is given by the
linear combination,
Cmin
E ~x!}c~x!2S Ea

b

dj c~j!2

E
a

b

dj s~j!2D 1/2

exp5 6 i arccos

E
a

b

dj s~j!c~j!

AE
a

b

dj c~j!2E
a

b

dj s~j!26 s~x!. ~19!
es
e

set
ly

or
the

ves
r,
g

o

@We remark that this formula contains as phase the abs
angle between the eigenstatesc(x) and s(x) in the normed
spaceL2(a,b) of square-integrable functions.# For the spe-
cial case of symmetric barriers@U(x)5U(2x), a52b#,
expressions~18! and ~19! may be considerably simplified
Exploiting the symmetry properties of the potential, we m
select even and odd-parity eigenstates as basis func
c(x)5c(2x) and s(x)52s(2x) in these formulas. This
procedure yields

tmin~E!5
4m

\ AE
0

b

dx c~x!2E
0

b

dx s~x!2, ~20!

Cmin
E ~x!}AE

0

b

dj s~j!2c~x!6 iAE
0

b

dj c~j!2s~x!.

~21!

B. Connection to the Larmor clock

If we restrict ourselves to potential barriersU(x) that are
confined to the intervala,x,b ~Fig. 1!, we may use the se
of outgoing wavesCE

˜(x),CE
—(x) @Eqs. ~4! and ~5!# as a

basis in the state space of eigenfunctionsCE(x). Note that
the integral appearing in the definition of the dwell tim
ct

y
ns

tD@CE# @Eq. ~3!# may be expressed in terms of Larmor tim
~10! and ~11!. Hence, by variation of the wave function, w
are able to represent the minimum tunneling timetmin(E) in
terms of the transmission probability of the barrier and its
of Larmor clock time scales. A tedious calculation final
leads to a fairly compact expression:

tmin~E!5
1

uT~E!u $uR~E!u2t R
y,˜~E!t R

y,—~E!

1uT~E!u2t T
y~E!21t R

z ~E!t T
z~E!%1/2. ~22!

Note that the whole set of left-hand and right-hand Larm
time scales enters this functional. In the same manner,
minimal wave functionCmin

E (x) might be represented in
terms of the Larmor time scales and the outgoing wa
CE

˜(x) and CE
—(x). The relevant expression is, howeve

extraordinarily complicated, and we refrain from displayin
it here.

V. ASYMPTOTIC BEHAVIOR

Having explicit representation~18! for the minimum tun-
neling timetmin(E) @Eq. ~15!# at hand, we now proceed t
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establish the behavior of this tunneling time scale in the l
iting cases of extreme quantum dynamics and semiclas
motion. To define these regimes, we may employ the mo
lus of the classical action functionalScl(a,b;E) as a charac-
teristic quantity of the barrier potentialU(x):

Scl~a,b;E!5E
a

b

dxA2m@E2U~x!#. ~23!

If uScl(a,b;E)u!\, the wave functionCE(x) is hardly af-
fected by the barrier. In the opposite regimeuScl(a,b;E)u
@\, the problem is usually amenable to a treatment in
framework of the WKB approximation.

A. The narrow barrier limit

Let us first study ultrathin barriers withuScl(a,b;E)u!\.
In this case, the radius of curvature of the wave funct
CE(x) in the barrier is large compared to the extensiond
5b2a of the interval of interest, so we may neglect qu
dratic and higher terms ind in the Taylor expansion o
CE(x) with respect tox5a. Under these circumstances, f
the calculation oftmin(E) we may always employ the pair o
approximate eigenfunctionsc(x)51 and s(x)5x2a as a
normalized function basis in Eq.~18!. This linear approxi-
mation immediately yields

tmin~E!5
1

A3

md2

\
1O~d4!. ~24!

