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Wave propagation in unbounded domains is one of the important engineering problems. There have been many attempts by
researchers to solve this problem. This paper intends to shed a light on the finite point method, which is considered as one of
the best methods to be used for solving problems of wave propagation in unbounded domains. To ensure the reliability of finite
point method, wave propagation in unbounded domain is compared with the sinusoidal unit point stimulation. Results indicate
that, in the case of applying stimulation along one direction of a Cartesian coordinate, the results of finite point method parallel
to the stimulation have less error in comparison with the results of finite element method along the same direction with the same
stimulation.

1. Introduction

The rapid development of computers and computation power
within the last decade encouraged researchers from different
disciplines to show more interest in the usage of numerical
methods. Wave propagation is one of those numerical mod-
eling problems which have been a major focus of some of the
researchers. However, it is only in recent years that physicists
had acknowledged the nature of masses not just as particles
but also as waves [1] and they emphasized the importance of
the wave propagation modeling. The methods used to solve
the differential equations have been categorized into two
groups: with or without mesh network [2]. Previous studies
showed that using mesh in modeling the wave propagation
may cause wave to emanate lead [3]. According to Fatahpour
[3], this lead is caused by the shape of the elements and their
positioning with respect to each other. In addition, Gerdes
and Ihlenburg [4] and Harari and Nogueira [5] highlighted
the effects of the shape function problem of the elements
used for modeling wave propagation in unbounded domains
in their studies. Furthermore, the finite element modeling of
wave propagation resulted in the phase difference problems of
response, numerical approximation, and pollution error [4].

Accordingly, based on the problems of network in wave
propagation, there are twomethods that can be used for solv-
ing the wave propagation problems. Meshless method offers
solutions despite the problems associated with its use, such as
singularity of stiffness matrices, nonstability, and difficulties
in ensuring the accuracy of the number of points in the
domain. On the other hand, finite difference method, which
is one of the oldest numerical methods, can also be used
to solve the problems caused by meshes in modeling wave
propagations. This method is limited due to the need for a
regular grid of points in an infinite domain. However, these
problems can be resolved by using a special storage combina-
tion and replication in other parts of the environment.

The following methods are often preferred to the ones
mentioned earlier since they are very successful for large
quantity of numerical modeling of unbounded domains.

(a) Methods which are based on boundary integral equa-
tions: according to Kirsch [6], this method has some
limitations associated with the properties of domain,
such as homogeneous, isotropic, and linear. This
method can further be classified into two subgroups:
direct and indirect integral equations that are dealing
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Figure 1: Stimulation and nonreflecting boundary.

with the physical [7] and mathematical aspects [8],
respectively. Therefore, boundary element method
has been used successfully to solve the problems with
unbounded equations [9–12]. However, there are dis-
advantages of this method which include the inacces-
sibility to basic functions of different problems, such
as nonhomogeneous domains and complicated cal-
culations that sometimes trigger the singularity of
integrals.

(b) As demonstrated by the first monograph in the world
[13], dynamic and transient infinite elements have
been developed to solve wave propagation and a
broad range of scientific and engineering problems
[14, 15]. Zhao et al. established the coupled method of
finite and dynamic infinite elements [16, 17] for solv-
ing wave scattering problems associated with many
real scientific and engineering problems involving
semi-infinite and infinite domains, for example,

(i) dynamic concrete gravity dam-foundation
interaction and dynamic embankment dam-
foundation interaction problems during earth-
quakes [18, 19],

(ii) seismic free field distributions along the surfaces
of natural canyons [20, 21],

(iii) dynamic interactions between three-dimen-
sional framed structures and their foundations
[22],

(iv) dynamic interactions between concrete retain-
ingwalls and their foundations [23]. In addition,
Zhao andValliappan also developed the coupled
method of finite and transient infinite elements
for solving transient seepage flow, heat transfer,
and mass transport problems involving semi-
infinite and infinite domains [24–26].

