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ABSTRACT

One of the structural systems in Cyprus is slab-column frame buildings with wide
beams and rectangular columns. In this study 4-, 6- and 8-story buildings with regular
plan of mid-rise wide-beam buildings in Famagusta, Cyprus were defined. Fragility
curves were employed as one of the important seismic assessment tools and
constructed using incremental dynamic analysis (IDA) method. In this study, a set of
earthquake records were chosen to represent the soil properties and strike-slip type of
faulting in this region which also have a good correlation with Turkish design
spectrum. These records were scaled to ten different levels of peak ground
acceleration (PGA) from PGA=0.1 to PGA=1.0g. The Park & Ang damage index and
log-normal cumulative distribution function were used as proper damage index and
probability function, respectively. Based on IDA curves, two damage levels including;
immediate occupancy (10) and collapse prevention (CP) were obtained for this type
of building and they were compared with criteria which are suggested by FEMA 356.
Also, the effects of P-delta and aftershock were evaluated.

Since the nonlinear time history analysis is time consuming, requires complex
calculations and powerful computers, for rapid evaluation of damage the artificial
neural network (ANN) was used as an efficient tool. In this study, using the results of
numerical simulations, 600 data were generated and applied to a multi-layer perceptron
(MLP) neural network in order to predict the imposed damage of these sample
buildings. In training process, ten different activation functions were examined to find
the best kernel function. Also the optimum hidden layer neurons were calculated by
using minimum test error method. In this network, 70 %, 15 % and 15 % of all data

were used for training, validating and testing process, respectively. Based on obtained



results from ANN, the fragility curves were drawn and compared with the obtained
curves from IDA. This application of network also is able to predict the top
displacement and the base shear force of sample buildings.

Another application of ANN was used for classification of global imposed damage
based on Park & Ang investigation. For this aim, two networks include; multi-class
support vector machine (M-SVM) and combination of MLP neural network with M-
SVM (MM-SVM) were applied and the label of each actual class was compared with
predicted class. The results showed that the ANNSs are able to predict and classify the
damages with high accuracy and also they can be used as an appropriate and reliable
alternative tool for rapid seismic evaluation of structural systems.

Finally, an existing model of R/C wide-beam building (test model) was considered
and the obtained fragility curves from classical method and ANN were compared and

discussed.

Keywords: aftershock effect, artificial neural network, damage classification,
damage prediction, fragility curve, incremental dynamic analysis, Park & Ang damage

index, R/C wide-beam buildings, seismic behavior.



0z

Kibris genelinde betonarme yapi sistemleri arasinda déoseme kalinliginda genis
Kirislerin dikdortgen kolonlar tarafindan tasindigi sistemler de bulunmaktadir. Bu
caligmada bu oOzelliklere sahip 4, 6 ve 8 kath binalar Gazimagusa sehrinde bulunan
yapi Ozelliklerini tagiyacak sekilde olusturulmustur. Bu yapilar i¢in kirilganlik egrileri,
artimsal dinamik analiz (ADA) yontemi kullanilarak olusturuldu. Bu amagla
Gazimagusa bdlgesinin zemin kosullarin1 da dikkate alan ve Tiirk Deprem
Y onetmeligi tasarim spektrumuna uyumlu yan atimsal deprem kayitlari kullanilmistir.
Tasarim spektrumuna uyumlu deprem kayitlart en biiyiik yer ivmesi 0.1g den 1.0g’ye
kadar on farkli seviyede olgeklendirilerek kullanilmistir. Calisma kapsaminda Park ve
Ang hasar endeksi ve log-normal yigilimli olasilik dagilimi kullanilarak kirilganlik
egrileri elde edildi. Olusturulan ADA egrilerinden “hemen kullanim” ve “gd¢me
oncesi” hasar durumlart bu yapilar i¢in belirlenmis ve FEMA356 kriterleri ile de
karsilastirilmistir. Ikinci mertebe moment etkisi ve artct soklar da bu calisma
kapsaminda degerlendiridi.

Linear olmayan dinamik analizlerin oldukca zaman aldig1 ve giiclii bilgisayar
gerektirmesinden Otiirii, Ozellikle deprem dayaniminin hizli belirlenmesi (6n
degerlendirme) ¢alismalarinda etkili olacak Yapay Sinir Aglar1 (YSA) yontemi bu
calisma kapsaminda etkili bir ara¢ olarak kullanilmistir. Bu baglamda, niimerik
similasyon yapilarak olusturulan 600 veri ¢cok-katmanli algilayict (MLP) sinir aglari
algoritmasina uyarlanarak 6rnek olarak olusturulan yapilarin hasar durumlari tahmin
edildi. YSA alistirma asamasinda on degisik aktivasyon fonksiyonu incelenip en iyi
cekirdek fonksiyon bulundu. Buna ilaveten optimum sakli sinir hii¢releri en az hata

olusturulacak sekilde hesaplandi. Bu agda, toplam verilerin %70°1 alistirma, %15’



dogrulama ve %15’1 ise test asamalarinda kullanildi. YSA analizinden elde edilen
sonuglarara gore kirilganlik egrileri ¢izildi ve ADA analizleri sonucunda elde edilen
egrilerle karsilastirildi. Bu uygulama ayrica 6rnek yapilarda en biiyiik deplasmanin ve
taban kesme kuvvetinin belirlenmesinde de kullanildi.

YSA ayrica Park ve Ang global hasar siiflandirilmasi uygulamalari i¢in de
kullanildi. Bu amagla ¢oklu-sinif destek vektdr mekanizmasi (M-SVM) ve MLP sinir
ag1ile kombine M-SVM (MM-SVM) uygulanip her bir hasar sinifi tahmin edilen hasar
sinfi ile karsilastirildi. Analiz sonuglart gostermistir ki YSA yontemi hasar
durumlarinin belirlenmesinde ve siniflandirilmasinda yiiksek dogruluk orani ile
kullanilabilir. Ayrica YSA ile belirlenen hasar diizeyleri hizli deprem
degerlendirilmesi amaci ile farkli yap1 sistemleri i¢in de kullanilabilir.

Son olarak Gazimagusa bolgesinde mevcut bir yapr (kullanilan 6rnek
yapilardan farkli) ¢alisma kapsaminda incelenip YSA algoritmasi ile elde edilen

sonuglar ADA analiz sonuglari ile karsilastirilip sonuglar tartisildi.

Anahtar Kelimeler: Artci sok, Yapay Sinir Aglari, hasar siniflandirilmasi, hasar

tespiti, kirilganlik egrileri, artimsal dinamik analiz, Park ve Ang hasar endeksi,

Betonarme genis-kirisli yapilar, deprem davranisi.
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Chapter 1

INTRODUCTION

1.1 Background

The natural disasters such as earthquake and strong winds may lead to catastrophic
results, such as, earthquakes on January 26, 2001 in India (20,005 killed, 166,836
injured, 339,000 buildings destroyed), February 24, 2003 in china (263 killed, 4,000
injured, 10,000 buildings destroyed), May 1, 2003 in eastern of Turkey (176 Killed,
521 injured), May 21, 2003 in northern Algeria (2,266 killed, 10,261 injured) and
February 24, 2004 in Morocco (628 killed, 926 injured) (USGS, 2014). Engineering
measures have been taken to reduce the risks of earthquakes and damages caused by
them including evaluation and identification of the behavior of materials particularly
concrete and steel, improvement in analysis and design of buildings, control and more
precise monitoring of the implementation and better workmenship.

Generally, the seismic behavior of buildings are commonly impressed by three
factors including; lateral load acting, geometry of buildings and the properties of
materials in linear and nonlinear states which are used in construction. Therefore, the
identification of these aspects to predict the structure responses are significant. On the
other hand, the accurate determination of earthquake loads are difficult, therefore this
factor is one of the major uncertainties to identify seismic response of buildings.
Similarly, geometries of buildings are different from each other and it is very difficult

to have an exact model. Also the material properties in construction are depending on



manufacturing processes and there is a confusion in selecting appropriate material
properties. However, these uncertainties can be decreased by collecting data
throughtout proper engineering knowledge. In the last decades, engineers tried to
improve the numerical and experimental methods in order to achieve the more realistic
seismic responses of buildings. Indeed, these results can be used in two ways; seismic
vulnerability assessment and retrofitting of existing buildings that were designed and
constructed based on previous codes and still in use, improve design codes to reach

more reliable design and construction for new buildings.
1.2 Objectives of the study

The primary goal of this study is to evaluate the vulnerability of existing reinforced
concrete (R/C) wide-beam buildings which are built in the Mediterranean area and is
also available in North Cyprus. Since this type of buildings were built in the last few
decades and also still in use, their seismic behavior should be considered seriously.
For this purpose, the fragility curves were selected as an efficient tool and by
considering the real behavior of construction material, selecting a set of ground motion
record which has most correlation with design spectrum and using nonlinear time
history analysis, behavior of these buildings type were evaluated. In addition,
incremental dynamic analysis (IDA) curves were applied in order to find the damage
criteria for this type of buildings and the obtained results were compared with
suggested criteria based on FEMA 356 (2000). In the meantime, the P-Delta and also
aftershocks effects were discussed.

Another aim of this study is to apply the artificial neural network (ANN) as an
alternative and rapid evaluation method with function approximation operation as a
fast, efficient and accurate tool to predict the amount of imposed damages and drive

the fragility curves. Also this method can be used as an alternative method instead of



FEMA 154 (2002) with more accuracy, time saving ability and high efficient. This
model of network also can be able to predict another response of buildings such as the
top displacement and the base shear force. Furthermore, it was applied to determine
the effective ground motion parameters.