In the narrow barrier limit, the maximum transmission velo
ity vmin5d/tmin(E) is, therefore, given by the universal e
pressionvmin5A3\/md. Note thatvmin depends, apart from
natural constants, only on the barrier widthd, but is indepen-
dent of the energyE. This property may be viewed as
consequence of the Heisenberg uncertainty relation; ind
we may restate Eq.~24! in the alternative form (mvmin)d
e-

in
-
al

u-

e

n

-

-

d,

'A3\. @As d˜0, vmin may assume arbitrarily large value
This unphysical behavior could be corrected by starting w
the proper relativistic wave equation instead of Schro¨dinger
equation~1!.#

B. The semiclassical limit

For uScl(a,b;E)u@\, application of a semiclassical theor
is in order. We may distinguish between two entirely diffe
ent regimes, viz., quasiclassical transmission over the ba
for E@U(x), and the case of barrier penetration whereE
!U(x).

For convenience, we introduce the action function
S(x;E)5uScl(a,x;E)u and the abbreviationS(x;E):

S~x;E!5U E
a

x

djA2m@E2U~j!#U, ~25!

S~x;E!5F \2

2muE2U~x!uG
1/4

. ~26!

Let us now first inquire into the quasiclassical limitE
@U(x). Then, a pair of WKB solutionscWKB(x) and
sWKB(x) is given by

cWKB~x!5S~x;E!cos@S~x;E!/\#, ~27!

sWKB~x!5S~x;E!sin@S~x;E!/\#. ~28!

Note that even though these functions are only approxim
solutions to the Schro¨dinger equation, they show a spatial
constant Wronskian determinant which is already normali
in the sense of Eq.~17!. Thus we may insert the pai
cWKB(x) andsWKB(x) into Eq. ~18! to obtain the WKB ap-
proximation to the minimum tunneling time in the limit o
quasiclassical transmission. After a few transformations,
find
t min
WKB~E!5Atcl~E!22H E

a

b dx

vcl~x;E!
cosF2

\
S~x;E!G J 2

2H E
a

b dx

vcl~x;E!
sinF2

\
S~x;E!G J 2

. ~29!
p-
k

t
by

d in
Here,tcl(E) denotes the classical time of flight fromx5a to
x5b, whereasvcl(x;E) represents the classical particle v
locity in the potentialU(x). From Eq. ~29! we infer that
tmin(E) indeed presents a valid quantum clock since it co
cides with the classical transmission timetcl(E) in the limit
\˜0. As expected,t min

WKB(E)<tcl(E) holds.
Let us finally examine the tunneling caseE!U(x). In

this case, we have to replace oscillating functions~27! and
~28! by evanescent waves:

cWKB~x!5
1

2
S~x;E!exp@2S~x;E!/\#, ~30!

sWKB~x!5S~x;E!exp@S~x;E!/\#. ~31!
-

Using this normalized pair of basis functions, from Eq.~18!
we arrive after some reorderings at the following WKB a
proximation for the minimum tunneling time in the thic
barrier penetration limit:

t min
WKB~E!5

\

4A@U~b!2E#@U~a!2E#
expF 1

\
uScl~a,b;E!uG .

~32!

In the case of tunneling,tmin(E) rises exponentially with the
width of the barrierd. The minimum tunneling time does no
show the accelerating effect of tunneling gaps predicted
several other theories of the tunneling time and observe
evanescent photon modes@4,6#. We note that the minimum
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tunneling time is roughly inversely proportional to the mod
lus of the barrier transmission amplitudeuT(E)u.

VI. APPLICATION TO DOUBLE-WELL STRUCTURES

So far, our considerations regarding the minimum tunn
ing time tmin(E) have been of an entirely mathematical n
ture. Yet the preponderance of theoretical reflections o
practical applications has always been a troublesome as
of the discussion about the tunneling-time problem. The
fore, it appears important to identify physical processes
permit us to extract the quantum time scales of motion in
actual experiment rather than to content oneself with
‘‘gedankenversuch.’’ The time scaletmin(E) quite naturally
emerges in the quantum mechanics of double-well poten
as is elaborated below.

