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We construct a rotating thin-shell wormhole using a Myers-Perry black hole in five dimensions,
using the Darmois-Israel junction conditions. The stability of the wormhole is analyzed under
perturbations. We find that exotic matter is required at the throat of the wormhole to keep it
stable. Our analysis shows that stability of the rotating thin-shell wormhole is possible if suitable
parameter values are chosen.
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I. INTRODUCTION

One of the most challenging problem in Einstein’s general relativity finding stable wormholes with a minimum
amount of exotic matter or with completely normal matter [1–3]. In this regard we note that rotating wormholes
present more alternatives because of their extra degrees of freedom. Calculations in rotating spacetimes are clearly
difficult to apply to stability analyses of wormholes. Moreover, there are only a few works on the rotating thin-shell
wormholes (RTSWs) built in 2+1 dimensions and in 3+1 dimensions with some approximations [4, 5]. On the other
hand, there are many papers demonstrating the construction of thin-shell wormholes using different modified theories
or extra/lower dimensions [6–25]. Recently, a rotating thin-shell wormhole was constructed and its thermodynamics
worked in 2+1 dimensions, where the problem is more malleable than in four or more dimensions [4].

This paper constructs a rotating thin-shell wormhole in five dimensions by employing Visser’s cut-and-paste tech-
nique. For the first time in the literature, we address the stability of a five-dimensional (5-d) rotating thin-shell
wormhole. In our analysis, we use the five-dimensional rotating Myers-Perry black hole solution with all angular
momenta equal, which has been used previously to work on collapsing thin-shells with rotation [26].

II. CONSTRUCTING THE ROTATING THIN-SHELL WORMHOLE

The 5-d rotating Myers-Perry (5DRMP) black hole solution, which is the generalization of the Kerr solution to
higher dimensions, is given by the following space-time metric [27, 28]:

ds2 = −F (r)2dt2 +G(r)2dr2 + r2ĝabdx
adxb + H(r)2 [dψ +Badx

a −K(r)dt]
2
, (1)

in which

G(r)2 =

(
1 +

r2

`2
− 2MΞ

r2
+

2Ma2

r4

)−1
, (2)

H(r)2 = r2
(

1 +
2Ma2

r4

)
, K(r) =

2Ma

r2H(r)2
, (3)

F (r) =
r

G(r)H(r)
, Ξ = 1− a2

`2
, (4)

where B = Badx
a and

ĝabdx
adxb =

1

4

(
dθ2 + sin2 θ dφ2

)
, B =

1

2
cos θ dφ . (5)
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Note that taking the limit of the Anti-de-Sitter (AdS) length `→∞ , the asymptotically flat case can be recovered.
The event horizon is located at the largest real root of G−2. One writes the mass M and angular momentum J of
the spacetime as [28]

M =
πM

4

(
3 +

a2

`2

)
, J = πMa . (6)

For convenience we move to a comoving frame to eliminate cross terms in the induced metrics by introducing [29]

dψ −→ dψ′ +K±(R(t))dt . (7)

We choose a radius R(t), which is the throat of the wormhole, and take two copies of this manifold M̃± for the
interior and exterior regions with r ≥ R to paste them at an identical hypersurface Σ = {xµ : t = T (τ), r = R(τ)},
which is parameterized by coordinates yi = {τ, ψ, θ, φ} on the 4-d surface.

The line element in the interior and the exterior sides become

ds2± = −F±(r)2dt2 +G±(r)2dr2 + r2dΩ +H±(r)2{dψ′ +Badx
a + [K±(R(t))−K±(r)]dt}2. (8)

For simplicity in the comoving frame, we drop the prime on ψ′. The geodesically complete manifold is satisfied as
M̃ = M̃+ U M̃−. We use the Darmois-Israel formalism to construct the rotating thin-shell wormhole [31]. The throat
of this wormhole is located at the hypersurface of Σ and to satisfy the Israel junction conditions, we first define

F+(R) = F−(R) = F (R) (9)

and

− F±(R)2
(
Ṫ
)2

+G±(R)2
(
Ṙ
)2

= −1, (10)

where dot stands for d/dτ . The extrinsic curvature is calculated from

kµν = (gµσ − nµnσ)∇σnν , (11)

where the normal vector is

nµ = F (r)G(r)
(
−Ṙ, Ṫ , 0, 0, 0

)
. (12)

The second junction condition implies [
Kj
i

]
− [K] δji = −8πGSji (13)

in which a bracket [ ] is defined as

[A] = A(o) −A(i) (14)

and the extrinsic curvature tensor is

Kij = −nγ
(

∂2xγ

∂xi∂xj
+ Γγαβ

∂xα

∂xi
∂xβ

∂xj

)
. (15)

