
CREATING THE FUTURE

2nd FAE International Symposium

Gemikonağı, TRNC

➤ 06 - 07 - 08 November 2002

- Architecture
- Civil Engineering
- Computer Sc. & Engineering
- Electrical & Electronics Engineering

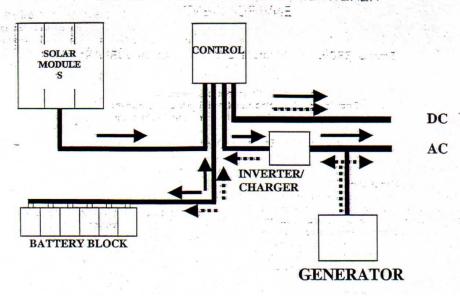
THE CHIPPI

European University of Lefke

Faculty of Architecture and Engineering 2

441	Özgür Cemal Özerdem	Solution Proposals to the Electrical Energy Problem In TRNC
	- Kadri Bürüncük	· ·
445	S. Arumugam	Automatic Gate Closure cum Collision Avoidance System
	S. Shekar Agarwal	Railways:
200	Avinash S Harjiani	
451	Sedat:Sünter	Pspice Modeling And Simulation Of The Spim Fed By 3-To-2
	Şermir Altaş	Phase Matrix Converter
457	Servet Tuncer	Harmonic Optimization Method For Cascade Multilevel
	Yetkin Tatar	Inverter EMCO LIEW MEAN
461	Hanifi Güldemir	Design of An AC Variable Drive Test Ring
	Z. Hakan Akpolat	TO THE RECTOR
465	Ertan Murat	Design of a Single-Phase Direct AC-AC Converter with the number of its now emobilew of anystein issue and several tests and several tests.
1 4 5	A. Fetih Ayhan	Harmonic Elimination souther donesen, entroit of perturbation
471	Sedat Sünter Frzat G. Erdil	Renewable Energy Resources And Environment

Mustafa likan
Ahmet Gürkan


TO ACT STATES

1

LEMANTE

7074 PH.

Start Fig.

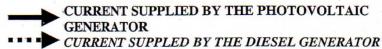


Fig. 1 Block Diagram of a typical PV System

The Impact of Thermal Stations on the Environment

Seattle Brook day

During the 20th century, greatest developments in the history were recorded and population of the world increased dramatically. As a result, the use of fossil-based energy resources increased dramatically. The heavy use of these energy resources caused a dramatic impact on the environment where much of the forest was destroyed and environmental disasters ware caused. The amount of CO₂ and other toxic gases accumulated through the years started to cause an effect known as global warming. Because of this global

and become a so that a series of which are the series of which are the series of the s

warming, big ice masses in the North and South poles are melting down and as a result the sea level is increasing every year. This forms a potential danger to coast cities such as New York, London and Sydney. These cities are under more danger year after year. Electrical energy production is the major energy production in the planet and thermal power stations have side effects, which can be listed as the following. These energies also produce and emit very toxic materials such as SOX and NOX gases

of A Charles

the first of the second of the

" All right The sections in the section of

The article of the section of the se

15:27 E. L. L. F. F.

estimates between the

Francisco Principality and the second second

RENEWABLE ENERGY RESOURCES and ENVIRONMENT

Erzat G. ERDILT

Mustafa ILKAN 2

Ahmet GÜRKAN²

Eastern Mediterraneam University Electrical and Electronics Engineering Department School of Computing and Information Technology

Keywords: Solar Energy, PV Systems, Environment ****

INTERTER

Introduction

CHARGES The use of renewable energy sources is becoming more important every year. Because of the environmental. problems encountered in the 20th century, scientist started to look for alternative forms of energy sources, which decrease the level of pollution caused by the traditional energy resources such as petrol. Main renewable energy resources can be classified as follows:

- Hydro-electric Power Stations
- Wind Turbines
- Photovoltaic Systems
- Hydrogen Fuel Cells
- Biomass
- Geo-thermal Power Stations

All of the renewable energy resources listed above are environmentally friendly and there are no pollutants emitted to the environment. Fuel, coal and similar fossil based energy resources are limited resources and the level of pollution caused by them in the 20th century is catasphrofic. Therefore it is very important to start considering other energy resources which will replace the traditional energy resources. When considering alternative energy resources, most important point is the protection of the environment.

