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ABSTRACT 

The main aim of super-resolution is reconstructing a higher resolution image by 

combining a set of lower resolution images (classical approach) or from a single 

image. In this thesis a framework on Single Image Super-Resolution (SISR) based on 

sparse coding over structurally directional dictionaries has been presented. The 

motivation behind structurally directional dictionaries is the fact that images contain 

directional structures such as edges. A dictionary assigned to a specific direction 

promises to offer a better representation for directional features. The approach that 

leads to directional dictionaries is classifying the training data into directional 

classes. 

The design of the directional dictionaries is done in the wavelet domain; by reason of 

the fundamental theory about the wavelet which it categorizes the data into 

directional subbands. Here the training set is formed by the patches of the first and 

second level Discrete Wavelet Transform (DWT) subbands of natural images which 

are prepared for training process, in two levels of resolution (high and low resolution 

respectively). 

To categorize the training set into directions, several predetermined categories of 

patches called templates respect to the desired directions as a criterion of comparison 

are generated. Several classification techniques are studied and the best one which is 

based on templates matching is chosen. After classifying every high and low 

resolution training patches into their corresponding categories, K-SVD algorithm is 
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used to learn several pairs of high and low resolution dictionaries over the 

categorized data. 

On the other hand for reconstructing the high resolution patch given the low 

resolution one, in order to find sparse coefficients Orthogonal Matching Pursuit 

(OMP) algorithm is applied to low resolution dictionaries. After choosing the most 

proper low resolution dictionary among all the presented dictionaries based on the 

least square error between the main LR patch and reconstructed LR patches, the 

corresponding high resolution dictionary and same sparse coefficient is used to 

reconstruct the high resolution patch and finally acquire the super-resolved image. 

Quantitative results obtained from simulations has showed that the proposed 

algorithm indicates an average PSNR raise of 0.2 dB over the Kodak set compared 

with the images yield by other state of the art methods. Also the qualitative result is 

shown that the proposed algorithm plays a greater role in reconstructing images with 

more directional structures, or directional parts of natural images.  

Keywords:  Single Image Super Resolution; Sparse Representation; dictionary 

learning; directional dictionaries; classifying patches 
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ÖZ 

Görüntü süper çözünürlüğünün asıl amacı, daha düşük kalitede elde edilmiş 

görüntüleri klasik yöntem kullanılarak ya da daha yaygın olarak kullanılan tek bir 

görüntüyü kendisiyle birleştirme yöntemi kullanılarak daha iyi çözünülüğe sahip 

olan görüntüler oluşturmaktır. Bu tezde, yapısal yönlü sözlüklerin dağınık kodlaması 

temeline dayanan tek görüntü süper çözünürlük metodu çalışılmıştır. Yapısal yönlü 

sözlüklerin kullanılmasındaki motivasyon, görüntülerin kenarlarda olduğu gibi yönlü 

yapılar içermesine dayanmaktadır. Belirli bir yöne atanmış olan bir sözlük, yönlü 

özellikler için daha iyi bir gösterim sağlamaktadır. Yönlü sözlükler kullanılmasının 

amacı eğitme verilerinin yönlü sınıflara ayrılmasıdır.   

Yönlü sözlüklerin tasarımı, verileri yönlü altbantlara ayıran temel dalga teorisi göz 

önünde bulundurularak dalga alanında yapılmıştır. Bu çalışmada, eğitme verileri iki 

çözünürlük seviyesinde (yüksek ve düsük çözünürlükler sırasında) olmak üzere 

eğitme süreci için hazırlanan doğal görüntülerin birinci ve ikinci seviye DWT 

altbantları yamalarıyla düzenlenmiştir.   

Eğitme verilerini yönlere ayırmak için, istenilen yönlerin bir karşılaştırma kriteri 

olarak kullanıldığı şablon diye adlandırılan yamaların önceden tanımlanmış birçok 

kategorisi oluşturulmuştur. Bilim dünyasında çeşitli sınıflandırma teknikleri 

çalışılmaktadır ancak bu tezde sınıflandırma için en iyi metod olan şablon eşleştirme 

yöntemi kullanılmıştır. Her bir alçak ve yüksek çözünürlüklü eğitme yamaları ilgili 
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kategorilere ayrıldıktan sonra, sınıflandırılmış veriler arasından yüksek ve alçak 

çözünürlüklü sözlük çiftlerini öğrenmek için K-SVD algoritması kullanılmıştır.  

Öte yandan, verilen alçak çözünürlüklü yamadan yüksek çözünürlüklü olanı 

oluşturabilmek  ve dağınıklık katsayılarını hesaplayabilmek için, düşük çözünürlüklü 

sözlüklere OMP algoritması uygulanmıştır. Asıl ve oluşturulmuş LR yamaları 

arasındaki en küçük kareler hatasına dayanan mevcut sözlüklerin arasından en uygun 

alçak çözünürlüklü olanlarını seçtikten sonra, yüksek çözünürlüklü yamayı 

oluşturmak ve nihayetinde süper çözünümlü görüntüyü elde etmek için ilgili yüksek 

çözünürlüklü sözlük ve aynı dağınıklık katsayısı kullanılmıştır.  

Benzetim sonunda elde edilen sayısal sonuçlar, Kodak setiyle diğer bilinen 

metodların verdiği görüntü sonuçları karşılaştırıldığında, önerilen algoritmanın 

Kodak setinde ortalama PSNR’de 0.2 dB’lik bir iyilişme yarattığını göstermektedir.  

Ayrıca, nitel sonuçlar da önerilen algoritmanın cok yönlü yapılarla veya doğal 

görüntülerin yönlü kısımlarıyla görüntü oluşturmada önemli bir rol oynadığını 

göstermektedir.  

Anahtar Kelimeler:  Tek Görüntü Super Çözünürlüğü, Dağınık Gösterim, Sözlük 

Öğrenimi, Yönlü Sözlükler, Yama Sınıflandırması 
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Chapter 1 

1. INTRODUCTION 

1.1 Sparse Representation 

Sparse representation refers to representing the signal using linear combination of 

small parts of primary signal named atoms. Atoms are chosen from a matrix which 

has more columns than rows. Such a representation system is called an over 

complete dictionary              . If X is formed by signal vectors    as 

               then representation of the signal X is achieved as a linear 

combination of atoms from the dictionary. 

