A Multi-Set Artificial Immune System for Searching
Optima in Dynamic Environments

Jalil Shahabi

Submitted to the
Institute of Graduate Studies and Research
in partial fulfillment of the requirements for the Degree of

Master of Science
in
Computer Engineering

Eastern Mediterranean University
August 2012
Gazimagusa, North Cyprus

Approval of the Institute of Graduate Studies and Research

Prof. Dr. Elvan Yilmaz
Director

| certify that this thesis satisfies the requirements as a thesis for the degree of Master of
Science in Computer Engineering.

Assoc. Prof. Dr. Muhammed Salamah
Chair, Department of Computer Engineering

We certify that we have read this thesis and that in our opinion it is fully adequate in
scope and quality as a thesis for the degree of Master of Science in Computer
Engineering.

Asst. Prof. Dr. Ahmet Unveren
Supervisor

Examining Committee

1. Asst. Prof. Dr. Adnan ACAN

2. Asst. Prof. Dr. Ahmet UNVEREN

3. Asst. Prof. Dr. Yiltan BITIRIM

ABSTRACT

Artificial Immune Systems (AIS) are computational methods that belong to the
computational intelligence family and are inspired by the biological immune system.
Many researchers developed immune based models to solve complex computational or

engineering problems by using fast exploration ability of the AlS.

The proposed method uses multi-set search mechanisms within AIS to solve the
dynamic optimization problems, i.e. moving peak benchmarks. In the moving peak
benchmark problems the optimum and environment changes in time. For this reason it is
difficult to find optimum. In this thesis distributed detection and fast exploration ability
of AIS are combined with multi-set search mechanisms to find optimum solutions of the

given dynamic optimization problems.

The given method was compared with different algorithms that solve dynamic
optimization problems and the results showed that the proposed method outperforms

almost all other methods.

Keywords: dynamic environments, optimization problems, artificial immune systems,

moving peaks benchmarks

Oz

Yapay Bagisiklik Sistemleri (YBS) hesaplama yontemleri olup yapay zeka ailesindendir
ve biyolojik bagisiklik sistemi ilham alinarak {iretilmis yontemlerdir. Bir¢ok arastirmaci
YBS hizli kesfetmek yetenegini kullanarak karmasik hesaplama veya miihendislik

problemlerini ¢6zmek igin bagisiklik tabanli modeller gelistirdi.

Onerilen yontemde dinamik en iyileme problemlerini ¢ozmek icin YBS iginde coklu-
grup arama mekanizmalar1 kullanildi. Dinamik problemlere 6rnek olarak hareketli tepe
denektaglar1 verilebilir. Zaman i¢inde hareketli tepe denektaslar1 problemlerinde en iyi
ve c¢evre degisime ugrar. Bu nedenle, en iyiyi bulmak zordur. Bu tez c¢alismasinda
YBS’nin dagitik algilama ve hizli kesfetmek yetenegi coklu-set arama mekanizmalari ile
birlestirilerek mevcut dinamik en iyileme problemlerinin en iyi ¢oztmlerini bulmak igin

kullanildi.

Verilen yontem dinamik en iyileme problemlerini ¢ézen farkli algoritmalar ile
karsilastirilmis ve elde edilen sonuglar dogrultusunda 6nerilen yontemin hemen hemen

tiim diger yontemlerden daha iyi performans gosterdigi ortaya konulmustur.

Anahtar Kelimeler: dinamik ortamlar, en iyileme problemler, yapay bagisiklik

sistemler, hareketli tepe denektagslar

This thesis is dedicated to my lovely parents who always give opportunity to me to
following my dreams, and to my dearest brother Mahmoud who has supported me all the

way since the beginning of my studies.

FOR THOSE WHO WERE THERE
AND ARE NOT,
FOR THOSE WHO WERE THERE AND ARE,
FOR HIM, BUT MOST,

FOR HER

ACKNOWLEDGMENT

| would like to thank Asst. Prof. Dr. Ahmet Unveren for his continuous support and
guidance in the preparation of this study. Without his invaluable supervision, all my

efforts could have been short-sighted.

| would also like to thank all of my teachers specially Asst. Prof. Dr. Adnan Acan and
Assoc. Prof. Dr. Ekrem VAROGLU who helped me during my education in Cyprus and
also all the members of staff at Department of Computer Engineering for the facilities

they provided that helped me achieve the results in this thesis.

And also | would like to thank of my dearest friend and my brother Daniyal Yazdani
which helped me a lot and never forgot me, and also thanks to my dear friend
Mohammad Azhari who supported and helped me a lot and was like a brother in the

foreign island.

| owe quite a lot to my family who allowed me to travel all the way from Iran to Cyprus
and supported me throughout my studies. | would like to dedicate this study to them as

an indication of their significance in this study as well as in my life. | Love them all.

Vi

TABLE OF CONTENTS

ABSTRACT ettt ettt e et be et e bt anbe e reeente e ii
()74 iv
DEDICATION ...ttt st e ettt st e sb e st e et e enbeenbeeanaeenreeas v
ACKNOWLEDGMENT ...ttt neas Vi
LIST OF TABLESoooiiviiinseiisssssssssss s ssssss s Xi
LIST OF FIGURES ...ttt Xiii
L INTRODUCGTION ...ttt ettt nne e 1
1.1 IMMUNE SYSTEM...eiiiiiiiiitie e 1
1.1.1 Natural Immune SYSTEMccooiiiiiiiiieiese s 3
1.1.1.1 Primary Lymphoid Organsccccoererereninienineieenesie e 5

1.1.1.2.1 BONE MAITOW ... 6

1.1.1.2 Secondary Lymphoid Organscccecveiieeiieiiieeiie e esee e svee e 7

O O 0 S T o T o USSP 7

L.1.1.3 IMMUNE’S TYPE vvveiirieiiiie ittt 7

1.1.12.3.2 INNAtE IMMUNILY ...eovviiiiiiiieiieeee s 8

1.1.1.3.2 Adaptive IMMUNILYcccooiiiiiiiiieiesc e 8

1.1.1.4 How the limmune System WOIKSccocooiiiiiiiiice e 8

1.1.1.4.1 Concepts of Basic Components in the Immune System 9

1.1.1.4.2 ImMmMuUNE SYStEM PrOCESSES.....cccvviiiiiiiiiieiiiie et 14

1.1.1.5 The Primary Mechanism of Protection in Immune System................. 18

vii

1.1.1.6 Immune NetWOrk TREOIYccoveiiiiiiieiieie e 20

1.1.2 Artificial Immune System (AIS).....cooiiriieiieeee e 21
1.1.2.1 Artificial Immune System Algorithms...........cccccovvevie i, 22
1.1.2.1.1 B-Cell AIGOFithm (BCA) ..eveeveeeeeereeereeeeeeeeeeeeeeseeeeseeeseeseesenee 23
1.1.2.1.2 Artificial Immune Network Algorithm (Ainet)cccoovevvennne. 24
1.1.2.1.3 Clonal Selection Algorithm (CLONALG)......ccccceeererenirnnnennn. 24
1.1.2.1.4 Negative Selection Algorithm (NSA)cccoovviininiinienereeee 26

1.1.2.2 Features of Artificial Immune Algorithmsccccooe i, 27
1.0.2.2. 1 MUBAEION ... 28
1.1.2.2.2 Adaptive Population Size...........cccoevevviiieiieiice e 29
1.1.2.2.3 Secondary RESPONSEceiveirieiiiienie st 29
1.1.2.2.4 Termination Criteria.........ccocuerrrireriiisesiseeee e 29

1.1.2.3 Problem ENVIrONMENTS.cccuiiiiiiiieniesesese s 30
1.1.2.3.1 Dynamic ENVIrONMENT..........ccoiviiiiieiie e 30

2 DYNAMIC OPTIMIZATION PROBLEMS ...t 32
2.1 Problem DeSCIIPLIONc.oouiiiiiieiiiieiieiee e 32
2.1.1 The Moving Peaks Benchmarkcccccoovveviiieiiciscc e 33
2.1.2 Generalized Dynamic Benchmark Generator (GDBG) [41]........cccccveveenee. 34
2.1.2.1 DYNamiC ChanQesScuiirieiiieiieie e 34
2.1.2.2 FUNCtioNS DefiNItIONccoiiiiiiiiecee s 36
2.1.2.2.1 Rotation Peak FUNCHION.........cccooiiiiiiiniicce e 37

viii

2.1.2.2.2 Composition of Sphere's FUNCLIONccoovvviiieniie e 38

2.1.2.2.3 Composition of Rastrigin’s Function.............cccevvvviieiiiiniennnn, 39
2.1.2.2.4 Composition of Griewank's FUNCLIONccovvvviieeiieciicsiiee, 40
2.1.2.2.5 Composition of Ackley's FUNCLION............ccccveveiieie e 41
2.1.2.2.6 Hybrid Composition FUNCLIONcccevveiiieiree e 42

2.2 Difficulties of Solving Dynamic Problems...........cccooiiiiiiiiei e 43
2.2.1 Presenting SIversity Method ... 44
2.2.1.1 Mutation and Self-adaptation............c.ccocvriririiiieiencreee e 44
2.2.1.2 Other APPrOACHESvoiiiiiie it 45
2.2.2 Diversity Maintenance Method............cccccveviiiiieiie i 45
2.2.2.1 DYNamic TOPOIOGYcveivieieeieiieie et 45
2.2.2.2 MemMOry-Based...........couiiiiiiiiee s 46
2.2.2.3 Other APProaChescciiiieiiiiee s 46
2.2.3 HyDrid Method..........cooiiiiiiiieicee s 46

3 A MULTI-SET ARTIFICIAL IMMUNE SYSTEM FOR SEARCHING OPTIMA IN

DYNAMIC ENVIRONMENT ..ottt 47
3.1 The Proposed AlQOrithmccooiiiiieccce e 47
3.1.1 Solving the Potential Optimum Coverage Challengeccccccovevieinnee. 47

3.1.2 ENVIronment ChanQeccuevvveieiieiieiie et sie et 51

3.1.3 Mechanisms to Increase Performancec.ccoeveereneinenensenesee 55
3.1.3.1 Active and Inactive MeChaniSmSccuerrereiirenieiineneseseeeenens 55

3.1.4 Graphical View on Proposed Algorithm...........ccccoooeviiiinnienecee 58

4 EXPERIMENTATION AND RESULTS ANALYSIS ..o 64
4.1 Results of Moving Peaks Benchmark Problem..........c.cccocooviiiiiiiiniciic e, 64
4.1.1 Effect of Number of TH Cells on Proposed Algorithm’s Performance......65

4.1.2 Compare with Other AIgOrithmccoveiiiiiic e 66

4.2 Results of Tests on the Generalized Dynamic Benchmark Generator (GDBG) 67
5 CONCLUSION ...ttt sttt sttt bbb e ne st 89

REFERENGCES ...ttt 91

LIST OF TABLES

Table 4-1. Results of different TH Cell SIZE......c.cccvevviiivieeece e 65
Table 4-2. Results of Offline error £ Standard error...........cccveevvvereeiesieese e 66
Table 4-3. Average-best in FUNCEION 1 (10 PEAKS)......coververieririiriinieieiesie e 70
Table 4-4. Average-worst in FUNction 1 (10 Peaks)cccccevereiiereniieseenesie e 70
Table 4-5. Average-mean in FUNCtion 1 (10 PEaKS).......cccererireririeiieienieniesie s 71
Table 4-6. STD in function 1 (10 PEAKS) ..e.vvevveiieeiieie e 71
Table 4-7. Average-best in Function 1 (50 peaks)........ccvveriiriieeiiiiiiieie e 72
Table 4-8. Average-worst in Function 1 (50 Peaks)ccccevereiiereiinseenese e 73
Table 4-9 Average-mean in FUNction 1 (50 Peaks).......cccccverereereeneninieenesee e 73
Table 4-10. STD in FUNCtion 1 (50 PEAKS) ...cvviverieieiieieiieie e 74
Table 4-11. Average-best in FUNCLION 2ovviiiiieiceceee e e 75
Table 4-12. Average-worst in FUNCLION 2coiioiriiiiiee e 76
Table 4-13. Average-mean iN FUNCION 2ccovoiieiiiiiiiee e e 76
Table 4-14. STD iN FUNCHON 2 ..ot 77
Table 4-15. Average-best in FUNCLION 3 ..o s 78
Table 4-16. Average-worst in FUNCLION 3 ..o e s 78
Table 4-17. Average-mean in FUNCLION 3ooooiioiiiiiiiee e e 79
Table 4-18. STD iN FUNCHON 3oiie e 79
Table 4-19. Average-best iN FUNCLION 4c.voiiiiiee e s 80
Table 4-20. Average-worst in FUNCLION 4cooioiiiieiiee e 81
Table 4-21. Average-mean iN FUNCHION 4oovoiieieiieieee e 81
Table 4-22. STD iN FUNCHON 4ooieceeee e s 82

Xi

Table 4-23. Average-best in FUNCLION 5cc.ooieiicii e 83

Table 4-24. Average-worst in FUNCLION 5.........ccoiiiiiiic e 84
Table 4-25. Average-mean in FUNCLION 5coovoiiiiiiii e 84
Table 4-26. STD IN FUNCHON 5 ..o 85
Table 4-27. Average-best in FUNCLION 6cooveiieiiiiiii e 86
Table 4-28. Average-worst in FUNCHION Bcccoiveiiiiiiiciic e 86
Table 4-29. Average-mean in FUNCLION 6ccooiieiiiiiiii e 87
Table 4-30. STD iN FUNCHON 6 ..o 87

xii

LIST OF FIGURES

Figure 1-1. Close cooperation lymphatic system and circulatory system............c.ccocveueee. 3
Figure 1-2. Structure of the lymph NOE..........ccooiiiiiii s 4
Figure 1-3 Various organs of the immune system in human bodycccccoovvniiinnne. 5

Figure 1-4. Multi-layered structure of the immune system to deal with external factors
AN PALNOGENIC ...ttt e bbbt 9

Figure 1-5. Mature the immature T-cells into mature helper T-cells and killer T-cell....12

Figure 1-6. Maturing B-cell to plasma Cellcoovviiriiiii e 13
Figure 1-7. Antibody and Antigen's marker molecule to identify as foreign cell............ 14
Figure 1-8. Detection in IMMUNE SYSTEIMcccviiiiieiieie e 15
Figure 1-9. NegatiVe SEIECTIONc.ciiiiieieii e 16
Figure 1-10. CloNe SEIECTIONcouiiiiiiie e 17
Figure 1-11. Process to produce B-Cell MEmMOIYcccooiiiiiiiiiiiccece s 18
Figure 1-12. The primary mechanism of defense in the immune systemcc........ 19
Figure 1-13. Activation and suppression in antibody and antigen.............ccccoeveeiinnenne. 21
Figure 1-14. AIS position in computational intelligence hierarchyccccooiin. 22
Figure 1-15. Pseudo-code of the basic B-cell algorithm ..o 23
Figure 1-16 Pseudo-code of the basic Artificial immune network algorithm 24
Figure 1-17. Pseudo-code of Clonal selection algorithmccocooeiiiininiiiiinns 25
Figure 1-18. Pseudo-code of Negative selection algorithmcccccooeviiiiniinien. 27
Figure 2-1. 3D perspective of moving peak benchmarkccccooeiiiiinins 37
Figure 2-2. A 3D view of Composition of Sphere's functionccccccoveiiiiniiniens 38
Figure 2-3. 3D view of Rastrigin's fUNCLIONccoviiiiiiiiiiieeee e 39

Xiii

Figure 2-4. 3D view of Griewank's fUNCLIONcccccveviiie i 40

Figure 2-5. 3D view of composition of Ackley's functionc.ccccecviiiieiiicieenen, 41
Figure 2-6. 3D view of Hybrid Composition functionccccooiiiiiiiicieiccee, 42
Figure 3-1. Antibody activation PSeudo COAEccccvuierieiiiieiie e 49
Figure 3-2. Pseudo code TH Elimination Algorithm..........cccccoiveiiiiiiic i, 50
Figure 3-3. Pseudo code antibody Elimination Algorithmcccoevviiiiie e, 51
Figure 3-4. Pseudo code deal with Environment Change Algorithmcccevveenen 55
Figure 3-5. Pseudo-code activating-inactivating mechanismccccoevveveeiieeneesneenn, 58
Figure 3-6. 3D view Of an enVIFONMENT...........ccoiviiieiie e 59
Figure 3-7. Finding peak by TH CellScovvoiiiiice e 59
Figure 3-8. Antibody Set aCtIVALINGccovveiiiieiii e 61
Figure 3-9. ENVIrONMENt CRANQE........ooiiiiii ittt 61
Figure 3-10. All of the peaks are fouNdccoovviiie i 62
Figure 3-11. Algorithm’s flOWCRArt............cooiiiiiiieie e 63
Figure 4-1. Standard parameter SEtINGcccveviieiiieiie e 64
Figure 4-2. Procces of findig peaks by algorithm ..., 67
Figure 4-3. Parameters setting for GDBGcccooiiiiiiiii e 69

Xiv

file:///C:/Users/asus/Desktop/jury%20final%20thesis.docx%23_Toc332579655

Chapter 1

INTRODUCTION

1.1 Immune System

Artificial immune system algorithms are methods which have been inspired by
immunology theories and Biological observations of the complex mechanisms of living

organisms, natural immune defenses against pathogens [1].