Another model of ANN with clustering and classification capability was selected
in order to classify the global damage of buildings to three classes that includes;
Repairable (Economic), Beyond Repair (Not Economic) and Loss of Building
(Collapse). These networks can create a compatibility model for similar buildings with
additional data beyond whatever is previously used in order to predict and classify the
amount of imposed damage due to earthquake in minimum time and high precision
and then drive the fragility curves with establishing a good relation between the
structural and ground motion parameters as input parameters and damage values as

output parameters of network.
1.3 Overview of the thesis

This thesis is composed of seven chapters. The first chapter describes the
introduction. It briefly discusses about the problem statements, aims and scopes and
includes; background, objectives of the study and overview of the thesis. Chapter two
concerns with literature review. This review includes the application of fragility curves
for seismic evaluation of R/C buildings and the extensive usage of ANN in several
fields of civil engineering in order to solve the different problems with prediction and
classification approach. Chapter three illustrates the method and requirements that
were carried out in this research. The analysis and results for obtaining the fragility
curves based on IDA and ANN are explained and presented in chapters four and five,
respectively. Chapter six discusses about obtained results throughout the thesis,

comparison between obtained fragility curves based on classical method (IDA) and



computational method (ANN) and finally an existing R/C wide-beam building (case
study) is evaluated. Lastly, the conclusion of this study is presented in chapter seven.
It comes together with the appendices which consist of Matlab codes and reference

links.



Chapter 2

LITERATURE REVIEW

The significance of danger for buildings caused by earthquakes worldwide is being
increasingly perceived as a result of poor quality materials, imprecision in construction
and failed supervision. Due to the improvement in structural engineering, such as the
study of a building’s seismic behavior and observation of a building’s damage, radical
changes can now be observed in this field. It is important to evaluate existing structures
in order to determine some ways for improving the seismic resistance of vulnerable
buildings. In recent years, several different methods of retrofitting have been
developed to upgrade the seismic performance of existing undamaged buildings before
being subjected to an earthquake (Elnashai and Sarno, 2008). For instance, retrofitting
can be conducted by adding new structural elements (such as structural walls or steel
braces) or by increasing the strength of weak structural elements by using concrete
and/or steel jackets, fiber-reinforced polymer sheets, etc. (Durucan and Dicleli, 2010;
Obaidat et al., 2011; Promis and Ferrier, 2012). Fragility curves are one of the useful
tools for evaluating the seismic vulnerability of buildings. These curves indicate the
estimation of the damage probability as a function of the ground motion indices. Ozel
etal. (2011) used fragility analysis to investigate the seismic reliability of mid-rise R/C
building retrofitted with eccentric steel braces. To increase the seismic reliability of
existing buildings, D-, K-, and V-type eccentric braces were used, and the fragility
curves were compared before and after retrofits. Buratti et al. (2010) investigated

seismic fragility curves for R/C frame structures considering the uncertainties in both



structural parameters and seismic excitation. The fragility curves obtained by different
methods were compared, using the results from a full Monte Carlo simulation as the
reference solution. A seismic fragility assessment of typical low- and mid-rise R/C
buildings in Turkey was conducted by Erberik (2008). The damage was estimated by
using the generated fragility curves. The estimated damage distribution seemed to be
comparable to the actual damage data. Kappos (2010) provided a methodology for the
derivation of capacity curves and fragility curves in terms of peak ground acceleration
(PGA) and spectral displacement (SD) for various types of R/C buildings in Greece.
Mwafy (2012) developed analytical fragility curves for modern high-rise buildings in
the United Arabic Emirates (UAE), and the significance of assessing the seismic risk
of this type of buildings under the effects of anticipated seismic scenarios was
emphasized. The vulnerability assessment analysis of some existing typical R/C school
buildings in Albania was performed by Baballeku et al. (2008). Pushover analyses
were performed to provide their respective capacity curves, and the probable damage
levels of the buildings were assessed by using the fragility curves.

Nowadays, one of the popular computational models which have been applied
widely in different fields of science is ANN. Recently, ANNSs are used in different
fields of civil engineering, such as, traffic management and transportation systems,
damage prediction of structures, thermo-graphic inspection of electrical installations
within buildings, forecast water pressure in pipes, etc., in order to solve complex
relationships by considering effective indices and establishing a good relationship
between input and output parameters. Moreover, these networks can be applied in
damage classification problems.

For confined reinforced concrete columns containing fiber-reinforced polymer, a

combined ANN (CANN) was presented by Koroglu et al. (2012). The network can



estimate the flexural capacities with high accuracy. Tesfamariam and Liu (2010) used
eight different neural networks for classification of reinforced concrete buildings to
three classes; damaged, life safety (LS) and immediate occupancy (1O). The obtained
results showed that the performance of classification depends on the characteristics of
database. A MLP neural network was employed in order to evaluate the effective
design parameters of R/C buildings under earthquake by Araslan (2010). He
considered 256 buildings between 4 and 7 story with change in quality of R/C structure
materials and load-bearing system to obtain the buildings capacity. The results showed
that among eight considered parameters, short column formation and shear wall ratio
have the most effect on buildings performance. On the other hands, transverse
reinforcement and compressive strength of concrete were identified as the least
significant parameters. Two different neural networks; a back-propagation neural
network (BPNN) and a fuzzy neural network (FNN) were used in order to measure the
pressure on a large gymnasium roof by Fu et al. (2007).They showed that BPNN can
be applied as effective tool for the design and analysis of wind effects on large roof
structures. Gonzalez and Zapico (2008) suggested a method for seismic damage
identification of steel moment-frame buildings using a multi-layer perceptron (MLP)
neural network. The obtained results from MLP were accepted with minimum error of
test and train data. In order to evaluate the damage level of beams, a neural network
with back-propagation algorithm was used by Li and Yang (2008). They showed that
the obtained results of this network were having enough efficiency.

The first classification algorithm was presented by Fisher (1936). In this algorithm,
minimizing the classification error of train data was evaluated as an optimization
criterion. This method has been used in many classification algorithms, yet there are

some problems encountered mainly the generalization properties of the classifiers,



which are not directly involved in the cost function. Also for doing the training process,
determining the structure of network was not easy. As an example, determining the
optimum number of neurons in the hidden layers of the MLP neural networks or the
number of Gaussian functions in radial basis function (RBF) neural networks are
difficult and time consuming. Cortes and Vapnik (1995) introduced a new learning
statistical theory which led to present the support vector machines (SVMs). The
significant features of these networks are their ability to minimize the classification
errors, maximize the geometric margins between classes, design the classifiers with
maximum generalization, and automatically determining the architecture of network
for classifiers and modeling the nonlinear separator functions using nonlinear cores.
In a tunnel construction, an intelligent controlling system was presented by Jun et
al. (2013). This system needed to recognize the geophysical parameters to find the
optimum solution of problems. Therefore, a nonlinear optimization technique was
employed using the least square support vector machine (LSSVM). The results showed
that this method is timesaving and easy to use in local optimal problems. Mingheng et
al. (2013) employed several different models of traffic flow using SVM to find the
best intelligent traffic control tool. They obtained that amongst the three proposed
models, the SVM with the historical pattern data for the target road section model has
the best performance. Vafaei et al. (2013) applied MLP neural network to identify the
real-time seismic damage for concrete shear walls. It was observed that the neural
network could detect the amount of imposed damage with high accuracy. Two
different neural networks; the adaptive neuro-fuzzy inference system (ANFIS) and the
three-layered artificial neural network (TL-ANN) model were used to estimate the
earthquake load reduction factor for industrial structures by Ceylan et al. (2012). They

showed that the ANFIS model was more successful than the TL-ANN model. Xie et



al. (2013) investigated the amount of voids inside the concrete using SVM. The grid-
algorithm and the genetic-algorithm were used to determine the kernel function and
network parameters. The obtained results presented that the SVM exhibits a promising
performance for identification of voids inside the concrete. In addition, ANNs were
used in conjunction with each other. Koroglu et al. (2012) applied MLP neural network
in two models; Single MLP and combined MLP with itself (CMLP) for estimation of
the flexural capacity for the quadrilateral FRP-confined R/C columns. They obtained
the model of CMLP had lower prediction error than the single MLP model. In order to
classify the cardiac arrhythmias, Castillo et al. (2012) considered a hybrid intelligent
system which consists of the Fuzzy K-Nearest Neighbors with the MLP and very high
classification rate was obtained. To predict the Short-Term wind power generation,
combination of genetic algorithm (GA) and orthogonal least squares (OLS) algorithm
with RBF neural network was proposed by Chang (2013). The test results indicated
the proposed model is reliable with the sufficient performance.

Since many researches have been done on different types of buildings which are
constructed based on previous code and instruction, but unfortunately no research has
been centrally done on wide-beam R/C building. Also this type of buildings are
available and still in use, therefore the seismic evaluation of these buildings is
significant. For this aim, some criteria should be considered, such as, nonlinear
behavior of material including concrete and steel bar, how to distribute and absorb the
earthquake energy by structural elements, determine the damage level criteria and
compare with existing procedure guideline like FEMA 356, assessment of the collapse
processing and etc. Since doing the nonlinear time history analysis is difficult, time
consuming and needs high engineering knowledgement, thus in this research it was

attempted to present a new method in order to evaluate the seismic performance of



buildings with high accuracy, minimum time and simplicity of operation. This method
can be used for evaluation of an extensive space like a city by considering some
suitable sample from a set of specified buildings type and carrying out nonlinear
dynamic analysis. Then using the obtained data, the seismic performance of remained
buildings will be predicted with high precision. Many applications of this strong
mathematical tool have been done in many fields of science such as medical science,
different engineering fields, aerospace, military science and etc. Also this method can
be used for retrofitting programs, disaster management and insurance company. It
might be said that the performance of ANN in simplest case is like nonlinear regression
but more complicated. Indeed the ANN made a relation between input and output
parameters using some functions such as tangent hyperbolic, sine hyperbolic, etc. Then
by using this pattern, the test data were evaluated. Also the different models of ANN
with various applications were used in this research as powerful mathematical tool
which can solve the complex and difficult problems that cannot be solved by prevalent

mathematical methods.
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Chapter 3

METHODOLOGY

3.1 Sample buildings and material properties

One of the existing building types in Cyprus is slab-column frame buildings with
wide beams and rectangular columns where the beam height is equal to the slab
thickness. This type of building is made in the Mediterranean area such as Spain, Italy,
Greece and is also available in North Cyprus (Climent et al., 2009; Kulkarni and Li,
2009; Climent et al., 2010; Goldsworthy and Abdouka, 2012). The structural system

of exterior wide beam-column connections is shown in Figure 3.1.