Considering North Cyprus, some of the above renewable energy resources are not applicable. Solar energy applications are more advantages than other sources since Cyprus has a very good solar radiation. North Cyprus has a relatively clean environment due to the absence of heavy industries and this forms a good tourism potential to tourists from polluted countries where a clean environment is always desired.

In order to keep our relatively clean environment, it is necessary to replace the power stations with solar energy systems such as photovoltaic systems. It is also possible to utilize wind energy potential at a lesser extend:

Examples of photovoltaic systems in the world:

- Germany: There are about 30,000 photovoltaic systems
- Netherlands: There are about 3,000 houses with PV systems and this number is expected to reach 100,000 by 2010, and 500,000 by 2020
- Greece: A photovoltaic power station will be completed in 2005 where electrical energy needs of 100,000 people will be supplied.
- Japan: There are a total of 400 MW Photovoltaic systems consisting of 70,000 houses. 4600MW system expected to be reached by 2010.
- Australia: 15,000 capacities Olympic village for the 2000 Sydney Olympics was supplied by PV systems. PV systems were also extensively used in the lighting of stadiums and other sport grounds. It should be noted that the most important reason for deciding Sydney to host the Olympics was the extensive use of renewable energy sources at the Olympic site. today ourse

How PV systems work

Photovoltaic is the conversion of sunlight into electrical energy with the use of solar cells. Photovoltaic (PV) modules can be produced from different materials where single-crystal silicon is used the most. PV cells are usually square or circle shaped thin water enclosed in protective materials, when the sunlight hit the surface of the PV modules, electons in the silicon atoms will be made free to move. This effect is known as the PV effect. With the use of other PV system elements a DC current is produced by the PV systems.

Sale of

100

* 435

CO₂ NO_x SO_x

- Global warming
- Acid rains
- Damage in the Ozone layers
- Damages on the human health
- Damages on vegetation

15T.5

olumbia, U.S. Terrioner

COT

3,722

761

- Almost half of half of the Ozone layer loss in the stratosphere is caused by direct activities involving NO_X gases. The dangers in the Ozone layer caused a greater amount of UV lights to enter through the atmosphere. This is causing the number of skin and related cancer diseases to increase. The damage in the Ozone layer is also affecting the spread of solar radiation around the world, which means dramatic changes in the climates.
- SOX and NOX gases affect the respiration
 on the plants leaves and reduce the
 photosynthesis effect. If plants are
 subjected to these gases for a long time,
 their growing up processes will be affected
 and the effect known as 'Acid Rains' will
 happen.
- causes the wash away of nutrients in the soil into the underground waters and this in turn causes: irregularities in the growing of plants. These irregularities affect the parts off the plants in various ways such as lost of leaves, which decreases their protection against fogs and insects.
- 4. The increased level of acids in the lakes and rivers cause a great damage to the water life. In the last 20 years, much of the water life in Norway and Sweden deceased because of acid rains
- Acid compounds form because of the burning petroleum product that cause damages on the historical building and monuments

Table 1 World Carbon Dioxide Emissions by Region, Reference Case, 1990-2020 (Million Metric Tons Carbon Equivalent)