These algorithms with characteristics such as dynamic regulation of population size,
search space exploration and extraction, and optimization capabilities by maintaining
multiple local optimal solutions, in solving many problems have been a point of interest
to many researchers, and many different versions of the basic algorithm have been

developed and applied for the solution of real world science and engineering problems

[2].

On the other hand, there are some challenges related to this algorithm such as correlation
between the cost function and population size, proportion between accuracy and error in
the binary exponential range mode, evolution as a random mutation changes, getting
stuck of a local optimum and sometimes premature convergence and low convergence

rate [3].

In this thesis, the aim is to introduce a new algorithm based on artificial immune
systems. This algorithm is designed to solve optimization problem in dynamic
environments, particularly the moving peak benchmark problems that are described in

chapter 2.

The proposed algorithm used some mechanisms to rectify many problems which exist in
artificial immune system algorithms. These mechanisms were inspired by natural
immune system of human body to improve performance of artificial immune system
algorithms to solve optimization problems in dynamic environments. These mechanisms

and the problems that are tried to be solved are explained in chapter 1 and chapter 2.

By comparing the presented algorithm to other algorithms related to dynamic
optimization problems, one can say that this is one of the best algorithms in artificial
immune system which has been introduced. So far, the results show that this algorithm
has better performance than some well-known algorithms in the world of optimization

problems. All the results and experiments are shown in chapter 3.

In this chapter, we have a brief review of natural immune system and we will see how
immune system can face with new antigens and can improve itself to have a better and
faster response to previously seen antigens. You can find these definitions in section
1.1.1. Also, there is a quick look at artificial immune system, and some of the most
important algorithms that have been introduced in section 1.1.2 Artificial Immune

System (AIS)

1.1.1 Natural Immune System

Immune system is made of a complex structure of cells and blood vessels that have the
task of cleansing the body from pathogens. Organs in the body's immune system are
called lymphoid organs. Lymph is a Greek word that means clean and limpid flow.
Lymphatic vessels and lymph nodes are part of the blood circulatory system to carry
lymphocytes, and include a transparent flow of white blood cells and mainly lymph

which is showed in Figure 1-1.

|
Lymph Lymphatic
node vessel

Figure 1-1. Close cooperation lymphatic system and circulatory system [4]

Lymphocytes are moved throughout the body by lymphatic vessels and wash all tissues
of the body and return to the circulatory system. Lymph nodes mark the lymph vessel
network in order to create a confluence of immune cells to defend against aggressors.

The spleen which is located at the upper left of the abdomen is a place for immune cells

to confront antigens. Clumps of lymphoid tissue are located in many parts of body such
as bone marrow and thymus. Tonsils, adenoids, and appendix are part of the lymph

tissue too.

Immune cells and foreign molecules enter through the blood vessels or lymph vessels to
lymph nodes. All immune cells that are located in the immune systems are transferred to
the blood stream to look for external antigens. Details and structure of the lymph node

are shown in Figure 1-2.

Incoming

lymph vessel
o/

@

Germinal
center

Paracortex

-

— Cortex

Follicle
Medulla

Vein Outgoing

ArE lymph vessel

Figure 1-2. Structure of the lymph node [4]

1.1.1.1 Primary Lymphoid Organs
In general, members of the immune system are divided into two groups: primary and
secondary lymphoid organs that each of them have their own task. General body’s

structure and various organs of the immune system are presented in Figure 1-3.

Tonsils and \ \
adenoids — \ .':‘ » Lt

.&_} __| I nodes
A

~ Lymphatic
i vessels

Figure 1-3 Various organs of the immune system in human body [4]

The primary lymphoid organs are where lymphocytes have the main evolution. The
members of lymphocytes from lymphoid stem cells are improved and then the mature
cells are activated and multiplied. In mammals, T cells in the thymus and B lymphocytes
in bone marrow and fetal liver are reaching to maturity. Birds have a special area to
produce the B-cells that is called bursa of Fabricius. Lymphocytes in primary lymphoid
organs, that overcome the antigens a person receives during the life, gain a set of
specific antigen receptors. In the primary lymphoid organs, cells with receptors for self-
antigens are destroyed, while the T cells in the thymus learn how to recognize their own
MHC! molecules. When T cells try to distinguish between self and nonself cells, they
use a kind of protein that is called MHC [4].

1.1.1.1.1 Bone Marrow

Bone marrow is a soft, sponge-like material that exists within the bone. It contains
immature cells that are called stem cells and the production of blood cells is their task.
There are three types of blood cells: White blood cells which have immune task; Red
blood cells that carry oxygen to the organs and tissues and also collect wasted

production from them and Platelets have the task of blood clotting and wound repair.

Most of the stem cells are found in bone marrow but some of them that are called
Peripheral blood stem cell (PBSCs) are in the blood flow. With cell division, more cells
are produced and after that cells become mature and are converted to white and red

blood cells.

! Major histocompatibility complex

Blood cells are formed in bone marrow. Bone marrow is located in bone cavity. In
children, a marrow of all bones are involved in cells production; but in adults, it is the
duty of active part of bone marrow which is called red marrow and is limited to the
bones of the body’s trunk. Despite the fact that the name of this type of bone marrow is
red, they make both the red and white blood cells.

1.1.1.2 Secondary Lymphoid Organs

After production of lymphocytes in primary lymphoid organs, they are stimulated by
antigen and immigrate to secondary organs to be distinguished; the spleen is one of the
most important members in this group.

1.1.1.2.1 Spleen

Spleen is a wide organ which is located near the stomach, but it is never part of the

digestive system and it is more related to the circulatory system.

In a healthy human body, about 10 million red blood cells are destroyed in seconds and
of course the red blood cells are needed to be replaced. To do this, three different parts
of body work together: bone marrow, liver and spleen. Red bloods cells are stored in the
spleen to work in emergency time; also worn-out blood cells are destroyed in spleen.
Some of the white blood cells that called lymphocytes are made in the spleen and bone
marrow. When a severe shortage of blood occurs suddenly, spleen releases large number
of red blood cells to fill the shortage [5].

1.1.1.3 Immune’s Type

Human immune system can protect the body against disease-causing agents such as
viruses, bacteria, fungi and other parasites. Immune system in living organisms are

divided into two categories: innate immunity and adaptive immunity.

1.1.1.3.1 Innate Immunity

Innate immune system was first described by Elie Metchnikoff a century ago. Innate
immunity is not faced directly to the invaders, but it fights indirectly with the pathogens
that are imported to the body. Innate immune has this feature to immediately deal with
pathogens. But in this situation they cannot have modification and correction by
generation and mutation [6].

1.1.1.3.2 Adaptive Immunity

Adaptive immune system deals with aggressors by modification of different sets of
receptor genes randomly, and with appearance of new invaders they become modified

and this mechanism allows the host to generate immunological memory.

Unlike Innate immune system, this system requires modification and reproduction to
deal with pathogens which is certainly a time consuming process. Artificial immune
systems that are used by researchers in computer science have been inspired by most of
these methods and strategies. The adaptive immune system is also called acquired
immunity [6].

1.1.1.4 How the limmune System Works

Immune system deals with pathogens by a multi-layer structure at several different
levels and with respect to innate and adaptive immunity, this structure is shown in

Figure 1-4.

pathogens skin physiological innate immune adaptive immune

conditions system system
g <

pha/ghocyte

/ lymphocyte
e XP

Figure 1-4. Multi-layered structure of the immune system to deal with external factors

2
>
o

and pathogenic [7]

Before describing how immune system works in the body, it is needed to introduce and
explain the basic concept of immune system.

1.1.1.4.1 Concepts of Basic Components in the Immune System

1.1.1.4.1.1 Hematopoietic Stem Cell

Both red and white blood cells originate from bone marrow as stem cells. Specialized
name of these cells are Hematopoietic stem cells because they are source of all blood
cells. Stem cells in bone marrow do not have any characteristics of adult blood cells, but
they have the ability to divide. Typically when a cell is dividing, it splits into two
identical cells. But when a stem cell divides, it divides non-symmetrically. One of the
two cells produced is identical to the parent cell, and the other one separates from the

parent stem cell and becomes a different cell. On the other hand, for a hematopoietic

stem cell, an offspring is exactly identical to its parent and the other one convert to

another hematopoietic stem cell in a specific way [7] [8].

There are multipotent and pluripotent stem cells in bone marrows which are originated
from the two ancestral cells: myeloid and lymphoid. The myeloid acts as a common
precursor for granulocyte, monocyte, elytroid and megakaryocyte, while lymphoid cell

creates T-cells and B-cells.

In addition to self-renewing stem cells and their offspring produced by them, bone
marrow included plasma cells. The plasma cells are produced in secondary lymphoid
tissues during antigen stimulation and then migrate to the bone marrow. These cells may
continue living there and produce antibodies for years.

1.1.1.4.1.2 White Blood Cell®

There are cells in the body's immune system which fight against pathogens and their
foreign substances. There are a variety of different white blood cell types, but all of them
are made by a multipotent cell in the bone marrow which is known as Hematopoietic
stem cell. White blood cells exist in the whole body including blood and lymphatic

system.

1.1.1.4.1.3 B-Cell
B-cells produce antibodies and release them in blood and lymph stream, which are
attached by other immune cells to the foreign antigen for identification and destruction

[4]. Each B-cell with a genetic program is designed to provide a specific surface receptor

2 Leukocyte

10

for a Specific antigen. B-cells are created from root cells in bone marrow and have their
early stages of evolution there. Finally after completion of evolution, the new cell would
be a healthy cell and does not react against the body's own cells and is removed from
bone marrow and enters the body to identify and deal with the antigens. After the B-cells
are activated, they are proliferated and matured into plasma cells.

1.1.1.4.1.4 T-Cell

T-cells are as guards for foreign invaders in the blood and lymph and they mark the
antigens, attack and destroy the pathogen. T lymphocytes as well as intermediate cells
are responsible for safety. They also work as coordinator and cooperator for all immune
responses. T cells with unique cell surface molecules that are called MHC will help to

identify the antigen parts [4].

There are several different types of T cells that have different functions such as helper T-
cells and Killer T-cells. A group of T-cells through interaction with single-core
phagocyte help to destroy intracellular pathogens are called TH*. T cells interact with B
cells to help them divide, differentiate and to produce antibodies. Another batch of cells
is responsible for destroying those host cells that were infected by a virus or other
intracellular pathogens. This type of operation is called cytotoxicity and these types of
T-cells are called cytotoxicit. T-cells are produced in bone marrow and then evolve to
mature and migrate to the thymus, which is a member of the body's lymph nodes.

Symbolic forms of T-cells are shown in Figure 1-5.

® T-cell helper

11

Immature T cell

Mature helper Mature cytotoxic
T cell T cell

Figure 1-5. Mature the immature T-cells into mature helper T-cells and killer T-cell [4]

1.1.1.4.1.5 Plasma cell

After B-cells are activated, they are proliferated and matured into plasma cells. The
number of plasma cells in the blood is low; in fact it is less than 0.1% of the cells in the
lymph circulation. In normal conditions, Plasma cells are limited to secondary lymphoid
tissues and members, but there are plenty of them in the bone marrow too. Produced
antibodies by plasma cells belong to a specific group and immunoglobulin class. Most of
the plasma cells have a short life and only live for a few days. The death of these cells
occur duo to the apoptosis phenomenon. Maturing B-cells to plasma cells is shown in

Figure 1-6.

12

B cell

Plasma cell Antibody

Figure 1-6. Maturing B-cell to plasma cell [4]

1.1.1.4.1.6 Antibody
After B cells are stimulated by antigen or T cells, they turn into plasma cells. In this
stage, plasma cells make the large amounts of receptor molecules that are dischargeable.

These molecules are known as antibodies.

Since antibodies are similar to the main receptor molecules, they connect to the antigens
that activate B-cells in the beginning. Antibodies react to antigens and try to destroy and
eliminate foreign invaders. Even other types of antibodies block the viruses to prevent
them from entering the cells. The marker molecules that are carried by antigens and

antibodies are shown in Figure 1-7.

13

1.1.1.4.1.7 Antigen

Antigen as a word means antibody generator, and at first was used to describe each
molecule that stimulates B-cells to produce a specific antibody. But today usage of these
words is much more widespread and covers every molecule that is identified specifically

by components of the immune system such as B-cells, T-cells or both.

[] Antigen] Marker molecule I Antibody

Figure 1-7. Antibody and Antigen's marker molecule to identify as foreign cell [4]

1.1.1.4.2 Immune System Processes

There are several important processes in the immune system which are explained briefly
in this section.

1.1.1.4.2.1 Detection in Immune System

Immune cells can detect a pathogen or protein fragment when chemical bonds are

established between receptors on the surface of an immune cell and epitopes, and

14

strength of the bond between these two is called the affinity. The high affinity means

receptors of immune cell and epitopes have more similarity and vice versa.

receptor

lymphocyte

epitope

\

\ low affinity
/

/4

structurally
similar - _ _»
high affinity

Figure 1-8. Detection in immune system [7]

As can be seen in Figure 1-8, “the pathogens on the left have epitope structures that are
complementary to the receptor structures and so the receptors have higher affinities for
those epitopes than for the epitopes of the pathogens on the right, which are not

complementary” [7].

1.1.1.4.2.2 Self-Cells Detection

In the immune system, to prevent the killing of self-cells, the body tries to eliminate B-
cells and T-cells which detect self-cells as pathogens. This process occurs in the thymus.
For example if TH-cell can detect a self-cell, it will participate in clonal deletion or

negative selection and it will die in this process. This process is shown in Figure 1-9.

15

immature
T-cells in
the thymus

ubiquitous &
self proteins

:
J

those that
bind, die

23\2
> Ag 4
self-tolerant x T-celldeath z

Figure 1-9. Negative selection [7]

1.1.1.4.2.3 Clonal Selection

The body tries to increase the diverse population of T-cells and B-cells and it does this
by using clonal selection process. In this process, somatic hyper mutation helps the
variation and also competition for pathogen epitopes helps the better selection. Immune

system selects a B-cell or T-cell with high affinity and clones it.

It tries to keep the population diversity by mutation. The immune cells with higher
affinity have more chance to get cloned to larger groups and vice versa. A sample clone

selection and hyper mutation is shown in Figure 1-10.

16

initial
B-cell
population

oS

g

clonal selection
adapted

and
hypermutation
B-cell I

population

Y
.

Figure 1-10. Clone selection [7]

1.1.1.4.2.4 Immunological Memory

In the immune system, the B-cells with higher affinity have more chance to proliferate.
Thus, they live more than other B-cells in the body, which in this case they can be
considered as a memory. These cells can respond to the pathogen faster than the original
B-cells that require a longer process to be produced. It can help the body to reach the

steady state very quickly.

In the Figure 1-11, you can see the affinity maturation. Activated B-cells have a
proliferation process, and they produce mutated clones. The clones with highest affinity

will survive and become memory cells or plasma cells.

17

activation proliferation diffsrentiation piasa cel
high affinity
selected antlbody
“* —
>
X memory cell
“ *
cell death

low affinity
no selection

Figure 1-11. Process to produce B-cell memory [7]

1.1.1.5 The Primary Mechanism of Protection in Immune System

As discussed earlier, the human body is protected by immune cells in such way that all
immune cells response to antigens which usually are foreign molecules of bacteria or
other aggressor agents. The primary mechanism of defense in the immune system is

shown in Figure 1-12.

APCs* like macrophages travel into the body and divide antigens to antigenic peptides
by devouring them. Peptide fragments are joined to the MHC?® protein and are exposed
on the cell surface. Other cells like T-cells and T lymphocytes which have receptor
molecules have the ability to detect and recognize various combinations of MHC and

peptides [9].

* Antigen presenting cells
® Major histocompatibility complex

18

MHC protein Antigen

%# (I)
Peptide

T cell
; (III)

)

0
L °
Activated T cell ° Lymphokmes =

- b
’{ R

APC

Activated B cell ___
(Plasma cell)

¥rF |
(VI)

7

0

Figure 1-12. The primary mechanism of defense in the immune system [10]

T-cells are activated by divided recognition and discharged lymphokines or chemical

signals and prepare other components of the immune system for action.

B-lymphocytes have receptor molecules on their surface too, which respond to signals.

Unlike T-cells, B-cells can identify some parts of free antigens without MHC molecules.

19

1.1.1.6 Immune Network Theory
Immune network theory for the first time was proposed in 1974 by Jerne [11]. The part
of the antigen that is detected by the antibody is epitope, and the part of antibody

molecules whose job is epitope detection called paratope.

Also the part of the antibody with the antigen characteristics is named idiotope. A model
of idiotopes which is located in the antibody polypeptide chains region is detected by
paratope. In each branch of antibody, there is a paratope and small collection of

idiotopes, that are called idiotype [12].

Immune system is defined as a complex network of paratopes that identify a set of
idiotopes and a set of idiotopes which are identified by paratopes. Therefore, each
element of network has the capability of identification and recognition at the same time.
This property creates an immune network in which antibody molecules are connected to

each other as free molecules or B-cell receptor molecules.

After an antibody identified an epitope or an idiotope, it can respond positive or negative
to this identification signal. The result of a positive response is cell activation, cell

proliferation and antibody secretion.

