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Wave propagation in an unbounded domain surrounding the stimulation resource is one of the important issues for engineers. Past
literature is mainly concentrated on the modelling and estimation of the wave propagation in partially layered, homogeneous, and
unbounded domains with harmonic properties. In this study, a new approach based on the Finite Point Method (FPM) has been
introduced to analyze and solve the problems of wave propagation in any nonhomogeneous unbounded domain. The proposed
method has the ability to use the domain properties by coordinate as an input. Therefore, there is no restriction in the form of
the domain properties, such as being periodical as in the case of existing similar numerical methods. The proposed method can
model the boundary points between phases with trace of errors and the results of this method satisfy both conditions of decay and
radiation.

1. Introduction

Wave propagation in the unbounded domains is one of the
important engineering issues. To solve this problem, many
researches have been carried out and the ones that are most
relevant to the proposed method are referred to in this
study. Wang et al. [1] tried to simulate wave propagation in
domains with nonhomogeneous cross-anisotropic proper-
ties. In another research, Wang et al. [2] simulated the wave
parameters, such as stress and displacement, in a nonhomo-
geneous transversely isotropic half-space subjected to a uni-
form vertical circular load. Daros [3] presented a solution
for SH-waves in a nonhomogeneous anisotropic media. Ke
et al. [4] worked on simulations of Love waves in a nonhomo-
geneous, saturated, porous layered half-space with linearly
varying properties. In 2006, Bazyar and Song [5] tried to sim-
ulate time-harmonic response of nonhomogeneous elastic
unbounded domain using Scaled Boundary Finite Element
Method. However, the aforementioned studies could not lead
to a general method that can simulate unbounded domain
with any kind of properties. Furthermore, each one of the
mentioned methods has its own limitations in the shape and
form of stimulating function problems, which are avoided in
the proposed method.

In recent years, due to the rapid development in computer
power, researchers from various disciplines have developed
a special interest in numerical solution to many problems.
Numericalmodelling of problems has been themajor focus of
the researchers and undoubtedly wave propagation has been
an important part of this numerical research approach. Over
the years, physicists also acknowledged the nature of masses
not just as particles but also as waves [6] and this emphasizes
the importance of the wave propagation modelling.

The research by Boroomand andMossaiby [7] introduced
a new method, which is based on Finite Element Method, to
estimate thewave propagation in a homogeneous unbounded
domain. Lately,Moazam [8] used Finite PointMethod (FPM)
and Finite Difference Method (FDM) to develop the method
of Boroomand and Mossaiby [7] to a meshless version to
avoid problems caused by element mesh in simulating the
wave propagation in unbounded domain. Then, Moazam
et al. [9] further developed themethod byMoazam [8] so that
it could be used for homogeneous domains due to arbitrary
stimulation and also it can reduce the estimation errors.

The aim of this study is to investigate the effect of wave
propagation due to the vibration of heavy machinery on
the surrounding region of the nonhomogeneous arbitrary
domain using a new FPM-based numerical method.
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The assumptions and concepts of them will be explained
in the following parts of this study.

2. Methodology

2.1. Elastic Wave Propagation in Unbounded Domain. The
Finite Point Method was used with specific form of general-
ized coordinate that was developed by Moazam et al. [9] and
will be explained as follows. The assumptions and concepts
which are used in this study will be explained in the following
parts of this study.

The wave equations are given below:

S𝑇DSU − 𝜌

̈U = F (𝑥, 𝑦, 𝑡) , (𝑥, 𝑦) ∈ 𝑅

2
,

(1)

in whichU and ̈U are the magnitude of displacement of wave
and its second derivative in respect to time, respectively; S is
a differential equation that signifies the relative deformation;
D is a matrix of material properties; 𝜌 is the unit weight of
the domain; and finally, F is the stimulation function of the
domain (aDirac-Delta function in the specified direction and
time with sinusoidal form).

One of the uses of the above formula is the elastic wave
propagation in which all functions and operators are written
in vector format. To solve this equation, a Cartesian coordi-
nate system is adopted, where the center of this coordinate
system is used as the stimulation point. If U is considered as

U = u𝑒𝑖𝜔𝑡, (2)

then u is a Fourier transformation of U and 𝜔 is the value
of the stimulation frequency. Consequently, these values are
substituted in (1) to obtain

S𝑇DSu + 𝜌𝜔

2u = f , (3)

where f is a Fourier transformation of stimulation function
of F.

