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ABSTRACT 

In this work, a computer program is written for solving the turbulent flow equations 

on unstructured grids using a Large Eddy Simulation (LES) model in C++ language. 

To test the code, two cases are considered: laminar, periodic flow past a circular 

cylinder at Reynolds number, ReD = 100 which is based on the diameter of the 

cylinder and turbulent flow at ReD = 3900. The turbulence or sub-grid scale (SGS) 

model is chosen as Smagorinsky model due to its simplicity compared with dynamic 

models. It was found that, for the laminar case, drag, lift, and back-pressure 

coefficients, pressure and velocities matched quite well with the reference values 

obtained from literature. For the turbulent case of ReD = 3900, there is some 

discrepancy between the results of the present investigation and the results obtained 

from other resources which is due to rather coarse grid distribution dictated by the 

insufficient computing resources. 

 

Keywords: Computational fluid dynamics, circular cylinder, large eddy simulation, 

unstructured mesh, turbulence 
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ÖZ 

Piyasada Hesaplamalı Akışkanlar Dinamiği (HAD) problemlerini çözmek için bazı 

ticari yazılımlar olsa da, ana denklemleri ve onların ayrışımlarını, türbülans 

modellemesini, programlamayı ve diğer HAD ile ilgili meseleleri derinlemesine 

anlamak için bireysel olarak yazımış bir yazılıma ihtiyaç vardur. Bu tezde, bu 

amaçlanmıştır ve ek olarak, yazılım, şekilsiz ızgaraları da çözecek şekilde, kapsamlı 

bir biçimde yazılmaya çalışılmıştır. Kodu test etmek için, iki durum düşünülmüştür; 

Reynolds sayısı, ReD = 100’ de laminar, periodik dairesel silindir üzerinden geçen 

akış, ve aynı problem ama bu kez ReD = 3900’de  türbülans bir akış ile ve türbülans 

modeli olarak Smagorinsky Büyük Eddy Simulasyonu (BES) kullanılarak. 

Gösterilmiştir ki, laminar durum referans veri ile karşılaştırınca, engel, kaldırma ve 

basınç katsayıları, anlık basınç alanı kontür çizimi, ve ortalama akışa bakılarak, 

hiçbir sorun olmadan çalışmıştır. Diğer yandan, ReD = 3900 durumu yine aynı 

parametlere bakılarak ama bu defa ek olarak, sürtünme katsayısı, türbülans 

statistikleri ve daha birçok parametre ile test edilmiştir. ReD = 100 durumunda 

olduğu gibi, bu durumda da sonuçların çoğu referans değerlerle uyuşuyor. Bazı 

değerlerle ise referans değerler arasında ufak farklılıklar vardır. Bunun nedeni ise 

göreceli olarak daha düşük çözünürlükte ızgara kullanmaktır.   

 

Anahtar kelimeler: Hesaplamalı akışkanlar dinamiği, dairesel silindir, büyük eddy 

simulasyonu, düzensiz ızgara, türbülans 
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Chapter 1 

INTRODUCTION 

1.1. Introduction 

Computational fluid dynamics or CFD is the analysis of systems involving fluid 

flow, heat transfer and associated phenomena such as chemical reactions by means of 

computer-based simulation [1]. The reason to prefer CFD over experimental fluid 

dynamics (EFD) is that former is easier to prepare and use. For every simulation, a 

different experimental setup is required whereas this is not the case for a computer. 

Moreover, there is no concern of the quality, maintenance and the price of 

experimental instruments. On the other hand, for CFD, only a workstation is 

required. The initial cost of a workstation may be high if many nodes are employed 

to work in parallel however; still it is advantageous compared to EFD considering the 

long usage of workstation. To mention a drawback of CFD, for high Reynolds 

number flows CFD is impractical since very fine spatial and temporal resolutions are 

required so, increasing the simulation time drastically. 

 

There are vast amount of fields that CFD could be applied such as multiphase flow, 

combustion modeling, turbulence modeling and so on. Turbulence modeling is one 

of the important areas since it occurs in most of the real-world flows such as 

atmospheric flows and in engineering/industrial flows. Contrary to laminar flow, 

turbulence is characterized with random motions with small time and length scales 

depending on Reynolds number. Intensity of turbulence determines the model to be 



2 
 

used. For low Reynolds numbers all flow structures could be solved by Direct 

Numerical Simulation (DNS) which is a no-model method. However, for higher 

Reynolds number flows which are point of interest, turbulence modeling must be 

implemented. In turbulence models for Reynolds Averaged Navier-Stokes (RANS) 

equations, all length scales are modeled and this allows mesh to be coarser compared 

with DNS, but on the other hand, lacks accuracy. An intermediate solution is LES in 

which only small-scale motions are modeled whereas large-scale motions (large 

eddies) are solved exactly. Since small eddies exhibit more universal behavior than 

large eddies which are geometry dependent, accuracy of results are better than 

models for RANS equations. 

 

Since turbulence occurs in most of the practical flows, one of its applications is flow 

over a cylinder in any shape but rectangular and circular are the most common 

geometries. Rectangular cylinder is somewhat less complex compared with circular 

one due to its sharp edges. On the other hand, circular cylinder is rich in flow 

structures such as boundary layers, shear layers, separation and reattachment, vertical 

structures, etc. So, circular cylinder provides a better opportunity for testing of the 

code. Flow over a cylinder has many practical applications such as submarines, off 

shore structures, bridge piers, pipelines, etc. [2]. In the literature, there are several 

experimental [3, 4, 5] and numerical results [6, 7, 8, 9, 2, 10, 11] for the study of 

flow around a cylinder over a range of Reynolds number, both laminar and turbulent 

flows. For turbulent flows, ReD = 3900 (D is the diameter of the cylinder) case is 

probably the more documented one in the literature due to its practical resemblances 

[9]. So, it would be logical to analyze ReD = 3900 to make comparisons with 

sufficient amount of data. 
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On the other hand, to show that the code is working correctly, a ReD = 100 is also 

tested. This case is helpful since the flow is laminar and it takes little time to obtain 

the results whereas ReD = 3900 case takes a lot of time. 

 

The computer code, which is written in C++, is able solve unstructured meshes 

(although in this work a structured mesh is utilized) and written using finite volume 

(FV) method. Making the code generic so that it would be capable of working on 

unstructured grids is important in order to understand CFD in many aspects including 

programming. Moreover, working with unstructured grids is advantageous because 

in this case complex and limited curvilinear method is avoided. 

 

Thus, the aim of this thesis is two-fold; firstly, it aims to validate the self-made 

computer code and to test its ability to capture the complex structures in the flow. 

Secondly, to leave a reference with its discrepancies to be improved for an MS 

student who is interested in this subject. 

 

1.2. Organization of Thesis 

Chapter 2 describes some important physical phenomena such as energy cascade and 

Kolmogorov’s hypotheses and characteristic regions of flow field for a flow over 

circular cylinder. 

 

In chapter 3, the followed methodology explained. First of all, filtering operation is 

discussed in order to apply to governing equations. Then, along with SGS model 

governing equations for LES are presented and subsequently, the discretization of 
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those governing equations is shown. Having discretized transport equation, 

numerical parameters, physical domain and the numerical mesh and accordingly the 

treatment of boundary conditions are presented. 

 

In chapter 4 and 5, results are presented and discussed and the conclusions are 

drawn, respectively. 
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Chapter 2 

LITERATURE REVIEW 

Literature review shows that self-made solvers have been used in many seminal 

papers ( [6, 7, 8, 9, 10, 11, 12]). Self-made solvers mean that the codes are not 

commercial since they are open and/or academic solvers developed by the authors or 

department for academic purposes. As is evident from the mentioned references in 

which self-made codes have been used, it is beneficial not to use commercial codes. 

This is because using a commercial code prevents possible modifications on the code 

and it also may work slower than a self-made code. Specifically, for a thesis, a self-

made code is required because application of the theory requires a hands-on practice 

to allow having a better insight into the theory.  

 

Pertaining the validation cases, it was observed that the case of flow over a circular 

cylinder at ReD = 100 has been studied by some authors such as by [2] and [13]. In 

these sources, there is a strong agreement on the results obtained. Some of these 

results are mean drag coefficient, mean back-pressure coefficient, and Strouhal 

number. Due to the strong agreement between the studies, it could be said that this 

case has been solved completely. Being a trustful validation case, this case was also 

used in the present work. 