On the other hand, the negative response leads to tolerance or suppression in the cell.

Figure 1-13 shows the process of activation and suppression in antibodies chain.

20

Suppression (Negative Response)

<

>

Stimulation (Positive Response)

Figure 1-13. Activation and suppression in antibody and antigen [1]

1.1.2 Artificial Immune System (AIS)

Artificial immune system is one of the branches of computer science that is inspired by
the immune system of organisms and is presented by different algorithms to solve
various problems in computer science. The immune system has different levels. At the
first level, it prevents foreign organisms or antigens from entering the body using skin
abilities, tears and similar strategies. The second level is the innate immune system
where all antigens are treated in the same general way. This level of the immune system
works very slowly and is not sufficient to deal with antigens. Adaptive immunity is the
next level and in which, for dealing each antigen an appropriate method is applied. This
immune level works very fast and can produce large numbers of immune cells to deal

with antigens.

Algorithms that are designed in artificial immune system are mostly modeled after the
adaptive immune system and these algorithms have been used to solve wide range of

computer problems. Artificial immune system algorithms are divided into several

21

groups: negative selection, clonal selection, danger theory, immune network and B-cell
Algorithm. Each one of them is inspired by a different natural immune system. Up to
now, these algorithms are used to solve optimization problems, pattern recognition,
classification, clustering, network security and other issues of computer science and
have obtained good results compared to existing algorithms. The immune system can be
a parallel and distributed adaptive system that has been inspired by immunology of
natural processes .

1.1.2.1 Artificial Immune System Algorithms

Acrtificial immune system is one of subsets of methods that are inspired by biological
sciences, which itself is a subset of computational intelligence. A brief hierarchical view

of computational intelligence and its subsets are shown in Figure 1-14.

computational
intelligence

Adaptation of

the biological
methods

Artificial
immune
system

Evolutionary Artificial neural
Computation networks

Immune

Negative Clonal
selection selection

Danger Theory

network

Figure 1-14. AIS position in computational intelligence hierarchy [13]

22

Various applications of artificial immune system are mentioned in many articles and
journals in which they are used to solve problems related to the hybrid structures and
algorithms with similar mechanisms to immune system [14] [15]. Some computational
algorithms based on principles of immune are clonal selection, immune network theory,
learning, self-organization, artificial life, cognitive models, multifactorial systems,
design and scheduling, pattern recognition, anomaly detection Immune engineering tools
and etc. In the following section, some of the most famous algorithms in immune system
are briefly explained.

1.1.2.1.1 B-Cell Algorithm (BCA)

The B-cell algorithm is one of naive and basic algorithms in artificial immune system.
There are many researches and articles in which it has been tried to improve this
algorithm. The main idea of this algorithm is parallel search in such way that each
member of the population (each B-cell) searches its own neighborhood in the search area

[16]. The basic B-cell algorithm is shown in Figure 1-15.

B-cell algorithm

input : g(v) = function to be optimized
output: P = set of solutions for function
begin
1. Create an initial population P of individuals in shape-space
2. For each v € P, evaluate g(v) and create clone population C with n solutions
3. Select a random member of v’e C and apply the contiguous region hypermutation operator
4. Evaluate g(v’); if g(v’) > g(v) then replace v by clone v’
5. Repeat steps 2-4 until stopping criterion is met
end

Figure 1-15. Pseudo-code of the basic B-cell algorithm [3]

23

1.1.2.1.2 Artificial Immune Network Algorithm (Ainet)

The immune network algorithm is one the most famous algorithm in AIS, and there are
many versions of this algorithm. The version given before is called the Optimization
Acrtificial Immune Network algorithm (opt-aiNet). Signaling information processing
properties and resource maintenance make fundamental of the immune network theory
which proposes an additional order of complexity between the cells and molecules under
selection. The purpose of the immune network process is preparing a set of distinct
pattern detectors for problems domain in such a way that cells similarity (low affinity)
means better performing in network [17]. The basic pseudo code of this algorithm is

shown in Figure 1-16.

Immune Network Algorithm

input : N = a set of random detectors, n = number of best
antibodies
output: M = set of generated detectors capable of finding solution
begin
1. Create an initial random population B
2. For each solution in B
2.1 Determine inverse distance for solution in B to each member of N
2.2 Select n members of B with the highest affinity
2.3 Clone and mutate each n in proportion
2.4 Retain the highest affinity of n and place in a set M
2.5 Perform network dynamics in M to remove weak members of M
2.6 Generate b random elements and place in B

3 repeat
end

Figure 1-16 Pseudo-code of the basic Artificial immune network algorithm [3]

1.1.2.1.3 Clonal Selection Algorithm (CLONALG)
The main idea of clonal selection is inspired by the basic features of natural immune

system that response to an antigenic stimulus. The idea is to just select and duplicate

24

those cells that can recognize antigen [2]. Some of the most important features of this

algorithm are:

e Selection and proliferation of cells with the highest level of stimulation (high
affinity)

e Elimination of cells with the lowest level of stimulation (low affinity)
e Dependence evolution and selection of the cells, proportional to antigen stimulus
e Save the cells with highest level of stimulation for longer time as memory cell

The main difference between clonal selection and other evaluation algorithms is
mutation and how it is being done. The mutation rate is proportional to inverse of the
affinity. It means that cells with high affinity have low mutation rate and cells with low
affinity are mutated by a higher rate. In both groups of algorithms, the population should
be encoded using binary or real numbers similar to evolutionary algorithms, but in
clonal selection the binary coding is usually used. The general structure of the clonal

selection algorithm is shown in Figure 1-17.

Clonal selection Algorithm

1. Fitness evaluation: For each antibody x; in the population P compute its fitness f(x;)

2. Clonal selection: Choose a reference set P, C P consisting of h antibodies with highest
fitness to the antigen

3. Somatic hypermutation.

3.1 For each antibody x; € P, make mutated clones xcjx , k = 1,...,c, compute their fitness
and place them in clonal pool C.

3.2 Choose a subset P, C (P UC) containing |P| fitness antibodies.
4. Apoptosis: Replace d worst antibodies in P, by randomly generated solutions.
5.SetP =P,

Figure 1-17. Pseudo-code of Clonal selection algorithm [18]

25

1.1.2.1.4 Negative Selection Algorithm (NSA)

Due to the success achieved by using other artificial immune systems algorithms,
researchers were attracted to another aspect of the immune system that does negative
selection in the process of the maturing the T-cells. In negative selection process,
immature and inappropriate T-cells that are attached to self-cells are eliminated. This
process helps the immune system to recognize self from non-self-antigens without any
mistakes. Since the process needs to introduce the detection of the specific harmful cells,
it allows the immune system to identify previously unseen harmful cells. This algorithm
includes 3 levels: self-detection, producing finders and investigating the occurrence of
abnormal events. In first level, self-cells are detected by similar methods to other
detection methods, and some patterns equal to these are created which are called self-
patterns. In second level, some random patterns are produced that have been compared
to the self-patterns which were produced in the first level. If a produced random pattern
matches with self-pattern, this pattern fails in the process of becoming a detector, so it
should be destroyed. Otherwise, it becomes a pattern detector and monitors specified
patterns which have been seen in the system before. Some of the important features of

negative selection algorithm are:

e Detection of previously unknown attacks
e Probable detection and adjustable

e The inherent distribution detection

e Local detection

e Unique set of detection

e Protection of self and non-self detectors sets

26

The general pseudo code of negative selection algorithm is shown in Figure 1-18.

Negative Selection Algorithm

input : S = set of self-cells
output: D = set of generated detectors
begin
1. Define self as a set S of elements in shape—space Y
2. Generate a set D of detectors, such that each fails to match any element in S.
3. Monitor data 8 S Y- by continually matching the detectors in D against 3. If any detector
matches with 3, classify _ as a non-self, else as self.

end

Figure 1-18. Pseudo-code of Negative selection algorithm [3]

1.1.2.2 Features of Artificial Immune Algorithms

From the perspective of information processing, immune system is a parallel and
distributed adaptive system. Immune algorithm has been inspired by theoretical
immunology and several processes that occur in it. In general, Immune algorithms use
learning, memory and associative retrieval to solve problems and identify related
patterns. The immune algorithms have many properties and some of the most important

are [10]:

e Uniqueness: each individual has its own immune system independently
proportional to its own vulnerabilities and ability

e Recognition of foreigners: the immune system detects and destroy the (harmful)
molecules

e Anomaly detection: recognition and response to pathogens that the body has
never encountered before

e Distributed detection: cell distribution in the whole body
e Imperfect detection (noise tolerance)

e Reinforcement learning and memory: fast and powerful react to the pathogens
which was detected before

27

We can name versatile, feature extraction, dedicated, self-tolerance, resolution as other
properties. Some of the important characteristics in immune system are explained below.
1.1.2.2.1 Mutation

Mutation in the genetic algorithm is used to avoid premature convergence by lost or
unseen particle recovery solutions. In immune’s algorithm, mutation occurs randomly
depending on affinity rate between antibody and antigen. Population with high affinity
has lower rate of mutation, but on the other hand, population with low affinity has higher
rate of mutation [19]. This strategy tries to search near neighbors individually with
higher affinity which is opposite of what happened to individuals with lower affinity. In

this situation, the system tries to search in bigger space to probably find a better solution.

The small amount of mutation rate in genetic algorithms is essential and successful and
creates diversity in the crossover. The mutation as the only mechanism in immune
system that can create diversity in population has a very essential rule. It should create a
new population in such way that can search domain space in two cases. In first scenario,
it should search near neighbors individually and cover local searches and this happens
by using a low rate of mutation. In second scenario, the system should search in a bigger
area in domain space which helps to escape from local optima and find the global
optimum. In this process it is necessary to protect the most qualified individual (the
elite) in cycle. This rate is decreased until it reaches zero and the process of retaining the

most qualified individual reaches to its maximum.

There are a lot of strategies for using mutation. Some of the algorithms use binary

encoding to present the population. In this case, bits filliping is the mutation technique,

28

but in various ways. Examples are single or multi point mutations. In the real value
string presentation, one or more values can change randomly or the order of the elements
is swapped. Additionally, some algorithms create numbers in different ways and are
randomly added to or subtracted from the original value [20].
1.1.2.2.2 Adaptive Population Size
In some algorithms, the population size depends on the selection strategy and its
calculated intervals can change. If the process of evolution is considered, the population
size should be proportional to the process. Boundaries of population size is set in such a
way that prevents the stability and keeps diversity of the population by selecting random
number of populations to eliminate and create new individuals.
1.1.2.2.3 Secondary Response
Some algorithm use memory to save optimality reports and relative results and when the
function is placed in a similar situation, the memory is retrieved for faster and better
response.
1.1.2.2.4 Termination Criteria
Termination criteria can be a condition or combination of many conditions that have
been considered on many programs and they cause the programs to stop. Some of the
most used conditions as termination criteria are:

e Desired accuracy

e Maximum amount of generation (iteration)

e The best individual in current generation remains and duplicate in the next
generations

e Population size

29

1.1.2.3 Problem Environments

There are 2 kinds of problems in computer science which are grouped based on their
problem spaces: static environment and dynamic environment. Most of the problems in
computer science are static problems. In static environments, domain space and problem
solutions stay unchanged. So the agent does not need to adapt to new situations. On the
other hand, dynamic environments are more complex and need some strategies to deal
with them. A brief review of dynamic environments is explained in below.

1.1.2.3.1 Dynamic Environment

Most real-world problems are changed dynamically over time. As example of these
cases it can be pointed to the problems of scheduling or routing that during time where
new tasks may be added or subtracted. Because of the characteristics of evolutionary
algorithms their advantages and essence have been derived from nature and is used
widely to solve optimization problems in uncertain environments. Normal optimization
algorithms that are designed for static optimization problems are not able to detect
environmental changes and cannot perform successfully. To have a suitable respond in
dynamic environments, environment change detection and response to this changes are
essential [21].

1.1.2.3.1.1 Detecting Changes in Dynamic Environments

One of the most common methods for detecting changes in dynamic environments is
using a point in the environment as a guard. In this case the value of the function at that
point is calculated in each cycle and is compared to the function value of the same point
in previous iteration. In this case, different values show changes in the environment
[22]. But according to the environmental changes that may occur only in the vicinity of

the guard, it sometimes may be unable to detect changes. Therefore instead of using a

30

fixed point in the environment, using several random points as guards is suggested.
Certainly accuracy of reorganization will depend on the number and position of the

guards [23].

There is another method which suggests monitor changes of the best value of the
function. In this method, the global optimum in each period is calculated and compared
with the previous period. In this case, difference between the values shows the changes
in the environment [24].

1.1.2.3.1.2 Response to Changes in Dynamic Environments

There are a lot of methods that suggest how to deal with the environment changes. To
deal with dynamic changes in the environment, one method is removing and replacing
all previous values with the new values and look at the new environment as new
problem. Some methods have proposed various random replacing such as reproducing
some part of the population randomly, initializing the best solutions randomly, and
reinitializing the whole of population. Between these methods, reinitializing 10% of the

population has good results [24].

Other mechanisms that have been discussed in [25] and [26] use a selection mechanism.
It means the whole or some part of the population is generated by the current population
which can consider different mechanisms based on elitism. Of other approaches that
have been used in various references that can be named are: mechanisms to create
diversity in the population [27], using of memory [27] [28], the combination of
diversification and memory [29], multi population [30] [31], immigration methods [31]

[32] and changes in the parameters of the algorithm [33].

31

Chapter 2

DYNAMIC OPTIMIZATION PROBLEMS

2.1 Problem Description

To evaluate an algorithm, the most important element is the problem or problems that
algorithm tries to solve it. Some of them are static and some of them are dynamic. But in
real world, most of the problems are dynamic. It means solution space, objective
function, decision variable, and constraint may change during the time. It makes the
problem more complex, so it needs different strategies to solve it. A part of these
problems are dynamic optimization problems (DOPs). Many researchers have tried to
propose some dynamic problems to test and compare their algorithms to each other.
Some of the most important test functions are: “the moving peaks benchmark (MPB)”
[34] [35], “the DF1 generator” [36], “the single and multi-objective dynamic test
problem generator by dynamically combining different objective functions of exiting
stationary multi-objective benchmark problems” [37], “exclusive-or (XOR) operator”
[38] [39] [31], “dynamic traveling salesman problem (DTSP)” [40] and dynamic multi

knapsack problem (DKP) , etc.

To evaluate proposed algorithm, 2 test environments were used and both of them are
based on moving peaks benchmark. There is a brief explanation of both of them in

section 2.1.1and 2.1.2.

32

2.1.1 The Moving Peaks Benchmark

In 1999, Jirgen Branke proposed a multidimensional fitness function which consists of
several peaks and they change during the time. This fitness function is called “The
Moving Peaks Benchmark™ [35]. In this benchmark function, locations, heights, width of
peaks are changing over time. But these changes happened in 2 models: in one of them,
“the optimum shifts slightly” can be found by a local search but on the other one “the
height of the peaks changes such that a different peak becomes the maximum peak”
which in this case the algorithm should jump to reach to the new optimum. [35]. The

function’s formula with n dimensions and m peaks is:
F(X,t) = max(B(X), max P(x, h;(t),w;(t),p,(1))) (1)

Where xeR, X = {x;, x5, ..., x,}, t is time, B(¥)a time constant, and P is peak’s shape.
Each peak has height (h(t)), width (w(t)), and location (p,(t)) which all of the peaks are
initialized randomly. To change peaks, new coordinates of each peak is calculated by the
following formulas and for A=0 the changing direction is random and for 2>0 direction
depends on the previous direction :

c€eN(0,1)
h;(t) = h;(t — 1) + height_severity .c)
w;(t) = w;(t — 1) + widht_severity .o
p.(t) =p,(t— 1) +7,(t)

Where height_severity and widht_severity are initialized by the program it shows
the severity of height and width changes. v;(t) is a shift vector and is a linear
combination of 7 that is random vector and normalized to length s . It is computed by:

v,(t) = =

= (1-DF+9,(t- 1)) 3)

+ v,(t - 1)

33

2.1.2 Generalized Dynamic Benchmark Generator (GDBG) [41]

The GDBG is a test function based on moving peaks benchmark. This function is more
complicated than the original function. This function uses rotation method instead of
shifting methods to move peaks and change the environment peaks. The GDBG includes
6 different functions to create peaks and each of those function change in 6 different
scenarios [41]. In continue, it is tried to give a short review of this test functions and the
framework of dynamic changes.

2.1.2.1 Dynamic Changes

Dynamic optimization problems can be defined as:
F=f(x0.1) (4)

Consider F as optimization function which is tried to solve and f is fitness function. t
represents the time and feasible solutions are represented as x. The solution distributions
are determined by system control that here is @. For dynamic change, a new

environment can be gained by the formula:
f(x,0,t+1) = f(x,0(t) © A, 1) (®)

In this equation, A@ is a deviation from the current system control’ parameters.

As said before, environment and peaks are changed in 6 different scenarios. These
scenarios are “small step change, large step change, random change, chaotic change,

recurrent change and recurrent change with noise” [41].