      (1.1) 

 Where   [          ] denotes the matrix of representation coefficients vectors 

of the signal   which can be either accurate or approximate,     . Under the 

above condition the number of equations is more than the number of unknowns so it 

has infinitely many solutions. In other words this system is an underdetermined 

system. The approximation ‖      ‖   should satisfy with typical    

                .  

 
‖  ‖   |  |

    |  |  
 
  

(1.1) 

‖ ‖  , ‖ ‖  will be used for    norm and   norm respectively. The    norm refers to 

sum of the absolute values of the entries in columns and    norm is Euclidean length 

or energy of the vector. 
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The assumption of   is a full rank matrix in 1.1 guarantees to have at least one 

solution, which means columns of   should be linearly independent. If   be in the 

span of matrix   this equation has many solutions. 

Researchers in this field concentrate on two main problems: 

1) Dictionary integration methods which refers to designing or learning 

dictionary atoms. This problem specifies convenient dictionaries. 

Several algorithms have been proposed in this field such as: K-SVD [1], 

Recursive Least Squares [2] and Online Dictionary learning [3] [4]. 

2)  Performing sparse disintegration and obtaining sparse coefficients (α). 

The most important aim of solving this equation is finding a proper solution 

among all the possible answers which is the sparsest one, in other words the 

solution with least number of nonzero entries. The desired sparsest solution 

has fewest nonzero entries in the vector α which ‖  ‖  refers to that.  

 ‖ ‖                        (1.3) 

When the equation 1.3 be established   is sparse. 

For obtaining the sparsest solution one may require to solve the optimization 

problem presented in 1.4. 

     ‖ ‖                           ‖    ‖    (1.4) 

This issue deals with the pursuit problems. Given a signal X and dictionary D, 

finding the best linear combination of D to reconstruct X is desired. To reach 

to this aim several algorithms has been proposed such as: FOCUSS [5] [6] [7] 

[8] [9] [10] (Focal Underdetermined System Solver), the basis pursuit (BP) 

[11], matching pursuit (MP) [12], orthogonal matching pursuit (OMP) [13] 

[14].  
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In this thesis K-SVD algorithm is used for learning dictionaries from part 1 and 

OMP for obtaining sparse coefficients from the second part and it has discussed 

more in detail next sections.  

1.2 K-SVD: Dictionary Learning Algorithm 

The objective of the K-SVD algorithm is to train a dictionary D to sparsely represent 

the data        
  which means solving a given sparsity problem 

 
   
   

‖    ‖ 
               ‖ ‖    

(1.5) 

‖ ‖  refers to Frobenius norm (or Euclidean norm) of matrix          which is 

defined by 

 ‖ ‖   ∑∑   
 

 

   

 

   

     (1.6) 

K-SVD algorithm minimizes 1.5 iteratively. To start this algorithm, first stage is 

sparse coding. Dictionary D has to be fixed then initialized coefficients matrices can 

be found by using any one of the pursuit algorithms mentioned in previous section. 

The second stage is to search for a better dictionary. In this process all columns are 

updated one by one in each iteration. To summarize K-SVD algorithm, it fixes every 

columns of D except one of them,    , then finds a new column and the 

corresponding coefficient which reduces  the mean square error. 

We shall now perform the following steps for K-SVD: 

 Let            
  where   

 
 (       ) are the rows of α 

 We can write (1.7) in the following manner: 

 
   
   

‖       
 ‖

 

 
              ‖ ‖    

(1.7) 

In this description,   
 

 stands for the     row from  .  The target is to update 

   and   
 
 referring to the term 
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     ∑    

 

   

 
(1.8) 

as a known pre-computed error matrix. After this part every condition are 

ready to updating the dictionary.  

 Define the group of examples that use the atom    (those where       is 

nonzero) : 

     |        
       ,       

 Let    be a   |  |  matrix with ones on the           entries and zero 

elsewhere then (1.9) can be written as:       ‖         
   ‖ 

 
. 

 Let      be the SVD (singular value decomposition) of   
       and 

define     
    

   . 

To obtain the largest singular value    of   
 

 and the corresponding left and 

right singular vectors        

    
   

‖           
 ‖

 

 
      

(1.9) 

 Solutions are:       and           . 

1.3 Orthogonal Matching Pursuit (OMP) 

OMP is a repetitious greedy algorithm [14] [15] [16] [17] [18] like MP algorithm. 

This algorithm selects an atom of the known dictionary which has the best 

correlation with the residual signal in each stage. For the following problem : 

 
   
    

‖    ‖ 
               ‖ ‖    

(1.10) 

where dictionary        have normalized atoms       
 . Initialized parameters 

are        ,  then we perform the following steps: 

 Select the dictionary atom with the maximum correlation with the residual. 
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|  
  | 

 Update active set        

 MP      [ ̂]   [ ̂]    ̂
   

OMP   [ ̂]     ̂
   ̂ 

    ̂
   

        ̂
     ̂         ̂     ̂ 

The above routine will continue for L iterations where L is a predetermined value so 

the process will stop after selecting fixed number of atoms. 

To understand the content better, it has provided a figure about updating the residual 

in MP [19]. 

y

z

d1

d2

<r,d3>d3

r
R=r-<r,d3>d3

d3
x

d3

z

d1

d2

<r,d2>d2
x

y

z

d1

d2

y

R=r-<r,d1>d1

r

R=r -
 <r,d

2> d2

r
x

(a) (b) (c)

d3

 
Figure 1.1: How to update residual in MP algorithm 

In Figure 1.1 (a) vector r and d3 have the maximum correlation among other vectors 

with each other. So                and this routine is continued in Figure 1.1 

(b) and (c) for updating r. But unlike MP, an atom can be selected only once with 

OMP. 

1.4 Sparsity Based Applications 

Sparsity-based algorithm, recently have been proven to be a successful method in 

many states of the art signal processing, machine learning as well as computer vision 

tasks. In image processing we can refer to super resolution [20] [21] [22], inpainting 
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[23] [24] and denoising [25] [26] [27] issues. Sparse representation also plays a main 

role in object recognition such as face recognition [28] and text recognition [29]. 

In this thesis we will consider super resolution problem and the assumption through 

this job is natural image patches can represented well using a sparse linear 

combination of a proper dictionary atoms. 