 

For another validation case where ReD = 3900, there have been a vast amount of 

studies ( [6, 7, 8, 9, 10, 11, 12, 14, 15]) with LES. This choice of Reynolds number 
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seems to be optimal as a validation case because for higher Reynolds number flows, 

simulation time increases dramatically due to higher spatial and temporal resolutions. 

Another case in which ReD = 1000, could also be studied; however, the number of 

studies on ReD = 3900 is higher than on ReD = 1000. Hence, ReD = 3900 case is more 

suitable to have abundant number of data to compare the present results with. As a 

turbulence model, most of the time LES was preferred in the literature; but LES, 

DES, and RANS were used by [16] and also a comparison of RANS and LES was 

made by [17]. 

 

Parnaudeau et al. ( [9]) studied flow over a circular cylinder at ReD = 3900 and 

analyzed the flow both numerically with LES and experimentally with hot-wire 

anemometry and particle image velocimetry (PIV). High-order schemes and also an 

immersed boundary method were used for the numerical simulation. They 

investigated the turbulence statistics and the power spectra in the near wake (up to 10 

diameters).  

 

Kravchenko and Moin ( [10]), also studied the flow over circular cylinder at ReD = 

3900 using LES. They used a high-order accurate numerical method based on B-

splines. Additionally, they investigated the impact of the grid resolution on the shear 

layer transition. Near the cylinder, their findings matched well with experimental 

findings of [5]. Since the findings of [5] are limited with the near wake region, for 

the far wake region (6D to 10D), the results were compared with the findings of [4]. 

One of most important findings of their work is about the effect of grid resolution 

and domain length in spanwise direction on the solution of the problem. They 

concluded that insufficient grid resolution can result in early transition in the shear 
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layers which separates from the cylinder. This causes inaccuracy in the solution of 

the problem.  

 

Not only the case of ReD = 3900 but also ReD = 140000 was studied by Fröhlich et 

al. [11] by using both structured and unstructured grids. For the structured grid, they 

used finite volume approach by using a specialized code for LES, while for the 

unstructured grid they used finite volume approach. Then they compared the results 

of the structured and the unstructured grid cases with each other and also with the 

results obtained in the literature. It is concluded that in the comparison of structured 

and unstructured grid cases, the cost of the simulation in terms of time passed were 

the same. However, for the unstructured grid case, the wake region was not resolved 

accurately. Also they resulted in that structured grids have the disadvantage of 

having unnecessary points in certain areas while for unstructured grids the 

knowledge on where fine resolution is required to be known in advance. 

 

Mahesh et al. ( [6]) carried out several simulations one of which was on ReD = 3900 

case with LES. They used an unstructured grid and clustered the nodes in the 

boundary layer and the wake.  

 

Franke and Frank ( [12]), studied a LES of ReD = 3900 case with cell-centered finite 

volume approach and compared the results with DNS results of Ma et al. ( [18]) and 

experimental results of Ong and Wallace ( [4]). Also, they analyzed the turbulence 

statistics. Their results were well matched with the DNS results of [18] and 

experimental results of [4] for the near wake region.   
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Flow over a circular cylinder at ReD = 3900 was also studied by Breuer ( [8]) by 

using LES. He used five different convective flux schemes and compared them with 

each other. It is concluded that central difference schemes of 2nd and 4th orders were 

well suited for LES however, upwind-biased schemes were not recommended. 

Moreover, he analyzed the influence of different grid resolutions and SGS model on 

the solution. Both Smagorinsky and dynamic models were used in that work. To 

observe the effect of SGS model better, simulations were al performed without a 

SGS-model.  

 

Beaudan and Moin ( [14]), performed a LES of ReD = 3900 case by using both 

Smagorinsky and dynamic SGS models. They used high-order accurate upwind-

biased methods and analyzed the turbulent wake behind a circular cylinder. 

Temporal resolution was of 2nd order and the formulation was fully implicit. 

 

In addition to the analysis of flow a single circular cylinder at ReD = 3900, Afgan et 

al. ( [7]), studied two side-by-side cylinders as well by using dynamic SGS model. 

Then based on length of the domain in spanwise direction, grid resolution near the 

wall, convection scheme, and the SGS model, a sensitivity analysis was carried out. 

They analyzed both mean and instantaneous flow quantities and also turbulence 

statistics. They found that the mean pressure coefficient, recirculation length, 

separation angle and the Strouhal number were well agreed with available DNS and 

experimental results. 

 

As can be seen, both the Smagorinsky and the dynamic models were used in the 

literature and it was found that dynamic model results in higher accuracy compared 
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to Smagorinsky model.  Also, most of the time, finite volume approach was preferred 

as in the present work. Both structured and unstructured grid topologies were tested 

although generally structured grids were the main choice. In the present work, the 

self-made code is developed to work on unstructured grids however; a structured grid 

was preferred to have a better control on the grid topology. To obtain accurate 

results, in all of the sources and this work as well, 2nd or higher-order spatial and 

temporal discretization was utilized. 
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Chapter 3 

PHYSICAL ASPECTS 

3.1. Energy Cascade and Kolmogorov’s Hypothesis 

In a turbulent flow, there are motions with a wide range of scales. According to 

Richardson [19] as cited in [20], in an energy cascade, kinetic energy is transferred 

from large scales of motion to smaller ones successively until the energy is dissipated 

by viscous forces. Kolmogorov made important hypotheses based on this energy 

cascade. According to Kolmogorov’s hypothesis [21] of local isotropy as cited in 

[20], the small-scale turbulent motions are statistically isotropic at sufficiently high 

Reynolds number. In page 184 of reference [20] it is continued as 

 

Just as the directional information of the large scales is lost as the energy 

passes down the cascade, Kolmogorov argued that all information about the 

geometry of the large eddies – determined by the mean flow field and 

boundary conditions – is also lost. As a consequence, the statistics of the 

small-scale motions are in a sense universal – similar in every high Reynolds 

number turbulent flow. 

 

Since small-scale motions are universal at high-Reynolds number flows, small-scales 

could be modeled whereas large-scales could be solved exactly, hence the acronym 

Large Eddy Simulation. 
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3.2. Regions of Flow Field 

For circular cylinder problem, domain can be divided into regions which are 

incoming flow; boundary layer, wake region, and shear layer (see Figure 1). 

 

 

Figure 1: Regions of flow (left), Shear layer (right) [22] 
 

Location of transition to turbulence depends on ReD (u∞D/ν) (see Table 1). 

Considering θ =0° as stagnation point where incoming flow hits (see Figure 1a), 

there is a positive (favorable) pressure gradient initially however, after a certain 

point, due to the presence of another stagnation point at θ =180°, adverse pressure 

gradient occurs causing flow adjacent to cylinder to rotate and eventually flow 

separates from cylinder. 

Table 1: State of flow according to Reynolds number 

Up to Re = 40, flow is steady and two symmetric, counter-rotating vortices arise 

behind the cylinder, in the recirculation zone, in the wake. After Re = 40, flow 

becomes sensitive to disturbances and eventually becomes unsteady and a well-

Reynolds number State of flow 
0 < Re < 180-200 Laminar 
180-200 < Re < 350-400 Tr. in wake 
350-400 < Re < 100,000-200,000 Tr. in shear layers or subcritical state 
100,000-200,000 < Re < unknown Tr. in boundary layers or critical state 
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known phenomenon, vortex shedding or Von Kármán street (see Figure 2), occurs in 

the wake. The vortex shedding mechanism initiates with faster growth of one of the 

pair of vortices and counter-rotation of vortices triggers that faster growing vortex to 

shed from the recirculation zone. Subsequently, another vortex sheds and this process 

repeats until transition to turbulence take place in the wake, at far downstream. As 

Re increases, transition region moves towards upstream. Further increase in Re 

causes transition to initiate in shear layers while boundary layer and flow separation 

is still laminar and this regime is termed as subcritical regime (350-400 < Re < 

100,000-200,000). It is called subcritical for boundary layer, meaning transition to 

turbulence has not initiated in boundary layers yet [23]. Subsequently, critical regime 

follows and then all flow around cylinder becomes turbulent. 