These six change methods are explained in following equations:

34

T1 (Small change step):

A9 = . ||@].7. Dseverity (6)
T2 (Large change step):
A9 = ||@][(ec. sign(r) + (Cpax —0).T). Dseverity (1)
T3 (Random change):
A9 = N(0,1). Dseverity (8)
T4 (Chaotic change):
Bt +1) =A.(B() = Dmin)- (1 = (B(8) = Dinin) /1191 9)
T5 (Recurrent change):
@(t+1) = Qpin + 19]] (sin (2?nt+(p) +1)/2 (10)

T6 (Recurrent change with noisy):

2
O(t +1) = Bpin, + 119 (sin (?nt + (p) +1)/2 + N(0,1).n0isyseverity (11)

35

“Where [[@]| the change range of is @, Bgeperity iS @ constant number that indicates
change severity of @, @,,;, is the minimum value of @, noisyseperiry € (0, 1) is noisy
severity in recurrent with noisy change. « € (0,1) and «,,,, € (0,1) are constant values,
which are set to 0.04 and 0.1 in the GDBG system. A logistics function is used in the
chaotic change type, where A is a positive constant between (1.0, 4.0), if @ is a vector,
the initial values of the items in @ should be different within ||@|| in chaotic change. P is
the period of recurrent change and recurrent change with noise, ¢ is the initial phase, r is
a random number in (-1,1), sign(x) returns 1 when x is greater than 0, returns -1 when x
is less than 0, otherwise, returns 0. N(0,1) denotes a normally distributed one
dimensional random number with mean zero and standard deviation one” [41].

2.1.2.2 Functions Definition

As said before, GDBG is based on moving peaks benchmark, but the problem space and
peaks are created by 5 basic functions. In all test functions some fixed parameters were
used that was defined by the competition manager. In some case duo to some reasons we
had to change them. Dimension that is showed by n are fixed in all functions and it
equals to 10. Just in rotation peak function, the algorithm was tested with 50 peaks also.
In all functions the range of search space is between -5 to 5 in each dimension (x €
[-5,5]™). The original environment change frequency is 10,000 times of dimensions
(change_freq = 10,000 = n) but in our test, we decrease the change frequency rate to

5,000 times of n. [41].

For environment changes step severity (a) is equal to 0.04 and maximum (omax) value

would be 0.1. In chaotic scenario, the chaotic constant was considered A=3.67. Also in

36

recurrent change with noisy case, noisy severity iS 0.8. The description of each function is
explained below:

2.1.2.2.1 Rotation Peak Function

This function is exactly same with moving peaks benchmark, but in this version, it uses
rotation method instead of shifting methods to move peaks. This is a multi-model
function that has the ability to scale. The function controls number of peaks artificially.
In our test program, this function is used in 2 situations, one for 10 peaks and another
one for 50 peaks. The width ranges from 1 to 10 (w € [1,10]), and width severity is

equal to 0.5 (@ = 0.5). The global optimum in each period is calculated by

Wseverity

bellow formulas:

x*(t) = 0, F(x*(©)) = Hy(t)
(12)
H(t) = maxj"H;

A 3D view of a sample of this function is shown in Figure 2-1.

Figure 2-1. 3D perspective of moving peak benchmark [41]

37

2.1.2.2.2 Composition of Sphere's Function
Sphere is one of the most famous functions in mathematics. This function is very
interesting in computer science and it has been used to evaluate many algorithms till

day. This function creates a round object in 3 dimensions. The function is:

i=1

fx) = zn x? x € [-100,100] (13)

In GDBG function the Sphere's function was used as a basic function to create the
environment while x € [-5,5]". This function has 10 local optimums. The global

optimum can be obtained from these formulas:

x*(t) = 0,,F(x*(t)) = H;(t)
(14)

The basic function is: f ;- fio= Sphere's function [41]

A 3D map of this function is shown in Figure 2-2.

Figure 2-2. A 3D view of Composition of Sphere's function [41]

38

2.1.2.2.3 Composition of Rastrigin’s Function
Rastrigin function is a famous function that used as a mathematical optimization

function to evaluate algorithm performance and it is defined by:

f(x) = z;(x% — 10 cos(2mx;) + 10) (16)

l

The domain space in this function is x € [—5,5]™. This problem has a huge number of
local optima that used rotation method to move them. This function is multi-model

function and it is scalable. Global optimum is calculated by the below equation:

x*(t) = 0,,F(x*(t)) = H;(t)
(17)

The basic function is: f ;- fio= Rastrigin’s function [41]

A 3D view of this function is shown in Figure 2-3.

Figure 2-3. 3D view of Rastrigin's function [41]

39

2.1.2.2.4 Composition of Griewank's Function
This function is especially used to test the convergence of optimization algorithms.
Griewank's function is defined by:

fx) = ﬁZ?zl(xi)z — 1_[7) cos (%) +1 (18)

The domain space is x € [—5,5]™ and includes a massive number of local optima. Like
other function, this function uses rotation method to move peaks. Global optimum is
calculated by:

x'(8) = 0,,F(x*(8)) = Hy(t)

(19)

The basic function is: f ;- f10= Griewank's function [41]

You can see a 3D perspective of this function in GDBG function in Figure 2-4.

Figure 2-4. 3D view of Griewank's function

40

2.1.2.2.5 Composition of Ackley's Function
Another function that GDBG uses to create the environment is Ackley's function.

Ackley's function is defined by:

n

1% 1
f(x) = —20exp| —0.2 Zz x? | —exp (Ez cos(anl-)) +20+e (20)
L i=1

In this function x € [-5,5]" and the environment contains a huge number of local

optima. The global optimum can be obtained of these formulas:

x*(t) = 0,,F(x*(t)) = Hy(t)
(21)

The basic function is: f - fio= Ackley's function [41]

Figure 2-5 shows a 3D view of a sample of this function.

Figure 2-5. 3D view of composition of Ackley's function [41]

41

2.1.2.2.6 Hybrid Composition Function
This function is combination of Ackley's function, Griewank's function, Rastrigin's

function, Sphere's function and also Weierstrass's function. Weierstrass's function is defined

by:
n [Kmax kmax
f(x) = k 2mb*(x; + 0.5))| | - ¥ cos(mb") (22)
X ; kZO[a cos(n x)] nkzzo[a cos(mtb")]

The hybrid function uses different function properties and mixes them to create an
environment that includes massive number of local optima. The global optimum can be
get of the bellow formulas:
x'(8) = 0,,F(x*(1)) = H;(®)
(23)
The basic function is: “f; - f, =Sphere's function, f3 - f, =Ackley's function, fs - f5
=Griewank's function, f; - fg =Rastrigin's function and fy - f;o =Weierstrass's function”

[41]. A 3D view of this function is shown in Figure 2-6.

Figure 2-6. 3D view of Hybrid Composition function [41]

42

2.2 Difficulties of Solving Dynamic Problems

Meta-heuristic methods for optimization can solve the problems in static environments
more easily than the problems in dynamic environments; these methods have some
challenges in dynamic environments that do not exist in static environments. The two

most important challenges are diversity loss and outdated memory.

In dynamic environments, the solution’s eligibility that was obtained by agents
Is changing by the environment change and it does not match with the values stored in
the memory. In fact, the fitness value that is stored in such a case is not correct and valid
to find the solutions. This phenomenon is called outdated memory. To solve this
problem, two solutions are suggested: re-evaluating memory and forgetting memory
[42]. In the forgetting memory method the saved location for each solution is replaced
with current location of that solution in the new environment. In the second method, the

stored position in memory can be re-evaluated in new environment.

Diversity loss also happens due to the intrinsic nature of meta-heuristic methods for
convergence. This issue is more important than the outdated memory. Due to premature
convergence, diversity in the environment is reduced and algorithms have the problem to
converge to an optimal level in new environment. This issue is created due to the
intrinsic nature of these methods to converge to the previous optimal positions and

closing the solutions to each other so much.

The easiest way to solve the above problem is re-initialization [43]. In this method, after

environment changes we look at the problem as a new problem. This method is very

43

simple but it is not suitable for solving many dynamic problems. Use of this method
only is suggested when major changes happen in the environment. It means the
difference between new environment and the previous environment is very high. But in
most real dynamic problems, changes in the environment are not very severe and there is
a connection between the new environment and previous environment. So using the
gained knowledge from previous environment we can increase the efficiency of
optimization process in the new environment. As a result of using re-initialization
method for solving such problems we lose all the gained knowledge from problem
space. To solve diversity loss problem many different methods have been presented that
can be divided into two general categories.

2.2.1 Presenting Siversity Method

The final goal of algorithms in this class is that first they allow the diversity loss to occur
and then they try to solve it. This group can also be divided into two subgroups:

2.2.1.1 Mutation and Self-adaptation

In this subgroup it is tried to create diversity in the new environment by using self-
adaptation and mutation. In [44], an adaptive mutation operator was presented as a
mutation factor which is multiplied in normal mutation rate and called Triggered Hyper-
mutation. In [45], a chaotic mutation to create diversity in the environment as an
adaptation has been used. Also another method is represented in [46] that is solved the
mutation step size problem in [44] by adaptation. Replacing the previous good solutions
after a change in the environment rather than adding a random solution is a strategy that
is presented in [47] to create diversity. A variable relocation method is presented in [48]
that relocates the solutions based on the fitness function values when environment

changes, it is done for each solution with different radius.

44

2.2.1.2 Other Approaches

Other methods for creating diversity in the environment after the changes in the
environment occurs are presented too. RPSO is a method to randomize the part of the
solution or whole of the solutions to detect changes in the environment [49]. An
algorithm called Population-Based Incremental Learning (PBIL) was presented in [50]
that used a customizable probability vector to produce solutions. This method uses the

vector to set learning rate after environment change.

This class of methods is suitable for environments with low or medium change, because
the mutation is a local search and is appropriate when the changes are small and local.
Some problems of these methods can be noted as unidentifiable changes in most
environments, not accurately measuring mutation step size and being inappropriate for
the environments with vast and quick changes.

2.2.2 Diversity Maintenance Method

In this method it is always tried to preserved diversity in the environment at all times
(before and after the change). Presented algorithms in this section can be divided into
three categories:

2.2.2.1 Dynamic Topology

In this group by limiting communication between solutions the speed of algorithm’s
convergence to the global optimum is reduced. Thus it maintains the diversity in the
environment. In [51] a neighborhood structure like grid for maintaining diversity that is
called FGPSO was presented, which provides higher performance than RPSO [49] in
dynamic environments with high dimensions. In HPSO [52] a hierarchical structure and

tree-like is proposed to maintain diversity.

45

2.2.2.2 Memory-Based

When a periodical or recurrent change in the environment occurs, the past optimal
solutions may be very useful for future use. Thus, memory-based methods try to keep
such information. Memory-based methods have been mostly proposed for evolutionary
methods such as GA, EDA, which have genetic nature.

2.2.2.3 Other Approaches

Other methods to maintain diversity in the environment after the discovery of changing
environment is presented too. In [53], a sentinel placement method is used to maintain
diversity. In this method, some sentinel series that are distributed in the search space
have been used to generate new population. These sentinels always exist in the
environment and are not removed so they can be used to identify changes in system. In
[54] random immigrant method has been suggested that in every generation, some
random solution is added to the population to maintain diversity. Another method to
maintain diversity based on fitness sharing is presented in [55].

2.2.3 Hybrid Method

This group includes combination of presenting diversity with diversity maintenance
method. So it maintains diversity during run time and also tries to create diversity when

environment changes.

46

Chapter 3

A MULTI-SET ARTIFICIAL IMMUNE SYSTEM FOR
SEARCHING OPTIMA IN DYNAMIC ENVIRONMENT

3.1 The Proposed Algorithm

In this chapter a new algorithm based on artificial immune system is proposed to
optimize the functions described in chapter 2. The proposed algorithm uses different
mechanism to solve dynamic environment challenges and increase the efficiency. In
continue of this section, various mechanisms that are used in the proposed algorithm will
be described.

3.1.1 Solving the Potential Optimum Coverage Challenge

As was said before, in a dynamic environment there are several peaks; each of them can
change global optimum after environment changes. As a result, each of the peaks is
considered a potential optimum. So the designed algorithm for optimization in dynamic
environments should monitor all the peaks so it can quickly detect the global optimum

after environment change has happened.

In the proposed algorithm multi-set mechanism is used to cover all peaks. The
mechanism used in this algorithm controls sets is inspired by THs® and B-cells [4]
cooperation. THSs try to help B-cells to identify antigens in the body and become mature
cells and convert them to antibodies. There are some sets that are called TH-cell and

many other sets that are called antibody. In TH-cell set the number of cells in the set is

® T-cell helper [4]

47

more than the number of cells in antibody sets and their task is finding the peaks in
environment. At the beginning of the algorithm there is only a TH-cell in search space

and other sets are deactivated. That means their cells are not moving.

At the beginning the TH cells are initialized randomly in the problem space and start to
search the environment. To search the environment, cells should be matured
proportional with their shapes (shape means position in this algorithm), so they use
different mutation rates. To do this, the algorithm uses the below formula as mutation

rate which is inspired of PSO movement strategy [56].

MTrate;j(T +1) = C* MTL;;(T) + R* » (Pbest;; — X;;) + R® » (Gbest;; — X;;) (24)

Where T is time, MTrate;; is mutation rate for i" cell in j" dimension. R and R? are two
random number in [0,1]. Xx;; shows the position of i" cell in j™ dimension. Pbest’ is the
best affinity value that each cell can catch during cloning process. Sbest® is the highest

affinity value in each antibody set.

After a TH cell converged to a peak, it activates an antibody set and puts it in the peak
instead of itself. After antibody was activated and reached the peak that TH cell had
found before, covering and chasing of the peak after environment changes becomes the
task of that antibody. The antibody set finds the tip of peak where it is located by a local

search [57] [58].

" Personal best
8 Set best

48

As mentioned, the numbers of cells in TH cells set are more than the number of cells in
each antibody sets. Therefore when an antibody set is replaced instead of a TH cells, the
cells with higher affinity are copied in antibody cells. For example, if the TH set has 10
cells and there are 6 cells in antibody set, top 6 cells from TH cells with higher affinity
are chosen and copied in antibody cells. Their mutation rate, position and affinity rate
(Pbest) be copied too. After antibody set is activated, the TH cells are randomly
initialized in the search space. So the local searching and chasing the top of peak are
antibody’s responsibility and TH cells start the global searching again to find other
peaks that are not covered by any antibodies sets. This process will continue until all the
peaks are covered by antibodies. If TH cells find a peak that it is not covered by any
antibody, put an antibody set there and active that set. When Euclidean distance between
the Sbest position in m™ and (m+n)™" iteration is less than a threshold which is called
conv_limit, TH cells had found a peak and converged to it. The antibody activation

pseudo code is shown in Figure 3-1.

Antibody Activation Algorithm

If TH cells are converged then

list = sort cells in TH cells based on their Pbest_affinity value in descending order

activate an antibody set

For counter=1to antibody_set size
Antibody_cell_position; (counter)= list_position(counter);
Antibody_cell_mutation_rate; (counter)= list_mutation_rate (counter);
Antibody_cell_Pbest; (counter)= list_Pbest (counter);

Endfor

SbeStantibody = SbEStTHceII;
Reinitialize TH cells;

Endif

Figure 3-1. Antibody activation pseudo code

49

If TH cells find a peak that was found before, without any activation the TH cells will
reinitialize again. In fact, a peak that is discovered before is covered by an antibody set.
So when the Euclidean distance between TH cell’s Sbest position and Sbest position of
antibody’s cells is less than a certain amount which is named req, the TH cells
converged to a peak that was discovered before. The amount of rex determined is based
on the proposed algorithm in [59]. It was shown when the Euclidean distance in both
positions is less than the rey, they are converged to a peak [39]. The rex is defined by:

Texa = 0.5 X 1/ 1 (25)
pd

Where P is number of peaks and d is number of dimensions in search space. In each
cycle, Euclidean distance between location TH cell’s Sbest and all the Shest of antibody
sets is calculated and if the value of this distance with any of the sets is less than rexcl,
TH cells are reinitialized. The pseudo code to maintain monopoly among TH cells set

and antibody sets is shown in Figure 3-2.

TH Elimination Algorithm

For each activated_antybody_set i
If Euclidian distance between Sbestry and Sbestaninogy 1S 1€SS than re. then
Reinitialize TH cells;

Endif
Endfor

Figure 3-2. Pseudo code TH Elimination Algorithm

Sometimes it is possible that the TH cells converge before reaching to a peak. This will
put an antibody set into the place and activates it. Thus, this antibody set may move

toward a peak that is already covered by another activated antibody set, so there will be

50

two activated antibody sets in a peak. Sometimes it may be that 2 covered peaks are too
close to each other and an antibody set leaves its own peak and moves toward the other
peak, hence covering that peak by two antibody sets. In this case, residents with more
than one set at a peak not only will improve the results, but also merit evaluation would
be superfluous. To solve this problem, Euclidean distance between all Sbest’s positions
of activated antibodies should be calculated. Thus if the distance between the Sbest of
two sets is less than rey, they are in the same peak. In such a case, the set who has the
worse affinity value is eliminated and the other one with higher affinity continues its

work. The pseudo code of above process is shown in Figure 3-3.