Figure 3.1: Typical exterior wide beam-column connection

This type of buildings were largely used by many architects because it has more

flexibility for definition of spaces and also effective in reducing the use of formwork.
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However, this model of buildings has several problems, such as, lack of sufficient
transferring of the bending moment from the wide beam to the column, poor energy
absorption capacity, inadequate lateral stiffness, etc. Using the wide beam-column
connection has been limited or prohibited in seismic regions. As an example, the ACI-
ASCE (1991) prohibited using the wide beams in structures in order to dissipate energy
in response of ground motions during inelastic behavior of the structure. ACI 318-83
(1983), ACI 318-89 (1989), ACI 318-95 (1995) and ACI 318-99 (1999) codes
permitted wide beams if:

b, < (b, + 1.5h) (3.1)
The New Zealand standard NZS3101-95 (1995) limited by, to:

b, < min{ b, + 0.5h.; 2b.} (3.2)
The more recent ACI 318-05 (2005) and ACI 318-08 (2008) limit by, to:

b, < min{ b, + 1.5h,; 3b,} (3.3)

where b,, is the width of wide-beam, b, is the width of column, h. is the depth of
column, hy, is the height of wide-beam or slab thickness (Climent et al., 2010).

In this study, three R/C wide-beam buildings with the 4-, 6- and 8-levels were
defined with regular plan in order to present the mid-rise buildings in Famagusta city.
Based on information mentioned in existing building plans, these buildings were
designed according to 1975 version of the Turkish seismic design code (TEC-1975,
1975). Also, the American Concrete Institute (ACI) building code was used for
designing the structural components (ACI 318-83, 1983). The duality in selecting
codes (i.e. Turkish and American codes) may be a drawback for such buildings.
Moreover, based on previous researches and experimental tests of this building type,
the material strength of concrete and steel of these buildings stock were measured as

15MPa for compressive strength of concrete and 220MPa and 300MPa for yield and
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ultimate strength of steel, respectively (Rasol, 2014; Arslan, 2010). Soil type IV (D-
type) was specified based on this zone property.
3.1.1 1975 Seismic Design Code

The TEC regulation of 1975 has been introduced and used since 1975 as a seismic
code to be applied in disaster areas. The code considered the spectrum coefficient
based on the natural period of the building and soil conditions. Ductility term was
explicitly used for this code and also base shear factor was calculated based on this
term in order to provide the sufficient resistance under earthquake. The earthquake
coefficient of the 1975 code is calculated as:

C=Cy-K-1-S (3.4)

where C, is seismic zone factor, K is a factor related to structure system type, I is
an important factor and S is a spectral factor (llki and Celep, 2012; Soyluk and
Harmankaya, 2012)
3.1.2 ACI 318-83 Code

ACI 318-83 (1983) regulation has been presented by the ACI for designing the
structural concrete members with considering the minimum requirement. This code
designs the concrete members using the ultimate strength of materials by considering
appropriate safety margin through applying reduction factors. Also these factors
include the safety of material properties for controlling the strength, any variations in
concrete member dimensions and steel positions, lack of precision in design and
considering the structural members ductility. These factors are 0.9 for flexure and axial
tension, 0.75 and 0.7 for axial compressions with and without flexure, respectively.
Furthermore, factors 0.85 for shear and torsion and 0.7 for bearing on concrete were
considered (ACI 318-83, 1983).

Based on observations of wide-beam buildings, dimensions of the columns were

selected as rectangular sections with aspect ratios (width/height ratio of cross section
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area) between 1.5 and 3. Also the beams with same thickness of slab (15cm) were used
as a connection elements between columns. SAP2000 was used in order for primary
design of these models. Figures 3.2-3.7 depict the plans and section views for the 4-,
6-, and 8-story buildings, respectively. Since the plans of studied buildings were
rectangular in shape with different strengths in the x- and y-directions, therefore the

samples were selected in order to investigate in the weaker direction (x direction) only.

A S —

3.3m

Figure 3.2: Plan view of four-story building
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Figure 3.7: Section view of eight-story building

3.2 Ground motions

A significant step for performing nonlinear time history analysis is selection of a
representative set of ground motion records which have high correlation with design
spectrum and also cover the site properties. For this aim, the effective parameters of
earthquakes in a region should be considered. These parameters include; the distance
from the fault line, the soil profile, the time duration of the earthquake as well as the
variation in intensity, amplitude and frequency content, etc. For Cyprus area, a strike-
slip fault mechanism was specified by Cagnan and Tanircan (2010).

In this study, due to uncertainty and lack of strong ground motion data for the
Famagusta region, a series of earthquakes that occurred in other areas of the world
were selected. The records were taken from the Berkeley data-base site (PEER, 2013).
These records have been chosen based on the strike-slip fault mechanism, the D (Z4-

type according to TEC (2007)) site classification (Shear-wave velocity < 180 m/s) and
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a distance less than 100 km from the fault line which is representative for Famagusta
region (Cagnan and Tanircan, 2010).

For the best set of records, different methods, such as, the time domain, the
frequency domain or the time-frequency domain adjustments were suggested
(Hancock et al., 2006; Rizzo et al., 1975; Suarez and Montejo, 2005). These methods
are used to match the response spectrum with design spectrum but they lead to change
the time or frequency content of the original records. In this study, twenty records were
selected carefully in order to have most correlation with the design spectrum specified
by the Turkish design code (TEC, 2007) using trial and error approach. For this
purpose, twenty records considered randomly from a larger set of proper input records
and then by calculating the mean of these twenty records, the amount of correlation
between mean and design code are calculated. This process is repeated until to reach
the best correlation value. The mean and response spectrums of individual records are
shown in Figure 3.8. Moreover, the characteristics of these ground motions are

tabulated in Table 3.1.
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Figure 3.8: The mean and response spectrums of individual records
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Table 3.1: Characteristics of the twenty natural records

Name Event Year E;ti::r';ieve PGA PGV_l PGD

9l @ | Cemsy | (em
REC1 Park field | 1966 | 27.80 | 0.059 | 5.90 2.86
REC2 Park field | 1966 | 06.99 | 0.476 | 79.34 | 22.59
REC3 'mpe”"’(‘)'esva"ey' 1979 | 1282 | 0171 | 4275 | 0283
REC4 'mpe”‘i‘)'ﬁva"ey' 1979 | 2332 | 0078 | 1300 | 24.18
REC5 | Victoria- Mexico | 1980 10.64 0.101 7.77 05.99
REC6 | Victoria- Mexico | 1980 15.37 0.150 25.00 09.54
REC7 | Westmorland | 1981 | 0840 | 0171 | 0590 | 00.47
RECS8 Westmorland 1981 18.50 0.155 25.83 12.96
REC9 | MorganHill |1984 | 3598 | 0032 | 0533 | 0221
REC10 S“ﬁ?{fst_igon 1987 | 1686 | 0211 | 3014 | 2044
REC11 S“ﬁ?{fst_igon 1987 | 2875 | 0.207 | 3450 | 2131
REC12 | Superstition a7 | 1605 | 0358 | 4475 | 17.46

Hills-B

REC13 Landers 1992 | 3632 | 0.136 | 11.33 | 05.03
REC14 Landers 1992 17.62 0.245 49.00 43.66
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REC15 Kobe- Japan 1995 | 24.52 | 0.070 4.38 01.54

REC16 | Kocaeli- Turkey | 1999 | 15.34 | 0.268 67.00 57.17

REC17 | Kocaeli- Turkey | 1999 | 09.39 | 0.242 30.25 29.76

REC18 | Kocaeli- Turkey | 1999 | 14.99 | 0.152 21.71 09.81

REC19 Duzce- Turkey 1999 | 19.22 | 0.042 8.40 08.09

REC20 Duzce- Turkey 1999 | 16.09 | 0.114 11.40 9.74

In order to adapt the mean response spectrum with Turkish design spectrum (TEC-
2007, 2007), scaling the real ground motion records is necessary. Therefore, based on
Figure 3.8, the mean curve from this set of records has good correlation with target
curve (Turkish design spectrum) but they are not perfectly fitting to each other.
Therefore, an optimization program was written via MATLAB software in order to
find the best scale of mean records using root mean square error (RMSE) reduction

technique. Flowchart of the proposed optimization algorithm is depicted in Figure 3.9.
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Figure 3.9: Flowchart of the search optimization algorithm

Therefore, based on RMSE reduction technique, factor 2.3 was obtained for this set

of records. The mean and response spectrums of this set of scaled records are shown

in Figure 3.10.
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Figure 3.10: Target (Turkish design spectrum), mean and response spectrums of
individual modified records
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3.3 Damage indices

In order to evaluate the damage level of structures under earthquake loads, several
different indices were presented by researchers. These criteria provide the value of
structural failure based on a proper theoretical background. Mathematical models of
damage that have been determined based on assessment of vulnerabilities can be
defined as functions of structural strength, ductility, the distance from the fault line,
the duration of the earthquake, etc. Gradually, combination of visual observations of
damage and numerical analysis and extensive investigation in this field led to defining
the damage indices for the evaluation of a building’s vulnerability. Recently,
considering the seismic behavior of structures under oscillatory motions of the earth
has led to improve the damage function. As continue, several important damage
indices which were suggested and used for concrete buildings are presented.