According to the stimulation function shape, to solve this
problem, symmetric and antisymmetric displacement condi-
tion can be used in the domain. Then, the equation is given
as follows:

S𝑇DSu + 𝜌𝜔

2u = 0, 𝑥 ∈ [0,∞) × [0,∞) .
(4)

This study considers the importance of the reliability of the
domain properties which can solve the problem. Therefore,
the stimulation f can be applied as a boundary condition and
thereby (4) can be classified as part of homogeneous equa-
tions group with constant coefficients. As a result, one of
the significant properties of the differential equations with
constant coefficients, such as proportionality, is given in

u (𝑥, 𝑦) = A𝑒𝛼𝑥+𝛽𝑦, (5)

where A is a constant vector and 𝛼 and 𝛽 are two constant
undefined scalars. Equation (6) is derived from the exponen-
tial function properties in the 𝑥 and 𝑦 direction:

u (𝑥 + 𝑛𝐿

𝑥
, 𝑦 + 𝑚𝐿

𝑦
) = A𝑒𝛼(𝑥+𝑛𝐿𝑥)+𝛽(𝑦+𝑚𝐿𝑦)

= (𝜇

1
)

𝑛
(𝜇

2
)

𝑚 u (𝑥, 𝑦) ,
(6)

where 𝐿

𝑥
and 𝐿

𝑦
are arbitrary specified values in 𝑥 and 𝑦

direction and𝑚 and 𝑛 are positive numbers.
By substituting (5) into (4), (7) can be obtained:

LA𝑒𝛼𝑥+𝛽𝑦 = 0 or L ⋅ A = 0,
(7)

where L is a matrix including values based on 𝛼 and 𝛽. The
nullspace of a matrix is equivalent to the matrix when it
reaches to zero:

|L| = 0. (8)

According to the characteristic of (7), 𝛼 and 𝛽 are the main
factors relating to the issue which will be discussed in Results
and Discussions of this paper.

One of these variables can be calculated in terms of the
other one: 𝛼 = 𝑓(𝛽) or 𝛽 = 𝑔(𝛼). It must be noted that,
depending on the degree of characteristic of equation, there
may be more than one answer to each of these equations.

The homogenous solution of this equation may be
obtained by using the superposition of spectral solutions. For
example, 𝛽 = 𝑔(𝛼)makes [7]

u = ∫

𝛼

∑

𝑖

A
𝑖
𝑒

𝛼𝑥+𝛽
𝑖
𝑦
𝑑𝛼 = ∫

𝛼

∑

𝑖

A
𝑖
𝑒

𝛼𝑥+𝑓
𝑖
(𝛼)𝑦

𝑑𝛼. (9)

The inner sigma in the overall nullspace of L matrix and the
overall integration gives the possible values of 𝛼.

2.2. Decay and Radiation Condition. Decay condition of
amplitude means decreasing the amplitude while increasing
the distance from the stimulation point ((𝑛 → ∞,𝑚 →

∞) ⇒ 𝑢 → 0 (6)); that is,
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< 1. (10)

One should note that𝜇
1
and𝜇
2
can have complex values; thus,

(10) is a circle with the radius of one in Gaussian coordinate
as shown in Figure 1.

In wave propagation, problems like radiation condition
should be considered. Therefore, given the physical nature
of such a problem, the energy emitted towards infinity
represents the energy returned from infinity and this changed
the shape of the wave and the prerequisite as follows:

U = A𝑒(𝑎+𝑖𝑏)𝑥+(𝑐+𝑖𝑑)𝑦+𝑖𝜔𝑡 = A𝑒𝑎𝑥+𝑐𝑦𝑒𝑖(𝑏𝑥+𝑑𝑦+𝜔𝑡)

𝑎 < 0, 𝑐 < 0, 𝑏 < 0, 𝑑 < 0.

(11)

The first two inequalities, 𝑎 < 0 and 𝑐 < 0, are satisfying
the amplitude reduction condition. The last part of (11),
𝑒

𝑖(𝑏𝑥+𝑑𝑦+𝜔𝑡), is showing the direction of wave movement. The
proportional coefficients, 𝜇

1
and 𝜇

2
, can be found in

𝜇

1
= 𝑒

−(|𝑎|𝐿
𝑥
+𝑖|𝑏|𝐿

𝑥
)
= 𝑒

−|𝑎|𝐿
𝑥

𝑒

−𝑖|𝑏|𝐿
𝑥

,

𝜇

2
= 𝑒

−(|𝑐|𝐿
𝑦
+𝑖|𝑑|𝐿

𝑦
)
= 𝑒

−|𝑐|𝐿
𝑦

𝑒

−𝑖|𝑑|𝐿
𝑦

,

(12)

where 𝐿
𝑥
and 𝐿

𝑦
are both arbitrary lengths parallel to 𝑥 and

𝑦 directions. Therefore, they should be positive values.
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Figure 1: According to decay condition, the domain of 𝜇
1
and 𝜇

2
in

Gaussian coordinate is a circle with the radius of 1.
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Figure 2: According to decay and radiation condition, the domain
of 𝜇
1
and 𝜇

2
in Gaussian coordinate is a circle with the radius of 1.