Antibody Elimination Algorithm

For each activated antybody set i
For each activated antybody_set j
If Euclidian distance between Sbestagivody i ANA SBeStantinogy j 1S 1€SS than rexe then
If Affinity(Sbest;) < Affinity (Sbest;) then
eliminate antibody set i;
Else
eliminate antibody set j;
Endif
Endif
Endfor
Endfor

Figure 3-3. Pseudo code antibody Elimination Algorithm

3.1.2 Environment Change

One of the major challenges in dynamic environments is environment change detection
and adopting algorithms for the problems caused by it. As mentioned in Section 2.2 ,
after changing the environment, optimization algorithms face two serious problems,
diversity loss and outdated memory. Thus, algorithms that are designed to optimize

dynamic environments must be able to quickly recognize changes in the environment to

51

use the mechanisms to solve these two problems. The proposed algorithm for detecting
changes in the environment uses a point called Guard point. At the beginning of the
algorithm a random position in search space is selected as the guard point and its affinity
value will be saved. In each cycle of the proposed algorithm, the affinity value of the
guard point is calculated and compared with the previous value. If the obtained values in
current and previous iteration are equal, then the environment has not changed, but if

they were two different values, it shows that environment has changed.

It should be noted that using of guard point is only suitable for those dynamic
environments that change globally. But If there are only local changes then no changes
may occur in guard position. So in this situation, using of guard point cannot be suitable
for environment changes detection and to identify changes global optimum should be

used.

After changes were detected in the environment, the algorithm uses some mechanisms to
resolve the diversity loss and outdated memory problems. In the proposed algorithm
when a changed environment is detected, it first uses mechanisms to increase diversity
since diversity loss is happening in our algorithm. Before environment changes,
antibody cells are converged to the tip of peaks that they have covered. In this case, the
distance between the positions of antibody cells in each set is very close to each other
and also their mutation rate will be very close to zero. The distance between the Pbest

position and Shest position are very close too.

52

In this situation, after a peak that is covered by an antibody set is moved the position of
the antibody’s cells and their Pbest remain around the peak position and cannot move to
the new peak position. The reason of creating this problem is because the current
mutation rate is determined based on the previous mutation rate, difference between
antibody Pbest position and other cells in that antibody set. Also difference between
cells Sbest position and other cells after changing the environment are close to zero. In
this case the variation is very low and the cells cannot adapt themselves to new

environment.

To solve this problem, the proposed algorithm uses a new mechanism on antibody sets.
In this mechanism, the position of all cells in each activated antibody set is changed after
environment change occurs. After the environment changes, the new position of peak is
within the spatial with a radius of severity of previous position. So to speed up finding
the new position of the peak, the cells should be randomly distributed with uniform
distribution around the Sbest within the spatial with a radius of severity of previous
position. Thus, antibody’s cells will expand in a space based on the need to find better
values. After changing, the new position of cell j in the antibody set; is determined by

following equation:

X;; = Gbest; + (Rand”(1,—1) x P x Severity) (26)

Where D is the number of dimensions in problem space, Rand is a function that
produces a D-dimensional vector of random numbers with a uniform distribution in [-

1.1]. P determines how the cells are distributed in which radial around the Sbhest based

53

on Severity. In fact, P x severity shows the maximum distance between the Sbest and

each cell in each dimension.

As mentioned before, the mutation rate after the environment change is close to zero. In
the proposed algorithm to improve the diversity the cells mutation rates are randomly
initialized based on severity after environment change is detected. Thus the mutation
rate and position of cells could be adjusted based on severity, and antibody sets can be
placed in a situation that can quickly find the location of new peaks in the new

environment. The mutation rate can be obtained by the following equation

MTrate;; = (Rand®(1,—1) x Q x Severity) (27)
J y

Where Q is defined as the maximum mutation rate based on percentage of severity.

After the cells positions were determined based on activated antibody Shest and severity,
the Pbest of each cell changes to its new position (Pbest; ; = X; ;). Then the new value
of Pbest affinity is calculated and the best one in each antibody set is considered as the
Sbest in that set. Thus the previous memory of cell in activated antibody sets is reset so

the outdated memory problem is solved.

After the environment change there is no need to increase diversity in TH cells because
when these cells are converging they will reinitialize automatically and their memory
should be updated after environment change occurs. Then the searching continues with
valid memory. To update the TH cells memory, the merits of each Pbest position in TH

cells are calculated and the best one will be considered as the Sbest. Pseudo-code of this

54

mechanism that is used after identifying changes in the environment is shown in

Figure 3-4.

Deal with Environment Change Algorithm

For each activated antybody_set ;
For each cell j in antybody_set ;
Update X;; using Eq. 26
Update MTrate ;j using Eq. 27

Pbest; = Xi;
Evaluate Affinity(Pbest;);
Endfor
Gbest; = arg MaXppest; ; f (Pbest;)
Endfor

For each cell in TH-cells
Evaluate Affinity(Pbesty);

Endfor
Gbest = argMaXppegy, f(Pbesty)

Figure 3-4. Pseudo code deal with Environment Change Algorithm

3.1.3 Mechanisms to Increase Performance

In the proposed algorithm, two different mechanisms for increasing the efficiency is
used which are described in the following section.

3.1.3.1 Active and Inactive Mechanisms

After environment changes, each of the antibody sets try to find the peak that is resident
in them by local searching. Due to the current error value being determined based on the
result of a set tasks that has the best Sbest among the other sets, the local search results
of the best set that is near the highest peak is much more important. Therefore those of
other activated antibody sets in current environment do not have a role in determining
the results, but the local search is still important for them. In fact, if these sets do not

perform their local search after environmental change and several peaks movement, it is

55

possible that their peak is very far from them and they may lose it. Therefore the local

search is essential for the entire activated antibody sets in the environment change.

As noted before, the obtained result of each environment is determined by an antibody
set which is near the highest peak. So to improve the result this set should have
performed a more accurate local search. One of the ways that local search can be made
more precise is giving more opportunity to perform local search. But usually algorithms
in dynamic environments do not have much time to adapt themselves with the
environment because of frequency change in the environment that is determined based
on amount of evaluation. Therefore each of the sets can perform little iteration until the
next environment change. This can be a problem when there are a large number of
activated sets in the area. In such a case, in each cycle of the algorithm run it performs a
lot of fitness evaluation so each set can be executed very few times till the next

environment change.

In the proposed algorithm to increase efficiency and give more opportunity to those
antibody sets who are nearest to the highest peak, an activating-inactivating mechanism
is used for antibody sets. In this mechanism, antibody set can be in two different
situations: Activated or Deactivated. The activated antibody set is the set that its cells
exist in the search space and performs fitness evaluation to do the search. Also its cells
mature during each cycle of the algorithm. On the other hand the deactivated antibody
set is the set that its cells are in the search space but do not perform maturing process

and fitness evaluation.

56

In this mechanism, after each change in the environment, all the antibody sets are
activated and perform the optimization process. As discussed before, the activated sets
that are resident in non-optimal peaks must do local search after each change in the
environment to prevent increasing their distance from the peak that they have covered.
But after reaching the closest peak continuing the local searching to increase the

accuracy is not very useful and it does not affect the result.

In fact, with this mechanism, after an antibody set moves near to a non-optimized peak,
it’ll be deactivated and they stop to perform affinity evaluation till next environment
change. So this mechanism prevents a significant number of futile evaluations and uses
them to give more opportunity to the antibody set who resides in the global peak. This
causes the local searches around the global optimal peak to perform more and thus

improve efficiency and accuracy of the results obtained from the whole algorithm.

In the proposed algorithm to detect whether the antibody set is close enough to its peak
or not, their mutation rates are used. In fact, when a set is converging towards the target

position and gets near it the mutation rate of the cells decreases.

The proposed algorithm has a parameter called activated_boundary, if all cells mutation
rates be in range [-activated boundary, activated boundary], then that set is near
enough to its peak and it should be deactivated. It should be mentioned that in any
environment the set who has the best Sbest affinity value among all sets is not
deactivated. Also when environment change occurs, all the sets are activated again.

Pseudo-code related to activating-inactivating mechanism is shown in Figure 3-5.

57

Activating-Inactivating Algorithm

For each non activated_antybody set i
If all dimension of MTrate for each Antibody Set j is € [-activated_boundary,
activated_boundary] then
activated [i]=False
Endif
Endfor

Figure 3-5. Pseudo-code activating-inactivating mechanism

3.1.4 Graphical View on Proposed Algorithm

To better understand this algorithm and see how it works, here is a brief graphical view
of running the algorithm in the Moving Peaks Benchmark problem. Figure 3-6 shows a
3D view of sample environment in this problem. As shown in this figure, there are 10
peaks in each environment that one of them can be highest peak which is called global
optimum. As said before in problem description, the environment represents many
different dimensions that will be discussed in the next chapter but to apprehend the view
of the environment, the first two or three dimensions properties were used to create the

approximate view of the environment.

Figure 3-7 shows 2D view of the sample environment .In Figure 3-7 (a) TH cells the
best cell with highest affinity in this set is shown by star located in sidehill of a peak.
After some cloning and searching in the environment, they can be located in near to the

peak that is shown in Figure 3-7 (b).

58

60
40

20

S
S
Ry
-60 4 s

-100
120

40

a0

20

Figure 3-7. Finding peak by TH cells

59

After TH cells converged to a peak, they activate an antibody set and put that in the peak
instead of themselves and TH cells reinitialize randomly again. The blue point in
Figure 3-8 is representing an antibody set. After an antibody set was activated, finding
the top of the peak and converging to it is the task of antibody. At the same time TH
cells are trying to find another peak and active another antibody set. This process is

continuing until all of the peaks are found or the environment changed.

As is shown in Figure 3-9 after environment changes, antibody sets search in a bigger
space around themselves to find potential peaks. If all peaks were founded only the set
with highest affinity (global best) continues searching more accurately around the peak
to decrease error. Otherwise TH cells continue searching the whole environment to find

the remaining peaks and so on.

As can be seen in Figure 3-8 (a), 5 peaks were found. After environment change in
Figure 3-9 (b) with a local search by antibody sets those peaks are recognized again so

TH cells continue searching for the peaks left.

All of these processes are continued until all peaks are found or they reach to the
termination conditions. In the Figure 3-10 it is shown environments that all peaks inside
are found and covered by antibody sets. The flowchart of this algorithm is shown in

Figure 3-11.

60

100 T 7
|
- \
LIS ~
80k
70F =
(@)
60+ M=)
-
a0+
a0k /
ko (=) 4
/
pulS P ' .
— T g 1
10 — o) ,./'/ W
,_/-
0 1 — L
0 10 20 30 40

20 100

Figure 3-9. Environment change

61

(b)

100
a
40+
30
20+
10+

100

a0

80

70

B0

&0

40

30

20

10

Figure 3-10. All of the peaks are found

62

Randomly initialize TH-Cells
Evaluate Affinity
Sbest = arg max f(Cell))
Randomly initialize Guard point
Evaluate Guard point affinity

TH-cells maturing
TH-cells elimination
Antibody activation

Antibody elimination
Activating-Inactivating process

Compare new
affinity of Guard
point with old value

Deal with Environment Change

Check number of
environment
chanae

Figure 3-11. Algorithm’s flowchart

63

Chapter 4

EXPERIMENTATION AND RESULTS ANALYSIS

In this part we have a short view on the proposed algorithm performance and we’ll see
how it responds in different situations. In section 4.1 the results of this algorithm tested
on the moving peaks benchmark are shown. In section 4.2 the algorithm was tested on
generalized dynamic benchmark generator (GDBG) and we’ll see how it responds to
these problems.

4.1 Results of Moving Peaks Benchmark Problem

The proposed algorithm was written on Matlab. The computer that ran this test was an
Asus laptop with Intel Core ™ i7-Q720 (1.6GHz) CPU and 4GB RAM (DDR3 1066).
To perform this test, we used the standard scenario to initialize parameters. These

parameters are shown in Figure 4-1 [59].

Parameter Setting
Number of peaks P 10
Number of dimensions 5
Peak heights €[30,70]
Peak widths €[1,12]
Evaluations in each 5000
environment change
Change severity s 1.0
Correlation coefficient 0

Figure 4-1. Standard parameter setting

64

To evaluate performance of our algorithm we used offline error to compare our
algorithm with others and it is equal to average of best affinities at all times founded in
optimization process. In other words, offline error is equal to average of all current
errors and current error in time t is the deviation of the best founded individual by
algorithm in time t in current environment from optimum. Offline error is a positive
number and in the ideal case is equal to zero [60].

4.1.1 Effect of Number of TH Cells on Proposed Algorithm’s Performance

In this section, we have a brief review of effects of number of TH cells on proposed
algorithm’s performance. The performance result of different TH cell population size is
shown in Figure 4-1. As can be observed, the performance of the proposed algorithm
with 10 TH cells is better than others. When the number of cells is less than 10, the
performance of algorithm is decreased. In fact by reducing number of TH cells, we
reduce speed of convergence and so TH cells find the peak at a later time hence reducing
efficiency of the algorithm. On the other hand, by increasing the number of TH cells the
performance of algorithm is reduced too. When number of TH cells is increasing, in fact
number of evaluation in each environment change is increase so antibody cells have not

enough time to search in environment.

Table 4-1. Results of different TH Cell size

Number of TH cells Offline error + standard error

0.943 + 0.0721

0.68702 + 0.0692
0.59049 + 0.0604
0.65267 + 0.0712
0.71542 + 0.0793
0.97163 + 0.0976
1.32108 + 0.1348
1.89049 + 0.1461

65

4.1.2 Compare with Other Algorithm

To compare our result with other algorithms, standard scenario is used that is shown in
Figure 4-1. This scenario is mentioned as second scenario in [60]. There are many
algorithm such as differential evolution (DE) [61], Extremal optimization (EO) [62] and
Particle Swarm Optimization (PSO) which is used to solve this problem. Some of their

results are available in [60]. The results of this problem are shown in Table 4-2.

Table 4-2. Results of Offline error + Standard error

Number .
. Number of Offline error
AU gluekiin i Evaluation + standard error
peaks
EA

Bui & Branke [63] 50 2500 9.52+0.45
Blackwell & Branke [61] PSO 10 5000 2.1610.06
Li & Branke [64] PSO 10 5000 1.93+0.06
Mendes & Mohais [65] DE 10 5000 1.75+0.032
Blackwell & Branke [66] PSO 10 5000 1.7240.06
Moser & Hendtlass [67] EO 10 5000 0.66 £0.2
Blackwell & Branke [66] mQSO 10 5000 1.8540.08
Blackwell & Li [68] AmMQSO 10 5000 1.5140.10
Hashemi & Meybodi [69] CLPSO 10 5000 1.784+0.05
Changhe & Shengxiang [70] FMSO 10 5000 3.11+0.06
Hu & Eberhart [71] RPSO 10 5000 12.98+0.48
Blackwell & Branke [66] mCPSO 10 5000 2.081+0.07
Du & Li [72] SPSO 10 5000 2.51+0.09
Bird & Li [73] rSPSO 10 5000 1.50+0.08
Kamosi & Hashemi [74] mPSO 10 5000 1.61+0.12
Kamosi & Hashemi [75] HmMPSO 10 5000 1.4240.04
Liu& Yang& Wang [76] PSO-CP 10 5000 1.31+0.06
Lung & Dumitrescu [77] CESO 10 5000 1.38+0.02
Lung & Dumitrescu [78] ESCA 10 5000 1.54+0.02
Woldesenbet & Yen [79] RVDEA 10 5000 3.54+(-)
Nasiri, & Meybodi [80] SFA 10 5000 1.0540.04
Rezazadeh & Meybodi [81] APSO 10 5000 1.31+0.03
Noroozi & Hashemi [82] CLDE 10 5000 1.64+0.03
Shahabi & Unveren MDAIS® 10 5000 0.59049 + 0.0604

® Multi-set Dynamic Avrtificial Immune System

66

As you can see in Table 4-2, the proposed algorithm has the best performance among 25

algorithms. Only the performance of EO algorithm (Moser and Hendtlass [67]) is near to

our result. The process of advancing and finding peaks by the proposed algorithm is

shown in Figure 4-2.

i

)
@

nnnnnnnnnnnn

_©5 ¥ 4 » B8 8 3 8 8

|

Dk

=5

\w

nnnnnnnnnnnn

i

uuuuuuuuuuuu

Figure 4-2. Procces of findig peaks by algorithm

4.2 Results of Tests on the Generalized Dynamic Benchmark Generator

(GDBG)

To evaluate performance of algorithm in this problem, four formulas are used which are

introduced in the following [83]:

j=1

67

Eij*' ()

runs
. h)
Average best(Avgpes) = E Min™Wm-change "t * 7
i=1

runs

(28)

runs num_change E%‘;St(t)
Average mean(Avgmean) = z Z (runs x n;tm change) (29)

runs num change E laSt(t)
Average worst(Avg,, . st) = Zi:l Max;_] p— (30)
1 runs num_change last 2
STD = Z Z Elost(¢) — A 31
runs * num change — 1 £u;—q (ij () vgmean) (31)

Where number of runs is 20, num_change is equal to number environment change and
E'ast(t) is absolute function error value after reaching to maximum number of

evaluations and calculate by following formula [83]:

E'st(t) = |f(xpest(®) — F(x7(D))| (32)

Where f(xbest(t)) the affinity is at best point it time t and f(x*(t)) is equal to affinity
in global peak. For this problem, parameters were set according to Figure 4-3. It should
be mentioned that all of the other algorithms used in the following formula and because
there are 10 dimensions in this problem they have 10,000 evaluations before

environment change [83].