 

 
 

Figure 2: Von Kármán street [45] 
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Chapter 4 

METHODOLOGY 

4.1. Filtering 

An instantaneous velocity field is split as resolved (large eddy) and unresolved or 

sub-filter (small eddy) as in eq (4.1).  

 i i iv v v   (4.1) 

where, iv  is the resolved part while iv  is the unresolved part. Note that, resolved and 

unresolved parts are denoted with an over-bar and a prime, respectively. To obtain 

resolved flow field a filtering operation can be carried out as shown below [1]. 

       1 2 3, , , , d d dt G t x x x 
  

  

       x x x x  (4.2) 

where G is the filter function,  , t x is the filtered variable   is the unfiltered 

variable, and Δ is the filter cutoff width. 

 

After filtering operation, fluctuations of the velocity field will be ironed out. This 

could be understood by comparing LES and DNS as depicted in Figure 3. There are 

several filter functions such as Gaussian, spectral cutoff, and top-hat or box filter. 

The top-hat filter, which is shown in eq. (4.3), is commonly used for FV 

implementations of LES [1] and is also preferred in this thesis. This filtering 

operation is not carried out in time as is the case for RANS but in 3D space. Filter 

cutoff width Δ, determines what length scales would be filtered. It is convenient 
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to take it as cubic root of grid cell volume (see eq. (4.4)) but not smaller than 

that since scales smaller than grid cell volume cannot be solved anyway. Cutoff 

width affects governing equations through SGS viscosity which will be described 

later. 

  
31/ / 2

, ,
0 / 2

G
          

x x
x x

x x
 (4.3) 

 1/3V   (4.4) 

 

 

Figure 3: Velocity history at a point, comparison of LES and DNS [24] 
 

4.2. Governing Equations 

In this section, along with continuity and momentum equations for LES, SGS model 

will be presented. Materials in this section are adapted from [25]. 

 

4.2.1. Continuity Equation 

Filtered, incompressible continuity equation states that divergence of the resolved 

velocity field is zero such as: 

 0i

i

v
x





 (4.5) 
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4.2.2. Momentum Equations 

Navier-Stokes equation for a Newtonian fluid is: 

   ji i
i j

j i j j i

vv vpv v
t x x x x x

  
    

           
 (4.6) 

 

Filtering of eq. (4.6) with the filtering operation defined in eq. (4.2) using top-hat 

function (eq. (4.3)) yields: 

   ji i
i j

j i j j i

vv vpv v
t x x x x x

  
    

           
 (4.7) 

 

In addition to filtered variables, eq. (4.7) involves a variable which is i jv v . Instead of 

this form, it is written as follows: 

      i j i j i j i j
j j j

v v v v v v v v
x x x
  

  
  

 (4.8) 

 

Substituting the equation above into eq. (4.7) yields: 

    ji i
i j i j i j

j i j j i j

vv vpv v v v v v
t x x x x x x

   
     

              
 (4.9) 

The presence of the last term on RHS is due to the filtering operation and it is the 

divergence of SGS stress tensor,   which represents the effect of SGS stresses onto 

the resolved flow field and it is defined as follows: 

 
     
     
     

1 1 1 1 2 1 2 1 3 1 3 1

1 2 1 2 2 2 2 2 3 2 3 2

1 3 1 3 2 3 1 3 3 3 3 3

v v v v v v v v v v v v
v v v v v v v v v v v v
v v v v v v v v v v v v

 
   

     
    

 (4.10) 
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So with the definition above, it is clear that: 

   ij
i j i j

j j

v v v v
x x





 

 
 (4.11) 

 

Substituting the equation above into eq. (4.9) yields: 

   ji i
i j ij

j i j j i

vv vpv v
t x x x x x

   
     

               
 (4.12) 

  could be split into three parts using the decomposition in eq. (4.1) (see [1] for 

details). Hence, 

    ij i j i j i j i j i jv v v v v v v v v v            (4.13) 

 

In the equation above, the first term is called Leonard stresses, the second term is 

called cross-stresses, and the last term is called LES Reynolds stresses. In page 102 

of [1] their physical meanings are explained as follows: 

 

The Leonard stresses are solely due to effects at resolved scale. They are 

caused by the fact that a second filtering operation makes a change to a 

filtered flow variable… The cross-stresses are due to interactions between the 

SGS eddies and the resolved flow… Finally, the LES Reynolds stresses are 

caused by convective momentum transfer due to interactions of SGS eddies 

and are modeled with a so-called SGS turbulence model. 

 

Instead of modeling Reynolds stresses, in [26] as cited in [1], it is noted that in 

current versions of the FV method, although the nature of Leonard stresses and 

cross-stress are different, they could be lumped together with the Reynolds stresses 
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or in other words, contributions of Leonard and cross-stresses are neglected. SGS 

stresses could be approximated by using Bouissnesq approximation which relates 

SGS stresses to the resolved flow via dynamic SGS viscosity μSGS as shown in the 

following eq. (4.14). Note that, the second term in is required to ensure that normal 

SGS stresses to be equal to turbulent kinetic energy. 

 
SGS

SGS

1
3

12
3

ji
ij ii ij

j i

ij ii ii

vv
x x

S

   

  

 
       

  

 (4.14) 

where ijS is the strain rate of the resolved flow field and is defined as: 

 1
2

ji
ij

j i

vvS
x x

 
     

 (4.15) 

 

Substituting eq. (4.14) into eq. (4.12) and with some regrouping: 

    SGS
1= 
3

ji i
i j ii ij

j i j j i

vv vpv v
t x x x x x

     
     

               
 (4.16) 

 

In eq. (4.16), a modified pressure mp  can be defined by common factoring the 

pressure and the last term in parenthesis on LHS which is the trace of stress tensor 

such as: 

  
m1 1

3 3ii ij ii ij
i i i i

p pp
x x x x

   
            

 (4.17) 

Although pressure is modified it will be denoted as p  hereon. Defining 

eff SGS     and substituting the definition of modified pressure into eq. (4.16) 

yields: 
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   eff= ji i
i j

j i j j i

vv vpv v
t x x x x x

  
     

             
 (4.18) 

 

The RHS of eq. (4.18) can be expanded as: 

 

eff eff eff

eff

SGS

j ji i

j j i j j j i

i

j j

j j

j i j i

v vv v
x x x x x x x

v
x x

v v
x x x x

  



 

         
                       

 
  
   

   
      

 (4.19) 

   

In recognition of that fact that molecular viscosity is space independent, if u has 

continuous second order partial derivatives (Clairaut’s or Schwarz’s theorem), then 

order of derivative could be changed such as: 

 0j j

j i i j

v v
x x x x

  
 

   
 (4.20) 

 

The equation above is zero due to continuity equation. Therefore eq. (4.18) is written 

as: 

   eff SGS= ji i
i j

j i j j j i

vv vpv v
t x x x x x x

   
       

               
 (4.21) 

 

The pressure term and the last term on the RHS shall be treated as source terms. As a 

result, ultimate form of momentum equation is obtained as: 

   eff= i i
i j i

j j j

v vv v s
t x x x

  
   

       
 (4.22) 

where, 
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 SGS
j

i
j i i

v ps
x x x


  

     
 (4.23) 

 

4.2.3. SGS Model 

There are several SGS models such as Smagorinsky model [27], mixed model [28], 

dynamic model [29]. SM, which is preferred in this thesis, is an eddy viscosity 

model. The eddy viscosity or, in this context, SGS viscosity, as mentioned before, 

causes increased dissipation and this is one of the effects of unresolved flow field 

onto resolved one.  This is expected in the concept of energy cascade stating kinetic 

energy is progressively transferred to smaller eddies which perform work against the 

action of viscous stresses, so that the energy associated with small-scale eddy 

motions is dissipated and converted into thermal internal energy. Besides dissipative 

nature, smallest eddies are involved in transport of fluid as well. 