Each complex number can be shown as 𝑟𝑒𝑖𝜃 = Re+𝑖 Im
[10], where 𝑟 is called the modulus of this complex number, 𝜃
is the argument of the complex number, Re is the real part of
the complex number, and Im is the value of imaginary part of
the complex number.

Therefore−|𝑏|𝐿
𝑥
and−|𝑑|𝐿

𝑦
are in the role of argument in

the definition of proportion coefficients. Thus the acceptable
range of proportion coefficients of 𝜇

1
and 𝜇

2
can be seen in

Figure 2 or as below set:

{∀ (𝜇

1
, 𝜇

2
) | Re (𝜇

1
) ⋅ Im (𝜇

1
) < 0,Re (𝜇

2
) ⋅ Im (𝜇

2
) < 0} .

(13)

2.3. Finite PointMethod. In recent years, Finite PointMethod
has been developed as one of the numerical methods to solve
differential equation problems. Since it is a meshless method,
there is no need to carry out mesh generation [11–13] and it is
known as a method for avoiding the errors which occur as a
result of element networks [7, 9]. Using FPM solution in (4),
where a series of regular and equal intervals are connected

to each other in both horizontal and vertical directions (unit
size), the equation can be given as

u (𝑥, 𝑦) ≈ û (𝑥, 𝑦) =
𝑚

∑

𝑖=1

𝛼

𝑖
𝑓

𝑖
(𝑥, 𝑦) = f𝑇𝛼, (14)

where û is a set of point value estimations and f =

[
𝑓

1
𝑓

2
𝑓

3
⋅ ⋅ ⋅ 𝑓

𝑚]
𝑇 is an appropriate set of basic functions.

This set of functions has to be selected from the complete exp-
ansion of binomial to the power of natural numbers which is
shown as follows:

0th row: (𝑥 + 𝑦)

0
= 1,

1st row: (𝑥 + 𝑦)

1
= 1𝑥 + 1𝑦,

2nd row: (𝑥 + 𝑦)

2
= 1𝑥

2
+ 2𝑥𝑦 + 1𝑦

2
,

3rd row: (𝑥 + 𝑦)

3
= 1𝑥

3
+ 3𝑥

2
𝑦 + 3𝑥𝑦

2
+ 1𝑦

3
,

4th row: (𝑥 + 𝑦)

4
= 1𝑥

4
+ 4𝑥

3
𝑦 + 6𝑥

2
𝑦

2
+ 4𝑥𝑦

3
+ 1𝑦

4
,

5th row: (𝑥 + 𝑦)

5
= 1𝑥

5
+ 5𝑥

4
𝑦 + 10𝑥

3
𝑦

2
+ 10𝑥

2
𝑦

3

+ 5𝑥𝑦

4
+ 1𝑦

5
.

(15)

Since there are nine points in each cloud of computations
selected in this method, the selected set should have at least
nine terms [14]. Different sets of nine and more terms were
tried to be checked for their suitability to be used for the
present research. Eventually, nine terms as shown in Figure 3,
known as the set with the least error, were used.

Therefore the set of basic functions can be shown as
follows:

f = [1, 𝑥, 𝑦, 𝑥

2
, 𝑥𝑦, 𝑦

2
, 𝑥

2
𝑦, 𝑥𝑦

2
, 𝑥

2
𝑦

2
]

𝑇

, 𝑚 = 9.

(16)

In (14), the values of 𝛼
𝑖
and the unknown values called “gen-

eralized coordinates” are the estimates obtained when their
functions are determinate. Using this method, the value of 𝛼

𝑖

is determined in the approximate location of the subscales.
When the values are equal to the desired function, then the
following equation is established:

_
𝑢

𝑗
= 𝑢 (𝑥

𝑗
, 𝑦

𝑗
) = 𝑢

𝑗
, 𝑗 = 1, . . . , 9.