Evaluations in each environment change = 10,000 * number of dimensions (33)

But we used 50,000 evaluations in each environment. It means that our algorithm had
half opportunity to find the best solution compared to the others algorithms. This shows

that our algorithm can find solution at least two times faster than other algorithms.

68

Parameter Setting

Number of peaks P 10
Number of dimensions 10
Search range €[—5,5]
Peak widths €[1,10]
Peak height €[10,100]

Eva}luatlons in each 10000*dimensions
environment change

height severity 5.0

Number of runs 20
Number of

environment change 60

Figure 4-3. Parameters setting for GDBG

To compare the results we show every function’s result in a different table, each table
belongs to a function that is described in section 2.1.2.2. Each function has 4 table which

each table shows one of Avgyests AVGmean, AVGworst and STD.

The algorithms that are compared with the proposed algorithm are: Dynamic Atrtificial
Immune (DAI) [84], The Differential Ant-Stigmergy (DAnNtS) [85], Clustering Particle
Swarm Optimizer (CPSO), Standard PSO (SPSO), Simple Genetic Algorithm (SGA)
[86], Self-Adaptive Differential Evolution (Self-ADE) [87] and Ensemble of Explicit
Memories (EEM) [88]. These tables display Author names, their corresponding
algorithm, number of evaluation in each environment change and errors in each change
instance. The lower error is representing the better performance. But to have a fair
comparison we should look at all results in a function and consider the overall

performance.

69

Table 4-3. Average-best in Function 1 (10 peaks)

Function 1
10 peaks error : Avgpes:

: Num of
Authors Algorithm Evaluation T1 T3 T4 T6

Zuben & Franc

0.0048 0.0052 0.0076 0.0087

Korosec & Silc 4.17 3.80 3.80 6.57 5.56 7.90
[85] DA B e—13 il | =i | =1 | e | e
1.054 5.214 4306 9.721 2.561 4325
Cree Lhwe e—7 e—8 e—8 e—7 e—7 e—6
Li & Yang [86] SGA 5000 4.01 4.295 5.543 1.799 1.004 6.234
e—5 e—5 e—5 e—5 e—5 e—6
SPSO 100,000 0 0 0 0 0 0
Brest & zamud
Y
. EEM 100,000 0.0054 0.00445 0.00435 0.0057 0.01105 0.0104
Shahabi & MDAIS 50,000 0 0 0 0 0 0

Unveren

Table 4-4. Average-worst in Function 1 (10 peaks)

Function 1
10 peaks error : Avg,,orst
Authors | Algorithm | _Num Of T2 T3 T4 5 T6
Evaluation
Zuben &
- DAI 100,000 51786 46.1036 41.4286 37.0052 19.5234 71.4790
anc [84]
Korosec &
silc [85] DANtS 100,000 5.51 38.5 39.7 9.17 20.9 471
CPSO 100,000 1.244 27.12 28.15 3.239 21.72 26.55
Li &Y
I SGA 100,000 432 5208 4547 75.39 4023 8031
[86] s 100,000 31 4823 4328 7277 3577 7892
Brest &
Zamrlf;a[m] self-ADE 100,000 0910466 32.1705 31.7827 0919964 18392 32.7662
Yu &
Sug[ggt]ha“ EEM 100,000 35.009 51.032 47.041 13.96 47.763 54.099
Shahabi &
Onvoren MDAIS 50,000 1.11 6.4312 8.14 1.8553 3.3495 5.6402

Table 4-5. Average-mean in Function 1 (10 peaks)

Authors [Algorithm Evaluation T4 T5
Zuben &
S DAI 100,000 01353 58667 42545 53563 44356 9.9407
Korosec &
silc [85] DANS 100,000 0.180 418 6.37 0.482 254 2.34
CPSO 100,000 003514 2718 4131 009444 1869 1.056
Li &Y
= SGA 100,000 5609 1008 1313 21.22 7899 2925
[86] SPSO 100,000 5.669 1024 1173 21.89 6731 3201
Brest &
Zamuca (57] IR 100,000 0028813 3.5874 299962 0015333 217757 1.1457
Yu &
ST EEM 100,000 57109 10658 1087 15033 82954 8.232

MDAIS 50,000 0.024193 17017 24409 0.08553 09174 0.8402

Table 4-6. STD in function 1 (10 peaks)

Function 1
10 peaks error : STD

. Num of
Authors [Algorithm Evaluation T1 T2 T3 T4 TS5 T6
Al DAI 100,000 1.0061 10.2772 8.1828 8.9414 5.5545 15.8214
Franc [84] ’ . . . : : :
Korosec &
Silc [85] DANtS 100,000 1.25 9.07 10.7 1.95 4.80 8.66
CPSO 100,000 0.4262 6.523 8.994 0.7855 4.491 4.805
Li&Y.
IEEL SGA 100,000 9.349 13.22 13.87 21.88 9.406 25.68
[86] SPSO 100,000 7.729 12.62 13.59 20.15 8.75 25.63
Brest &
self-ADE 100,000 0.442537 7.83849 7.12954 0.288388 4.38812 5.72962
Yu &
Sug[ggt]ha” EEM 100,000 9.6761 13.851 13.499 3.0008 13.102 14.96

MDAIS 50,000 0.3734 4.203 5.7439 0.2937 2.3183 3.1321

71

As you can observe in function 1 with 10 peaks, the proposed algorithm has the best
results in most of the situations. Just in T4 (Chaotic change) case, the Self-ADE
algorithm has a better performance. Our result is also better than other algorithms and
has a very close performance to Self-ADE performance. In overall, we can say that our

algorithm has the best performance in function 1 with 10 peaks.

In continue, function 1 was used again as a measurement for performance. This time the
environment was including 50 peaks instead of 10 peaks. The results shown in
Table 4-7 implies that our algorithm still has the best performance among 8 algorithms
and just self-ADE algorithm has the nearest results to ours. The only difference is that

their number of evaluations is doubled.

Table 4-7. Average-best in Function 1 (50 peaks)

50 peaks erro

Num of

Authors Algorithm | - - \uation

T1 T6

Zuben & Franc

DAI

100,000 0.0072 0.0104

[84]
Korosec & Silc 5.97 5.03 3.57 7.73 8.02 6.73
(8] DANS R e-13 e-13 e-13 e-13 e-13 E-13
2.447 2.061 9.888 4353 2.121 9.033
e Ao e—6 e—7 e—7 e—6 e—6 e—5
. SGA 4.01 4.295 5.543 1.799 1.004 6.234
Li & Yang [86] 100,000 e_5 e_5 o5 o5 o5 o6
SPSO 100,000 1.43 1.435 2.528 4217 5458 (001029
e—4 e—4 e—4 e—4 e—4

Brest & Z o}
A self-ADE 100,000 0 0 0 0 0 0
Yu & Sugant

136] EEM 100,000 00063 000535 0.00505 0.00585 00197 0.0164

Shahabi &

Unveren MDAIS 50,000 0 0 0 0 0 0

72

Table 4-8. Average-worst in Function 1 (50 peaks)

Function 1
50 peaks error : Avg,,orst

Authors | Algorithm | _Num of T1 T2 T3 T4 T5 T6
Evaluation

Zuben & Franc

Korosec & Silc

4.5776 299379 33.7780 37.9725 24.1907 62.4719

[85] DANS 100,000 7.67 29.1 31.0 5.58 11.6 35.1
CPSO 100,000 4.922 2208 2565 1974 9.606 22.08

Li & Yang [86] SGA 100,000 4016 4475 4784 7065 28.03 78.24
SPSO 100,000 33.32 4608 4533 6984 2823 78.32

Brest & Zamuda

67 self-ADE 100,000 3.92056 301958 27.6823 121212 9.08941 331204
Yu & Si
v EEM 100000 26538 50227 44899 13497 2109 27.041

MDAIS 50,000 3.5051 14.4249 10.3486 1.9921 0.7403 6.0172

Table 4-9 Average-mean in Function 1 (50 peaks)

Function 1
50 peaks error : Avgmean

Authors | Algorithm | _NuM Of T1 T2 T3 T4 5 T6
Evaluation

DAI 100,000 0.3644 4.7485 5.2531 2.6565 2.8641 6.8330

Korosec & Silc

(5] DAnNtS 100,000 0.442 4.86 8.42 0.509 1.18 2.07
CPSO 100,000 02624 3279 6319 0.125 0.8481 1.482
Li & Yang [86] SGA 100,000 7.614 113 15.24 17.93 5.293 34.93
SPSO 100,000 7.95 1229 14.89 20.96 5.426 36.27
Brest &
self-ADE 100,000 0.172355 4.08618 4.29209 0.0877388 0.948359 1.76542

Yu &

Sugam‘ﬁan[gg] EEM 100,000 57391 13.285 15896 14109 22653 3.1577
bi &

varen MDAIS 50,000 0124 29001 21662 0.1024 02811 0.0901

73

Table 4-10. STD in Function 1 (50 peaks)

Function 1
50 peaks error : STD

Authors | Algorithm | _Num of T1 T2 T3 T4 T5 6
Evaluation

Zuben & Franc

Korosec & Silc

0.9275 6.7580 6.6830 5.9773 41579 11.8790

[85] DAnNtS 100,000 1.39 7.00 9.56 1.09 218 5.97
CPSO 100,000 09362 5303 7442 03859 1779 4393
Li & Yang [86] SGA 100,000 9.754 1126 13.04 1904 6186 2654
SPSO 100,000 8.162 11.55 125 19.02 6348 26.24
Brest & Zamuda
[57] self-ADE 100,000 0.763932 64546 674538 0.24613 1.76552 5.82652

Yu & Suganthan
[88] EEM 100,000 6.8424 12.944 13.365 2.4466 4.239 5.6002
Shahabi &
i — MDAIS 50,000 0.6123 4.754 5.103 0.3922 0.8261 0.312

As can be seen in Table 4-8, our algorithm still has the best results. These results of
average-worst show that our algorithm has less error than others even with half

evaluation size. Just in T4 (Chaotic change) the self-ADE algorithm is a little better.

In Table 4-9, the best results of average-mean belong to our algorithm. This table can be
considered as main parameter to compare the algorithms and proves that our algorithm
has a better performance than the original immune system algorithm and others

algorithms.

The STD errors that are shown in Table 4-10 implies that the proposed algorithm has

the best result for solving Function 1 even with 50 peaks.

74

In general, we can say that the proposed algorithm has better performance than others
for solving Function 1 in different situation, just in T4 (Chaotic change) there is an

algorithm which had better performance than ours with minor difference.

Following that, the results of Sphere's function are shown. This function which is tested
by 8 different algorithms was introduced in chapter 2. In Table 4-11 that shows average-
best is clear only those two algorithms have zero error for all conditions. These two
algorithms are self-ADE and our algorithm. These two algorithms may have the same
performance in finding global peak, but our algorithm has the same results with only

half number of evaluations.

Table 4-11. Average-best in Function 2 (10 peaks)

Function 2
10 peaks error : Avgpes:

Authors Algorithm MU Qf T1 T2 T3 T4
Evaluation
DAI 100,000 0.0534 0.0678 0.0813 0.0596
Korosec & Sile 1.97 2.34 2.72 1.41 3.59 1.65
DL LBy e—11 e—11 e-11 e-11 e-11 e—11

9.377 7.423 4.651 1.121 7.792 1.087

S LD e—05 e-05 e-05 e-05 e—05 e—04
. SGA 1909 3022 5739 2071 9138 3432
HIEN R LBy e—03 e=03 || e=03 || e=03 | e=03 | e=03
SPSO 1.016 4334 7523
LD e—013 ! e—014 e—014 . e

Brest & Z d

S self-ADE 100,000 0 0 0 0 0 0
Y
EEM 100,000 01266 01383 013615 0132 012985 0.1195

& Sug
[88]
MDAIS 50,000 0 0 0 0 0 0

75

Table 4-12. Average-worst in Function 2 (10 peaks)

Function 2
10 peaks error : Av g, pest

. Num of

DAI 100,000 0.2102 68.0774 473.8170 14.0593 441.2040 51.9411

Korosec & Silc

[85] DANtS 100,000 33.9 403 356 16.5 433 249
CPSO 100,000 19.26 1441 158.3 10.18 320.7 26.08
Li & Yang [86] SGA 100,000 1505 565.5 543.6 1248 511 289.4
SPSO 100,000 272.3 561 539.4 279.3 515.6 541.6
Brest &
Zamuda [87] self-ADE 100,000 15.4426 435019 46843 10.6608 459.147 49.5327

Yué&S th

e A EEM 100,000 38758 45346 29.778 32751 34247 3526
abi &

il MDAIS 50,000 201 350502 10414 386683 27942 1931

Table 4-13. Average-mean in Function 2 (10 peaks)

Function 2
10 peaks error : Avg.mean
: Num of

DAl 100,000 0.0984 8.1209 17.9979 1.0652 101.3840 6.5192

Korosec & Silc

(5] DANtS 100,000 3.30 25.6 18.9 1.45 49.6 2.11
CPSO 100,000 1.247 10.1 1027 0.5664 25.14 1.987
Li & Yang [86] SGA 100,000 33.05 1829 1285 32.85 191.7 43.25
SPSO 100,000 45.79 186.9 135.8 53.57 186.5 73.34
Brest & Zamuda
[57] self-ADE 100,000 0.963039 43.0004 50.1906 0.793141 67.0523 3.36653

Yu & Suganth

e EEM 100,000 62147 72236 49885 42067 3.5058 3.478
abi &

anabi< MDAIS 50,000 0.8253 63629 1904 37801 1651 12217

76

Table 4-14. STD in Function 2 (10 peaks)

Function 2
10 peaks error : STD

o Numot | b
Authors Algorithm Evaluation

Z”be?s‘i‘]mnc DAI 100,000 0.0291 14.3832 62.2259 134.5180

2.8269 13.8172

Korosec & Silc

[85] DANIS 100,000 8.78 83.2 67.8 3.83 112 5.29
CPSO 100,000 4178 3506 3345 2137 6425 5217
Li & Yang [86] SGA 100,000 5375 2189 1887 35.12 200.6 69.84
SPSO 100,000 5934 2127 1854 6058 1981 99.96
Brest & Z d
S self-ADE 100,000 3.08329 114944 124015 253425 130.146 129738
Yu & Suganthan
I56] EEM 100,000 9.6292 11.024 8245 7.5828 7.3318 7.5956
Sl MDAIS 50,000 21943 7.0383 12047 23425 6254 3.127

As can be seen in Table 4-12, the best result in average-worst belongs to the proposed
algorithm. In this test, our algorithm had some bad answer in T1 (Small change step) and
T4 (Chaotic change). These bad results also had effect on the other results and as shown
in Table 4-13 (average-mean) and Table 4-14 (STD) the best performance in T1 and T4
belong to DAI and CPSO. We think that the results can improve with the whole number

of evaluations. But these results are still very good and acceptable.

In the third function (Rastrigin’s function) our algorithm could not find best results of
average-best. As shown in Table 4-15, the best results in this table belong to self-ADE.
Our algorithm is in the second place in best performance. It still has very good results

and they are very close to the best results.

77

Table 4-15. Average-best in Function 3 (10 peaks)

Function 3

Authors

Zuben &
Franc [84]

Korosec &
Silc [85]

Li & Yang

[86]
Brest &

Zamuda [87]
Yu &

Authors

. Num of
AT Evaluation T4 T T6
DAI 100,000 674.0810 943.8250 943.781 727.1850 907.9080 691.9480
3.39 4.51 4.21
DANtS 100,000 11 43.4 1.38 o1 3.08 il
7.909
CPSO 100,000 0.003947 126.2 42.89 e—005 228.5 4.356
SGA 100,000 0.009432 0.3146 2.045 0.5873 36.15 0.075
SPSO 100,000 1.427 211.4 20.9 3.82 13.59 3.782
9.70434 3.13019 5.35102 8.17124
self-ADE 100,000 0 it e 0 i Y
EEM 100,000 0.1996 0.17025 0.17975 0.20085 0.16635 0.1431
6.734 3.1431 9.2384 5.7098 7.1948 3.770
MDAIS S e—12 e—6 e—08 e—8 e—10 e—9

Algorithm

Zuben & Franc

Korosec & Silc
[85]

Li & Yang
[86]

Brest &
Zamuda [87]

Yu &
Suganthan [88] EEM

Shahabi &

Unveren

DANtS

CPSO
SGA

SPSO

self-ADE

MDAIS

Num of

Evaluation

100,000

100,000

100,000
100,000
100,000

100,000

100,000

50,000

T1

1103.66

435

711.2

786.1

864.1

238.417

512.53

354.32

T2

1270.5

988

1008

1036

1068

938.858

504.83

463.71

78

T3

1240.51

937

966.1

991.7

1024

944.695

501.49

315.44

Table 4-16. Average-worst in Function 3 (10 peaks)

Function 3
10 peaks error : Avg,,orst

T4

1644.55

1170

1204

1286

1396

922.236

555.05

477.05

TS5

1202.09

923

974.2

970.5

990.2

874.852

507.77

409.48

T6

1834.17

1470

1424

1380

1509

1226.38

506.33

315.71

Table 4-17. Average-mean in Function 3 (10 peaks)

Function 3
10 peaks error : Avg.mean

Num of
Evaluation

Zuben & Franc

Korosec & Silc

Authors [Algorithm T1 T2 T3 T4 T5 T6

810.83 1078.7500 1073.43 1031.53 1023.9 1186.9

[85] DANtS 100,000 15.7 824 688 435 697 626
CPSO 100,000 137.5 855.1 765.9 430.6 859.7 753
Li & Yang [86] SGA 100,000 158.1 638.7 573.9 4195 741.9 491.7
SPSO 100,000 553.6 900.8 827.1 709 829.1 803.5
Brest &
Zemuda 871 IRCARGC: 100,000 113927 558497 572105 657409 475768 243.27

Yu&
EEM 100,000 151.98 140.47 136.67 164.96 95.123 107.54
MDAIS 50,000 93.62 75.131 90.715 154.9 77.34 81911

Table 4-18. STD in Function 3 (10 peaks)

Function 3
10 peaks error : STD

. Num of

DAI 100,000 66.1085 64.1245 64.9950 274.7490 57.8713 292.2960

Korosec & Silc

[85] DANtS 100,000 67.1 204 298 441 315 460
CPSO 100,000 2216 161 2358 4322 1215 3617
Li & Yang [86] SGA 100,000 2645 399.6 399.8 4442 2788 4643
SPSO 100,000 2981 1488 2126 385.8 186.7 375
Siest %%am”da self-ADE 100,000 581106 384.621 38609 208925 379.89 384.98

Yué&S th

v EEM 100,000 19071 18271 18386 2164 15182 15836
abi &

s MDAIS 50,000 7922 1041 1576 17282 10346 9461

79

On the other hand, the proposed algorithm has best performance in the average-worst

results that are shown in Table 4-16. To compare with other algorithms, our results are

much better than other algorithms and in some cases our errors are half or even third of

the other results.