1.5 Super Resolution 

Enhancing the resolution of images is an active area in recent years. Different kind of 

methods such as frequency domain [30] [31] [32], Bayesian [33], example-based 

[34] [35] [36], set theoretic [37] [38], and interpolation, have been applied to super 

resolution techniques. Also in this field there has been a growing interest in the study 

of image resolution enhancement in the wavelet domain and many new algorithms 

have been proposed in this area [39]. The most considerable aspects of wavelet based 

super resolving is the capability in modeling the regularity of natural images [40]. 

Another category of super resolution is machine learning based, which intent to learn 

the occurrence of LR and HR image patches simultaneously.  

A significant achievement in this area is the patch based algorithm presented to 

reduce the computational cost [20] [21]. According to equation 1.1, patches of 

images can be represented by sparse coding over a dictionary. In [20] and [21] this 

method is applied into HR and LR image patches, and LR sparse coefficients are 

used to generate the HR patches with respect to their own dictionary.  R. Zeyde.et.al. 

[22] modified the mentioned method by changing some parts such as using a 

different training procedure for learning pair of dictionaries and changing the scale-

up phase. 
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In this thesis a strategy similar to R. Zeyde.et.al [22] is followed. However instead of 

learning one single condensed and big dictionary for the whole training set, we 

propose to learn structurally directional dictionaries over clustered training datasets 

in the wavelet domain. The motivation behind learning several structurally 

directional dictionaries is based on two ideas: 1) A plurality of sparse representation 

is better than the sparsest one alone [41] and 2) The signal can be represented better 

after clustering. So by learning several dictionaries over clustered data, it will have 

the potential for better representation of structurally directional features. 

Instead of the spatial domain the SISR problem is formulated in wavelet domain.  By 

incorporating wavelet domain benefits such as compactness and directionality with 

advantages of sparse coding, a progress in super resolution enhancement is predicted. 

All patches of 2 level wavelet subbands are classified into several categories 

according to their directions. K-SVD algorithm is applied to low resolution 

categorized patches to obtain low resolution dictionaries and sparse coefficients, then 

with regard to the assumption that the LR and HR sparse coefficients are 

approximately equal [21], obtained sparse coefficients are used for learning the 

corresponding high resolution dictionaries. Low resolution dictionaries are used to 

reconstruct LR patches. By observing least square error between reconstructed LR 

patches and the main LR patch, the most proper LR dictionary is chosen then the 

corresponding HR dictionary and sparse coefficient are used for reconstructing the 

super resolved patch. 

By the increase of 1.36 dB and 0.28 dB PSNR than bicubic interpolation and the 

state of the art algorithms respectively over benchmark images, the effectiveness of 
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the proposed algorithm which is mainly based on sparsely representing patches by 

structurally directional dictionaries is proved. 

1.6 Thesis Description  

In this thesis we mainly focus on structurally directional dictionaries. Due to this, it 

is necessary to classify the training dataset into several directional categories. To 

reach to this aim, several pre-determined directional templates are generated to 

recognize the direction of the patches according to the similarity of patches and 

templates. 

 The contents of this thesis have been organized as follows. We will talk about image 

super resolution from sparsity and two fundamental approaches in this area, 

Yima.Et.al [21] and R.Zeyde.Et.al [22] more in details in chapter 2. Chapter 3 is 

included the proposed method mainly about how to classify training set into 

directions and learning directional dictionaries. Chapter 4 provides details about 

simulation and comparing results with state of the art algorithms and chapter 5 

appertains to conclusion of the thesis and future work. 
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Chapter 2 

2. SUPER RESOLUTION FROM SPARSITY 

We mentioned about various super resolution algorithms from the literature in part 

1.5. We shall talk about one of the modified patch based algorithms suggested by R. 

Zeyde.et al [22], which the main idea had been proposed by J.Yang.et.al [21] . 

2.1 Relationship Between High and Low Resolution Images 

The patch based single image super resolution inspired from new approaches in 

compressive sensing (CS), which suggests that HR signals can be reconstructed from 

their low-dimensional projections. Although the super-resolution problem is an ill-

posed problem, and for a HR image so many LR images can be formed, sparse 

coding is   effective in adjusting the problem. 

We start by explaining about the problem and relation between high and low 

resolution images. The given low resolution image Y, can be established from high 

resolution image X. to avoid complexity of mismatching sizes of LR and HR images 

and boundary issues the low resolution image is scaled –up by factor Q which is an 

interpolation factor (bicubic interpolation is chosen in [22]) .  

               (2.1) 

where          is the down sampling factor as a projection matrix, B represents a 

known blurring filter and to simplify,    characterizing the multiplication of Q, S 

and H.  The aim of this algorithm is estimating high resolution patches of X, and to 
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reach to this aim operating on the corresponding low resolution image patches which 

they are extracted from low resolution image is needed. Let       , k refers to the 

location of central pixel of  high resolution image patch, x, in high resolution image 

X and    is an operator for extracting   . 

2.2 Equality of Sparse Coefficients in HR and LR Patches 

 As we explained in chapter 1 each patch in an image can be represented sparsely by 

a proper dictionary: 

        
  (2.2) 

        
  (2.3) 

   and    are the corresponding HR and LR patches which we call them patches and 

features briefly in this thesis and their central pixels are located in k. equation 2.1 can 

be written for HR and LR patches of the image: 

            (2.4) 

It has assumed in [42], operator   not only relates patches and features but also can 

relate HR and LR dictionaries. So the equation  2.4 can be written as: 

        (2.5) 

From 2.3 and 2.5 the assumption of sparse coefficients equality of features and 

patches is obvious. 

       (2.6) 

 It means each super resolved image patch is reconstructed by multiplying the 

corresponding LR sparse coefficient and HR dictionary. This is the main idea behind 

the single image super resolution algorithm proposed by J. Yang.et.al in [20] [21]. 

2.3 State of The Art Sparse Representation 

Here in this part the proposed algorithm by R. Zeyde.et.al [22] is studied. For 
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representing image textures rather than absolute intensity, for each patch the mean 

value of pixels is subtracted. The mean value of each Patch is predicted from its LR 

version which is the feature. This algorithm consists of two main phases: training 

phase and reconstruction phase. 