REGION/COUNTRY	1990	1998:	1999	2005	2010.	2015	2020	Avg. Annual Chng, 1999-2020
Industrialized Countries North America United States a Canada Mexico Western Europe United Kingdom France Germany Italy Netherlands Other Western Europe Industrialized Asia Japan Australasia Total Industrialized EE/FSU	1,556 1,345 126 84 930 164 102 271 112 58 223 357 269 88 2,842	1,742: 1,495 146 101 947 154 110 237 122 66 260 412 300 112 3,101	1,761 1,511 1,511 150 101 940 151 109 230 121 64 264 422 307 115 3,122	1,972 1,690 158 124 1,005 168 116 246 131 66 277 447 324 123 3,425	2,119- 1,809 165 145 1,040 177 120 252 137 67 287 461 330 130 3,619	2,271 1,928 173 170 1,076 184 126 258 141 69 297 479 342 137 3,825	2,423 2,041 180 203 1,123 192 135 267 146 71 313 497 313 497 3144 4,043	1.5 1.4 0.9 3.4 0.9 1.1 1.0 0.7 0.9 0.4 0.8 0.8
Former Soviet Union Eastern Europe Total EE/FSU Developing Countries Developing Asia:	1,036 301 1,337	599 217 816 1,435	607 203 810	665 221 886	712 227 940	795 233 1,028	857 237 1,094	1.7 0.8 1.4
China India	617 153	765 231	1, 361 669 242	1,751: 889 300	2,137 1,131 351	2,563 1,398 411	3,013 1,683 475	3.9 4.5 3.3

	Strong Laborit	ALTONO STANIS	et to del more			and the same	· AND COLUMN	Service Strakehol
	61	101	107	128	144	159	175	2:4
South Korea	223	:338	343	434	511	595	679	3.3
Other Asia	231	325	330	378	451	531	627	3.1
Middle East	35	50	50	57	66	75	85	2.6
Turkey	196 .	275	280	320	386	456	542	3.2
Other Middle East	179	216	218	262	294	334	373	2.6
Africa Central and South America	178	246	249	312	394	492	611	4.4
	62	87	88	108	139	171	212	4.3
Brazil Other Central/South America	116	159	162	204	255	321	399	4.4
	1,641	2.222	2,158	2,703	3:276	3,920	4,624	3.7
Total Developing Total World	5,821	6,139	6.091	7,015	7,835	8,773	9,762	2.3
	0,02	0,.00		.,	.,			
Annex I Industrialized	2,758	3.001	3.022	3,301	3,475	3,656	3,841	1.1
EE/FSU	1,132	704	700	761	802	:876	930	1.4
Total Annex I	3,890	3,704	3,722	4,062	4,276	4,531	4,771	1.2

a Includes the 50 States and the District of Columbia. U.S. Territories are included in Australasia.

en a luis de les estats de la companya de la compa

.e. e. 9536000

*.: *.: 1

1.

The second definition of the lab is of the second definition of the sec

ir. er **s**inicas — filosofis Web. II. i.e. ibil. i.e. — reco primbil gafile ir. e. e. e. no e. iii.

Ceres Ceres Onno

rabel.

Notes: EE/FSU = Eastern Europe/Former Soviett Union. The U.S. numbers include carbon dioxide emissions attributable to renewable energy sources:

Sources: History: Energy Information Administration (EIA), International Energy Annual 1999; DOE/EIA 0219(99) (Washington; DC, January 2001): Projections: EIA, Annual Energy Outlook 2001; DOE/EIA-0383(2001) (Washington; DC, December 2000).

Economic feasibility of Renewable energy Resources

The importance of renewable energy resources in the supply of world energy demand is increasing every year. It is expected that renewable energy resources will supply 50% of the world energy demand. The decrease in prices of PV and wind energy systems will play a very important role in this. Fig. 2 shows the electricity production prices of renewable energy resources through the years.

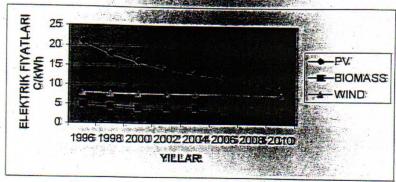


Fig. 2 Decreasing prices of main renewable energy resources.

Renewable Energy Resources and Environment

Renewable energy resources produce clean energy where no pollutants are emitted to the environment. This makes them the most suitable energy resources for a clean environment. Although there are no heavy industries in North Cyprus, the effects of small—scale industries on the environment should be considered.

The biggest industrial site in North Cyprus is the technical power station and its negative impact on the environment should be immediately considered now and solutions should be found to decrease the level of pollution in the area. In the near future the use of renewable energy systems should be encouraged.