(17)

In (17), 𝑢
𝑗
is the point value of the function in the 𝑗th point.

This equation can be developed based on (14) and it is given
as

f𝑇 (𝑥
𝑗
, 𝑦

𝑗
)𝛼 = 𝑢

𝑗
, 𝑗 = 1, . . . , 9. (18)

Accordingly, with this system of equations where both sides
are equal, a regular problem can be solved by using Finite
Point Method without the need of using other methods, such
as least square method [15, 16].

Up to this point, the method is similar to FPM proposed
by Moazam et al. [9] and Finite Element Method proposed
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Figure 3: Selected set of terms to be used for the FPM basic
functions.

by Boroomand and Mossaiby [7]. But as it was mentioned
by these researchers, the methods were just applicable in the
homogeneousmedia.Therefore, there should be some impro-
vements in the numerical method so that it can be used in
arbitrary media. This improvement has been discussed by
Moazam et al. [9] and presented in this research using a
variable𝐷(𝑥, 𝑦)matrix instead of a constant𝐷matrix similar
to what has been shown in [17] by Boroomand andMossaiby.
In the present study, Finite Point Method was used instead of
the Finite Element Method.

Since the method used in this research, which is based
on Finite Point Method, is a frequency domain method, the
frequency of vibration in each point is supposed to be equal
to the frequency of stimulation resource [8]. The maximum
magnitude of wave is the value which can be measured in
this method. If the stimulation resource is assumed to be in a
sinusoidal form as given by

𝑑 = 𝑑max sin (𝜔𝑡) , (19)

then the velocity and acceleration can be shown as follows:

𝑉 = 𝑑max𝜔 cos (𝜔𝑡) = 𝑉max cos (𝜔𝑡) → 𝑉max = 𝑑max𝜔,

𝑎 = 𝑑max𝜔
2 sin (𝜔𝑡) = 𝑎max sin (𝜔𝑡) → 𝑎max = 𝑑max𝜔

2
.

(20)

Therefore 𝑎max can be determined as 𝑑max𝜔
2. Since this spe-

cial form of FPM which was mentioned above can estimate
the maximum value of wave magnitude on each point of
the domain, the method can also estimate 𝑉max and 𝑎max
according to (20).

3. Results and Discussions

3.1. Developing Formulas for Plain Strain Wave with FPM.
The real nodal value vector u is given below:

u ≈ Nu, (21)

where u is the nodal wave value vector and N is a matrix
containing used shape functions in the FPM.

Stiffer part

Y

X

r = 0.5m

Figure 4: Circular part with stiff material.

As discussed in Section 2.3, for shape functions in the N
matrix, the set of functions given in (16) is used.

Substituting (21) in the main equation (4) and using least
square method which can be used in the FPM, (22) can be
obtained:

(K − 𝜔

2M) u = f
𝑡

(K − 𝜔

2M) = K
𝑑

⇒ K
𝑑
u = f
𝑡
. (22)

This resultant equation (22) is separated according to the
Dirichlet and Neumann boundary conditions, same as what
has been done in [7–9]. Hence, the formulation will be
specialized for the FPMmethod.

In Section 3.2, Case Studies, the specialized formulations
for the plain strain waves in unbounded domain are repre-
sented in the form of (23) to (26).

3.2. Case Studies. The developed method explained in the
present study is capable of estimating thewave propagation in
unbounded domains that have nonhomogeneous properties.
To evaluate the ability of this method in modelling domains
with nonhomogeneous characteristics, discrete Green’s func-
tions were used to model some case studies of elastic shear
wave problems in this section.

One of the most popular problems occurs while using
numerical modelling of the wave propagation in unbounded
domains with more than one material scattering at the
boundary line between each pair of the materials [18]. There-
fore, to evaluate the capability of this method to avoid such
problems, the case study should have at least two different
materials. The case study which is going to be solved in this
part is a problem of elastic shear wave propagation in an
unbounded domain with two different materials. The condi-
tion of these two distinct materials is as shown in Figure 4.
According to the assumed shear modulus and the geometry
of the two materials, the central part of the material is stiffer
than the surrounding material. The stiffer central part was
assumed to be circular to have two axes of symmetry to
reduce the time consumption by modelling just a quarter of
the domain.