3.3.1 Ductility ratio index

Ductility ratio index is defined as ratio of maximum deformation to the yield
deformation and has been extensively applied to evaluate the seismic capacity of
building undergoing inelastic deformation (Newmark and Rosenblueth, 1971).
Experimental studies showed that this index is not properly working when shear
distortion was happened in joints and the bottom bars pull out through the concrete.
3.3.2 Slope ratio index

Slope ratio index is defined as ratio of the secant slope in loading branch to the
slope in unloading branch of force-displacement diagram and calculates the damage
based on stiffness degradation under seismic loading (Saiidi and Sozen, 1981).

3.3.3 Normalized cumulative rotation index
Normalized cumulative rotation index is defined as ratio of total inelastic rotations

during half cycles to the yield rotation and is depended on duration and intensity of the
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ground motion (Allahabadi and Powell, 1988; Banon and Veneziano, 1982). The
analytical analysis and experimental results showed that those of indices which
calculated the damage values only based on dissipated energy or cumulative inelastic
deformation cannot consider the complex process of damage propagation.
3.3.4 Inter-story drift ratio index

This index expresses the amount of damage according to a relative horizontal
displacement parameter. Hueste and Bai (2007) utilized the FEMA 356 (2000) global
drift limits to assess the seismic fragility of R/C buildings and compared them with
drift limits based on the FEMA 356 (2000) member-level criteria. Rajeev and
Tesfamariam (2012) investigated this index to evaluate the non-ductile R/C frames
while considering soil-structure interaction. This index has also been applied for steel,
masonry and wood buildings by several researchers (Ozel and Guneyisi 2011,
Kazantzi et al. 2008, Garcia and Negrete 2009, Park et al. 2009, Lee and Rosowsky

2006). This index is defined as:

8i+1-8;
h

DI = (3.5)
in which di+1 is the horizontal displacement of the (i+1)" story, i is the horizontal
displacement of the i" story and h is the height between stories.

Table 3.2 represents the inter-story drift ratio limit states based on the FEMA 356

(2000) global-level criteria.
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Table 3.2: Inter-story drift limit states based on FEMA 356 (2000) global-level criteria

Inter-Story Drift Limits (%)
Structure Type Light Moderate Severe
Damage Damage Damage
(10) (LS) (CP)
R/C With Shear Wall 0.5 1 2
R/C Without Shear Wall 1 2 4

3.3.5 Park & Ang index

The Park & Ang damage index was proposed by Young-Ji Park, Alfredo H.-S. Ang
and Yi Kwei Wen in 1985 for the seismic vulnerability assessment of R/C buildings
and is defined as the linear combination of the maximum displacement and the

dissipated energy (Park et al., 1985). This index is defined in the following equation:

S

+ £ (3.6)

DI = Su.py,

where &;, and §;, are the maximum experienced deformation and ultimate
deformation of the structural element, respectively; P, is the yield strength of the
structural element; | dE,, is the hysteretic energy absorbed by the structural element
during the response history; and f is a constant parameter which is considered equal
to 0.1 for nominal strength deterioration (MCEER-09-0006, 2009).

The Park & Ang damage index can be extended to the story and overall scales by a

summation of damage indices, as follows:

SDI; = Y00 Ayj. Dy (3.7)
Eyi

Ay = —d— 3.8

kj Zizjl E; ( )

in which SDI; is the damage index of the j* story, DIy ; is the damage index of the k"
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element of the j*" story, E, ; Is the hysteretic energy of the k" element of the j¢" story,

Ej:Z?;"l E;; is the hysteretic energy of the jt" story, and m; is number of the elements

of the j*" story. Additionally, the overall damage index (ODI) is as follows:
oDI = YN . 4. (SDI) (3.9)

E;
N L Es

A = (3.10)

where ET =Y, E, is the overall hysteretic energy and N is the number of stories.
For the Park & Ang damage index, nine damaged R/C buildings have been

evaluated after the 1971 San Fernando earthquake in the USA and the 1978

Miyagiken-Oki earthquake in Japan by Park and Ang. The evaluations suggested the

limit states shown in Table 3.3.

Table 3.3: Interpretation of Park & Ang damage index

Degree of damage Limit State Description of physical damage

Minor <0.2 Minor Cracks throughout Building

Partial Crashing of Concrete in Columns

Moderate 02-04 Extensive Large Cracks

Spalling of Concrete in Weaker Elements

Severe 04-1.0 Extensive Crashing of Concrete

Disclosure of Buckled Reinforcements

Collapse >1.0 Total Collapse of Building

To evaluate the amount of global damage of the sample buildings in Famagusta
based on the Park & Ang damage index, the states of damages suggested by Young-Ji

Park, Alfredo H.-S. Ang and Yi Kwei Wen shown in Table 3.4 are used.
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Table 3.4: The classification of damage values based on the Park and Ang investigation

State of Structure Amount of Damage
Repairable (Economic) D.1<04
Beyond Repair (Not Economic) 04<D.l.<1.0
Loss of Building D.I.>10

3.4 Fragility curve

The first application of fragility curves was done for probabilistic analysis of
nuclear power plants. In fact, these curves show that the probability of imposed
damage under various seismic excitations. These curves depend on one of the
earthquake intensity parameters, such as the PGA, peak ground velocity (PGV), or
peak ground displacement (PGD), etc. Additionally, the earthquake damage levels
(i.e., slight, moderate, severe, collapse, etc.) can be considered in this analysis. The
analysis used for obtaining seismic response data can be nonlinear time history
analysis or inelastic spectral analysis or nonlinear static analysis, etc. Figure 3.11

shows the steps of the proposed methodology in the development of fragility curves.
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Figure 3.11: The steps of the proposed methodology used in the development of
fragility curves

The probability of a structural response exceeding the limit state of a given

earthquake intensity can be defined as:

AC—u
o

P =P[EDP > AC] =1—-[EDP <AC]=1-0(

) (3.11)

Where EDP is the engineering demand parameter obtained from the output of a
nonlinear dynamic analysis, AC is the limit state derived from Table 3.3, @ is the
normal distribution function, and p and o are the mean and standard deviation of AC,
respectively.

Also log-normal cumulative distribution function is selected to reduce the
computational effort of seismic data and drive the fragility curves. This function is
expressed as following:

—(n(H)-p)?
2.02

1 J-xe
oV2'rv0 t

P=F(x|po)= dt (3.12)

3.5 Artificial neural network

ANNSs are widely applied in many fields of sciences such as engineering, medical
science, mathematics, etc., for linear and nonlinear regression, function
approximation, classification, and other technical and scientific applications. The basic

parts of a neural network are composed of activation function, architecture of network
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and learning rules. The architecture of ANNs is inspired by the human brain. Indeed,
neural networks are used to determine a general solution for complex and irrelevant
data that lead to extracting a pattern for these types of problems. Therefore, the
network is able to predict the new situations and act like an expert system.
3.5.1 Multi-Layer Perceptron (MLP) neural network

One of the most widely used neural network which has been employed for function
approximation problems is MLP. A one-layer feed-forward MLP neural network
consists of several neurons in input layer, optimum neurons in hidden layer and a
neuron in output layer. Each layer nodes are connected to the next layer nodes with
specific weight similar to synaptic weight in human neural networks. The architecture

of a MLP neural network is shown in Figure 3.12.

D_.Y1

J— Y2

D_,YS

D_. Ym

Qutputs

Hidden Layer

Figure 3.12: Structure of a MLP neural network model with one hidden layer feed-
forward

To determine and update the weights and bias terms for learning the MLP network,
a proper algorithm is needed and it is directly depended on input data. Thus, in this

research the Levenberg—Marquardt back-propagation algorithm was selected and used
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which has best performance for this network. It is a combination of the gradient descent
and Gauss—Newton algorithm and is used as an improved algorithm which is employed
in many researches. This algorithm is known as a method of damped least-squares for
minimizing a function by using a numerical solution. The back propagation learning
algorithm includes; propagation and weight update. Therefore, in order to carry out of
this process, the neuron's outputs for each layer are calculated by using previous layer
information (front-propagation). Then based on training pattern target, the gradient of
the weights for each layer are computed using the difference between the target and
the output of each layer (back-propagation) and finally, the weights of each layer can
be updated (weight update). The amount of each neuron in the hidden layer is

calculated by using equation 3.13:

where the function f is the activation function for hidden layer (calculated based on
minimum test error), A is the number of input layer neuron, x; is the i™" network's
input, w;; is the inter-connection between i™ input layer neuron and j™ hidden layer
neuron and b; is the bias term of the j*™ hidden layer neuron.

Also, in the output layer, the amount of each neuron is determined as:

Yk = 9(2521 p; Wi + by) (3.14)
where g is the activation function for output layer (linear transfer function), B is

the number of hidden layer neuron, p; is the j ™ hidden layer neuron value of network,
wj, is the inter-connection between j™ hidden layer neuron and k™ output layer

neuron and by, is the bias term of k™ output layer neuron. Also the Matlab code was

mentioned in appendix A.
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3.5.2 Support Vector Machine

SVM has been introduced for the classification and pattern recognition problems
by Cortes and Vapnik (1995). It is a relatively new learning algorithm used for binary
classification problems. The main difference between SVM and the other algorithms
is the SVM minimizes the operational risk as an objective function instead of
minimizing the classification error. The original pattern classification of this machine
is to classify the linear input data using the perfect hyperplane into two classes with
the largest margin in between classes. For nonlinear input data, a nonlinear mapping
is used to transfer the input data from the primal space to the higher dimensional
feature space and leads to find the proper hyperplane. Furthermore, SVMs have also
been extended to solve multi-class problems. Also the Matlab code was mentioned in
appendix B.
3.5.2.1 Linear SVM

In this section, a simple introduction of the linear SVM is presented (Burges, 1998).
Considering a train sample data includes {(x1,y1),(X2,¥2), ... , (Xn,Yn)}, where each
sample has the inputs (xi € RY), and one class label (yi € {+1,-1} ) which is shown in

Figure 3.13.