In Table 4-17 that presents the average-mean results, the best performance again

belongs to our algorithm.

In the STD errors, the ADI algorithm has the best performance. The proposed algorithm

only gained the best results in T4 (Chaotic change) and T6 (Recurrent change with

noisy).

Authors

Zuben & Franc
[84]

Korosec & Silc
[85]

Li & Yang [86]

Brest & Zamuda
[87]

S bi &
Unveren

Table 4-19. Average-best in Function 4 (10 peaks)

Function 4
10 peaks error : Avgpes:

Algorithm

DAI

DAnNtS

CPSO
SGA

SPSO

self-ADE

EEM

MDAIS

Num of

Evaluation

T6

100,000

100,000

100,000

100,000

100,000

100,000
100,000

50,000

2.01
e—11

6.36
e—5
2.697
e—3

0

0.13325

0

80

2.95
e—11
1.868
e—4
3.439
e—3

0.1386

2.87 1.85
e—11 e—11
1.03 9.346
e—4 e—6
7.537 1.855
e—3 e—3
0 0.3056
0 0
0.13335 0.13045
0 0

0.13

0

0.0618

2.09
e—11

8.616
e—5
3.322
e—3

0

0.1118

Table 4-20. Average-worst in Function 4 (10 peaks)

Function 4
10 peaks error : Avg,,orst

Num of

Evaluation

I A N I B R N
S

26.0705 586.2790 580.6420 51.9689 562.5500 336.7740

DAI

100,000

Zuben & Franc
[84]

Korosec & Silc
[85] DANtS 100,000 57.6 505 540 18.8 528 39.7
CPSO 100,000 29.38 459.8 389.4 14.62 481 63.06
Li & Yang [86] SGA 100,000 296.5 6433 624.3 376.2 590.9 595.3
SPSO 100,000 3763 656.1 612.9 460.3 576.1 684.4
Brest &
Zamuda 87) IR 100,000 19.623 475.7 54492 16.6057 510.193 28.4483
Yu &
Sugantl;an [88] EEM 100,000 37.581 47.009 36414 34924 31.496 35.28
50,000 20.15 23.6 27.41 23.19 26.88 18.73

S bi &

Table 4-21. Average-mean in Function 4 (10 peaks)

Function 4
10 peaks error : AVgmean
Tl

14227 1224410 98.6688 4.2632 304.5660 12.6334

Num of

Authors Evaluation

Zuben & Franc
184] DAI

Korosec & Silc

Algorithm

100,000

[85] DANtS 100,000 5.60 65.6 53.6 1.85 108 2.98

CPSO 100,000 2.677 37.15 3667 07926 67.17 4.881

Li & Yang [86] SGA 100,000 4.881 272.9 2301 5276 335.5 57.38

SPSO 100,000 55.05 289.7 223.6 73.85 285 98.15

Brest &
self-ADE 100,000 148568 495044 51.9448 150584 69.4395 2.35478
Yu anthan

EEM 100,000 6.601 81906 7.1991 5.0355 3.121 3.5162

el MDAIS 50,000 3.054 6.601 4117 2571 2.39 2.491

81

Table 4-22. STD in Function 4 (10 peaks)

Function 4
10 peaks error : STD

- Num of _
Authors Algorithm : T1 T2 T3 T4
Evaluation

Z”be?s‘i‘]mnc DAI 100,000 45459 201.6270 196.6950 9.7255

203.2430 55.8386

Korosec & Silc

[85] DANtS 100,000 26.5 160 140 4.22 178 7.59

CPSO 100,000 7.055 99.43 97.18 2.775 130.3 15.39

Li & Yang [86] SGA 100,000 80.15 270.7 251.2 96.98 223.7 116.6

SPSO 100,000 92.64 263 245.1 104.8 228.1 148.4

Brest &
NGy self-ADE 100,000 447652 135248 14178 410062 144.041 5.78252
Yu & Suganthan

1861 EEM 100,000 10032 11923 10145 83325 6.6867 7.3484

SR MDAIS 50,000 4775 9.631 6.71 7.84 4311 427

Unveren

The proposed algorithm shows a good performance to find global optimum peaks in
function 4 (Griewank's function). As shown in Table 4-19, Self-ADE and the proposed
algorithm have the best performances in this error measurement. Additionally, The

CPSO has a close performance too.

The results of average-worst are shown in Table 4-20. In this case, our algorithm finds
better solution than others and in worst case it has the best performance at least in 4 of 6

different situations.

As can be seen in Table 4-21, DAI algorithm has the best performance in T1. IN T4, the
best result belongs to CPSO algorithm and self-ADE is the best in T6. In other cases the

best performance in average-mean belongs to our algorithm.

82

In general we can say that the proposed algorithm had a very successful performance in
function 4. The results that are shown in Table 4-22 can support this statement. In this
table, the proposed algorithm has less errors than other algorithms in T2 (Large change
step), T3 (Random change), T5 (Recurrent change) and T6 (Recurrent change with

noisy).

There is a similar situation in average-best results in function 5 (Ackley's function) with
function 4. According to Table 4-23, the only algorithm that has zero errors in all
situations is our algorithm. Also the SPSO algorithm has a close performance and it has
the same results in 5 of 6 situations but we should note that it has twice the number of

evaluations in each environment changes.

Table 4-23. Average-best in Function 5 (10 peaks)

Function 5
10 peaks error : Avgpes:

Num of
Evaluation

Zuben & Franc

Authors Algorithm T1 T5

0.2511

11.5370

Sl o w2 Fy o m o owmom
o0 o WY sw oo 1w wm
Li & Yang [86] ses 100,000 66;2332 7e'6_039 5_7 ; 3e'§731 Se'i633 5é1—239
SPSO 100000 %7 0 0 0 0 0
wisoe oo WU 46 4I5S A 4z o

Yu & Suganthan
[88] EEM 100,000 0.20075 0.18235 0.19615 0.2484 0.2035 0.184
bi &
veren MDAIS 50,000 0 0 0 0 0 0

83

Table 4-24. Average-worst in Function 5 (10 peaks)

. Funcions
10 peaks error : Avg,,orst

. Num of
Authors Algorithm Evaluation T1 T2 T3 T4 T5 T6

DAI 100,000 1728.1 705.152 786.275 1375.1 1927.64 1910.64
Korosec & Silc
[85] DANtS 100,000 171 22.2 16.0 8.10 29.0 8.75

CPSO 100,000 25.41 it | e | @ 63.2 42.54
Li & Yang [86] SGA 100,000 80.54 8292 7517 89.64 6414 8961
SPSO 100,000 554.7 5004 3605 740 94.04 945

Brest & Z d
b self-ADE 100,000 489413 9.6899 10.1371 475098 9.28981 4.78684
Yu&S th,
v EEM 100,000 44887 54133 36438 39928 55669 56.092

MDAIS 50,000 7.94 6.53 7.71 6.36 5.48 4.66

Table 4-25. Average-mean in Function 5 (10 peaks)

Function 5
10 peaks error : AVgmean

. Num of
DAI

Zuben &
Franc [84] 100,000 40.8943 344531 34942 120.637 943.2230 480.337
Korosec &
silc [85] DANtS 100,000 0.955 0.990 0.949 0.392 2.30 0.467
CPSO 100,000 1.855 2.879 3.403 1.095 7.986 4.053
Li &Y
e SGA 100,000 27.99 29.57 25.4 33.96 24.42 31.77
[86] SPSO 100,000 62.22 58.85 4451 91.95 29.03 116.9
Brest &
Zzamuda [87] RTINS 100,000 0.159877 0.333918 0.357925 0.108105 0.409275 0.229676
Yu &
Sug[ant]han EEM 100,000 7.9042 10.091 7.2867 62507 82195 7.9011
88

Shahabi &
MDAIS 50,000 0.5133 0.1982 0.285 0.344 0.204 0.1752

84

Table 4-26. STD in Function 5 (10 peaks)

Function 5
10 peaks error : STD

Num of
Evaluation

Zuben & Franc

Korosec & Silc

Authors Algorithm T1 T2 T3 T4 T5 T6

480.337 119.896 115.025 293.542 633.318 610.802

[85] DANtS 100,000 3.43 4.05 3.31 1.61 6.36 1.73

CPSO 100,000 5.181 6787 6.448 4.865 13.81 8371
Li & Yang [86] SGA 100,000 24.23 25.31 21.92 30.98 19.39 30.97
SPSO 100,000 104 99.23 149.7 22.24 193.1 152.7

Brest & Zamuda

self-ADE 100,000 1.02554 1.64364 1.83299 0.826746 1.90991 0.935494

Yu & Suganthan

1881 EEM 100,000 11287 1328 10201 10116 13.016 12911
S abi &

Core MDAIS 50,000 1.294 1381 0.632 1.106 0.927 0.719

In average-worst results that are shown in Table 4-24, the lowest errors in most of the
situations belong to proposed algorithm. The Self-ADE algorithm is better than our
algorithm just in T1(Small change step) and T4 (Chaotic change). The same situation
has happened in average-mean and STD results that can be seen in Table 4-25 and
Table 4-26. In function 5 (Ackley's function), again our algorithm has better
performance than other 7 algorithms, even it achieved these results by half of

evaluations that other algorithms had.

Finally the last function that we used to compare the proposed algorithm with other
algorithm is Hybrid Composition function. The results of this function are shown at

below.

85

Table 4-27. Average-best in Function 6 (10 peaks)

Function 6
10 peaks error : Avgpes:

Algorithm L) 63 T1

Evaluation
Zuben & Franc
[84] DAI

Authors

0.2871 0.2873 0.1074 38.4149

100,000 0.1003

Korosec & Silc

G 358 3.69 2.55 657 2.56
[85] DA B e—11 il | il | ool | eeii | el
1.693 1.26 6566 1.28 1835 2.852
Cree Lhwe e—4 e—4 e—4 e—5 e—3 e—4
Li & Yang [86] SGA 100,000 001314 45 96124 4e, 9385 5041
e—3 e—3 e—3 e—3
SPSO 9832 9.699 4.941
100,000 1457 S 000 RO 0 0
Brest & Z d
self-ADE 100,000 0 0 0 0 0 0
Yu & Sug
[56] EEM 100,000 01493 0.14815 0.15235 0.15565 0.1404 0.12375
MDAIS 50,000 0 0 0 0 0 0

Authors

Zuben & Franc
[84]

Korosec & Silc

Table 4-28. Average-worst in Function 6 (10 peaks)

Function 6
10 peaks error : Avg,,orst

Algorithm

DAI

Num of

Evaluation

100,000

T1

418.3680

T2

937.339

T3

1018.53

T4

906.233

TS5

1101.5

T6

1324.42

[85] DANtS 100,000 483 554 529 81.6 499 249
CPSO 100,000 37.79 2585 5048 1318 6288 2657
Li & Yang [86] SGA 100,000 247.2 8248 7836 3096 785 530.1
SPSO 100,000 546.3 842.4 806.1 682.1 817.1 748.6
Brest & Zamuda
self-ADE 100,000 32,7204 51.8665 84519 387914 191.895 45.0354
Yu & Sug
188 EEM 100,000 94921 73431 58111 50242 10068 84.709
MDAIS 50,000 24631 3705 32774 3405 70637 31.829

86

Table 4-29. Average-mean in Function 6 (10 peaks)

Authors [Algorithm

Zuben & Franc

Korosec & Silc

[85] DANtS

CPSO

Li & Yang [86] SGA

SPSO

Brest &
Zamuda [87] self-ADE
Yu &

Shahabi & MDAIS

Unveren

Evaluation

100,000

100,000

100,000

100,000

100,000

100,000
100,000

50,000

20.4434

8.87

6.725

39.41

71.15

6.22948

17.303

4.992

391.196

37.0

21.57

138.6

158.7

10.3083

18.732

12.636

456.441

26.7

27.13

98.51

140.3

10.954

16.005

9.430

T4

83.9698

9.74

9.27

53.53

120.7

6.78734

11.753

5.918

Table 4-30. STD in Function 6 (10 peaks)

TS

845.862

37.9

71.57

170.1

162.8

14.9455

26.311

8.044

T6

482.207

13.3

23.67

52.1

113.8

7.8028

24.558

6.337

Function 6
10 peaks error : STD

Tl

Num of

Authors Evaluation

Algorithm T5 T6

Zuben & Franc

Korosec & Silc

[85] DAnNtS
CPSO

Li & Yang [86] SGA
SPSO

Brest & Z d
res [87]amu a self-ADE
Yu & Suganthan

Shahabi &

100,000

100,000

100,000

100,000

100,000

100,000
100,000

50,000

79.323

13.3

9.974

65.84

118.1

164.6
22.801

7.5112

87

122

63.51

254.3

260.8

13.2307

19.006

11.807

98.4

83.98

208.8

240.7

23.2974

17.397

15.674

395.435 405.038 220.177

22.0

24.23

100.2

173.3

10.1702

13.594

9.871

118

160.3

274.6

275

45.208

29.318

24.683

251.208

434.421

57.4

51.55

87.99

164.6

10.9555

26.794

9.284

As can be seen in Table 4-27, the best results belong to the Self-ADE and the proposed
algorithm. Only these two algorithms could have the lowest possible error in average-

best error and it is equal to zero in all six situations.

In average-worst results that are shown in Table 4-28, the absolute winner is our
algorithm. In this error measurement, our algorithm can decrease the original artificial
immune system algorithm error between 15 to 40 times and only with half of evaluation
size. It can easily show the power and speed of our algorithm. This situation repeats in
average-mean table. The results that can be seen in Table 4-29 shows in the function 5,
the proposed algorithm can find peaks easier and faster than other algorithms in different

situations.

In the last table, the results of STD errors are shown. Also in this case our algorithm can
get the best results. If we have a look at all of the results in all problems in different
situations, we see that our algorithm has the best performance in most of situations. It
could improve the original artificial immune algorithm. In general we can claim that our
algorithm has one of the best algorithms in the world and in many tests that have been

done it has the best performance in general.

88

Chapter 5

CONCLUSION

In this thesis, we introduced a powerful algorithm to solve optimization problem in
dynamic environments. This algorithm was inspired by artificial immune system

algorithms and was upgraded by multi-set techniques to improve its performance.

This algorithm designed for problem solving that have many potential solutions but at
same time only one of them is the best solution. For example moving peak benchmark
that has many peaks at same time only one is the highest and it is the global optimum.
This algorithm tries to find the best solution among the all solution by finding all of the
possible solution and searching the near spaces. It also tries to find the best new solution

after each environment change by monitoring the previous solution.

This algorithm was tested by two different problems. In the first problem it was
compared with 24 algorithms and it had the best performance among them. In second
problem which includes 6 different functions and 6 environment change methods, the
proposed algorithm showed really good performance and it had the best performance in

general.

In the proposed algorithm there we tried not to use any initial knowledge of the problem

space as much as possible, but like other algorithms it needed shift severity. For the

89

future, we can suggest adding some online learning algorithms or adaptive mechanism to
improve the algorithm in such a way that it does not need any initial information about

problem space.

90

REFERENCES

[1] L. N. DeCastro, J. Timmis, Artificial Immune Systems: A New Computational

Intelligence Approach. London: Springer, 2002.

[2] U. Aickelin, D. Dasgupta, "ARTIFICIAL IMMUNE SYSTEMS," in Search
Methodologies: Introductory Tutorials in Optimization and Decision Support

Techniques, Edmund K. Burke and Graham Kendall, Eds., ch. 13.