To show the ability of the method to model the domains
with twomaterials having different ratios of shearmodulus, it
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was decided to solve four different problems. Since the mate-
rials will have different ratios of shearmoduluswith respect to
each other, the shear modulus of material 1 (the central part)
was assumed to be constant at 100MPa and the shear modu-
lus of the surrounding part, which is the complier in compari-
sonwith the central part, was assumed to have different values
in each problem. The list of the shear modulus for surround-
ing part that was used in this method is presented in Table 1.

Moreover, to be able to compare the results of these four
different problems, the radius of stiffer central part (Figure 4)
was assumed to be constant with the value of 0.5m.

The problem is a simplified version ofmore general three-
dimensional cases represented by the following equation:

𝜎

𝑖𝑗,𝑗
+ 𝜌𝜔

2
𝑢

𝑖
= 0, 𝑢

1
= 𝑢 = 0, 𝑢

2
= V = 0, 𝑢

3
= 𝑤, (23)

which can also be shown as the following differential equa-
tion:

𝜕𝜎

31

𝜕𝑢

1

+

𝜕𝜎

32

𝜕𝑢

2

+ 𝜌𝜔

2
𝑢

3
= 0,

𝜎

31
= 𝐺

(𝑢
1
,𝑢
2
)

𝜕𝑢

3

𝜕𝑢

1

, 𝜎

32
= 𝐺

(𝑢
1
,𝑢
2
)

𝜕𝑢

3

𝜕𝑢

2

.

(24)

Shear modulus of the material is shown with the notation
of 𝐺
(𝑢
1
,𝑢
2
)
which is considered variable with respect to the

coordinate. Therefore, the following equation is obtained:

S =

[

[

[

[

𝜕

𝜕𝑢

1

𝜕

𝜕𝑢

2

]

]

]

]

, D
(𝑢
1
,𝑢
2
)
= 𝐺

(𝑢
1
,𝑢
2
)
[

1 0

0 1

] . (25)

With such a definition of the problem, the essential boundary
conditions are those in which 𝑤 is prescribed and the
Neumann boundary conditions are those in which Gn𝑇S𝑤,
with n, a unit normal to the boundary, is prescribed. For eval-
uation of discrete Green’s functions, the Neumann boundary
conditions are considered as

𝐺

(𝑥,𝑦)

𝜕𝑤

𝜕𝑢

2















𝑢
2
=0,𝑢
1
̸=0

= 0, 𝐺

(𝑥,𝑦)

𝜕𝑤

𝜕𝑢

1















𝑢
1
=0,𝑢
2
̸=0

= 0. (26)

The harmonic motivation term is applied in 𝑢

3
direction and

the motivation at 𝑢
1
= 0 and 𝑢

2
= 0. In this example, it

is considered that the geometry of material 1 and material 2
is as shown in Figure 4. As previously explained, the shear
modulus of the domain is changing based on the material;
hence, there are two different shear moduli in the present
example. Also the domain density is assumed to be constant
in the whole domain. The frequency is selected as 𝜔 = 1.
The numerical solution is performed over an area containing
30 × 30 points. The number of integration points is selected
to be 30 for integration on 𝑟 and 30 for integration on 𝜃. The
convergence studies for this method are done and presented
in [9]. As a summary of this convergence study, it could
be said that the minimum number of points selected for
integration on 𝑟 and for integration on 𝜃 to have acceptable
convergence is equal to the number of points along 𝑥 and 𝑦.

Table 1: Shear modulus of surrounding part and the ratio of the
shear modulus of two different parts.

Cases Shear modulus of
complier part (MPa)

Shear modulus of complier material
Shear modulus of stiffer material

Case 1 1 0.01
Case 2 10 0.10
Case 3 20 0.20
Case 4 50 0.50

Therefore, since the network of points along each axis of 𝑥
and 𝑦 is 30 for the example given in this study, the number of
points for integration on 𝑟 and 30 for integration on 𝜃 decided
to be 30.

Figures 5 and 6 represent the results of different problems
which were solved with the presented method in this resear-
ch. In Figure 5, the real part of the response of the domain
against a sinusoidal Dirac-Delta motivation at the coordinate
center is represented. As it can be seen, there are four different
results in Figure 5 depicted which are related to the four
different problemsmentioned in Table 1.The imaginary parts
of all results are presented in Figure 6 in the same order. For
better understanding, all of the results are presented in two
forms of 3D-graph and contour.The real and imaginary parts
of the solution are plotted over an area of 30 × 30 points.

As it is clear, the results shown in the real part of the
answers, Figure 5, are the amplitude of the domain response
on each point to the point sinusoidalmotivation on the center
point of the stiffer part. Also the imaginary part of the results
shows the value of phase difference between stimulation
point’s wave and the wave value on each point of the domain.