Support
x, hyperplanes

O Class 1

discriminator
- decision boundary

Figure 3.13: A sample of linear soft margin SVM (Cortes and Vapnik, 1995)
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In the two dimensional space, the discriminator is a line in the middle of the margin
between the classes. Thus, for N-dimension space, the discriminator is a hyperplane.
Suppose the distance between the each separate data and the discriminator is equal to
1, the two support hyperplanes are considered parallel to the discriminator and the
classifier function can be obtained as follows (see Figure 3.13):

{WT-xi+b21, if yp=1 i=1,2,..,n

3.15
wl-x;+b< -1, if yi=—1 i=12,..,n ( )

For a unique separator, the maximum margin between classes is needed. Thus, if
the distance between the support hyperplanes is equal to M, using equation 3.15, the
optimum margin (M) is given by:

_ (b+1l-lp-1)) _ 2
wl wi

M (3.16)

After calculating the maximum margin, the target function is defined as following:

2 —

Maximize (M) = Maximize = Minimize ||w|| = Minimize % lwl|? = Minimize

Iwll
ZwTl.w
2
Subject to (s.t.):
{ M;T-xl-+b21, .ifyi=1 l:=1,2,...,n (3.17)
w'x;+b< -1, if yy=-1 1i=12,..,n

Since the probability of being the separated data in nature is very low and more
datasets are inseparable, therefore, the discriminator (hyperplane) is also determined
based on minimum number of errors. As a result, those members belong to another
class are penalized based on the distance from the boundary of its own class (&) (see
Figure 3.13). This strategy is represented as a model of soft margin SVM. For this
reason, non-negative variables (§;) are defined and called as slack variable s.t. §; = 0.

Thus, the equation 3.17 is changed as following:
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.. . 1
Minimize 5 wTl -w

ot - {WT'Xi-l-bZl, if yy=1 i=12,..,n
wl-x;+b< -1, if yy=—-1 i=12,..,n
5> 0. (3.18)

By multiplying the both sides of first s.t. of the equation 3.18 by y, the primal

problem becomes:

... 1
Minimize EWT'W

st.: ywh-x;+b)21-6; i=12..,n
6; =0 (3.19)

thus

Ly=swl-w— XL [yw -5 +b)—1+6] i=12.,n (3.20)

The primal problem is a quadratic program but it cannot be solved easily because it
is not just depended on the parameters which are related to input vectors. Therefore,
this equation changes from the primal form to dual form by using the Lagrange
method. The Lagrange factors (a;, ;) must be nonnegative real coefficients and

equation 3.20 becomes:

1
Lp =E WT'W+CZ?=15i— Z?Zlai [yl(WTXl+b)—1+51] - ?:1:“'il6i )

a1 =0 (3.21)

where C is penalty factor. In this case, L, is a saddle point. Thus, at this point, the
minimum value should be taken with respect to the parameters w, b and & and the
maximum value should be taken with respect to the Lagrange multipliers («;, u;). This
can be done by taking the partial derivative with respect to w, b and & in order to

change the primal problem to a maximum problem as following:

oL

6_\/\11): > W — ?zlai-yi-xi =0 (322)
dLy n

E =0 - Zi=1 a; "y = 0 (323)
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By substituting equations 3.22 and 3.23 into equation 3.21, the dual problem is

obtained as follows:

1
Lp=— - Xt Xl ey yxl x+ T i (3.25)

Also based on the equation 3.24, the box constrains are defined as:

a; >0
0<a;<C
W=0 o { cSas (3.26)
a+u=c¢ O=sms=c
In addition, by considering h;; and f as the following definition:
hij =iy % % (3. 27)
_1—
-1
f=1" (3.28)
—1
and substituting h;; and f into equation 3.25, the dual formulation becomes:
Lp = —% =1 2j=1 @i thp+Xini 220 (3.29)
Lp=—5 a" H-a—fT-a (3.30)
where H and « are defined as:
hiy = hin
H=[hj]=] ¢ - ,H € R™™ (3.31)
hnl hnn
-al
a;
a= : (3.32)
L,

Therefore, the target function is expressed as follows:
Minimize % al " H-a+fT «a

ot - { wl-x;+b>1, if yj=1 i=12,..,n
wl-x;+b< -1, if ypy=—-1 i=12,..,n
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n

Z“i'YiZO

i=1
OSaiSC.

(3.33)

The quadratic programming problem (equation 3.33) can be solved easily by using

the quadprog function in the Matlab software and the values of «; are calculated. Then

by substituting «o; values into equation 3.22, the values of w are obtained. Also for

calculating the bias term, the Karush-Kuhn-Tucker (KKT) conditions (fletcher, 1987)

are necessary and sufficient for the optimization problems. Therefore, these conditions

should be established in optimum point (equation 3.20). The bias value is calculated

as:

K KT - al[yl(WTxl+b)—1+6l] =0
pi6;=(C—ay)-6;=0.

Thus based on K.K.T conditions three cases are occurred:

Case 1: None support vectors if (a; = 0)

pi=C—-6=0
a;=0 -

yl(WTxl+b)—120

Case 2: Outliers if (a; = C)
ui=0-4,=20

yl(WTxl+b)—1+6l=0

Case 3: Support vectors if (0 < a; < C)
0< Hi <C - 6i =0
O0<ag; <C -
yl'(WT'Xi+b)—1 = 0.

(3.34)

(3.35)

(3.36)

(3.37)

In case 3, each x; corresponding to «; are support vector machines. Thus by

multiplying both sides of first s.t. of the equation 3.33 by y as following:
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wl-x;+b=y (3.38)

the amount of the bias term can be obtained as follows:
S={i|l0<a;<C},i€S (3.39)
b=1s S~ w'x) (3.40)
and also using equation 3.22, w becomes:

w = 71-1=1 a;"y; - Xi. (341)

Finally, by having the amounts of w and b, the optimal hyperplane decision
function can be expressed as follows:

y; = Sign (wT - x; + b). (3.42)
3.5.2.2 Nonlinear SVM

For nonlinear data, the selection of optimal hyperplane for separation of data is
difficult. For this case, Cortes and Vapnik (1995) used the Hilbert-Schmidt theory
(Heckman, 1997) in order to transform the d-dimensional input vector x into (usually

higher) an N-dimensional feature vector by using an N-dimensional vector function @:

®: RY > RN
O:x—->2z
z = 0(x).

Therefore based on the SVM algorithm, the discriminator equation can be applied
into z space instead of x space as following:

wli-x+b=0 »> wl-z+b=0 ->wl-@¢(x)+b=0. (3.43)

And according to the properties of soft margin classifier method, the dual problem

is obtained as follows:

1
Lp =7 T Xia iy oy 0 B(x) - Y 420 (3.44)

by substituting K (x;, x;) instead of @(x/") - @(x;) , the dual formulation becomes:

1
LD = E ?=1 Z}lzl a; - aj Vi y] ' K(Xi,Xj) - Z?:l a; , A =0 (345)

where K (x;, x;) is kernel trick (nonlinear function), and is applied to change the

linear discriminator model into nonlinear form.
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Therefore, the optimal hyperplane decision function is expressed as following:

y=sign( QX a;"y; K(x;,x)+b). (3.46)
3.5.2.3 Multi-class SVM (M-SVM)

The basic theory of SVM is designing the discriminator (hyperplane) with
maximum margin between the two classes, while the most of classification problems
are in the multi-class models (Crammer and Singer, 2001). For N classes’ model,
Vapnik (1995) presented a strategy to compare one class against the remaining classes
and this leads to generate the N classifiers. Therefore, this method needs the solution

of the N quadratic programming optimization problems and it is named 'one-versus-

rest' method.
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Chapter 4

ANALYSIS AND RESULTS THROUGH IDA

4.1 Primary design of models

As mentioned in section 3.1, the primary design was done in order to determine the

dimensions of structural members and steel bars. For this purpose, 1975 Turkish design

code (1975) and ACI 318-83 (1983) were used as seismic code and the reinforced

concrete members design code, respectively via SAP2000. The seismic factor and

details of each building are given as follows:

C=CoK-1-S22

1.0
= <1.0
[0.84+T—Tpy|

T = 0.09% L, 007N<T <01N
Co = 0.1 for seismic zone |
K = 0.6 for reinforce concrete moment frame

[ =1.0 forresidential building , T, = 0.8 for soil type IV

Table 4.1: The fundamental period, spectral factor and seismic factor

(4.1)
(4.2)

(4.3)

Story No. T S C
4 0.385 2.597 0.06
6 0.544 1.838 0.06
8 0.60 1.67 0.06
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Table 4.1 shows the fundamental period, spectral factor and seismic factor for each

sample building. The properties of buildings are shown in Table 4.2. Furthermore, the

beam and column section details for each sample building are tabulated in Table 4.3

and 4.4, respectively.