2.3.1 Training Phase 

Before extracting patches and features there need to apply the high-pass filter to low 

and high resolution images in order to remove low frequencies and extract local 

features respectively. After the steps mentioned above patches and features are 

extracted according to the corresponding location in HR and LR images to form high 

and low resolution dataset {   ,   }. However features fit in the data set after 

interpolating by factor Q. Consider that the location of an intended Patch in a high 

resolution image is the same as the location of its feature in the low resolution image. 

Next step is learning dictionaries. The starting point is features. In order to learn 

dictionaries K-SVD algorithm is used. A dictionary    is learned for features 

according to solve this optimization problem: 

                
   {  }

∑‖       ‖

 

 

      ‖  ‖        (2.7) 

 

where    refers to vectors of sparse representation coefficients. 

As we mentioned before, sparse representation coefficients can be equal for HR and 

LR patches so to learn high resolution dictionaries the corresponding low resolution 

sparse coefficient is used in each patch, with respect to the optimization problem 

below: 

 
         

  
∑‖       ‖

 

 

 
(2.8) 

The training phase is finished by learning high and low resolution dictionaries. 
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2.3.2 Reconstruction Phase 

First step of reconstruction part is almost the same as training part. This phase has 

tested for the images which they have down sampled and blurred by the same factors 

used in training phase. Then before extracting patches, the same high pass filter is 

applied to extract features. According to the location of k, patches are extracted. 

Using OMP algorithm sparse coefficient for each low resolution patch is found and 

then the corresponding high resolution patch is reconstructed by multiplying HR 

dictionary and the corresponding sparse coefficient which obtained in low resolution 

part by OMP. The super resolved patches   ̂     
  (T shows the number of patches) 

concatenated to form the high resolution image  ̂   by solving an optimization 

problem: 

  ̂        ∑‖    ̂      ̂ ‖ 

 

 

 (2.9) 

This optimization problem means the patch extracted by    from the difference 

image  ̂    should be close enough to approximated patches. This problem has a 

closed-form Least-Squares solution, given by 

 

 ̂    [∑  
   

 

]

  

∑  
 

 

 ̂  

(2.10) 

Solving this equation is equivalent to putting   ̂  in their proper locations, averaging 

in overlap regions and adding   to get the final super resolved image   ̂  . In this 

thesis the approach of R. Zeyde.et.al [22] is adopted, however there are fundamental 

differences. First difference is the fact that we work in the wavelet domain instead of 

the spatial domain. The most important motivation for this is the fact that wavelet 

transform itself sparsifies the signal of interest, furthermore it limits directionality. 
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Due to the fact that wavelet subbands are high-passed filtered version of input signal, 

the need for feature extraction is eliminated. 

Instead of learning single big dictionary, several directional dictionaries all learned 

by classifying data in wavelet subbands into directional clusters and employing K-

SVD algorithm for learning. 

In the testing side for each feature the most proper dictionary is found and the sparse 

coefficient is obtained by OMP algorithm. The representation coefficient is 

multiplied by the corresponding high resolution dictionary. We will talk about it 

precisely in next chapter. 
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Chapter 3 

3. PROPOSED SINGLE IMAGE SUPER-RESOLUTION 

ALGORITHM VIA STRACTURALLY DIRECTIONAL 

DICTIONARIES 

The proposed algorithm has two main parts: training part and testing part. Both 

training and testing parts are done in the wavelet domain. Every operation in training 

phase leads to learn several HR and LR pairs of structurally directional dictionaries. 

Patches in training set are classified into several categories according to their 

directions to form a training set for learning the dictionaries.  Then these dictionaries 

are used to reconstruct HR patches from LR patches of a test image to form the super 

resolved image at the end. This chapter starts with a short preface about wavelet 

decompositions of an image. 

3.1 Wavelet Decomposition 

In this thesis two level wavelet decomposition stages constitute HR and LR sets. 

Figure 3.1 shows two level wavelet decomposition for a 2D signal.  g and h denote 

wavelet and scaling filters.    shows the down sampling factor by 2. The outcomes 

of first level wavelet decomposition are    ,    and     namely Low-High, 

High-Low and High-High which refer to horizontal, vertical and diagonal details of 

the input image respectively. Sizes of the subbands after one level wavelet 

decomposition are half of the size of the input image while Sizes of    ,    and  

    after two level wavelet decompositions are one-fourth of the input image. 
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Figure 3.1: Block diagram of two-level forward wavelet transform 

The subbands yielded from first level wavelet decomposition is formed the HR 

dataset. To avoid complexity created by mismatching the sizes of first and second 

level subbands, LH2, HL2 and HH2 organize the required set of low resolution 

patches after one level wavelet interpolation which we will talk about it in the 

following sections. Also Figure 3.2 shows a block diagram of one-level inverse 

wavelet transform. 

LH1

HL1

HH1

LL1  2

 2

 2

 2

Th
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Tg

+

+

Th 2

 2 Tg

+
Output 
image

Figure 3.2: Block diagrams of one-level inverse wavelet transform 

   and    denote the transpose of wavelet and scaling filters which had been used in 

forward wavelet transform in  Figure 3.1. 
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3.2  Training Phase 

We shall start this phase by preparing HR and LR patches in the wavelet domain as 

we mentioned in Figure 3.1. 

3.2.1 Preparing LR and HR Patches for Training 

To form HR and LR data sets we used two level wavelet decomposition. First level 

subband images form HR dataset and the second level is used to form LR data set. In 

order to avoid mismatch in dimensions between LR and HR datasets, due to 

difference between sizes in first and second wavelet subbands images, an inverse 

wavelet transform is taken from each of the second level subbands by appropriately 

padding corresponding subband with zeroes as shown in Figure 3.3. After one level 

wavelet decomposition, the wavelet subbands   
    

    
  are used to extract the 

high resolution patches. After the 2
nd

 level wavelet transform wavelet subbands 

  
    

    
  are interpolated via zero padded inverse wavelet transform to obtain 

  
    

    
  from which LR patches (features) are extracted. The superscript M in 

  
    

    
  refers to the medium level of resolution, which we call them mid-

resolution. 