[3] J. Timmis, T. Stibor , E. Clark , and A. Hone , "Theoretical Advances in Artificial
Immune Systems,"” Theoretical Computer Science, vol. 403, pp. 11-32, August

2008.

[4] J. Kelly, Understanding the Immune System How It Works.: National Institute of

Allergy and Infectious Diseases, 2007.

[5] P. Delves, S. Martin, I. Roitt, and D. Burton, Essential Immunology, 11th ed.:

Blackwell Publishing, 2006.

[6] D. Kitamura, How the Immune System Recognizes Self and Nonself

Immunoreceptors and Their Signaling. Japan: Springer, 2008.

[7] S. A. Hofmeyr, "An Interpretative Introduction to the Immune System,™ in In
Design Principles for the Immune System and Other Distributed Autonomous

Systems, 1. Cohen and L. Segel, Eds.: Oxford University Press, 2000.

91

[8] W. R. Clark, In Defense of Self:How the Immune System Works in Managing

Health and Desease.: Oxford University Press, 2007.

[9] G. J. V. Nossal, "Life, Death and the Immune System,"” Scientific American, vol.

269, pp. 21-30, 1993.

[10] F. J. Von, L. N. De Castro Zuben, "Artificial Immune Systems: Part | - Basic
Theory and Applications,” School of Computing and Electrical Engineering, State

University of Campinas, Brazil, Technical Report TR — DCA 01/99, 1999.

[11] A. S. Perelson, "Immune Network Theory," Immunol Rev, pp. 5-36, August 1989.

[12] G. M. Edelman, N. K. Jerne, Clonal Selection in a Lymphocyte Network: Cellular

Selection and Regulation in the Immune Response. New York: Raven Press, 1974.

[13] F. J. Benini, H. Varela, "The Immune Recmitment Mechanism: A Selective
Evolutionary Mechanism," in 4th International Conference on Genetic Algorithms,

San Diego, CA, July 1991, pp. 520- 526.

[14] Carlos A. Coello Coello,F. Fabio, R. Maurizio,.

[15] Carlos A. Coello Coello, N. C. Cort’es, "Hybridizing a Genetic Algorithm with an

Artificial Immune System for Global Optimization,” , February 17, 2004.

[16] T.Krzystof , W.T.Stawomir, "Immune-based algorithms for dynamic optimization,”

Elsevier, vol. 179, pp. 1495-1515, November 20009.

[17] B. Jason, Clever Algorithms: Nature-Inspired Programming Recipes.: LulLu, 2011.

92

[18] K. trojanowski, S. T. Wierzchon, "Immune-based algorithms fo dynamic

optimization,” information Sciences, vol. 179, pp. 1495-1515, 2009.

[19] CARLOS A. COELLO COELLO, N. C. CORT'ES, "Solving Multiobjective
Optimization Problems Using an Artificial Immune System,” Genetic Programming

and Evolvable Machines. Springer, vol. 6, pp. 163-190, 2005.

[20] J.Timmis, L.N. De Castro, "Artificial Immune Systems: A Novel Paradigm to
Pattern Recognition,” in Artificial Neural Networks in Pattern Recognition, C. Fyfe,

Ed.: University of Paisley, 2002, pp. 67-84.

[21] Carlos A. Coello Coello, S.C. Esquivel, V.S.Areagon, "A T-cell algorithm for
solving dynamic optimization problems," Information Sciences, pp. 3614-3637,

April 2011.

[22] G.Dozier,A. Carlisle, "Adapting Particle Swarm Optimization to Dynamic

Environments,"" in International Conference on Artificial Intelligence, Las

Vegas,USA, 2000, pp. 429-434.

[23] G.Dozier, A.Carlisle, "Tracking Changing Extrema with Adaptive Particle Swarm
Optimizer," in 2002 World Automation Congress, Orlando, FL, USA, 2002, pp.

265-270.

[24] R. C.Eberhart, H.Xiaohui, "Adaptive Particle Swarm Optimization: Detection and
Response to Dynamic Systems," in IEEE Congress on Evolutionary Computation,

Honolulu, Hawaii, USA, 2002, pp. 1666-1670.

93

[25] A. P. Engelbrecht, F. V. Bergh, "A Cooperative Approach to Particle Swarm
Optimization," IEEE Transactions on Evolutionary Computation, vol. 8, pp. 225-

239, 2004.

[26] D. B Fogel, T. Michalewicz, T. Back, Evolutionary Computation 1 - Basic

Algorithms and Operators. Bristol, UK: Institute of Physics (IoP) Publishing, 2000.

[27] H. Richter, "Memory Design for Constrained Dynamic Optimization Problems,” in

Applications of Evolutionary Computation, 2010, pp. 552-561.

[28] S. Richter, H. Yang, "Learning Behavior in Abstract Memory Schemes for
Dynamic Optimization Problems,"” Soft Computing-A Fusion of Foundations,

Methodologies and Applications, vol. 13, pp. 1163-1173, 2009.

[29] H. Cheng, and F. Wang, S. Yang, "Genetic Algorithms With Immigrants and
Memory Schemes for Dynamic Shortest Path Routing Problems in Mobile Ad Hoc
Networks," IEEE Transactions on Systems, Man, and Cybernetics, Part C:

Applications and Reviews, vol. 40, 2010.

[30] B. Wang, and Y. Wang, C. Hu, "Multi-Swarm Particle Swarm Optimiser with
Cauchy Mutation for Dynamic Optimisation Problems,” International Journal of

Innovative Computing and Applications, vol. 2, pp. 123-132, 2009.

[31] X. Yao, S. Yang, "Population-Based Incremental Learning With Associative
Memory for Dynamic Environments,” IEEE Transactions on Evolutionary

Computation, vol. 12, pp. 542-561, 2008.

94

[32] K. Tang, T. Chen, X. Yao, X. Yu, "Empirical Analysis of Evolutionary Algorithms
with Immigrants Schemes for Dynamic Optimization," Memetic Computing, vol. 1,

pp. 3-24, 20009.

[33] J. J. Grefenstette, H.G. Cobb, "Genetic Algorithms for Tracking Changing
Environments," in Proceedings of the 5th International Conference on Genetic

Algorithms, 1993, pp. 523-530.

[34] J. Branke, "Memory enhanced evolutionary algorithms for changing optimization
problems," in IEEE Congress on Evolutionary Computation, vol. 3, 1999, pp.

1875-1882.

[35] Jurgen Branke. (1999, December) The Moving Peaks Benchmark. [Online].

http://people.aifb.kit.edu/jbr/MovPeaks/movpeaks/

[36] R. W. Morrison , K. A. De Jong, "A test problem generator for non-stationary

environments," in Evol. Comput, 1999, pp. 2047-2053.

[37] Y. Jin, B. Sendhoff, "Constructing dynamic optimization test problems using the

multiobjective optimization concept,” in EvoWorkshop 2004, 2004, pp. 526-536.

[38] S. Yang, "Non-stationary problem optimization using the primal-dual genetic

algorithm,” in IEEE Congr. on Evol. Comput, 2003, pp. 2246-2253.

[39] S. Yang, X. Yao, "Experimental study on population-based incremental learning

algorithms for dynamic optimization problems," in Soft Comput, 2005, pp. 815-834.

95

http://people.aifb.kit.edu/jbr/MovPeaks/movpeaks/

[40] C. Li, M. Yang, L. Kang, "A new approach to solving dynamic TSP," in Simulated

Evolution and Learning, 2006, pp. 236-243.

[41] C. Li, Sh. Yang, D. A. Pelta, "Benchmark Generator for the IEEE WCCI-2012
Comepetition on Evolutionary Computation for Dynamic Optimization Problems,"” ,

2011.

[42] A. Carlisle , G. Dozier, "Adapting particle swarm optimization to dynamic

environments,” in The International Conference on Artificial Intelligence, 2000.

[43] K. Krishnakumar, "Micro genetic algorithms for stationary and nonstationary
function optimization,” in Proceedings of SPIE International Conference

Adaptative Systems, 1989, pp. 289-296.

[44] H. G. Cobb, "An investigation into the use of hypermutation as an adaptive operator
in genetic algorithms having continuous, time-dependent nonstationary

environments,” NRL Memorandum Report, vol. 6760, pp. 523-529, 1990.

[45] T. Nanayakkara, K. Watanabe, K. Izumi, "Evolving in dynamic environments
through adaptive chaotic mutation,” Proc. of the 4th Internat. Symposium on

ArtiJficial Life and Robotic, vol. 2, pp. 520-523, 1999.

[46] F. Vavak, K. Jukes, T. Fogarty, "Performance of a genetic algorithm with variable
local search range relative to frequency of the environmental changes," in Genetic

Programming, 1998, pp. 22-25.

[47] E. L. Yu, P. N. Suganthan, "Evolutionary programming with ensemble of explicit

96

memories for dynamic optimization,” in Evolutionary Computation, 2009. CEC '09.

IEEE Congress, 2009, pp. 431-438.

[48] Y. G. Woldesenbet , G. G. Yen, "Dynamic evolutionary algorithm with variable
relocation,” IEEE Transactions on Evolutionary Computation, vol. 13, pp. 500-513,

2009.

[49] X. Hu, R. C. Eberhart, "Adaptive particle swarm optimization: detection and
response to dynamic systems," IEEE Congress on Evolutionary

Computation,CEC2002, pp. 1666-1670, 2002.

[50] S. Yang, X. Yao, "Experimental study on population-based incremental learning
algorithms for dynamic optimization problem,” Soft Computing-A Fusion of

Foundations, Methodologies and Applications, vol. 9, pp. 815-834, 2005.

[51] J. Kennedy , R. Mendes, "Population structure and particle swarm performance,” ,

2002, pp. 1671-1676.

[52] S. Janson , M. Middendorf, "A hierarchical particle swarm optimizer for dynamic
optimization problems,” in Applications of evolutionary computing, 2004, pp. 513-

524.

[53] R.W.Morrison, "Designing evolutionary algorithms for dynamic environments,"

Springer-Verlag New York Inc, 2004.

[54] J. Grefenstette, "Genetic algorithms for changing environments,” Parallel Problem

Solving from Nature, vol. 2, pp. 137-144, 1992.

97

[55] H. Andersen, "An investigation into genetic algorithms, and the relationship
between speciation and the tracking of optima in dynamic functions," in Honours

thesis. Brisbane, Australia: Queensland University of Technology, 1991.

[56] J. Kennedy, R. Eberhart, "Particle Swarm Optimization,” IEEE International

Conference on Neural Networks, vol. 4, pp. 1942-1948, November 1995.

[57] K. Liaskos, "Hybridizing Evolutionary Testing with Artificial Immune Systems and
Local Search," in IEEE International Conference on Software Testing Verification

and Validation Workshop, 2008, pp. 211 - 220.

[58] R. Javadzadeh, Z. Afsahi, M.R. Meybodi, "Improved Artificial Immune System
Algorithm with Local Search,” in World Academy of Science, Engineering and

Technology, 2009, pp. 654-657.

[59] T. Blackwell ,J. Branke, "Multiswarms, exclusion, and anti-convergence in
dynamic environments," IEEE Transactions on Evolutionary Computation, vol. 10,

pp. 459-472, 2006.

[60] The Moving Peaks Benchmark. [Online]. http://people.aifb.kit.edu/jbr/MovPeaks/

[61] T. Blackwell, J. Branke, "Multi-swarm optimization in dynamic environments,"

Applications of Evolutionary Computing,Springer, vol. 3005, pp. 489-500, 2004.

[62] S.Boettcher, A.G.Percus, "Extremal optimization: Methods derived from Co-
Evolution," in Proceedings of the Genetic and Evolutionary Computation

Conference, 1999, pp. 825-832.

98

http://people.aifb.kit.edu/jbr/MovPeaks/

[63] L.T.Bui, J. Branke, H. A. Abbass, "Multiobjective optimization for dynamic
environments," in Congress on Evolutionary Computation, IEEE 2005, pp. 2349 —

2356.

[64] X. Li, J. Branke, T. Blackwell, "Particle Swarm with Speciation and Adaptation in a
Dynamic Environment," in Proceedings of Genetic and Evolutionary Computation

Conference, 2006.

[65] R. Mendes, A. Mohais, "DynDE: a differential evolution for dynamic optimization

problems," in IEEE Congress on Evolutionary Computation, 2005, pp. 2808-2815.

[66] T. Blackwell, J. Branke, "Multi-swarms, Exclusion and Anti-Convergence in
Dynamic Environments,” in IEEE Transactions on Evolutionary Computation,

2006, pp. 51-58.

[67] 1. Moser, T. Hendtlass, "A Simple and Efficient Multi-Component Algorithm for

Solving Dynamic Function Optimisation Problems," in IEEE CEC, 2007.

[68] T. Blackwell, J. Branke, X. Li, "Particle swarms for dynamic optimization

problems,” in Swarm Intelligence, 2008, pp. 193-217.

[69] A. Hashemi, M. Meybodi, "Cellular Pso: A Pso for Dynamic Environments,"” in

Advances in Computation and Intelligence, 2009, pp. 422-433.

[70] L. Changhe, Y. Shengxiang, "Fast Multi-Swarm Optimization for Dynamic
Optimization Problems Natural Computation,™ in Fourth International Conference

on Natural Computation, 2008, pp. 624-628.

99

[71] X. Hu, R. C. Eberhart, "Adaptive particle swarm optimization: detection and
response to dynamic systems," in IEEE Congress on Evolutionary Computation,

2002, pp. 1666-1670.

[72] W. Du, B. Li, "Multi-strategy ensemble particle swarm optimization for dynamic
optimization Information Sciences,"” in Information Sciences, vol. 178, 2008, pp.

3096-31009.

[73] S. Bird, X. Li, "Using regression to improve local convergence,” in IEEE Congress

on Evolutionary Computation, 2007, pp. 592-599.

[74] M. Kamosi, A. Hashemi, M. Meybodi, "A New Particle Swarm Optimization
Algorithm for Dynamic Environments,” in Swarm, Evolutionary, and Memetic

Computing, 2010, pp. 129-138.

[75] M. Kamosi, A. B. Hashemi, M. R. Meybodi, "A Hibernating Multi-Swarm
Optimization Algorithm for Dynamic Environments,"” in Proceedings of World
Congress on Nature and Biologically Inspired Computing(NaBIC2010),

Kitakyushu, Japan, 2010, pp. 370-376.

[76] L. Liu, S. Yang, D. Wang, "Particle Swarm Optimization With Composite Particles
in Dynamic Environments ," IEEE Transactions on Systems, Man, and Cybernetics,

Part B: Cybernetics, vol. 40, pp. 1634-1648, 2010.

[77] R. 1. Lung, D. Dumitrescu, "A collaborative model for tracking optima in dynamic

environments,” in 2007 Congr. Evol. Comput, 2007, pp. 564-567.

100

[78] R. I. Lung, D. Dumitrescu, "Evolutionary swarm cooperative optimization in

dynamic environments," in Natural Comput, 2010, pp. 83-94.

[79] Y. G. Woldesenbet, G. G. Yen, "Dynamic evolutionary algorithm with variable
relocation,” IEEE Transactions on Evolutionary Computation, vol. 13, pp. 500-513,

2009.

[80] B. Nasiri , M. R. Meybodi, "Speciation based Firefly Algorithm for Optimization in
Dynamic Environments," International Journal of Artificial Intelligence, vol. 8, pp.

118-132, 2012.

[81] I. Rezazadeh,M. R Meybodi, A. Naebi, "Adaptive Particle Swarm Optimization
Algorithm for Dynamic Environments,” Lecture Notes in Computer Science, vol.

6728, pp. 120-129, 2011,

[82] N. Noroozi,A. B. Hashemi, M. R. Meybodi, "CellularDE: A Cellular Based
Differential Evolution for Dynamic Optimization Problems," Adaptive and Natural
Computing Algorithms, Lecture Notes in Computer Science, Springer, vol. 6593,

pp. 340-349.

[83] C. Li, S. Yang, T. T. Nguyen, E. L. Yu, X. Yao, Y. Jin, H.-G. Beyer, P. N.
Suganthan, "Benchmark Generator for CEC'2009 Competition on Dynamic

Optimization," 2008.

[84] F.O. de Franc, F.J. Von Zuben, "A Dynamic Artificial Immune Algorithm Applied

to Challenging Benchmarking Problems,” in IEEE Congress on Evolutionary

101

Computation, 2009.

[85] P. Korosec, J. Silc, "The Differential Ant-Stigmergy Algorithm Applied to
Dynamic Optimization Problems," in IEEE Congress on Evolutionary Computation

(CEC 2009), 2000.

[86] C. Li, S. Yang, "A Clustering Particle Swarm Optimizer for Dynamic

Optimization," in IEEE Congress on Evolutionary Computation (CEC 2009), 2009.

[87] J. Brest, A. Zamuda, B. Boskovic, M. S. Maucec, V. Zumer, "Dynamic
Optimization using Self-Adaptive Differential Evolution,” in IEEE Congress on

Evolutionary Computation (CEC 2009), 2009.

[88] E. L. Yu, P. N. Suganthan, "Evolutionary Programming with Ensemble of Explicit
Memories for Dynamic Optimization," in IEEE Congress on Evolutionary

Computation (CEC 2009), 2009.

102