A. Level splitting

Let us examine the following setup~Fig. 2!: The symmet-
ric potentialU(x) is composed of two wells centered arou
x56b, which are separated by a central potential barrier.
x˜6`, outer barriers isolate the double-well structure fro
the environment. Each well gives rise to a discrete spect
of eigenstates with energiesEn , but since the structure i
assumed symmetric, the states in the left and right wells
in resonance, and the double degeneracy of the eigens
will be lifted by the possibility of electron tunneling throug
the central barrier. This causes a small shift of the eigen
ergiesEn , which will split into close doubletsẼn6DEn/2
separated by the level splittingDEn . Because these double
are composed of states of opposite parity, transitions
tween them may be enforced by electromagnetic dipole
diation, which allows for a precise determination of the lev
splitting. As a typical example, we refer to the fine structu
of the states of the ammonia molecule caused by oscillat
which may be observed as maser radiation. A simple pre
tation is given in Feynman’s textbook@19#.

Let us become more specific. Assume thatHwell denotes
the Hamiltonian of a single well, say, the right one. Then,
well eigenstates are given by

HwellCn~x!5EnCn~x!. ~33!

Due to the presence of the other well, these eigenstates
into states of definite parityCn

(e)(x) andCn
(o)(x) of the com-

plete system:

Cn
(e)~x!'a@Cn~x!1Cn~2x!#, ~34!

Cn
(o)~x!'b@Cn~x!2Cn~2x!#. ~35!

FIG. 2. A symmetric double-well potential structure built
parabolic potentials.
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Here, we fix the prefactorsa andb by the requirement tha
at the center of symmetryx50, Cn

(e)(0)51 and Cn
(o)(0)8

51 holds. With this choice, the Wronskian determinant
both functions will be normalized atx50, which obviously
eases the connection to the developments of Sec. IV. S
~34! and~35! are eigenstates of the complete HamiltonianH:

HCn
(e)~x!5S Ẽn2

DEn

2 DCn
(e)~x!, ~36!

HCn
(o)~x!5S Ẽn1

DEn

2 DCn
(o)~x!. ~37!

The deformation of the well potential leads to a deviati
from the original eigenenergyẼn2En that is, however, ex-
ponentially small in the WKB sense. The same statem
holds for the splittingDEn caused by tunneling.

We now have to look for the connection with the tunne
ing time through the central barrier. To this end, we exam
the evolution of a state that starts out in the right poten
well. From Eqs.~34! and ~35! we infer that such a state fo
t50 is initially given by CE

(r )(x,0)5bCn
(e)(x)1aCn

(o)(x);
its evolution is governed by Eqs.~36! and ~37!:

CE
(r )~x,t !52ab e2 iẼnt/\$Cn~x!cosVnt

1 iCn~2x!sinVn%t, ~38!

where Vn5DEn /\. It is seen that the electron populatio
oscillates between both wells with a periodTn52p/Vn ,
which means that the electron is forced through the cen
potential barrier in a timeTn/2. Clearly,Tn/2 is a time scale
that characterizes quantum tunneling. Let us now show
Tn is indeed intimately related to the minimum tunnelin
time tmin(E) for the double-well potential structure.

B. Connection to tmin„E…

Let us first represent the oscillation periodTn in terms of
eigenfunctions~34! and~35! of the potentialU(x). A simple
calculation starting from Eqs.~36! and ~37! shows that@20#

E
0

`

dx Cn
(e)~x!Cn

(o)~x!52
\2

2m

W @Cn
(o)~x!,Cn

(e)~x!#0
`

En
(o)2En

(e)
.

~39!

The wave functionsCn
(e,o)(x) are bound states, so the

Wronskian determinant vanishes forx˜`; at the lower limit
x50, we chose the normalization of these functions in a w
as to guarantee a unit Wronskian. SinceEn

(o)2En
(e)

52p\/Tn , we obtain from Eq.~39!:

Tn5
4pm

\ E
0

`

dx Cn
(e)~x!Cn

(o)~x!. ~40!