According to Figures 5 and 6, there are no scattering
effects on the boundary points of the stiffer central part and
this shows the ability of themethod tomodel the domainwith
more than one material.

Moreover, the results of this method have the same
change rate due to the change of shearmodulus of the domain
material. It means the more the value of shear modulus of the
domain material, the more the wave length resulting in the
domain caused by the same motivation.

Also the satisfaction of both decay and radiation condi-
tions clearly can be seen in Figures 5 and 6, because in none
of the graphs the reflection from boundary solution parts and
nonsense amplitude change is seen.

3.3. Comparison of ProposedMethod with Generalized Haskell
Matrix Method. The numerical simulation of elastic wave
propagation in nonhomogeneous media based on general-
ized Haskell matrix method by Jiangfeng and Youming [19]
is selected and compared with the method presented in this
study. The selected method is able to model the problems
which were supposed to be solved with themethod presented
in this study. By comparing the results obtained from both
methods, the efficiency of the present method will be anal-
ysed and discussed.

In order to have a better view of the comparison, the
section graphs of wave, instead of whole three-dimensional
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Figure 5: Real part of a 30 × 30 points domain response to the sinusoidal Dirac-Delta motivation in the form of 3D-graph and contour with
a circular stiffer part with the shear modulus of 100MPa and radius of 0.5m (the horizontal axis shows the distance from motivation point).
(a) 𝐺2 = 1 (MPa), (b) 𝐺2 = 10 (MPa), (c) 𝐺2 = 20 (MPa), and (d) 𝐺2 = 50 (MPa).
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Figure 6: Imaginary part of a 30× 30 points domain response to the sinusoidal Dirac-Delta motivation in the form of 3D-graph and contour
with a circular stiffer part with the shear modulus of 100MPa and radius of 0.5m (the horizontal axis shows the distance from motivation
point). (a) 𝐺2 = 1 (MPa), (b) 𝐺2 = 10 (MPa), (c) 𝐺2 = 20 (MPa), and (d) 𝐺2 = 50 (MPa).
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Figure 7: Real part of a domain response to the sinusoidal Dirac-
Delta Dirichlet motivation in the form of point graph for the first
problem.

graphs of results, are given in Figures 7 to 9. Therefore, a
straight section through the stimulation point in the domain
is shown. Since the problems are all symmetric, a straight
section through center point, which represents the whole
domain response, is selected.

In Figures 7 to 9, the comparison between results of gen-
eralized Haskell matrix method [19] and the method which is
presented in this paper is shown.

According to Figures 7, 8, and 9, it can be clearly seen that
the method which is presented in this study gives smoother
curves than the ones generated by generalized Haskell matrix
method despite the fact that wave value does not change sud-
denly in one material.

4. Conclusions

In this study, an improved version of the method previously
presented byMoazam et al. [9] is proven to have the capability
of modelling the wave propagation in an unbounded, nonho-
mogeneous domain. The ability of the method was checked
with using more than one material with different properties.
According to the results obtained and the comparison of the
findings, the following are the conclusions.

(i) Since there is no scattering in the results, it can be said
that the method developed in this study can clearly
model amultiphase domain as well as a homogeneous
domain.

(ii) Due to the results depicted in Figures 5 and 6 which
were obtained for different materials with different
shear modulus, the method is capable of showing the
change of wave length occurring with the change of
shear modulus of the domain.

(iii) The results obtained in Figures 5 to 6 indicate that
the method is able to model the unbounded domain
without any effect of reflecting waves from outgoing
boundaries.
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Figure 8: Real part of a domain response to the sinusoidal Dirac-
Delta Dirichlet motivation in the form of point graph for the second
problem.
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Figure 9: Real part of a domain response to the sinusoidal Dirac-
Delta Dirichlet motivation in the form of point graph for the third
problem.

(iv) According to the results obtained, the more the dis-
tance from the stimulation point, the less the wave
displacement value indicating that the developed
method has capability of showing decay in the wave
propagation modelling.

(v) According to the results obtained in the case study, the
method is able to model the multiphase domain with
trace of error in the phase boundary. Also the results
indicate that decay and radiation conditions are being
met.

(vi) When present method is compared with the gen-
eralized Haskell matrix method, the results showed
approximately the same wave lengths for different
problems. However, the curves obtained by using the
method presented in this study are more smooth and
closer to the real behaviour than those obtained from
the generalized Haskell matrix method.
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