After extracting HR and LR patches from the mentioned subbands, each of the 

patches and features should place into a category according to their direction. Eight 

directions are intended and several templates are generated for all the eight 

directions. Each patch will place into a category according to the best match of 

correlation with the corresponding template. 
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Figure 3.3: Preparing LR and HR training images using two-level wavelet 

decomposition. 

3.2.2 Pre-Determined Templates  

Eight categories of patches which are compatible with the corresponding template 

for each direction have intended and for better comparing, Size of each template is 

chosen equal to the selected patch size. 

Figure 3.4 is showing directions of templates             . Directions 

             are assumed as intermediate directions. The area between each two 

intermediate directions belongs to the corresponding main direction. For example if a 

patch is directional and its direction is in the area between i1 and i2 it will place in 

the category of d1.  Every directional patches of HR and LR dataset is categorized 
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into these eight directions and will put into ninth category which is non-directional if 

there is no recognizable direction in it. 

Figure 3.4: Directions of pre-determined templates 

But how the templates are defined to cover every positions of a directional line in a 

patch? It has used Gabor filter to create Gabor patches.  

3.2.2.1 Gabor Filter 

Gabor filter has been used in many applications such as line and edge detection [43], 

enhancement [44], segmentation [45] and object detection [46]. In order to define 

directional templates we propose to use the Gabor filter as well. For 2D signal, it 

named complex Gabor function and it is calculated by multiplying sinusoidal wave 

and Gaussian kernel which is the case in our method. The real part of a Gabor filter 

is defined as a multiplication of complex sinusoidal plane and Gaussian kernel and 

can be written as [47] : 

           ( 
         

   
 )       

  

 
    (3.1) 

where  
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                          (3.2) 

                           (3.3) 

          shows the center of the filter,  ,  ,   refer to spatial aspect ratio, sigma of 

the Gaussian envelope and wavelength of sinusoidal factor respectively and    is the 

phase offset [48]. 

By 2D Gabor function Gabor patches are generated as the pre-determined templates 

for each desired directions as shown in Figure 3.5.  

 
Figure 3.5: Pre-determined Gabor templates of size 6×6 for zero degree direction 
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It has prepared samples of templates for zero degree, 45 degree and 135 degree in 

Figure 3.5, Figure 3.6 and Figure 3.7 respectively. First and third row is covering 

intermediate directions with two level shifts from set {  }, where p refers to the 

number of direction, and it is obvious second row is shown exact zero degree from 

the set of main directions {  } with two levels of shifts. For each category of 

directions nine sample patches are formed. It is clear that by increasing the selective 

size of high resolution patch the number of samples for each category will increase, 

because it needs more number of samples to cover all the shifts for each direction in 

a patch with bigger size. 

Figure 3.6: Pre-determined Gabor templates of size 6×6 for 45 degree direction 
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Figure 3.7: Pre-determined Gabor templates of size 6×6 for 135 degree direction 

3.2.3 Classification 

Next step is classifying HR and LR patches extracted from    
    

    
  and 

  
    

    
  respectively into several directional categories. If the direction of the 

patch is compatible with one of the pre-determined templates, the patch places into 

that category, but if the patch has no specific direction, it places into non-directional 

category. 

The criterion of compatibility between the patch and templates is correlation match. 

To find the best match of correlation, the shape of patches and templates matrices are 

changed from 2D dimension to vector shape. For each high resolution patch the 

correlation coefficients of the desired patch with all the templates are computed and 

the maximum correlation coefficient is chosen. If the maximum correlation is greater 
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than a threshold (e.g. 0.4) the HR patch goes into the founded category. In addition 

to putting the HR patch in the best category, the corresponding LR patch will place 

in the corresponding LR category too. But if it is less than the threshold which means 

the system could not found a specific direction, both Patch and feature place into 

non-directional category. So, two sets of categorized data are formed for both levels 

of resolution.    
    

      
   contain HR patches and    

    
      

   is formed by 

LR patches. 

3.2.4 Learning LR and HR Dictionaries 

To learn all the dictionaries, K-SVD algorithm is used. In order to promote the 

learning of the directional dictionaries the K-SVD algorithm is initialized with 

dummy directional dictionaries. To generate dummy dictionaries, the templates of 

the corresponding category are changed into vector shape and these vectors form the 

atoms of the dictionary for the corresponding category. But since the number of 

generated templates is not enough to generate the dictionary, linear combination of 

vector shaped templates are constituted the rest of atoms. Defining dictionaries based 

on the templates guarantees the desired directions for dictionaries.  

It is clear that ninth dictionary witch is non directional dictionary has no initialization 

factor except defining the number of its atoms. Sizes of all dictionaries are chosen 

the same. Figure 3.8 shows the atoms of eight dummy dictionaries    
    

      
   

which are perfectly directional. Dummy dictionaries are the starting point for 

learning the low resolution dictionaries. 



 

 

23 

 

Figure 3.8: Dummy dictionaries for eight directions 
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‖     

   
 ‖

 

 
                ‖  

    ‖
 

   (3.4) 

where    and its subscript i refer to the categorized LR patches and the number of 

category respectively and   
  is the matrix of sparse coefficients. 

   
  [      

      
   ]  (3.5) 

 Nine low resolution dictionaries   
    

      
   are learned over LR dataset using 

K-SVD by initializing with the corresponding dummy dictionary.  

After learning process for LR dictionaries, to learn HR dictionaries   
    

      
  , 

the corresponding low resolution coefficients are used. Therefore to obtain high 

resolution dictionaries, Pseudo-inverse solution using the corresponding low 

resolution patch and the coefficient is needed. High resolution dictionaries are 

computable by multiplying    
  and HR patches. 

   
       

    (3.6) 

where    refers to categorized HR patches,   
  is the matrix contains sparse 

coefficient vectors [      
      

   ]  and   
  is defined by: 

       
         

        
      

  
    (3.7) 

where the superscript ’ ’ ant ‘T’ denote the pseudo-inverse and transpose symbol 

respectively. We used the fact that      .  

We finish the training phase by learning 9 pairs of high resolution and low resolution 

directional dictionaries. Figure 3.9 shows example patches of the designed 

dictionaries which are learned over horizontal (d1) and vertical (d5) training sets. As 

it was expectable the direction of each dictionary is visible in Figure 3.9. 
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(a) (b)

Figure 3.9: Directional HR dictionaries. (a) 90 degree (b) zero degree 

   
    

       
   and    

    
      

   are the categorized high and low resolution 

patches respectively and     
    

      
   refer to the dummy dictionaries to define 

the start point in K-SVD. The obtained nine pairs of LR and HR dictionaries are used 

to reconstruct features and patches respectively in the test phase.  