This expression is still exact. However, the functions in t
integrand implicitly depend~via their eigenenergies! on Tn .
To get rid of this dependence, we note that their tr
eigenenergies deviate from their unperturbed valueEn only
by an exponentially small amount, so it appears appropr
to replace the bound states in Eq.~40! by a pair of eigen-



r-
y

to

n
.

i-

.

-
n

n
ue

ls
l-

ng
a
s

he

e
ca

ng

or

y

for
e
y

m
e
of

s a

1870 PRA 60CHRISTIAN BRACHER, MANFRED KLEBER, AND MUSTAFA RIZA
functions c(x) and s(x) to U(x) with energyEn that are
normalized in the same way, i.e.,c(0)5s(0)851 and
c(0)85s(0)50. Then, they show a unit Wronskian dete
minant,W @s,c#51 @Eq. ~17!#, and we obtain approximatel

Tn'
4pm

\ E
0

d

dx c~x!s~x!. ~41!

Note that this operation enforces the introduction of a cu
d — unlike their counterpartsCn

(e,o)(x), the functionsc(x)
ands(x) are not genuinely bound states of the potential a
thus diverge exponentially forx˜`. @In the example of Sec
VII C, we found it practical to choosed in a way as to mini-
mize the wave functionc(x)2 at x5d.#

In form ~41!, the periodTn may be expressed by the min
mum tunneling timetmin(En). We first remark thattmin(En)
in the symmetric interval2d,x,d is given by Eq.~20!:

tmin~2d,d;En!5
4m

\ AE
0

d

dx c~x!2E
0

d

dx s~x!2. ~42!

@Here, we exploited the parity properties ofc(x) ands(x).#
In connection with Eq.~18!, this allows us to express Eq
~41! in terms of the time scalestmin(0,d;En) and tmin
(2d,d;En):

Tn'pAtmin~2d,d;En!224tmin~0,d;En!2. ~43!

Finally, we note thattmin(0,d;En) for opaque tunneling bar
riers is exponentially small compared to the minimum tu
neling time for the entire structuretmin(2d,d;En) @Eq. ~32!#
and thus may be omitted. This yields the estimate

Tn'ptmin~2d,d;En!. ~44!

For tunneling barriers, the beat periodTn in the double well
is strictly coupled totmin(En). Alternatively, we find for the
level splitting the expressionDEn'2\/tmin(2d,d;En).
@Again, we emphasize that there are proposals for the tun
ing time, which may lead to results much smaller in val
thantmin(2d,d;En).#

VII. EXAMPLES

Let us now turn our attention to a few model potentia
U(x) in order to illustrate the theory of the minimum tunne
ing timetmin(E). We present some—occasionally surprisi
— results regarding quantum motion through simple squ
barriers and double-spike structures. Furthermore, we as
the quality of the minimum tunneling-time estimate for t
level splitting in double well structures~Sec. VI! by numeri-
cal calculations for a parabolic double-well potential.

A. Square barrier

We begin with a study of the minimum tunneling tim
tmin(E) for the most popular, yet to some extent pathologi
barrier potential, the symmetric rectangular barrier:

U~x!5UQ~x2b/2!Q~b/22x!. ~45!

Let us introduce the wave numberk in the barrier,
ff

d

-

el-

re
ess

l

k5
1

\
A2muE2Uu, ~46!

and use a pair of fundamental solutionsc(x) and s(x) of
definite parity in the barrier regionuxu,b/2, which is nor-
malized in the sense of Eq.~17!:

c~x!5cos~kx!, s~x!5
1

k
sin~kx!. ~47!

@Here, we assumeE.U; for E,U, the trigonometric func-
tions in Eq. ~47! should be replaced by the correspondi
hyperbolic ones.# Then, we obtain from Eq.~20! for tmin(E):

tmin~E!55
m

\k2
Asinh2kb2~kb!2 ~E,U !