(c) Nonreflecting boundary conditions are shape based
by placing B on virtual boundary around the stimula-
tion reservoir Ω (Figure 1) in such a way to allow for

the waves to go outward without any reflection inside.
Therefore, it is costly to simulate the full infinite
domain.
At a glance, this kind of simulation seems easy and
simple to perform. But research conducted for the
past thirty years has shown that such boundary simu-
lation is hard to perform. In addition, the limited
numerical solutions available so far also indicate exis-
tence of possible problems with such boundary simu-
lations [27–29] and researchers do not have a consen-
sus on this matter [30]. Therefore, recent studies are
aimed at achieving better developed stimulations [31–
34].
Absorbing layer or perfectly matched layer method
was first introduced by Berenger in 1994 [35] upon
completion of the nonreflecting boundaries. Recently,
extensive studies have been conducted on how
to develop this method for 2- and 3-dimensional
domains [36].

(d) Dynamic solution of unbounded domains using finite
element method was first introduced by Boroomand
and Mossaiby [37]. In this research the method is
further developed to solve the wave leading problem
caused by element arrangement and shape functions.

2. Materials and Methods

2.1. Elastic Wave Propagation in Unbounded Domain. In this
research work, finite point and finite element methods were
used to study the wave propagation in unbounded domain
[37]. The wave equations are given below:

S𝑇DSU − 𝜌Ü = F (𝑥, 𝑦, 𝑡) , (𝑥, 𝑦) ∈ 𝑅2, (1)

where U and Ü are the value of wave function and the
second derivative of wave function of time, respectively, S is
a differential equation that signifies the relative deformation,
D is a matrix of material properties, 𝜌 is the unit weight of
the domain, and finally F is the stimulation function of the
domain (a dirac delta function in the specified direction and
time with sinusoidal form). One of the uses of the above
formula is the elastic wave propagation in which all functions
and operators are written in vector format.

To solve this equation, a Cartesian coordinate system is
adopted, while the center of this coordinate system is used as
the stimulation point. If U is considered as

U = u𝑒𝑖𝜔𝑡, (2)

then u is a Fourier transformation of U, 𝑖 = √−1, and 𝜔 is
the value of the stimulation frequency. Consequently, these
values are substituted in (2) to obtain

S𝑇DSu + 𝜌𝜔2u = f . (3)

f is a Fourier transformation of stimulation function of F.
According to the stimulation function shape, to solve

this problem, symmetric and antisymmetric displacement
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condition can be used in the domain. Then the equation is
given as follows:

S𝑇DSu + 𝜌𝜔2u = 0,

𝑥 ∈ [0,∞) × [0,∞) .

(4)

This study considers the importance of the reliability of the
domain properties which can solve the problem. Therefore,
the stimulation f can be applied as a boundary condition and
thereby (4) can be classified as part of homogeneous equa-
tions group with constant coefficients. As a result, one of the
significant properties of the differential equations with con-
stant coefficients, such as proportionality, is given in

u (𝑥, 𝑦) = A𝑒𝛼𝑥+𝛽𝑦. (5)

A,𝛼, and𝛽 are constant vector and two undefined scalars.The
following equation is derived from the exponential function
properties in the 𝑥- and 𝑦-direction:

u (𝑥 + 𝑛𝐿
𝑥
, 𝑦 + 𝑚𝐿

𝑦
) = A𝑒𝛼(𝑥+𝑛𝐿𝑥)+𝛽(𝑦+𝑚𝐿𝑦)

= (𝜇
1
)
𝑛
(𝜇
2
)
𝑚u (𝑥, 𝑦) ,

(6)

where 𝐿
𝑥
and 𝐿

𝑦
are arbitrary specified values in 𝑥- and 𝑦-

direction and𝑚 and 𝑛 are positive numbers.
By substituting (5) into (4), the following is obtained:

LA𝑒𝛼𝑥+𝛽𝑦 = 0 or L ⋅ A = 0. (7)

L is amatrix including values based on 𝛼 and𝛽.The nullspace
of a matrix is equivalent to the matrix when it reaches zero:

|L| = 0. (8)

According to the characteristic of (7), 𝛼 and 𝛽 are the main
factors relating to the issue discussed in the Results and Dis-
cussions part of this paper.