At the end of this part a summary of the training phase is presented in Figure 3.10. 

3.3 Reconstruction Phase 

In this phase given the low resolution image which is assumed to be the LL1 

subband of the wavelet transform, what we want to do is estimating the 

corresponding wavelet subbands and get an inverse wavelet transform to reach to the 

super resolved image. For this purpose we follow a strategy similar to the one 

followed in the training phase. 
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Figure 3.10: Training phase 
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By one level wavelet decomposition from the given low resolution image (LL1), a 

lower resolution image (LL2) and subband images (LH2, HL2 and HH2) are 

obtained. Similar to training phase to reach to the desired size, wavelet interpolation 

has taken from each subband using zero padding. The obtained bands are   
 ,   

  

and   
 . For each patch in these bands (    OMP algorithm is applied nine times 

and each time for one of the learned low resolution dictionaries to obtain sparse 

coefficients. The multiplication of each dictionary by the corresponding sparse 

coefficient is used to reconstruct the patch, so for the patch in position k a set of 

reconstructed patches is formed    ̂ 
    ̂ 

      ̂ 
   via nine dictionaries 

   ̂ 
    

     
  (3.8) 

where i shows the number of dictionary which is used (from 1 to 9) and   ̂ 
  is the 

reconstructed feature in location k with     dictionary. Among all the reconstructed 

features choosing the most similar one to the main feature is needed. For this purpose 

the least square errors between the main feature and all nine reconstructed features 

are computed.  

    
 

‖     ̂ 
 ‖

 

 
 (3.9) 

The best answer shows the most proper dictionary by specifying i to estimating the 

corresponding high resolution patch in the same location but in   
 ,   

  and   
  

which is unlnown. Then nth dictionary from the set of high resolution dictionaries 

can be used for multiplying with the corresponding α to reconstruct the high 

resolution patch. According to the experimental results obtained from simulation, 

least square error for choosing the best low resolution dictionary is not a perfect 

criterion. As it has not found a better model selection yet, so the least square error 
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between the estimated features and the main feature is used to recognize which high 

resolution dictionary should be chosen for reconstructing HR patch. 

      
    (3.10) 

Figure 3.11 shows a brief overview of the steps has done in the testing phase. By 

reconstructing every high resolution patches, the HR subbands are made possible. As 

it has shown in this figure the last step is one-level inverse wavelet transform to 

reach to the super resolved image. 

 

Figure 3.11: Reconstruction phase 
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Chapter 4 

4. SIMULATION AND RESULTS 

In this chapter, we demonstrate the proposed method results over the Kodak set and 

benchmark set using matlab platform, on Intel core i5cpu 2.66 GHz with 4GB of 

RAM. The comparison has done with bicubic interpolation and Zeyde.et.al algorithm 

[22] both qualitatively and quantitatively. To show the quantitative performance 

peak signal-to-noise ratio (PSNR) measurement is used. 

Given the main image X and the reconstructed image  ̂ with dimension     , the 

PSNR is: 

  
    (   ̂)          

   

√   (   ̂)

 
(4.1) 

Where, MSE refers to the mean-square error between the main image and the 

reconstructed image. 

 
   (   ̂)  

 

  
∑∑     ̂   

 

 

   

 

   

 
(4.2) 

Besides PSNR, the Structural Similarity Index Measurement (SSIM) [49] is used, 

which is compatible with human visual perception. 

First the SISR results based on PSNR and SSIM obtained by the proposed algorithm, 

bicubic interpolation and the algorithm proposed in [22]. Then the results are 

compared both visually and quantitatively. We then move on and examined the 

results in the situation if the high resolution patches be available to choose the most 
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correct high resolution dictionary among all the exist dictionaries. This test has done 

to understand the qualification of the model selection in the testing phase.  

For extracting patches and features of the training images it has allowed in 

consecutive patches, one pixel overlap [1 1] in both directions. This amount of 

overlap has been chosen to increase the speed of training process and overlap [3 3]   

which is full overlap is selected in the testing phase to reconstruct the supper 

resolved image better. To compare fairly every simulation parameters such as images 

in training set, patch sizes, overlap factors, even the number of atoms of learned 

dictionaries (number of all atoms in proposed algorithm for 9 dictionaries is 990 and 

in [22] one dictionary with 1000 atoms ) are chosen equal both in the proposed 

algorithm and [22]. 

The learning process of nine pairs of dictionaries each having 110 atoms has been 

performed using a total of 145,000 patches in proposed algorithm and 138,000 

patches for R.Zeyde.et.al algorithm [22] for learning 1,000 dictionary atoms. The 

calculated time process for learning 9 dictionaries using K-SVD with 20 iterations 

and sparsity 3 is around 40 seconds while learning process for the dictionary in [22] 

with the same number of iteration and sparsity takes around 350 seconds.  

Table 4.1 shows the number of patches which has been chosen by similarity with 

predetermined templates to place in the corresponding eight directional categories 

and the non-directional category if the similarity match be less than the pre-specified 

threshold. From the proposed results in Table 4.1 it can be seen around 40% of all 
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patches of natural images recognized as directional patches (with threshold 0.4 for 

similarity between patches and templates). 

Table 4.1: Number and percentage of placed patches in each category 

direction Number of patches percentage 

d1 7292 5.0% 

d2 7742 5.3% 

d3 7307 5.0% 

d4 7196 4.9% 

d5 7875 5.4% 

d6 7288 4.9% 

d7 7136 4.8% 

d8 6785 4.6% 

directional 58621 40.2% 

Non-direction 87188 59.7% 

 

It is expected by improving the representing directional parts of an image using 

highly directional dictionaries the better performance be achievable compare to 

representing with one dictionary for all types of data. 

As we mentioned before the reconstruction phase has been performed over 24 

images of the kodak set and 10 well-known images of the benchmark set. For a 

better understanding of test images it has shown all 24 images of kodak set in Figure 

4.1. 