1

A3

mb2

\
~E5U !

m

\k2
A~kb!22sin2kb ~E.U !.

~48!

In contrast, the corresponding dwell timet S
˜(E) @Eq. ~8!#

@which for this symmetric barrier coincides with the Larm
phase timet T

y(E)# is only defined forE>0 and reads, using
the abbreviationsk252mE/\2 andk0

252mU/\2 @8#,

t S
˜~E!55

mk

\k

2kb~k22k2!1k0
2 sinh 2kb

4k2k21k0
4 sinh2kb

~0,E,U !

mb

\k0

11k0
2b2/3

11k0
2b2/4

~E5U !

mk

\k

2kb~k21k2!2k0
2 sin 2kb

4k2k21k0
4 sin2kb

~E.U !.

~49!

Figure 3 shows that the minimum tunneling timetmin(E) for
the square barrier smoothly rises with decreasing energE.
As expected, in the classical limitE@U, tmin(E) merges into
the classical time of flighttcl(E)5b/vcl(E), whereas in the
limit of particle tunneling (E!U), the minimum tunneling
time grows exponentially with bothk andb, thus confirming
the asymptotic formulas put forward in Sec. V. ForE
5U,tmin(E) passes smoothly through its universal value
narrow barriers~24!. We note that the usual dwell tim
t S
˜(E) @Eq. ~49!# in the tunneling regime is characterized b

a radically different behavior.

B. Double delta spike

We now switch to a further example where the minimu
tunneling timetmin(E) shows a rather peculiar behavior. Th
model potential barrier we have in mind consists merely
two delta ‘‘spikes’’ forming a symmetric quantum well:

U~x!5U@d~x2b/2!1d~x1b/2!#. ~50!

Resonant tunneling through the potential spikes cause
conspicuous pattern in the transmission amplitudeT(E), and
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we should thus expect that these resonances reveal t
selves also in the tunneling-time spectrum. Indeed, this p
erty holds for Smith’s dwell timet S

˜(E) @Eq. ~8!#, which
here equals the Larmor time scalet T

y(E) @Eq. ~14!#, and for
this particular barrier is given by

t S
˜~E!5

2m

\

kb~k212k2!1k sinkb~2k sinkb2k coskb!

4k41k2~2k coskb1k sinkb!2
.

~51!

Here, k252mE/\2, and k52mU/\2 is a measure for the
strength of the spike potentials.

From Sec. IV we infer that the minimum tunneling tim
tmin(E) for the well solely depends on the wave functio
CE(x) in the interior of the barrieruxu,b/2, which are com-
pletely unaffected by the presence of the delta spikes! Th
fore, tmin(E) is independent of the spike strengthU and
hence given by its free-particle value~48!:

tmin~E!5
m

\k2
A~kb!22sin2 kb. ~52!

In Fig. 4, we display both tunneling time scales as a funct
of E. As anticipated,tmin(E) depends on the internal struc
ture of the potentialU(x) rather than its transmission prop
erties T(E), which affect Smith’s dwell timet S

˜(E) in a
considerable manner~Sec. II B!. @The Larmor time scales ar
entirely based on the transmission and reflection amplitu
T(E) andR(E) of U(x), see Eqs.~10! and ~11!.#

C. Parabolic double well

Finally, we would like to verify the connection betwee
the minimum tunneling timetmin(En) and the level splitting
DEn in a symmetric double-well potentialU(x)5U(2x)
that we established in Sec. VI. For this purpose, we const

FIG. 3. Minimum tunneling timetmin(E) @Eq. ~48!# for a rect-
angular barrier of widthb56 Å and heightU52 eV as a function
of the particle energyE ~solid line!. For comparison, the classica
time of flight tcl(E) (E.U), and the WKB approximation
t min

WKB(E) @Eq. ~32!# for barrier penetration (E,U) are additionally
plotted ~short lines!. The entirely different behavior of the corre
sponding dwell timet S

˜(E)5t T
y(E) @Eq. ~49!# in the tunneling

regime is evident~long dashed line!.
m-
p-

e-

n

es

ct

such a double well in a comparatively simple manner
matching parts of parabolic potentials:

U~x!55
mv2

2
~x1b!2 ~x,2c!