One of these variables can be calculated in terms of the
other one: 𝛼 = 𝑓(𝛽) or 𝛽 = 𝑔(𝛼). It must be noted that
depending on the degree of characteristic of equation there
may be more than one answer to each of these equations.

The homogenous solution of this equation may be
obtained by using the superposition of spectral solutions. For
example, 𝛽 = 𝑔(𝛼) like the following [37]:

u = ∫
𝛼

∑

𝑖

A
𝑖
𝑒
𝛼𝑥+𝛽

𝑖
𝑦
𝑑𝛼 = ∫

𝛼

∑

𝑖

A
𝑖
𝑒
𝛼𝑥+𝑓
𝑖
(𝛼)𝑦
𝑑𝛼. (9)

The inner sigma in the overall nullspace of L matrix and the
overall integration gives the possible values of 𝛼.

2.2. Decay and Radiation Condition. Decay condition of
amplitude means decreasing amplitude with increasing the
distance from the stimulation point ((𝑛 → ∞, 𝑚 → ∞) ⇒
𝑢 → 0, (6)); that is,

𝜇1
 < 1,

𝜇2
 < 1. (10)
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1

1 1

Figure 2: Arrangement of points in the operation related to each
point.

One should note that 𝜇
1
and 𝜇

2
can have complex values;

thus, (10) is a circle with the radius of one in a Gaussian
coordinate. In wave propagation, problems like radiation
condition should be considered.Therefore, given the physical
nature of such a problem, the energy emitted towards infinity
represents the energy returned from infinity and this changed
the shape of thewave aswell as the prerequisite [37] as follows:

U = A𝑒(𝑎+𝑖𝑏)𝑥+(𝑐+𝑖𝑑)𝑦+𝑖𝜔𝑡 = A𝑒𝑎𝑥+𝑐𝑦𝑒𝑖(𝑏𝑥+𝑑𝑦+𝜔𝑡)

𝑎 < 0, 𝑏 < 0, 𝑐 < 0, 𝑑 < 0.

(11)

2.3. Finite Point Method. In recent years, finite point method
has been developed as one of the numerical methods to solve
differential equation problems. Since it is a meshless method,
there is no need to carry out mesh generation [38–40] and it
is known to be the best method for avoiding the errors which
occur as a result of element networks [7, 37].Using finite point
solution in (4), where series of regular and equal intervals
are connected to each other in both horizontal and vertical
directions (unit size), the equation can be given as

u (𝑥, 𝑦) ≈ û (𝑥, 𝑦) =
𝑚

∑

𝑖=1

𝛼
𝑖
𝑓
𝑖
(𝑥, 𝑦) = f𝑇𝛼. (12)

û is a set of point value estimation and f =

[𝑓
1
𝑓
2
𝑓
3
⋅ ⋅ ⋅ 𝑓

𝑚
]
𝑇 is an appropriate set of basic

functions. In this paper, functions are selected as follows:

f = [1, 𝑥, 𝑦, 𝑥2, 𝑥𝑦, 𝑦2, 𝑥2𝑦, 𝑥𝑦2, 𝑥2𝑦2]
𝑇

, 𝑚 = 9.