In reconstruction phase the most important problem is the model selection which 

should apply on the LR patch to choose the compatible direction, its worth 

mentioning that the picked direction in LR patch and the corresponding direction in 

HR patch are not always the same. In fact a better model selection algorithm can be 

developed, so that the performance can be improved. The selection of proper 
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dictionary should be done based on low resolution patches. This is because the LR 

patches are available in the reconstruction phase. In order to test and verify that the 

desihned dictionaries are proper a test is designed. For this purpuse we assume 

knowledge of HR patches in the reconstruction phase. Each HR patch is 

reconstructed with all the HR dictionaries and the dictionary that gives minimum 

mean square error is picked for reconstruction. this test is refered to correct model 

selection and performance results are given in 4
th

 column of  Table 4.2 and Table 

4.3. The results indicate that with the correct model selection (selecting the most 

appropriate HR dictionary)  the PSNR performance of the algorithm is on the 

average 0.41 dB better than R. Zeyde [22]. However the HR patches are not 

available in the reconstruction phase, therefor the model selection adopted here is 

minimizing the squared error in the representation of LR patches. 

The super resolving process has done by factor 2, for instance size of input low 

resolution images of Kodak set is 384×256 so the super resolved images have size 

768×512. Most of the input low resolution bench mark images have size 256×256 

and the super-resolved images have size 512×512. 

The summerize of the results are observable in Table 4.2 and Table 4.3. In these 

tables the proposed algorithm results are compared to bicubic interpolation and R. 

Zeyde.et. al algorithm. From the provided results in Table 4.1and Table 4.2 it is clear 

that the proposed algorithm is operating better than bicubic interpolation and R. 

Zeyde.et.al [22] algorithm with average PSNR increase of 0.17dB over Kodak set 

and 0.28dB over benchmark set, Which means it is better to divide one condense 
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dictionary into several directional and non-directional dictionaries and reconstruct 

each patch according to its direction. 

Figure 4.1: Original high resolution images of Kodak set [50]. 
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Table 4.2: Kodak set PSNR and SSIM comparison with bicubic, R. Zeyde algorithm 

[22], (i) proposed algorithm (ii)if the best HR dictionary be chosen 
Image Bicubic R. Zeyde.et.al 

[22] 
Proposed method Correct model 

selection 

1 26.69 

0.9597 

27.76 

0.9791 

27.91 

0.9755 

28.21 

0.9770 

2 34.03 

0.9697 

34.91 

0.9751 

35.09 

0.9806 

35.29 

0.9815 

3 35.03 

0.9842 

36.46 

0.9849 

36.51 

0.9908 

36.72 

0.9912 

4 34.57 

0.9813 

35.86 

0.9835 

36.13 

0.9902 

36.33 

0.9906 

5 27.13 

0.9775 

28.66 

0.9839 

28.70 

0.9895 

28.96 

0.9900 

6 28.27 

0.9628 

29.19 

0.9793 

29.46 

0.9771 

29.66 

0.9781 

7 34.27 

0.9923 

36.10 

0.9903 

36.2 

0.9963 

36.46 

0.9965 

8 24.31 

0.9668 

25.32 

0.9819 

25.41 

0.9768 

25.67 

0.9778 

9 33.13 

0.9856 

34.79 

0.9869 

34.75 

0.9908 

35.01 

0.9856 

10 32.94 

0.9848 

34.36 

0.9869 

34.4 

0.9908 

34.61 

0.9912 

11 29.93 
0.9717 

30.98 
0.9819 

31.03 
0.9821 

31.25 
0.9912 

12 33.56 

0.9773 

35.13 

0.9866 

35.32 

0.9855 

35.59 

0.9830 

13 24.71 

0.9576 

25.42 

0.9754 

25.75 

0.9762 

25.92 

0.9861 

14 29.89 

0.9773 

31.06 

0.9797 

31.31 

0.9883 

31.53 

0.9771 

15 32.88 

0.9824 

34.36 

0.9860 

34.94 

0.9905 

35.18 

0.9888 

16 32.05 

0.9705 

32.77 

0.9760 

32.97 

0.9808 

33.16 

0.9906 

17 32.86 

0.9880 

34.18 

0.9819 

34.32 

0.9940 

34.51 

0.9815 

18 28.78 

0.9755 

29.72 

0.9827 

30.15 

0.9870 

30.35 

0.9942 

19 28.79 

0.9719 

29.97 

0.9770 

30.06 

0.9818 

30.30 

0.9824 

20 32.36 

0.9765 

33.79 

0.9857 

33.74 

0.9914 

33.96 

0.9918 

21 29.26 

0.9816 

30.21 

0.9832 

30.47 

0.9890 

30.68 

0.9895 

22 31.36 
0.9753 

32.39 
0.9809 

32.58 
0.9867 

32.82 
0.9873 

23 35.92 

0.9926 

37.63 

0.9876 

37.88 

0.9961 

38.15 

0.9963 

24 27.62 

0.9764 

28.5 

0.9806 

28.81 

0.9869 

28.99 

0.9876 

average 31.09 

0.9766 

32.06 

0.9823 

32.23 

0.9864 

32.47 

0.9869 

 

  



 

 

35 

 

Table 4.3: Benchmark set PSNR and SSIM comparison with bicubic, R. Zeyde 

algorithm [22], proposed algorithm and the last column if the best HR dictionary be 

chosen 
Image Bicubic R. Zeyde.et.al 

[22] 

Proposed method Correct model 

selection 

Baboon 24.86 

0.9651 

25.40 

0.9808 

25.67 

0.9750 

25.81 

0.9759 

Barbara 28.00 

0.9577 

28.64 

0.9734 

28.58 

0.9712 

28.69 

0.9716 

Boat 32.36 

0.9863 

33.70 

0.9812 

33.76 

0.9913 

34.01 

09918 

Cameraman 35.71 

0.9937 

38.70 

0.9849 

40.13 

0.9984 

40.44 

0.9985 

Elaine 31.06 

0.9767 

31.30 

0.9706 

31.42 

0.9793 

31.48 

0.9796 

Face 34.83 
0.8463 

35.49 
0.8463 

35.80 
0.8767 

35.96 
0.8810 

Fingerprint 31.95 

0.9942 

33.87 

0.9706 

34.85 

0.9983 

35.15 

0.9984 

Lena 34.70 

0.9893 

36.10 

0.9815 

36.28 

0.9936 

36.49 

0.9938 

Man 29.25 

0.9820 

30.28 

0.9812 

30.31 

0.9889 

30.49 

0.9894 

Zone-plate 11.40 

0.7040 

11.96 

0.8686 

12.31 

0.7281 

12.36 

0.7289 

average 

 