 

SM builds on Prandtl’s mixing length model for which it is assumed that kinematic 

SGS viscosity ( SGS SGS /   ) can be described in terms of one length scale and one 

velocity scale. Denoting length scale as Kolmogorov length scale   and velocity 

scale as Kolmogorov velocity scale u , SGS kinematic viscosity can be written as: 

 SGS 1C u   (4.24) 

 

Velocity scale can be obtained assuming that Re is high enough hence; rate of 

production of turbulent kinetic energy is approximately equal to its rate of 
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dissipation. Production term can be obtained from governing equation for mean flow 

kinetic energy or turbulent kinetic energy and it is, 

 SGS2 ij ijS S   (4.25) 

where, ij ijS S  is a scalar product of two tensors such that, 

 
3 3

2

1 1
ij ij ij

i j

S S S
 

  (4.26) 

On the other hand, using Kolmogorov scales rate of dissipation scales as: 

 
3u


  (4.27) 

Equating the production term to the rate of dissipation one can obtain, 

 
3

1 22C C 2ij ij ij ij

u
u S S u S S
  


    (4.28) 

 

Now, SGS kinematic viscosity can be written as: 

  2
SGS SGSC 2 ij ijS S   (4.29) 

where SGSC  is the SGS constant. SGS viscosity should diminish as the distance to the 

wall becomes smaller since there could be no turbulence near the wall. To achieve 

this, SGS constant could be multiplied by a damping factor. In this thesis a damping 

function which is used in [30] is utilized as shown below (another possibility is the 

Van Driest damping). 

  3
1 exp /f n A    (4.30) 

where n  which is defined below is the non-dimensional distance from the cylinder 

surface and A is 25.  

    where   vnvn 



 

    (4.31) 
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Note that in the equation above, n is the dimensional distance from the cylinder wall 

and v  is the shear velocity. Also, it is convenient to set length scale to filter cut-off 

width, therefore, 

 1/3V     (4.32) 

 

As a result, SGS dynamic viscosity can be written as: 

  2
SGS SGSC 2 ij ijf S S    (4.33) 

 

One of the disadvantages of the SM is that the SGS constant is problem-specific, that 

is, it is not universal. There have been several attempts to determine SGS constant 

[31, 32, 33, 34] and it turned out that its value varies between approximately 0.1 and 

0.2 although 0.065 was tested as well by [14]. In this thesis, it is taken as 0.065 as 

well. 

 

4.3. Discretization 

In the following sub-sections discretization of continuity and momentum equations 

will be presented and at the end, general transport equation will be obtained. 

Majority of the materials are adapted from [25]. 

 

4.3.1. Continuity Equation 

In accordance with FV method, integrating eq. (4.5) over a CV yields:  

 
CV

d 0i

i

v V
x



  (4.34) 
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Now it is required to utilize Gauss’s divergence theorem. For a vector a, theorem 

states that, 

 
CV

d d
A

V V    a n a  (4.35) 

where n is the unit vector normal to area A. 

 

Applying eq. (4.35) to the continuity equation yields: 

  
f fn n

1 1

dA A 0i i i i ff
f fA

v v m
 

        (4.36) 

 

4.3.2. Momentum Equations 

Integration of eq. (4.22) over CV yields: 

  
eff

CV CV CV CV

d d = d di ji i
i

j j j

v vv vV V V s V
t x x x

  
  

       
     (4.37) 

Applying Gauss’s divergence theorem (eq. (4.35)) to the equation above yields: 

 eff
CV A A CV

Convective termTransient term Source termDiffusion term

v d d = d di
i i j j j i

j

vV v v A A s V
t x

   
 

    
 
   (4.38) 

In the following sub-sections, discretization of each term will be shown. 

 

4.3.2.1. Transient Term 

The 2nd order accurate, three time level temporal discretization is used such that (see 

Figure 4), 

 
t t 1 t 2
, , ,

CV

3v 4v v
v d

2
i P i P i P

i V V
t t

 
  


   (4.39) 
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The second term will be treated as a source term such that, 

 trans trans t 1 t 2
, ,

4 1v v
3 3i P i P i Ps a     

 
 (4.40) 

where, 

 trans 3
2P

Va
t





 (4.41) 

 

 

Figure 4: Sketch of geometric parameters [25] 
 

4.3.2.2. Convective Term 

The convection term is approximated as: 

  
f fn n

,
1 1A

di j j i j j f i ff
f f

v v A v v A m v 
 

     (4.42) 

 

To calculate mass flow rate, fm , the velocity at cell face, ,i fv , should be calculated 

using the Momentum Interpolation Method (MIM) of Rhie and Chow [35] in order to 

avoid checkerboard pressure field for co-located grid arrangement. The derivation of 

MIM for unstructured grids is in Appendix B. 

The cell face velocity is interpolated with CD scheme which is of 2nd order accurate 

and it is preferred over upwind-biased schemes due to their intrinsic dissipative 
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nature which causes excessive dissipation when combined with SGS viscosity. 

According to [36], I2 interpolation criterion is utilized. 

 

Defining interpolation factor as (see Figure 4): 

 
 1/2

PN 




Pf e
PN PN

 (4.43) 

 

The cell face velocity can be found as: 

   **
*

, ,i f fi f
v v   v f f  (4.44) 

where,  * , ,,
1 i P i Ni f

v v v       . The second term in eq. (4.44) is treated as a 

source term. 

 

To make the code to be able to compare different convective schemes, deferred 

correction approach is utilized. As a result, the cell face value is implemented as the 

sum of the cell face variable which is found by 1st order upwind scheme and the 

difference of a higher order scheme and again the 1st order scheme which are 

evaluated at the previous iteration as shown below. 

  n 1U H U
, , , ,i f i f i f i fv v v v


    (4.45) 

where, 

U
,i fv  is the cell face value computed by 1st order upwind method 

H
,i fv  is the cell face value computed by a higher order scheme 
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Note that the second term which belongs to the previous iteration acts as a (deferred) 

corrector of the 1st order upwind scheme. It will be diminished as the problem 

converges to a solution. 

 

For the 1st order upwind scheme, 

 , ,

, ,

  if   0

  if   0
i f i P f

i f i N f

v v m
v v m

 

 




 (4.46) 

  

Hence,    ,U
, ,max ,0 min ,0f

i f i P f i Nv m v m v   . 

 

On other hand, regarding higher order scheme, in page 340 of [36] criterion I2 which 

is shown below will be used (see Figure 4). 

  , ,i f i f f
v v  

   v f f  (4.47) 

 

In order to obtain the components of the equation above, a central difference (CD) 

scheme is utilized instead of upwind schemes due to their intrinsic dissipative nature 

which would cause excessive dissipation by having increased viscosity effect. Hence, 

 
 

       
*

*

, ,,
1

1
i P i Ni f

f P N

v v v 

 

  

     v v v
 (4.48) 

 

As a result, the discretized convection term is: 

  
f fn n n 1,U n 1 H ,U

, ,
1 1

explicit
implicit

f f
f i f f i f i f i

f f
m v m v m v v



 

     


 (4.49) 
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where the explicit term is treated as a source term dc
is . The superscript dc denotes 

that deferred correction approach is utilized. Again, note that the explicit term acts as 

a corrector of the implicit term. Thus, 

  n 1dc H ,U
,

f
i f i f is m v v


   (4.50)   

 

4.3.2.3. Diffusion Term 

The diffusion term is approximated as:  

 
fn

eff eff
1A

di i
j j

fj j f

v vA A
x x

 


  
     
  (4.51) 

 

i
j

j

v A
x



 could be split into orthogonal and non-orthogonal (cross-diffusion) 

components such as (see Figure 4): 

 , , , , , ,i N i P i N i P i N i P PNi
j f f f

j f PN f

v v v v v vv A A A A
x

       
  

  PN n PN e n PN
 (4.52) 

where PN
fA  is the component of fA in the direction of line PN and it is defined as: 

 
PN

= fPN
f

f

A
A

e n
 (4.53) 

 

Also as seen from Figure 4, 

 
 
 

, ,

, ,

i P i P P

i N i N N

v v

v v




   

   

v PP

v NN
 (4.54) 

 

Applying the changes to eq. (4.52) yields: 
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   , ,

orthogonal term non-orthogonal term

i ii N i P PN PNi N P
j f f

j

v vv vv A A A
x

     
 



NN PP
PN PN 

 (4.55) 

The second term is treated as a source term as cd
is . The superscript cd denotes “cross-

diffusion”. Hence, 

 
   cd i i PNN P

i f

v v
s A

     


NN PP
PN

 (4.56) 

 

As a result, the discretized diffusion term is: 

 
f fn n

, , cd
eff eff,

1 1

i N i P PNi
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x

 
 

   
         

  PN
 (4.57) 

 

4.3.2.4. Source Term 

Source term is discretized as: 

 
CV

di is V sV  (4.58) 

 

There are four contributions to the source term which are, 

 trans dc cd pres SGS
i i i i i is s s s s s      (4.59) 

 

Transient trans
is , deferred correction dc

is , and the cross-diffusion cd
is  source terms are 

defined with equations (4.40), (4.50), and (4.56), respectively. The two other terms, 

pres
is  and SGS

is  will be discretized in this section. 