Table 4.2: The sample buildings properties

No. Direction First Mode Period (s) No. of Stories
1 X 0.57
4
2 Y 0.54
3 X 0.75
6
4 Y 0.68
5 X 0.97
8
6 Y 0.80
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Table 4.3: The beam sections for each sample building

Story level Beam section
4 story 6 story 8 story
1,2 40x15cm 8®12 50x15cm 10 @ 12 70x15cm 12 @ 14
3,4 35x15cm 6 © 12 40x15cm 8 @ 12 60x15cm 10 @ 14
5,6 30x15¢cm 6 @ 12 50x15cm 8 © 14
7,8 40x15cm 6 @ 14

Table 4.4: The column sections for each sample building

Story level Column Section
4 story 6 story 8 story
1,2 25x40cm 10 @ 12 25x50cm 12 @ 16 25x70cm 16 @ 20
3,4 25x35cm 10 @ 10 25x40cm 12 @ 14 25x60cm 14 @ 14
5,6 25x30cm 10 @ 12 25x50cm 12 @ 14
7,8 25x40cm 12 @ 12

Because the amount of S from Table 4.1 for each sample building were obtained
more than one, therefore this parameter value considered equal to 1. After the design
step, structural models are analyzed via IDARC-2D software, i.e. nonlinear time
history analysis process is applied after defining the hysteresis parameters. In next

section, these parameters are explained.
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4.2 Hysteretic rule

One of the main aspects for modeling the nonlinear behavior of structural elements
is hysteretic model type. The IDARC software contains two hysteretic types with
complex models including; the polygonal and smooth hysteretic models.

The performance of the Polygonal Hysteretic Model (PHM) is based on piecewise
linear behavior. The PHM contains initial or elastic behavior, yielding, cracking,
stiffness and strength degrading stages, crack and gap closures and it can be defined
by four models as:

1- Trilinear Model

2- Bilinear Model

3- Vertex Oriented Model

4- Nonlinear Elastic-Cyclic Model (Sivaselvan and Reinhorn, 1999).

The Smooth Hysteretic Model (SHM) involves continuous change of stiffness due
to yielding, but sharp changes due to unloading and declining behavior.

A general model of smooth hysteretic was introduced by Sivaselvan and Reinhorn
(1999) which is acts based on internal parameters with stiffness and strength decline
and pinching properties (MCEER-09-0006, 2009).

In this study, a PHM was used to define the structural members hysteretic based on
Trilinear Model.

4.2.1 Trilinear model

For the first time this model was proposed by Park et al. (1987) and applied in
original release of IDARC. The trilinear model contains stiffness decline, strength
decline, slip-lock, non-symmetric response and a trilinear monotonic envelope. This
acts by changing from one linear phase to another and is dependent on the deformation

history. The typical of trilinear hysteretic curves is shown in Figure 4.1.
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Figure 4.1: A typical trilinear hysteretic model

In IDARC software, three main parameters should be defined for hysteretic model.
These parameters consist of stiffness degradation, strength degradation and pinching.
Since the hysteretic behavior of PHMs is starting from a yielding moment, so the paths
of loading and unloading between yielding and cracking is the same.

4.2.2 Stiffness degradation parameter

The stiffness decline is expressed by using primary slope in hysteretic cyclic model
and it occurs based on geometric effects. Also by increasing the ductility, the elastic
stiffness will be decreased. Park et al., (1987) presented that the stiffness decline
parameter can be modeled using the pivot rule. Indeed, this factor is determined by
dividing the amount of moment in pivot point to yield point which is expressing the
area enclosed by the hysteresis loops. In IDARC software, this parameter is shown by

a index. The schematic representation of this parameter is shown in Figure 4.2.
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Figure 4.2: The sketch of stiffness decline in the PHM

4.2.3 Strength degradation parameter

The strength decline is expressed by using the reduced capacity in the backbone
curve. Indeed this parameter shows the stability of response and also the rate of
achieving failure. In IDARC software, this parameter is defined by using two factors
including; B, which shows that the rate of strength decline based on ductility and S,
which represents this rate based on hysteretic energy dissipation. The schematic

representation of this parameter is shown in Figure 4.3.
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Figure 4.3: The sketch of strength decline in the PHM

4.2.4 Pinching parameter

The pinching factor is expressed using the crack closure, bond slip, bolt slip, etc.
Indeed, it is modeled by considering the target point for the loading branch to be the
crack closing point. In IDARC software, this parameter is shown by y index. The

schematic representation of pinching factor is shown in Figure 4.4.

Figure 4.4: The sketch of pinching factor in the PHM
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In IDARC software, four levels were considered for definition of these indices that
include; (a) Severe degrading (b) Moderate degrading, (c) Mild degrading and (d) No
degrading (Default).The range of these indices are shown in Table 4.5.

Table 4.5: The stiffness, strength and pinching range for severe, moderate, mild and
no degrading cases (MCEER-09-0006, 2009)

B1 B2
o Strength Strength Y
Stiffness parameter parameter | Slip or crack
Effect parameter (ductility (energy parameter
based) based)

Severe 4.0 0.60 0.6 0.05
Moderate 10.0 0.30 0.15 0.25
Mild 15.0 0.15 0.08 0.40
No degrading 200.0 0.01 0.01 1.00

4.2.5 Determination of hysteretic indices

In order to evaluate and determine the hysteretic behavior of structural members,
the IDARC indices should be calibrated using the experimental results under cyclic
load test. Since that the structural members used in these building involve the
rectangular cross section with aspect ratio (width over height) around two, therefore
the obtained results of experimental test were used which were done by National
Science Foundation Pacific Earthquake Engineering Research Center (PEER, 2013)
for 165 spiral and 253 rectangular sections of reinforced concrete columns. Among
these samples, a rectangular sample which was tested by Aboutaha and Machado

(1999) was selected because the dimension and bar percentage of tested sample were
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similar to sections used in this research and also the strong moment of inertia was
placed in perpendicular direction of earthquake load. The informations of this tested

sample are shown in Table 4.6.
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Table 4.6: The property of tested sample (Aboutaha and Machado (1999))

Concrete section detail Parameter Value
f{(Mpa) 21.9
Axial Load (KN) 0.0
Section width, B (mm) 914.4
Geometry
Section height, H (mm) 547.2
Column length, L (mm) 1219.2
Cross Area (mm?) 418064
Bar Diameter (mm) 25
Total # Bars 16
Longitudinal Reinforcement Clear Cover (mm) 3
pata Reinforce Ratio 0.0188
Yield stress, fy (Mpa) 434
Ultimate stress, fsu (Mpa) 690
Bar Diameter (mm) 9.53
Bar Spacing (mm) 406.4
Transverse Reinforcement Data Total # Hoop sets 3
Yield stress, fy (Mpa) 400
Ultimate stress, fsu (Mpa) 627
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Based on Table 4.6, this section was modeled in IDARC software and imposed
under Quasi-Static Cyclic Analysis. The pattern load was considered same as the
experimental load which was used in real test and is shown in Figure 4.5. Then the
hysteretic energy curves were derived based on each hysteretic modeling rule and
finally they were compared with the obtained curve from experimental test. Figure 4.6
shows the comparison of results for severe, moderate, mild and no degrading (default)

cases.

40
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o

number of cycles

Figure 4.5: The pattern load of full-scale tested sample column (Aboutaha and
Machado (1999))
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—— IDARC Simulation 400

Figure 4.6: Comparison of tested sample versus computed response for (a) severe
degrading (b) moderate degrading, (c) mild degrading and (d) no degrading (default)
(Aboutaha and Machado (1999))

Based on compared curves, the best fitting between tested samples and computed
responses was obtained in moderate degrading state but the pinching effect should
become stronger. Therefore the amounts of ; and y factors were changed to 0.3 and

0.1, respectively. This fitting of response hysteretic is shown in Figure 4.7.
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—— IDARC Simulation 400 -

- Experiment

Figure 4.7: Comparison of tested sample versus computed response with modified
strength and pinching parameters (Aboutaha and Machado (1999))

For the remaining columns which their strong moment of inertia were placed in
parallel direction with earthquake load, another sample was selected from tests done

by Aboutaha et al. (1999). The informations of this sample are shown in Table 4.7.
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Table 4.7: The property of tested sample (Aboutaha and Machado (1999))

Concrete section detail Parameter Value
f{(Mpa) 26.9
Axial Load (KN) 646
Section width, B (mm) 400
Geometry
Section height, H (mm) 600
Column length, L (mm) 1784
Cross Area (mm?) 240000
Bar Diameter (mm) 24
Total # Bars 10
Longitudinal Reinforcement Clear Cover (mm) 2
pata Reinforce Ratio 0.0188
Yield stress, fy (Mpa) 434
Ultimate stress, fsu (Mpa) 690
Bar Diameter (mm) 12
Bar Spacing (mm) 80
Transverse Reinforcement Data Total # Hoop sets 3
Yield stress, fy (Mpa) 400
Ultimate stress, fsu (Mpa) 627
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For this test, the pattern load is shown in Figure 4.8. The hysteretic energy curves
were derived based on each hysteretic modeling rule and finally they were compared
with the obtained curve from experimental test. Figure 4.9 shows that the comparing

results for severe, moderate, mild and no degrading (default) cases.
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Figure 4.8: The pattern load of full-scale tested sample column (Aboutaha and
Machado (1999))
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Figure 4.9: Comparison of tested sample versus computed response for (a) severe
degrading (b) moderate degrading, (c) mild degrading and (d) no degrading (default)
(Aboutaha and Machado (1999))

Based on compared curves, the nearest fitting between tested sample and computed
responses was obtained between mild and no degrading states. Therefore the amounts

of a, 1, B, and y factors were changed to 4.0, 0.3, 0.15 and 0.8, respectively. This

fitting of hysteretic response is shown in Figure 4.10.
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Figure 4.10: Comparison of tested sample versus computed response with modified
stiffness, strength and pinching parameters (Aboutaha and Machado (1999))