(13)

In (12), the values of 𝛼
𝑖
and the unknown values called

“generalized coordinates” are the estimates obtained when
their functions are determinate. Using this method, the
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Figure 3: Real part of 𝑥-direction response. (a) Using method in [37]. (b) Exact response. (c) Present method.
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Figure 4: Imaginary part of 𝑥-direction response. (a) Using method in [37]. (b) Exact response. (c) Present method.
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Figure 5: Real part of 𝑦-direction response. (a) Using method in [37]. (b) Exact response. (c) Present method.

value of 𝛼
𝑖
is determined in the approximate location of the

subscales. When the values are equal to the desired function,
the following equation is established:

_
𝑢
𝑗
= 𝑢 (𝑥

𝑗
, 𝑦
𝑗
) = 𝑢
𝑗
, 𝑗 = 1, . . . , 9. (14)

In the above equation 𝑢
𝑗
is the point value of the function in

the 𝑗th point. This equation can be developed based on (12)
and it is given as

f𝑇 (𝑥
𝑗
, 𝑦
𝑗
)𝛼 = 𝑢

𝑗
, 𝑗 = 1, . . . , 9. (15)

Accordingly, with this system of equations where both sides
are equal, a regular problem can be solved by using finite
point method without the need of using other methods, such
as least square method [41, 42].

3. Results and Discussions

The points consist of operator identified in (4) and point 5 in
Figure 2 and then using numerical results equation (16a) and

(16b) will be given as

𝑢
5
=

𝐸V
1

8 (1 − ])
+
𝐸𝑢
4

1 − ]2
−
𝐸V
7

8 (1 − ])
+
𝐸𝑢
2

2 (1 + ])

+ [
𝐸 (] − 3)
1 − ]2

+ 𝛼] 𝑢
5
+
𝐸𝑢
8

2 (1 + ])
−
𝐸V
3

8 (1 − ])

+
𝐸𝑢
6

1 − ]2
+
𝐸V
9

8 (1 − ])
,

(16a)

V
5
=

𝐸𝑢
1
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4
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−
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7
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+
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8
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3
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6
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9

8 (1 − ])
.

(16b)

𝐸 and ] are modulus of elasticity and Poisson’s ratio of the
domain that will allow the wave propagation. From these two
equations, the method discussed in Section 2 with respect to
(6) is given as

[
[

[

𝛼 +
𝐸 (] − 3)
1 − ]2

+
𝐸

(1 − ]2) 𝜇1
+
𝐸𝜇1

1 − ]2
+
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+
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−
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𝐸
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1
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−
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−
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+
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]

]

. (17)
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Figure 6: Imaginary part of 𝑦-direction response. (a) Using method in [37]. (b) Exact response. (c) Present method.

Hence, the interrelation with the previous studies is deter-
mined by using characteristic of (17), where 𝛼 is the same as
𝜌𝜔
2 in (4) and the values of 𝜇

1
and 𝜇
2
are based on the infinite

element methods.
The solutions developed [37] in Section (a) are the exact

solution in Section (b). The solutions in Section (c) are used
in Figures 3, 4, 5, and 6 by using 𝜌𝜔2 = 100.

4. Conclusion

The method developed by Boroomand and Mossaiby [37] is
described together with the finite point method which is an
alternative method to the finite element method. This paper
shows the ability of the new method in solving problems for
the infinite domains with homogeneous properties. Semi-
finite media can also be observed with this method using
appropriate boundary conditions.

Based on the numerical results, the following are the
points concluded.

(i) DiscreetGreen’s functions [37] can easily be estimated
with finite point method.

(ii) Results obtained through this new method have
pollution error like the basic finite element method.
However, in the finite element usage, wave lengths in
the pressure direction are increased when compared
with exact solutions. On the other hand, the finite
point method increases the wave lengths in the shear
direction when compared with exact solutions.

(iii) There are two kinds of wave propagation problems
commonly encountered in the engineering practice

[2, 3]. One of them is the wave radiation problem
(the machine foundation vibration is an example of
this kind) [2] and the other one is the wave scattering
problem (the seismic response of a structure is an
example of this kind) [3]. Since the source of vibration
should be obtained as a boundary condition, only
the first kind of wave propagation, which is wave
radiation, can be observed in this method.
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