 

Pressure source term is discretized as follows: 
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  
fn

pres

1
i i f

fi

ps V pA
x 


   

   (4.60) 

 

Another term, SGS source term is discretized by using Gauss’s divergence theorem 

(eq. (4.35)) such as: 

 
fn

SGS
SGS SGS SGS

1CV

d dj j j
i j j

fj i i iA f

v v v
s V A A

x x x x
  



       
               

   (4.61) 

Note that, the term j
j

i

v
A

x



 is equal to the ith component of dot product of the tensor 

of gradient of velocity field and area vector. Explicitly, 

  j
j i

i

v
A

x


  


v A  (4.62) 

 

4.3.3. Discretized Transport Equation 

Substituting the discretized forms of the transient, convection, and diffusion terms 

into eq. (4.38), the discretized transport equation is obtained as:    

 
 

, ,
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where, is  is given in eq. (4.59) and 
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4.4. Numerical and Computational Details 

For Re = 100, time step is 0.1 seconds, simulation duration is 200 seconds, and 

averaging start time is 150th second. On the other hand, for Re = 3900, time step is 

0.001 seconds, simulation duration is 40 seconds, and averaging start time is 25th 

second.  

 

The algorithm used is SIMPLE which is suitable for LES if the time step is small 

enough. Refer to Appendix B for the derivation of SIMPLE algorithm for 

unstructured grids. Since a collocated arrangement is utilized, to avoid checker-board 

pressure field Rhie and Chow’s MIM [35] (see Appendix A for the derivation for 

unstructured grids) is used. The under-relaxation factor of the pressure correction is 

0.3. Both momentum and pressure correction equations are solved with Gauss-Seidel 

method. Momentum equations are solved once per inner iteration since they are non-

linear whereas pressure correction equation is repeated eight times. It should be 

mentioned that, the usage of conjugate gradient method would allow faster 

convergence compared to Gauss-Seidel however, its parallel application is left for 

future works. To mention, the initial values of velocities and pressure is zero. 

 

As a gradient reconstruction method, the least-squares method ( [37]) is used instead 

of iterative Gauss’s method ( [25]). 

 

Maximum number of inner iterations in a time step is fixed at a value of 10 if the 

residuals defined by eq. (4.65). There is a possibility that residuals defined by eq. 

(4.65) may not drop below the tolerance which is set to 5x10-5 at the initial stage of 
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the simulation. However, this does not pose any problem since early flow field data 

is not point of interest. 

  

 

c

c

, ,n
nb

,n
nb

N i N i P i P
N P

i

P i P
N P

a v s a v
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a v





 


 

 
 (4.65) 

 

The code is parallelized using the domain decomposition technique among eight 

threads of a HP Z800 workstation, whose processor specifications are shown in 

Table 2. Since the memory type is shared memory, openMP ( [38]) is used to divide 

the work among the threads. 

 

Since in this work software libraries such as LINPACK or LAPACK are not used for 

matrix/vector calculations, FLOP rate cannot be given. However, it is recorded that 

every iteration takes one second after a certain time (about 2 seconds). 

  

Table 2: Processor specifications 
Model Intel(R) Xeon(R) E5530 
Speed 2.40 GHz 
RAM 3.98 GB 

 

4.5. Physical Domain and Mesh 

4.5.1. Introduction 

In the following sub-sections, specifications of the physical domains and meshes for 

two validations cases will be discussed. 
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4.5.2. Case 1: ReD = 3900 

The front and top views of the physical domain are shown in Figure 5 and Figure 6, 

respectively, together with the boundary conditions. The numerical mesh which is 

block-structured is shown in Figure 7 and a closer view at the intersection of blocks 

is shown in Figure 8. The dimensions of the physical domain are completely 

identical to the that of reference [12] which is given in page 1197. 

 

 

Figure 5: Front view of the physical domain 
 

 

Figure 6: Top view of the physical domain 
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Figure 7: 2D view of numerical mesh 
 

 

Figure 8: Closer view to the mesh 
 

Likewise physical dimensions of the domain, the mesh topology is similar to that of 

reference [12]. There are 120 points in the circular region around the cylinder with a 

stretching factor of 1.032, stretching radially outwards. In the wake centerline, half 
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of cross-stream direction, and on the circumference of the cylinder there are 185 (120 

+ 65), 153 (120 + 33), and 192 points, respectively. At the inflow region there are 20 

points on the centerline. Finally, there are 21 points in the spanwise direction. 

 

In the literature, several types of meshes have been used such as, O- , C- (see Figure 

9). However, for these mesh types, the inlet region is far away from the cylinder 

where unnecessarily large number of grids is located. In the present mesh, in the inlet 

region the grid resolution is satisfactory. However, the wake region needs more grids 

since the flow structure is turbulent there. 

 

 

Figure 9: (left): O-mesh; (right): C-mesh [39]. 
 

As seen from Table 3, the number of layers in spanwise direction is lower than that 

of some resources. Also, as other resources, 32 layers case was tested as well but this 

case gave worse results, possibly due to increased anisotropy of the meshes. So, it is 

concluded that in order to use 32 layers, the mesh resolution in streamwise and cross-

stream directions should be increased. Using several amounts of layers in spanwise 

direction is a necessity because this type of flow is strictly 3D especially in the near 
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wake region due to vortex shedding mechanism and if a 2D simulation was 

conducted, the recirculation in the near-wake region would not be resolved. This can 

be observed by examining the streamwise velocity component along wake centerline 

of reference [8]. Since spanwise resolution is coarser than that of other resources, the 

total number of cells is lower. 

 

The normal distance from cylinder surface to the first adjacent cell is 

34.8x10n D  which is a little bit greater than that of other works. Note that, [9] 

took 32.5x10n D   which is considerably larger than others however, they utilized 

a different approach for which instead of refining the near wake, outside of the near-

wall region is refined to obtain an excellent description of the coherent structures.   

 

On the other hand, the non-dimensional distance from the wall surface, n , which is 

defined in eq. (4.31), should be smaller than one in order to solve viscous boundary 

layer region accurately as stated in page 106 of reference [1]. 

 

Table 3: Mesh specifications from several resources 
Resource Nz Ntotal ∆n (Dx10-3) 
[8] 32/64 870k/1.1m/1.7m  
[11] 32/48 870k/1.3m 2.5 
[10] 48 500k/1.3m/2.4m  
[9] 48 10.8m/43.3m 210 
[6] 32 1.2m 2.5 
[7] 256 13m  
[12] 32 1.1m 3.5 
Present 20 680k 4.8 

 

As mentioned before, domain decomposition technique is employed so, the mesh is 

partitioned by GMSH [40] with METIS algorithm ( [41]) although Chaco algorithm ( 

[42]) produces the desired output as well. The type of partitioning is element-based 
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so, the interfaces are shared among the partitions and this is suitable for a FV 

application. 

 

4.5.3. Case 2: ReD = 100 

For this case, the length of left, top, and bottom sides is 5D. The mesh which is 

shown in Figure 10  is coarser and there are nearly 17000 cells. Since the flow is 2D, 

there is only one layer in the spanwise direction. The distance from the adjacent cell 

to the cylinder is 1.6x10-2. 

 

At the left, top, and bottom boundaries velocity inlet BC is specified with u = 1 m/s 

and v = w = 0. At the right boundary, the BC is the same as in the Re = 3900 case. At 

the lateral sides symmetry BC is specified because the flow is 2D. 