26.77 

0.8656 

27.85 

0.9568 

28.13 

0.9540 

28.41 

0.9548 

Although the performance in the proposed algorithm is obvious but the results 

achieved from the correct selection (choosing the most proper dictionary)in fourth 

column of the tables shows that a better model selection can be created, and the 

proposed algorithm is improvable. Qualitative comparison is also further illustrated 

in Figure 4.2 to Figure 4.6 and the superiority of reconstructing directional parts of 

images by proposed algorithm over other methods is observable. to show the 

preference of the proposed algorithm toward state of the art it has chosen three 

images  from the Kodak set (number 1, number 22 and number 24) and two well-

known images from benchmark set(Barbara and Lena). In all figures below (a) is the 

original image (b) shows bicubic interpolation (c) is the result yields by [22] and (d) 

shows the proposed algorithm results 
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Figure 4.2: Visual comparison of image number 1 from Kodak set (a) original image 

(b) bicubic interpolation (c) R. Zeyde algorithm [22] (d) proposed algorithm 
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Figure 4.3: Visual comparison of image number 22 from Kodak set (a) original 

image (b) bicubic interpolation (c) R. Zeyde algorithm [22] (d) proposed algorithm 

  



 

 

38 

 

 
Figure 4.4: Visual comparison of image number 24 from Kodak set (a) original 

image (b) bicubic interpolation (c) R. Zeyde algorithm [22] (d) proposed algorithm 
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Figure 4.5: Visual comparison of Barbara image (a) original image (b) bicubic 

interpolation (c) R. Zeyde algorithm [22] (d) proposed algorithm 
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Figure 4.6: Visual comparison of Lena image (a) original image (b) bicubic 

interpolation (c) R. Zeyde algorithm [22] (d) proposed algorithm 
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Figure 4.2 shows the tests performed on image number 1of the Kodak set with PSNR 

increases of 1.22 than bicubic. As it is observable the shutters behind the window is 

sharper and the directions of them are recognizable in (d) which is the result yield by 

proposed algorithm compared to (b) bicubic and (c) [22]. In (b) and (c) the shutters 

are smooth and interconnected with no space from each other.  

Figure 4.3 is number 22 of the Kodak set. In (d) wooden fence are straighter and 

sharper with less curvature than (b) and (c). 

In Figure 4.4 which is the 24
th

 image of the Kodak set the gable roof in left has both 

horizontal and vertical lines where in (b) and (c) just vertical lines are observable and 

(d) shows both. 

Figure 4.5 and Figure 4.6are two of the well-known bench mark images, Barbara and 

Lena. The directions of the scarf of Barbara is sharper in (d) while in (b) and (c) are 

smother. In Lena image the directions and the contrast of the shadow on the top of 

the hat in (d) is sharper and clearer. 

These comparisons prove that learning directional dictionaries in addition to 

performing the process in wavelet domain gives a better reconstruction in high 

frequency details and directional patches.   
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Chapter 5 

5. CONCLUSION AND FUTURE WORK 

5.1 Conclusion 

This thesis investigated the ill-posed super-resolution problem using sparse 

representation by structurally directional dictionaries. To this end HR and LR 

patches classified into several directional categories using similarity level between 

pre-determined directional templates and patches. Categorized patches and features 

formed the training sets for learning the dictionary pairs. Both pairs of HR and LR 

dictionaries obey the character of their training set and maintain the corresponding 

category’s direction. In the reconstruction part given the low resolution image (LL1) 

the main aim is estimating high resolution wavelet subbands which are unknown. To 

reach to this aim OMP algorithm is applied to each feature of low resolution 

subbands each time with one of the low resolution dictionaries. In order to choose 

the most proper dictionary the feature is reconstructed nine times by nine low 

resolution dictionaries and the sparse coefficients obtained from OMP. The proper 

dictionary is used according to the least square error between the main feature and 

the reconstructed features. By the assumption that the sparse coefficients for sparsely 

representing the HR and LR patches can be equal, patches of the HR subbands are 

reconstructed by the corresponding proper high resolution dictionary and same 

sparse coefficient. After reconstructing all patches and high resolution subbands, the 

super resolved image obtained by an inverse wavelet transform. 
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By learning several dictionaries instead of one big dictionary the complexity arises 

from the learning part is decreased. Visual and experimental results have been shown 

reconstructing directional patches by directional dictionaries returns better results 

than reconstructing patches by a dictionary with no special feature, also there was 

around 0.2 dB increase in PSNR than the state of the art method which had been 

reconstructed patches by one dictionary. 

5.2 Future Work 

In the future, the most important piece of work which needs more investigation 

would be the model selection for choosing the most proper dictionary in 

reconstruction phase. The presented result shows that if the best high resolution 

dictionary be chosen regardless LR dictionaries, the performance will increase. This 

case represents the fact that the best LR dictionary for reconstructing a feature and 

the best HR dictionary for reconstructing the patch in the same location are not 

always correspond to each other, so the model selection according to least square 

error between the exist feature and the reconstructed features is not a perfect model. 

By using directional dictionaries better performance is achievable but with 

generating a better model selection. 

One other important issue that can be worked on it in the future is deliberation of 

sparse coefficients equality. To estimate the HR subbands it has assumed that the 

sparse coefficients in LR and HR patches can be equal, but the validity of this 

assumption can be studied later. 

As there is a direct link between the learned dictionaries and classifying patches to 

form the training set, other models for classifying patches in training phase can be 
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surveyed. After classifying features and patches into directional categories, objective 

tests show that the generated categories are not perfectly directional and some 

patches with correlation more than the pre-determined threshold but without any 

visual direction places in that category. So other methods such as comparing singular 

value decomposition for templates and patches can be tested for recognizing the 

directions better. 

Also the classification can be done not only based on directions but also based on 

other cases. The fact is representation by learned dictionary over clustered data, 

gives supreme results. So the different kind of clustering can be performed. 
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