4.3 3D model

Based on information mentioned in Table 4.2, all sample buildings in X direction
are weaker than Y direction. Therefore each sample was remodeled and excited only
in X direction via IDARC-2D software. The steps for development of fragility curves
were mentioned in Figure 3.11. The obtained fragility curves for each sample buildings
are shown in Figures 4.11-4.13, respectively. Also the log-normal cumulative
distribution function parameters that were used for drawing the fragility curves are

tabulated in Table 4.8.
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Figure 4.11: The fragility curves for four story building
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Figure 4.12: The fragility curves for six story building
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Figure 4.13: The fragility curves for eight story building

Table 4.8: The used mean and standard deviation values for drawing the fragility

curves
Level |Minor-Moderate| Moderate-Sever | Sever-Collapse

4 0.28 0.39 0.78

Mean

6 0.35 0.45 0.83

8 0.45 0.61 1.13

4 0.64 0.67 0.89

Standard
Deviation 6 0.66 0.69 0.91
8 0.71 0.79 1.07

As an example the nonlinear dynamic response of each sample building under

Duzce-Turkey record which is scaled to 0.5g was considered and evaluated. Figure

4.14 and 4.15 show the record and top displacement of each sample building,

respectively.
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Figure 4.14: The Duzce-Turkey ground motion record scaled by 0.59
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Figure 4.15: The top displacement for four, six and eight story buildings

The damage process of beams and columns from external frame and middle span
for each sample buildings are shown in Figures 4.16-4.18, respectively. The results
show that the maximum and minimum damage for columns were observed in the first
story and the last story, respectively. Whereas this process was revised for beams, it

means that the maximum and minimum damages were observed in last story and first

story, respectively.
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Figure 4.16: The process of beams and columns damage for four story building
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Figure 4.17: The process of beams and columns damage for six story building
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Figure 4.18: The process of beams and columns damage for eight story building

Figure 4.19 shows the maximum story displacement and story shear force for each
sample buildings. The results show that the maximum displacement occurred in top

story while the maximum shear force was observed in the first story.
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Figure 4.19: the maximum story displacement and story shear for four, six and eight
story buildings

Moreover, the modal participation factor and relative modal weight for each sample
buildings are shown in Figures 4.20 and 4.21, respectively. The results show that the

most participation was occurred for the first mode.
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Figure 4.20: The modal participation factor for each level and each sample buildings
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Figure 4.21: The relative modal weight (%) for four, six and eight story buildings

Moreover, the plastic hinge behavior for a beam and each type of column were
evaluated. The beam hinge was selected from the exterior frame of each building, in
the middle span, left side and in first level. Also for columns, in same frame and level,
one of them in corner and another one in middle span were considered. Figures 4.22,
4.23 and 4.24 show the plastic hinge behavior of beam, corner column and middle
column for four story building, respectively. The amount of obtained damage for

beam, corner column and middle column were calculated as 0.54, 0.78 and 0.5,

respectively.
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Figure 4.22: The plastic hinge behavior of beam for four story building
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Figure 4.23: The plastic hinge behavior of corner column for four story building
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Figure 4.24: The plastic hinge behavior of middle column for four story building

Figures 4.25, 4.26 and 4.27 show the plastic hinge behavior of beam, corner column

and middle column for six story building, respectively. The amount of obtained

damage for beam, corner column and middle column were calculated as 0.2, 0.17 and

0.22, respectively.
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Figure 4.25: The plastic hinge behavior of beam for six story building
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Figure 4.26: The plastic hinge behavior of corner column for six story building
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Figure 4.27: The plastic hinge behavior of middle column for six story building

Figures 4.28, 4.29 and 4.30 show the plastic hinge behavior of beam, corner column
and middle column for eight story building, respectively. The amount of obtained

damage for beam, corner column and middle column were calculated as 0.05, 0.07 and

0.13, respectively.
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Figure 4.28: The plastic hinge behavior of beam for eight story building
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Figure 4.29: The plastic hinge behavior of corner column for eight story building
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Figure 4.30: The plastic hinge behavior of middle column for eight story building

In order to compare the damage level criteria between FEMA 356 (2000) (Table
3.2) and obtained results, the IDA curves were drown based on maximum inter-story
drift ratio then, the amount of damage criteria for each buildings was calculated. These
curves are shown in Figures 4.31, 4.32 and 4.33 for four, six and eight story buildings,
respectively. Based on obtained curves, two levels of damage, 10 and collapse
prevention (CP) are determined. The 10 and CP levels were identified at the end of
initial slope and close to zero slope in mean curve, respectively. Therefore, the damage
criteria for 10 level was obtained as same as criteria that was suggested by FEMA 356
(2000) equal to 1%, but for CP level, the damage criteria was obtained one percent
more than suggested criteria by FEMA 356 (2000) equal to 5%. Also it should be
considered that some of the records were not completely flattened because their energy

was very low and they didn't have any effect on damage levels.
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Figure 4.31: IDA curves and limit-state capacities for four story building
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Figure 4.32: IDA curves and limit-state capacities for six story building
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Figure 4.33: IDA curves and limit-state capacities for eight story building

4.4 P-Delta Effect

The P-delta arises due to the relative inter-story drifts and leads to add the
overturning moments in the vertical elements. These moments are essentially produced
based on gravity loads and add a geometric stiffness matrix to the element stiffness
matrix (Wilson and Habibullah, 1987).

By considering a column between two story levels, which is shown in Figure 4.34
and calculating the moments for lower story level as following:

Pi-h;— (M; + M;_;) — N;(U; + U;_;) = 0.0 4.4

Deriving the additional gravity load shears at i story level, the P; is given by:

p. = NilUitUiza) _ Niga(Uita=Ui) (4.5)
' hi Rit1 '

Therefore, for each component, the above equation can be written as:
{P*} = [K¢] - {2} (4.6)
where P; is additional gravity load shear, h; is the it" story height, h;,, is the
(i + 1)t story height, M;_, is lower moment of i*" story level, M; is upper moment of

it" story level, U;_, is lower displacement of it" story level, U; is upper displacement
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of it" story level, U;,, is upper displacement of (i + 1)t* story level, N; is it" story
level axial load, N;,; is (i + 1)t story level axial load, [K¢] is stiffness matrix which
is added to the element stiffness matrix and {A,} is incremental vectors of story

displacement.

N;
LEVEL (i) \L <7

LEVEL (i—1)

Figure 4.34: Performance of P-delta on a vertical element

By considering the significance of P-delta and how it can be affected on fragility
curves, in this part, the fragility curves were drawn for without P-delta case. Figures
4.35, 4.36 and 4.37 show the comparison of fragility curves between P-delta effect
case and without P-delta effect case for four, six and eight story buildings, respectively.
Also the amount of mean and standard deviation which were used for drawing the
fragility curves in case of without P-delta are tabulated in Table 4.9. The obtained
results showed that by increasing the building height, the P-delta effect is increased.

Also the similar trends are shown by increasing the damage levels.
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Table 4.9: The used mean and standard deviation values for drawing the fragility
curves for with and without P-delta cases

With P-delta Without P-delta
Level Minor- |Moderate-| Sever- | Minor- |Moderate-| Sever-
Moderate| Sever |Collapse Moderate| Sever |Collapse
4 0.28 0.39 0.78 0.33 0.48 0.89
Mean
6 0.35 0.45 0.83 0.44 0.61 1.25
8 0.45 0.61 1.13 0.64 0.87 1.59
4 0.64 0.67 0.89 0.65 0.70 0.94
Standard
Deviation | 6 0.66 0.69 0.91 0.70 0.79 1.14
8 0.71 0.79 1.07 0.82 0.93 1.33
4.5 2D model

In this section, the effect of considering the 2D models instead of 3D models on
fragility curves was evaluated. For this aim, the weakest frames from each model were
selected (Figures 3.3, 3.5 and 3.7) and the fragility curves were drawn for each frame.
Figures 4.38, 4.39 and 4.40 show the comparison of fragility curves between 2D
models and 3D models for four, six and eight story buildings, respectively. Also the
amount of mean and standard deviation which were used for drawing the fragility
curves are tabulated in Table 4.10. Comparison of these curves show that there are
excessive difference between 2D models and 3D models. Also using 2D models
instead of 3D models are inaccurate and unreliable. In fact, a 2D model cannot express

all characteristics and features of a 3D model.
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Figure 4.39: The fragility curves for 2D and 3D models of six story building
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Table 4.10: The used mean and standard deviation values for drawing the fragility
curves for 2D and 3D models

3D model 2D model
Level Minor- |Moderate-| Sever- | Minor- |Moderate-| Sever-
Moderate| Sever |Collapse Moderate| Sever |Collapse
4 0.28 0.39 0.78 0.18 0.25 0.39
Mean
6 0.35 0.45 0.83 0.25 0.35 0.50
8 0.45 0.61 1.13 0.29 0.44 0.64
4 0.64 0.67 0.89 0.69 0.71 0.78
Standard
Deviation | 6 0.66 0.69 0.91 0.71 0.76 0.83
8 0.71 0.79 1.07 0.72 0.77 0.86
4.6 Aftershock effect

Earthquakes are often composed of three parts including; foreshocks, main shocks
and aftershocks. The data obtained from earthquakes history showed that the
aftershocks may occur mostly after the strong main shocks. As an example, in China
(May 12, 2008), five aftershocks were recorded (MW > 6.0) following the main shock
with magnitude equal to 8.0. Since that the aftershocks often may occur in short
intervals of time, therefore the repair of damaged buildings under the main shock in
limited time is impossible and it increases the level of building damage and also causes
collapse. On the other hand, all seismic codes only design the structures based on the

main shock. Therefore considering the aftershocks effect should be taken into account.
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Several researches showed that, when the distance of rupture for aftershock is
smaller than main shock, the severity of aftershock is more than the main shock. As
an example, in Chi-Chi earthquake, the distance of rupture for main shock and
aftershock were equal to 10.8 km and 6.2 km, respectively, whereas the PGA of
aftershock was 1.379 times more than main shock. Therefore, the ratio of PGA for
aftershock to main shock is considered as a significant factor (Zhai et al., 2014; Zhang
etal., 2013).