 

Figure 10: Mesh for Re = 100 
 

4.6. Treatment of Boundary Conditions 

At a boundary, eq. (4.63) is written as: 

 
 
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The last term of eq. (4.66) will be determined according to one of the two basic 

boundary conditions: Dirichlet and Neumann. All specified boundary conditions are 

subsets of one of these BCs. 

 

4.6.1. Dirichlet Boundary Conditions 

For this type, the last term of eq. (4.66) is known hence, it will be included into the 

source term as: 

 ,i i b i bs s a v   (4.67) 

Velocity inlet, periodic, and pressure outlet boundary conditions are of this kind of 

boundary condition. Firstly, for velocity inlet boundary condition, velocities at the 

boundary are given. For periodic boundary condition, the variables at the boundaries 

take their values from internal elements or cells. For pressure outlet the velocities at 

the boundary are found from the mass flow rate at the boundary. As a result, 

boundary variables are known explicitly for a Dirichlet boundary condition. Below, 

these boundary conditions will be examined in detail. 

 

4.6.1.1. Periodic Boundary Condition 

In all works on flow over circular cylinder, the spanwise length of the domain is πD 

which is considered to be the period in spanwise direction. 

 

For periodic boundary condition, referring to Figure 11, the bold rectangle indicates 

the solution domain. The cells which are at the outside of the domain are imaginary 

cells and their values are the same as their periodic counterparts which are shown by 
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the same color. As a result, boundaries which are of periodic type will be treated as 

an internal face. 

 

 

 

 

 

 

 

4.6.1.2. Pressure Outlet Boundary Condition 

A comment on this boundary condition is given in page 1198 of reference [12]: 

 

This boundary condition is known to be reflective [43]. When an 

inhomogeneous pressure distribution like the one in the large Kármán 

vortices is convected across the outflow boundary, small pressure 

disturbances are reflected back into the computational domain, travelling 

towards the inflow boundary where they are reflected back into the 

computational domain. An instantaneous distribution of the pressure and of 

the solution variables does not show any visible reflections, these have been 

considered as small. But it should be kept in mind, that this boundary 

condition imposes disturbances on the approaching flow which are purely 

numerical. 

 

The reason of using this boundary condition instead of convective boundary 

condition which is used by [6, 8, 9, 11], is not based on physical arguments. 

Figure 11: Periodic BC 
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For the pressure outlet boundary condition, the static pressure at the boundary is set 

to zero so that all pressures are relative to outlet pressure. Since pressure is known at 

the boundary, mass flow rate can be calculated and subsequently, velocity at the 

boundary can be obtained. Note that, for both momentum and pressure correction 

equations, pressure outlet is of Dirichlet BC type. Considering eq. (A.13), 
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So eq. (A.13) becomes:  

      pc pc
f b b P b N N P N Pbm p a p p a p           v A D A PP  (4.69) 

where, in the calculation of pc
Na , the only difference is that fD is used instead of PD . 

 

4.6.2. Neumann Boundary Condition 

For Neumann boundary condition, the boundary values are not known explicitly but 

they can be obtained using other given relations such as the given diffusive flux at 

the boundary. Top and bottom boundaries are of symmetry boundary condition, 

which is explained in detail below, is a kind of Neumann boundary condition. 
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4.6.2.1. Symmetry Boundary Condition 

This boundary condition is also used by [7] and is also referred as slip side wall 

boundary condition for which there is no shear stress which is also used by [18] as 

cited in [12]. Alternative boundary condition is the periodic boundary condition 

which is used by [9] and [44]. Additionally, on these boundaries, farfield BC for 

which tangential velocity is set free-stream velocity, can be used as [12] although 

[15] as cited in [12] stated that the use of farfield BC at y/D = ±10 (which is the case 

in this work as well), which is the case in this work as well, causes an acceleration of 

the flow at the edge of the wake region. 

 

Since the gradient of normal velocity at the boundary is zero for symmetry BC, 

diffusive flux will also be zero as shown below. 

 
 diff diff cd

eff , ,

diff diff cd
, ,

0i
b j b i b i P i

j b

b i b b i P i

vJ A a v v s
x

a v a v s


 

       
  

 (4.70) 

Substituting the result of the equation above into eq. (4.66) yields: 
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As a result, 
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After solving P
iv , the boundary variable can be updated as, 

 
cd
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i
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Chapter 5  

RESULTS AND DISCUSSIONS 

5.1. Introduction 

To validate the self-made code, which is able to solve Navier-Stokes equation on 

unstructured grids with parallelization, two cases were considered. In the first case, 

for which ReD = 100, the flow is laminar (no turbulence model implemented), 

unsteady and periodic. Whereas in the second case, for which ReD = 3900, the flow 

is turbulent which is initiated in the shear layers and since the flow is turbulent, it is 

inevitably unsteady. 

 

For ReD = 100 case, regarding mean variables, mean drag coefficient (with drag 

coefficient history), mean back-pressure coefficient (with pressure coefficient 

history), Strouhal number which is obtained by estimating the period of lift 

coefficient, mean velocity field, and mean recirculation length were investigated. 

 

Considering instantaneous variables at ReD = 100, instantaneous pressure field and 

instantaneous stream function during a vortex shedding cycle were investigated. 

 

For ReD = 3900 case, in addition to the mean variables found in ReD = 100, mean 

friction coefficient, mean streamwise velocity together with its minimum value along 

wake centerline, separation angle, and turbulence statistics such as mean streamwise 

and shear stresses were calculated. 
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5.2. Case 1: ReD = 100 

In this case, the flow is laminar, unsteady and periodic. Note that, since the flow is 

laminar, no turbulence model implemented for this case. 

 

Drag coefficient, Cd, lift coefficient, Cl, and pressure coefficient, Cp can be calculated 

with the following equations.  

 d l p
dyn dyn dyn

              yx FF p pC C C
p p p


    (5.1) 

where, xF  and yF  are the streamwise and cross-stream force components, 

respectively, p  is the free-stream or static pressure which is taken as zero, and dynp  

is the dynamic pressure as: 

 2
dyn p

1
2

p U A   (5.2) 

For ReD = 100 case, the free stream velocity is 1 m/sU   and pA  is the planform 

area of the cylinder which is πD.  

 

Mean drag coefficient is found as 1.47 which is the same as the value found by [13]. 

Also the history of drag coefficient is shown in Figure 12 from which it is clear that, 

starting averaging at 150th second is a good choice because the initial transients die 

out before 150th second. 

 

Without using power spectrum density, Strouhal number which is defined in eq. (5.3) 

can be obtained by measuring the period, p  which is nearly 6 seconds as shown in 

Figure 13. For Re = 100 case, the lift coefficient is periodic and there is only one 
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dominant frequency (period) as opposed to Re = 3900 case for which power 

spectrum density should be calculated in order to calculate dominant frequency. The 

Strouhal number is nearly 0.17 which is nearly the same as 0.16 which is found by 

[13]. 

 
p

fD DSt
U U 

   (5.3) 

Von Kármán’s street can be observed in Figure 14 in which contour plot of 

instantaneous pressure field is shown at the end of the simulation (200th second) 

which is just an arbitrary time aimed to show the instantaneous pressure field. To 

show the vortex street better a complete vortex shedding cycle is presented in Figure 

15.  On the other hand, mean flow field is presented in Figure 16 from which the 

recirculation length is nearly 2 X/D.  

 

Pressure coefficient along the cylinder surface is shown in Figure 17. Reference [13] 

gives the back-pressure coefficient which is the pressure coefficient at the θ = 180° 

as -0.71 which is exactly the same as the present result as evident from the figure. 
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Figure 12: Drag history at ReD = 100. 
 

 

Figure 13: Lift history at ReD = 100. 
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Figure 14: Instantaneous contour plot of pressure (Pa) field at ReD = 100. Dashed 
lines denote negative values of pressure. 
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Figure 15: Stream function at ReD = 100. From top to bottom at t = 190, 191, 192, 
193, 194, 195, 196 seconds. 
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Figure 16: Mean flow field at ReD = 100. 
 