U02
mv2

2
x2 ~ uxu,c!

mv2

2
~x2b!2 ~x.c!.

~53!

For a continuously differentiable potential functionU(x), we
have to setc5b/2 andU05mv2b2/4 in Eq.~53!. The shape
of this parabolic double well is depicted in Fig. 2.

Here, we are interested in a calculation of the exact le
splitting DE0 and corresponding minimum tunneling-tim
estimate~44! for the lowest-lying doublet, which emerge
from the unperturbed oscillator well ground state atE0
5\v/2. Clearly, the heightU0 and the extension of the cen
tral tunneling barrier may be tuned by changing the w
separation 2b. As a useful first approximation toDE0, we
employ a semiclassical formula taken from Landau’s te
book @21#:

DE05
\v

p
expH 2

1

\
uScl~2a,a;E0!uJ . ~54!

Here,6a denote the turning points of classical motion, a
Scl(2a,a;E0) represents the classical action for barrier pe
etration~23!. @Note that our less sophisticated estimate~32!
is not directly applicable here as it has not been corrected
the effects of turning points. However, both expressio
agree in their exponential dependence.#

Despite its simple structure, the eigenstatesCn
(e,o)(x)

@Eqs. ~34! and ~35!# of the double-well potentialU(x) @Eq.
~53!# are available only through numerical computatio
They may be represented in terms of parabolic cylinder fu
tions @18# properly matched atx56c. In a recursive proce-
dure, we determined the exact eigenenergiesE0

(e) andE0
(o) of

the lowest levels ofU(x) and compiled a list of the corre
sponding level splittingsDE0 for several values of the di
mensionless separation parameterb5A2mv/\b. Numerical
values for the minimum tunneling timetmin(2d,d;E0) @Eq.

FIG. 4. Tunneling times for motion through a symmetric pote
tial well demarcated by two identical delta spikesUd(x6b/2) as a
function of energyE. Solid line: tmin(E) @Eq. ~52!#. Dashed line:
t S
˜(E)5t T

y(E) @Eq. ~51!#. Note thattmin(E) may exceed the dwel
time. ~Parameters used:U54 eV Å, b56 Å).
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TABLE I. Numerical results for the level splitting in a symmetric parabolic double well@Eq. ~53!#. The
first column specifies a dimensionless measureb5A2mv/\b for the separation of both wells; next, th
corresponding crestU0 of the central potential barrier is given in terms of\v. The following three columns
display the level splittingDE0 for the oscillator ground state (n50) in units of \v. The exact value is
presented in the left column, whereas the approximation toDE0 gained via the tunneling-time scheme
stated in the central column. Semiclassical estimate~54! for DE0 is shown in the right column. To the
extreme right, the relative error of the minimum tunneling time approach is displayed.

b U0 DE0 ~exact! DE0 @via tmin(E)# DE0 ~semicl.! Relative error

3 1.125 4.8608831022 5.326243 1022 4.4624931022 9.5731022

4 2.000 2.9174331023 2.9887331023 2.5857731023 2.4431022

5 3.125 6.4658731025 6.4982931025 5.8065631025 5.0131023

6 4.500 5.6506231027 5.6555331027 5.1343131027 8.6931024

7 6.125 1.9759131029 1.9761531029 1.8084131029 1.2331024

8 8.000 2.78036310212 2.78040310212 2.55579310212 1.4131025
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~42!# were established in a second series of calculations
this end, carrying out the program of Sec. VI B we first d
termined properly normalized pairs of eigenfunctionsc(x)
ands(x) to U(x) with energyE05\v/2. Next, we selected
cutoffsd for the integration in Eq.~41!: Our simple criterion
identified d with the minimum of the absolute value of th
approximate solutionc(x) in the exterior sectorx.b, i.e.,
we chose the largest value ofd so thatc(d)c(d)850. @These
cutoffs are usually located far in the outer barriers of
double well, thus indicating good performance of appro
mation ~41!, see Fig. 2.# The minimum tunneling time then
was computed by integration~42! and subsequently con
verted into an estimate forDE0 by means of Eq.~44!.