Next, Einstein’s equations on the shell second junction condition are used to obtain the surface energy-momentum
tensor of throat chosen as a perfect fluid, as in [32, 33]:

Sij = (ρ+ P )uiuj + P gij + 2ϕu(iξj) + ∆P R2ĝij , (16)

where u = ∂τ is the fluid four-velocity and gij stands for the induced metric on Σ. Note that ξ = H(R)−1∂ψ,
ĝijdy

idyj = ĝabdx
adxb [30], and a perfect fluid is obtained for ∆P = ϕ = 0 . Using the Israel junction conditions [31],

the Einstein’s equations for the wormhole produce

ρ = −β(R2H)′

4πR3
, ϕ = −J (RH)′

2π2R4H
, (17)

P =
H

4πR3

[
R2β

]′
, ∆P =

β

4π

[
H

R

]′
, (18)
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where primes stand for d/dR and

β ≡ F (R)

√
1 +G(R)2Ṙ2 . (19)

Without rotation or in the case of a corotating frame, the momentum ϕ and the anisotropic pressure term ∆P are
equal to zero. Consequently, the static energy and pressure densities at the throat of wormhole R = R0 are given by

ρ0 = −F (R2
0H)′

4πR3
0

, ϕ0 = −J (R0H)′

2π2R4
0H

, (20)

P0 =
H

4πR3
0

[
R2

0F
]′
, ∆P0 =

F

4π

[
H

R0

]′
. (21)

To check the stability of the wormhole, we use the linear equation of state (EoS):

P = ωρ. (22)

Using the Eqns. (17), (18), and (22), we obtain the β as follows:

β = − m
1+3ω/2
0

R2(1+ω)Hω
, (23)

where m0 is a positive constant with dimensions of mass. Furthermore, the dynamics of the throat are described by
the thin-shell equation of motion, which can be obtained using Eqns. (19) and (23) as follows:

Ṙ2 + Veff = 0, (24)

where the effective potential (for simplicity we choose l = M = m0 = 1) in a static configuration at the throat of the
wormhole is calculated as

Veff =
−F 2R0

4 +R0
−4ωH−2ω

F 2G2R0
4 . (25)

The stability of the wormhole solution depends upon the conditions of V ′′eff (R0) > 0 and V ′eff (R0) = Veff (R0) = 0
as

Veff ∼
1

2
V ′′eff (R0) (R−R0)

2
. (26)

Let us then introduce x = R−R0 and write the equation of motion again:

ẋ2 +
1

2
V ′′eff (R0)x2 = 0 (27)

which after a derivative with respect to time reduces to

ẍ+
1

2
V ′′eff (R0)x = 0. (28)

Then, using Eqn.(16), we show the conditions for a positive stability value. Our main aim is to discover the behavior
of V ′′eff (R0) as

V ′′eff =
1

R0
10 [−40 (R0

√
R0

4 + 2 a2

R0
4 )−2ωR0

−4ωa2 + 2R0
10 +

(
12 a2 − 12

)
R0

6 + 40 a2R0
4]. (29)

Note that a = ω = 0 corresponds to a non-rotating case. It is easy to see that a has a crucial role in this stability
analysis; the stability regions are shown in the Figs.(1), (2), (3) and (4).
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FIG. 1: Stability of wormhole supported by linear gas in terms of ω and R0 for a = 0.1.

III. DISCUSSION

In this paper, we have studied a thin-shell traversable wormhole with rotation in five dimensions constructed
using a Myers-Perry black hole with cosmological constants using a cut-and-paste procedure. The standard stability
approach has been applied by considering a linear gas model at the wormhole throat. Then, the solutions were worked
numerically by solving the dynamical equations and plotted to show the results corresponding to stability analysis.
A key feature of the current analysis is the inclusion of rotation in the form of non-zero values of angular momentum.
Another key aspect of the current analysis is the focus on different values of parameter (a), which plays a crucial
role in making the wormhole more stable in five dimensions. Hence, we observe that the stability of the wormhole is
fundamentally linked to the behavior of the constant (a) as shown in Figs. (1) through (4). The amount of exotic
matter required to support the wormhole is always a crucial issue; unfortunately, we are not able to completely
eliminate exotic matter during the constructing of the stable rotating thin-shell wormhole.
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FIG. 3: Stability of wormhole supported by linear gas in terms of ω and R0 for a = 1.
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FIG. 4: Stability of wormhole supported by linear gas in terms of ω and R0 for a = 10.
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