 

Figure 17: Pressure coefficient at ReD = 100. 
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5.3. Case 2: ReD = 3900 

In this case, the flow is turbulent in the wake region but the initiation of turbulence 

starts at shear layers.  

 

Mean streamwise velocity along the centerline of the wake is shown in Figure 18. It 

is obvious that the minimum velocity is greater than that of the experimental data. 

Additionally, the difference becomes much more distinguishable away from the 

cylinder. In fact, a possible explanation is given by reference [7] which is reproduced 

in Figure 19, maximum n+ or Y+ , which is the normal distance to the cylinder 

surface and defined in eq. (4.31)-, is 3.4 and occurs for case 4 (see Table 4) and as a 

result of the rather high value of n+ the minimum velocity and the point of turnover is 

different than other cases. Note that the mean streamwise velocity in the wake 

centerline in Figure 19 is nearly the same as the present result as shown in Figure 18. 

Additionally, in Table 4, for case 4, spanwise length is as twice as that of cases 1, 2, 

and 3 but at the same time, number of layers in spanwise direction is also double of 

that of the same cases. Moreover, for case 4, SGS model is dynamic model as the 

other cases except case 2 which used Smagorinsky model which is the model used in 

this work. As a result, it can be concluded that n+ has a strong effect on the accuracy 

of the results. For the present work, the maximum of temporal mean value of n  is 

4.6 which is higher than the value (3.4) for case 4. Hence, it can be concluded that, 

the normal distance between the cylinder surface and closest cells to the cylinder 

surface should be smaller. An immediate solution which is to increase the resolution 

in streamwise and cross-stream directions only would not work because the spanwise 

resolution should be increased accordingly in that case. Similarly, the opposite action 

that is, increasing spanwise resolution while keeping others the same, would not 
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work. As a result, not only in a specific direction but in all directions grid resolution 

should be increased. 

 
Figure 18: Mean streamwise velocity along the wake centerline at ReD = 3900. 
Points denote present result; squares denote the combination of experimental data of 
[5] and [4]. 
 

 

  
Figure 19: Sensitivity study for the mean streamwise velocity along the wake 
centerline (Y/D = 0) for a single cylinder at ReD,Uo = 3900, − case 1; ∙∙∙, case 2; −− 
case 3; − ∙ −, case 4; and ∙∙ − ∙∙, case 5. [7] 
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Table 4: Description of different cases used for sensitivity study [7]1. 

Case Lz LzNz Y+ Model (Blending) 
1 4D 256 1.7 Dyn (99% CDS +1% UP) 
2 4D 256 1.7 No model (99% CDS +1% UP) 
3 4D 256 1.7 Dyn (pure CDS ) 
4 8D 512 3.4 Dyn (99% CDS +1% UP) 
5 8D 512 1.7 Dyn (99% CDS +1% UP) 

 

Mean streamwise velocity at X/D=1.06 is shown in Figure 20. There is a very good 

agreement with the DNS results of [18] however; the same evaluation cannot be 

made for the mean cross-stream velocity. Although the trend is the same, the cross-

stream velocity is more oscillatory than the present result. However, the difference in 

the order of magnitudes is not very much. This difference is due to relatively course 

grid resolution as compared with other references in Table 3. 

 

 

 

Figure 20: (left): Mean streamwise velocity at X/D=1.06 at ReD = 3900. Squares 
denote DNS results of [18]; (right): Mean cross-stream velocity at X/D=1.06. 
Squares denote DNS results of [18]. 
 

                                                
1 Lz: Spanwise length 
  LzNz: Number of layers in spanwise direction 
  Y+: Corresponds to max(n+) 
  Dyn: Dynamic 
  UP: Upwind 
  CDS: Central difference scheme 
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In addition to drag coefficient, Cd, lift coefficient, Cl, and pressure coefficient, Cp, 

also friction coefficient, Cf can be calculated with the following equation. 

 w

dyn
fC

p


  (5.4) 

where, w  is the wall shear stress, and dynp  is defined in eq. (5.2). 

  

Note that, free stream velocity is 3.9 m/sU  . The instantaneous variables are first, 

averaged in spanwise direction and then in time for the last 15 seconds. The averaged 

quantities are shown in Table 5 together with results from several quantities. As 

expected, the mean drag coefficient is less than that of other works (see Table 5) 

because of lower SGS constant (0.065) while it is either 0.1 for all other works or the 

model is dynamic model so that the SGS constant is not a constant anymore. The 

reason is that, increasing SGS constant prevents residuals to drop below the imposed 

criterion which is 5x10-5 using only 10 inner iterations per time step and using higher 

number of iterations increases the simulation time. History of drag coefficient is 

shown in Figure 21 in which the initial transients die out after about 25 seconds. So, 

the averaging of the variables is started after 25 seconds. 

  

Table 5: Mean quantities from several resources and present work 

Resources dC  St LR/D pbC  sep  min /U U  
[8] 1.099 0.2 1.115 -1.049 87.9  
[11] 1.08 0.216 1.09 -1.03 88.1  
[10] 1.04 0.210 1.35 -0.94 88.0 -0.37 
[9]  0.208 1.56   -0.26 
[6] 1.00 0.218 1.35  87.6 -0.31 
[7] 1.02 0.207 1.49 -0.93 86 -0.32 
[12] 0.978 0.209 1.64 -0.85 88.2  
[5] (Exp)2 0.98±0.05 0.215±0.005 1.33±0.2 -0.9±0.05 85±2 -0.24±0.1 
Present 0.82 0.06 1.6 -1.6 86 -0.17 
                                                
2 This is an experimental data and cited in [7]. 
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Figure 21: History of drag and lift coefficients at ReD = 3900. (top): drag coefficient; 
(bottom): lift coefficient. 
 

The recirculation length is 1.6 which is in the range of the other values in Table 5. 

The length of the recirculation zone (see Figure 22) is closely related to the mean 

drag coefficient in a way that in that zone there are two counter-rotating vortices and 

the velocity in the center is in opposite direction of the main stream. So, the longer 

the recirculation zone, greater the mean drag coefficient. Accordingly, the back 

pressure coefficient which is the pressure at the back of the cylinder is greater in this 

work, causing mean drag coefficient to decrease. The value of back pressure can be 

spotted in Figure 23. Note that, initially, when θ is small (θ < 50°) the values are 

matching with the reference values but then for θ > 50° Cp diverges from DNS 

results. The same is valid for friction coefficient (see Figure 23) as well. This is 

because the grid resolution in the near wake is finer than that of in the far wake 

region. Hence, the grid resolution in the far wake region should be increased. 
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Figure 22: Mean flow field in recirculation zone at ReD = 3900. 
 

 

Figure 23:  (left): Pressure coefficient at ReD = 3900. Squares denote DNS results of 
[18]; (right): Friction coefficient. Squares denote LES results of [8]. Points denote 
present results. 
 

Turbulence statistics have also been tested. In Figure 24, mean streamwise stress in 

shown. It is found that although the pattern of the present result resembles the 

reference data as shown in Figure 24, there is an order of magnitude difference 

between two data. Additionally, the present result was not able to capture a 

symmetric pattern. This is due to the coarse grid resolution. 
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Figure 24: Mean streamwise stress at ReD = 3900. Solid line denotes present result; 
squares denote LES results of [9]. 
 

In contrary to mean streamwise stress, mean shear stress has the same order of 

magnitudes with the reference data (see Figure 25). Yet, the reference data is more 

oscillatory than the present result. 

 

From power spectrum density of both lift force and u-velocity taken at X/D = 2 (see 

Figure 26), Strouhal number (eq. (5.3)), which is defined below, is found as 0.06 

which is lower than other values in Table 5. The value of Strouhal number is 

consistent with the results of turbulence statistics because relatively low Strouhal 

number means that oscillations around the cylinder have a lower frequency. Hence 

turbulence statistics which are related to turbulent oscillations have been found to be 

lower than the reference values as was shown in Figure 24 and Figure 25.  
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Figure 25: Mean shear stress at ReD = 3900. Solid line denotes present result; squares 
denote LES results of [9]. 
 

 

Figure 26: Power spectrum density of the (left): lift force; (right): streamwise 
velocity at X/D = 2 at ReD = 3900. 
 