Table I gathers results of these calculations for parab
double wells of different separation and barrier penetrabil
For comparison, the exact level splittingsDE0 are comple-
mented with corresponding minimum tunneling-time es
mates~44! and the less accurate semiclassical formula~54!.
We infer that except for very shallow barriers~small values
of b), the tunneling-time estimate indeed presents a splen
approximation to the true level splitting~extreme right col-
umn in Table I!, thus confirming the significance oftmin(E)
as a measure for the duration of quantum motion in th
structures.

VIII. CONCLUSION

Pursuing a variational approach to the long-stand
tunneling-time problem, in this paper we presented the c
cept of the minimum tunneling timetmin(E), a time scale of
quantum motion that holds for stationary one-dimensio
problems. It is defined as the minimum amount of time
quired by the probability current in order to replace the p
ticle number present in a given interval of spacea,x,b.
Therefore,tmin(E) bears a close relationship to the idea
the dwell time originally proposed by Smith, which esse
tially represents an analogous quantity for outgoing wav
Both approaches are rooted in the hydrodynamical inter
tation of quantum mechanics advocated in particular
Bohm.

As a major feature of the minimum tunneling-time ansa
we emphasized that the quantitytmin(E) represents a genu
inely local time scale of motion that, apart from the partic
energyE, solely depends on the topography of the poten
o
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e
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U(x) in the sector of interesta,x,b, whereas most con
tenders for the rank of the tunneling time scale, including
dwell time and the ubiquitous set of Larmor time scale
implicitly rely on boundary conditions imposed onto the u
derlying wave functions.~Nevertheless, the minimum tun
neling time may be expressed as a functional of the se
Larmor clock readings.! The variational principle leads to
simple and elegant formulas fortmin(E). Asymptotic expres-
sions for the minimum tunneling time are available in t
semiclassical limit: In the case of classically allowed motio
tmin(E) gradually merges into the classical time of flight, a
thus matches a basic demand for a valid tunneling time sc
For the opposite case of barrier penetration, the minim
tunneling time grows exponentially with the classical acti
for barrier traversal~32!. Qualitatively speaking,tmin(E) is
much shorter than the lifetime of a corresponding metasta
state: Whereastmin(E) is inversely proportional to the modu
lus uT(E)u of the semiclassical transmission amplitude, t
lifetime of the metastable state grows withuT(E)u22. At the
same time,tmin(E) generally lasts much longer than th
semiclassical instanton or bounce tunneling time, which
defined as the classical traversal time for a particle of ene
2E moving in the inverted potential barrier2U(x). The
results of Sec. VI suggest that the variationally defined t
neling time tmin(E) corresponds to a periodical proce
where a particle tunnels through a barrier in a coherent fa
ion, whereas the decay of a metastable state proceeds
incoherent, irreversible manner.

Apart from the formal elegance of the variational metho
the minimum tunneling-time approach has the advantage
being related to experimentally accessible quantities. A
physical process that allows for the determination oftmin(E),
we identified the energy level splitting in a symmetr
double-well potential caused by tunneling of particl
through the central potential barrier separating both quan
wells. These level splittings, and thus the minimum tunn
ing time for the double-well structure, are available fro
spectroscopic measurements. We finally remark that a q
similar situation is realized in nature by electron exchan
during the scattering of protons on neutral hydrogen ato
@22#.
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