The simulation is completed in approximately 12 hours using a time step of 0.001 

seconds, with nearly 680000 grids, and 20 layers in spanwise direction. When the 

layers in spanwise direction is increased from 20 to 32, it takes about 18 hours. 
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Chapter 6 

CONCLUSIONS 

In this work, a computer code was developed to solve turbulent flow equations on 

unstructured grids using Large Eddy Simulation (LES) with Smagorinsky model as 

the sub-grid scale model, in C++ language. 

 

To validate the self-made computer code, which is able to solve LES Navier-Stokes 

equation on unstructured grids, a flow past a circular cylinder at two cases were 

considered. In the first case, a laminar and periodic flow at ReD = 100, while in the 

second case, a turbulent flow at ReD = 3900 was analyzed. 

 

For ReD = 100, all the results were found to be accurate when compared with the 

reference [13]. Mean variables such as mean drag coefficient, Strouhal number, and 

mean back-pressure coefficient are found to be well matching with the reference 

data. Instantaneous pressure field and a complete vortex shedding cycle were also 

presented in order to show that the vortex shedding mechanism was captured as well. 

From the mean flow field, recirculation length was also estimated accurately. As a 

result, it was validated that for a laminar and periodic flow past a circular cylinder at 

ReD = 100 was accurately simulated. 

 

In the second case in which the flow was turbulent, a LES was carried out. The 

turbulence model was Smagorinsky model with CSGS = 0.065. Mean drag coefficient 
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was found to be close to that of the experimental data. In order to obtain Strouhal 

number, power spectrum density is calculated and accordingly Strouhal number was 

found to be a little bit lower and this relatively small Strouhal number showed that 

the turbulence oscillations in the present work were lower than that of the references. 

As a support, turbulence statistics such as mean streamwise stress and mean shear 

stress were found to be rather lower than that of references. Mean pressure 

coefficient and mean friction coefficient around the cylinder surface showed that at 

the upstream of the cylinder (θ < 30), the coefficients are in agreement with the 

reference values. However, due to relatively coarse grid resolution at the downstream 

of the cylinder, the mean pressure coefficient and the mean friction coefficient 

diverged from the reference values. Besides the coarse grid resolution at the wake 

region, generally the grid resolution of the whole domain was not fine enough due to 

insufficient computing resources. As a comparison, in reference [7], 21 million cells 

was used for the LES of ReD = 3900, while in this work 680000 cells are used. 

Additionally, from the mean pressure coefficient data, back-pressure coefficient was 

obtained and it was found that it is higher than the reference data. The value of back-

pressure coefficient was consistent with the value of mean drag coefficient because 

relatively high negative back-pressure coefficient resulted in a lower value of the 

mean drag coefficient. 
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Appendix A: Momentum Interpolation Method (MIM) For 

Unstructured Grids  

Rewriting eq. (4.63) as: 

 
 

 , , , , , ,
nb

i P i P i N i N i P i P
N P

a v a v b V p


     (A.1) 

where, b is the source term excluding pressure source. 

 

The equation above can be written in another form such as: 

  , ,i i P P i P Pv H V D p    (A.2) 

where, 

  
, , ,

nb
, ,

, ,

1       
i N i N i P

N P
i P i P

i P i P

a v b
H D

a a



 


 (A.3) 

 

Similarly for a neighbour cell N, 

  , ,i i N N i N Nv H V D p    (A.4) 

And for the cell face, 

  , ,i i f f i f f
v H V D p    (A.5) 

 

,i fH  can be interpolated as: 

  , , , ,i f i f i f f i f f
H H v V D p     (A.6) 

where, 
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 
 

 

      

, , ,

, , ,

1

1

1

1

i f i P i N

i f i P i N

f P N

P Nf

v v v

D D D

V V V

p p p

 

 

 

 

  

  

  

     

 (A.7) 

Substituting eq. (A.6) into eq. (A.5) yields: 

    , , ,i f i f f i f ff
v v V D p p       

 (A.8) 

Inserting eq. (A.8) into eq. (4.36), the mass flow rate becomes, 

    , , , ,f i f i f f i f i fff
m v A V D p p A           
  (A.9) 

Note that, the last term in eq. (A.9) acts as a higher-order correction to the first-order 

mass flow rate. 

 

  ,i ff
p A   can be discretized as implemented in eq. (4.55) as: 

 

orthogonal term non-orthogonal term

PN PNN P N P
f f f f

p p p pp A A A
     

   
NN PP

PN PN 
 (A.10) 

   

Substituting the equation above into eq. (A.9), 

 
 , , , ,

,     

f i f i f f i f i ff

PN PNN P N P
i f f f

m v A V D p A

p p p pD A A

 



    

      
   

 

NN PP
PN PN



 (A.11) 

Further simplification can be obtained with,  

 
PN
f f f

f

A 




A A
PN A PN

 (A.12) 

Eq. (A.11) becomes, 
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 

   
, , , ,

pc pc     

f i f i f f i f i ff

N N P N N P

m v A V D p A

a p p a p p

     

       NN PP


 (A.13) 

where, 

 
 , , ,pc

, PN
i f i f i f

N
i f i

D A A
a

A
  




 (A.14) 
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Appendix B: Derivation Of SIMPLE Algorithm For Unstructured 

Grids  

Rewriting eq. (A.5) as: 

  , ,i i f f i f f
v H V D p     (B.1) 

If cp  and cv  be the corrections needed to correct the guessed velocity and pressure 

fields, respectively, then they can be decomposed such as: 

 * c
i i iv v v   (B.2) 

 * cp p p   (B.3) 

 

For a guessed pressure field *p , eq. (B.1) is written as: 

  * *
, ,i i f f i f f

v H V D p     (B.4) 

   

Subtracting the equation above from eq. (B.1) yields:   

  c c
, ,i i f f i f f

v H V D p     (B.5) 

For SIMPLE method, the second term on the LHS is neglected. Then, 

 c c
f f fp  v D  (B.6) 

Decomposing mass flow rate as: 

 * c
f f fm m m     (B.7)  

Hence, continuity equation (eq. (4.36)) can be written as: 

  
fn

* c

1

0f f
f

m m


     (B.8) 

where, 
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 c c
f f fm  v A  (B.9) 

 

Substituting c
fv  in eq. (B.6) into eq. (B.9), 

  c c
f f f fm p   D A  (B.10) 

c
f fp A  can be discretized as implemented in eq. (4.52), 

 
c c c c

c

orthogonal term non-orthogonal term

PN PNN P N P
f f f f

p p p pp A A A
     

   
NN PP

PN PN 
 (B.11) 

   

Using eq. (A.12) for the equation above, 

    c c c c cf f f f
f f N P N P

f f

p A p p p p
 

         
 

A A A A
NN PP

A PN A PN
 (B.12) 

   

Substituting the equation above into eq. (B.10), 

 

   

   

c c c

c c     

f f f
f N P

f

f f f
N P

f

m p p

p p






 




     



D A A
A PN

D A A
NN PP

A PN



 (B.13) 

   

This equation can be simplified by using eq. (A.14) such as: 

    c pc c c pc c c
Pf N N N N Pm a p p a p p       NN PP  (B.14) 

 

Putting eq. (B.14) into eq. (B.10) yields: 

  
 

 
 

fn
pc c c * pc c c

nb 1 nb
N N P f N N P

N P f N P

a p p m a p p
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          NN PP  (B.15) 

 



68 
 

Thus, pressure correction equation can be written as: 

  
 

pc c pc c pc

nb
P P N N P

N P

a p a p b


   (B.16) 

where pc
Na  is defined in eq. (A.14) and, 

 
 

 
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f

pc pc

nb

n
pc * pc c c

1 nb

P N
N P

P f N N P
f N P

a a

b m a p p



 



       



  NN PP
 (B.17) 

Note that, the last of source term p
Pb   in the equation above is neglected for SIMPLE. 

After solving the pressure correction equation, velocity field, pressure field, and 

mass flow rate at cell interfaces can be corrected with equations, (B.2), (B.3) and, 

(B.7) respectively. Additionally, for the correction of pressure field, an under-

relaxation factor αp is required for the stability purposes. Hence, eq. (B.3) becomes: 

 * c
pp p p   (B.18) 

  

 