In this study, based on limited data for Famagusta city, five records were selected
from Berkeley data base site (PEER) by considering the strike-slip mechanism of fault.
For each record, the largest aftershock was considered. The information of this data is
tabulated in Table 4.11. Since there are sequences between main shock and aftershock,
therefore in nonlinear dynamic analysis process, 50 seconds gap was considered after

the main shock in order to stop the vibration of building due to damping.
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Table 4.11: The information of main shock and aftershock

Main shocks Aftershocks
Earth quake Name
Event PGA (g9) Event PGA (g)
Chalfant Valley 20/07/1986 0.285 21/07/1986 0.447
14:29 14:42
Helena, Montana 31/10/1935 0.173 31/10/1935 0.041
18:38 19:18
Imperial Valley 15/10/1979 0.519 15/10/1979 0.238
23:16 23:19
Livermore 24/01/1980 0.229 27/01/1980 0.041
19:00 02:33
Superstitn Hills 24/11/1987 0.134 24/11/1987 0.207
05:14 13:16

4.6.1 Chalfant Valley earthquake

This earthquake has happened in southern of Mono County near Bishop and
Chalfant, California and recorded from 54428-Zack Brothers Ranch station with main
shock magnitude 5.77 Mw and epicentral distance equal to 10.54 km. The aftershock
has happened thirteen minutes later and recorded from same station with magnitude
6.19 Mw and epicentral distance equal to 14.33 km. The ratio of PGA for aftershock
to main shock is equal to 1.568. The acceleration of main shock along aftershock is
shown in Figure 4.41. The amount of total damage (based on park and Ang damage
index) under the main shock for four, six and eight story were obtained equal to 0.042,
0.029 and 0.013, respectively, whereas, these damages reached to 0.1, 0.067 and 0.036
after adding the aftershock. The plastic hinge performance of each member due to only

main shock and main shock along aftershock cases for four, six and eight story
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buildings are shown in figures 4.42-4.47, respectively. The hollow circle and X symbol

show that the plastic hinge developed and cracking or yield in hinge, respectively. Also

the imposed damage of all columns and beams caused by main shock versus main

shock along aftershock are shown in figure 4.48.
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Figure 4.41: The acceleration of main shock along aftershock for Chalfant Valley
earthquake
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Figure 4.43: The plastic hinge performance for four story building under main shock
along aftershock
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Figure 4.44: The plastic hinge performance for six story building under main shock
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Figure 4.45: The plastic hinge performance for six story building under main shock
along aftershock
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Figure 4.46: The plastic hinge performance for eight story building under main shock
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Figure 4.47: The plastic hinge performance for eight story building under main shock
along aftershock
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Figure 4.48: The imposed damage for main shock versus main shock along
aftershock for (a) all columns and (b) all beams

4.6.2 Helena, Montana earthquake

This earthquake has happened in Montana, with an epicenter near Helena and
recorded from 2022-Carroll College station with main shock magnitude 6.20 Mw and
epicentral distance equal to 6.31 km. The aftershock has happened forty minutes later
and recorded from same station with magnitude 6.00 Mw and epicentral distance equal
to 6.31 km. The ratio of PGA for aftershock to main shock is equal to 0.237. The

acceleration of main shock along aftershock is shown in Figure 4.49. The amounts of
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total damage under the main shock for four, six and eight story buildings were obtained

as 0.035, 0.025 and 0.013, respectively. Also the same damages were obtained for

main shock along aftershock case.
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Acceleration (g)
[=]
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Figure 4.49: The acceleration of main shock along aftershock for Helena earthquake

4.6.3 Imperial Valley earthquake

This earthquake has happened in south of the Mexico—United States border and
recorded from 952-EIl Centro Array #5 station with main shock magnitude 6.53 Mw
and epicentral distance equal to 27.8 km. The aftershock has happened three minutes
later and recorded from same station with magnitude 5.01 Mw and epicentral distance
equal to 10.09 km. The ratio of PGA for aftershock to main shock is equal to 0.459.
The acceleration of main shock along aftershock is shown in Figure 4.50. The amounts
of total damage under the main shock for four, six and eight story buildings were

obtained as 0.436, 0.182 and 0.105, respectively. Also the same damages were

obtained for main shock along aftershock case.
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Figure 4.50: The acceleration of main shock along aftershock for Imperial Valley
earthquake

4.6.4 Livermore earthquake

This earthquake has happened in North of Livermore Valley, California and
recorded from 1265-Del Valle Dam (Toe) station with main shock magnitude 5.80 Mw
and epicentral distance equal to 26.79 km. The aftershock has happened three days and
seven hours and thirty three minutes later and recorded from same station with
magnitude 5.42 Mw and epicentral distance equal to 13.05 km. The ratio of PGA for
aftershock to main shock is equal to 0.179. The acceleration of main shock along
aftershock is shown in Figure 4.51. The amounts of total damage under the main shock
for four, six and eight story buildings were obtained as 0.047, 0.041 and 0.022,
respectively. Also the same damages were obtained for main shock along aftershock

case.
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Figure 4.51: The acceleration of main shock along aftershock for Livermore
earthquake

4.6.5 Superstitn Hills earthquake

This earthquake has happened in west of Westmorland, California and recorded
from 5210-Wildlife Liquef. Array station with main shock magnitude 6.22 Mw and
epicentral distance equal to 24.79 km. The aftershock has happened eight hours and
two minutes later and recorded from same station with magnitude 6.54 Mw and
epicentral distance equal to 29.41 km. The ratio of PGA for aftershock to main shock
is equal to 1.545. The acceleration of main shock along aftershock is shown in Figure
4.52. The amount of total damage under the main shock for four, six and eight story
buildings were obtained as 0.033, 0.027 and 0.022, respectively, whereas, these
damages were reached to 0.265, 0.174 and 0.13 after adding the aftershock. The plastic
hinge performance of each member due to only main shock and main shock along
aftershock cases for four, six and eight story buildings are shown in figures 4.53-4.58,
respectively. Also the imposed damage of all columns and beams caused by main

shock versus main shock along aftershock are shown in figure 4.59.
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Figure 4.52: The acceleration of main shock along aftershock for Superstitn Hills
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Figure 4.53: The plastic hinge performance for four story building under main shock
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Figure 4.54: The plastic hinge performance for four story building under main shock
along aftershock
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Figure 4.55: The plastic hinge performance for six story building under main shock
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Figure 4.56: The plastic hinge performance for six story building under main shock
along aftershock

82




FINAL STATE OF FRAME NO. 1 FINAL STATE OF FRAME NO. 2 FINAL STATE OF FRAME NO. 3
—x+
' 1 1 2 | 3 | 1 i | 7 | i 75 | 6 | ! 3 L6 ' 17 v us
i i i i i i i : | i 1 1
15 16 17 1g ty 177 178 150 181 1149 sy 153
! 1 ! ! 1 v L ] ! 1 ! ! [
i ' i i ' i i ' H i ! ! !
—xt
1 0 HARTY | iz H i3 ' 1 02 1 (3] H [ H o 1 154 TR 56 1 1570
: : : : : 1 ! ' 1 | i ' | !
g 3t 16 it} ng 186 187 183 189 190 1158 160 161 g
I I I I I ! ' ! ' ! ' ' '
i ' ! ! ' 1 i ' i 1 ! ' ! !
—x+
i s T} 3 i 5] H i o i [ L] 1 3 i i 163 61 165 i 166
P 1 i 1 I | ! | ' ' !
i3 24 126 127 193 19 198 199 1167 1 nn
i 0 v i 1 i i i i i i i
| il | | i ' ' 1 ' ' ' i i
o b —x+
| i3 V 3 H 30 H kil H 06 i T s 1 17 173 e W
i E i i 1 1 T 1 1 1 1 1
'n 133 134 135 104 1105 1106 107 1og 176 179 180
! ' ! ! ! ! ' ! ! i i i
i i i | i i i H i i : i i
i = —x+
T 3 | BT R (T e T S 11 B i 1 5 ] g [
: ! ! 1 1 H i i : : :
i ia i 1z i s 116 [y ol s (189
! ! ] 1 1 ] 1 1 5 ] 3
i i i H i ¥ H H i H i 3
- —x+
) 6 T i 3 H B 1 s i [ oo B 1 w w3
! 1 ! ! 1 H ' H H i ' | |
150 151 152 153 154 "2 123 i 105 126 1196 197 [
! v ! ! ' ! ! ' ! ! ' I 1
i ' i i i H i H H H ' ! !
= —x+
! 35 i 36 ' 57 ' 38 H 1 27 ' 128 129 ' 130 | 200 ] 200 ' 202 '
i B i i i i H . .
Iso 50 6t 2 o ns ns2 134 135 1205 1206 t207
' 1 ' ' 1 ! ! 1 ' v
1 1 1 1 1 1 1 1 1 ! ! !
1 & HE H I3 H & | B JET A FECI fE i 208 209 PIT TR
! ! ! ' i i i i i i i
168 170 i 41 42 14z 144 1212 1215 1216
! ! i ! i ! | : H :
i i i ' i H ! ' ! ! ! 1
X = CRACKING(FOR CONCRETE) 0 = PLASTIC HINGE DEVELOPED

INITIAL YIELD(FOR STEEL)

Figure 4.57: The plastic hinge performance for eight story building under main shock
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Figure 4.58: The plastic hinge performance for eight story building under main shock
along aftershock
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Chapter 5

ANALYSIS AND RESULTS THROUGH ANN

5.1 Prediction of damage

In this chapter, ANN was used in order to predict the imposed damage of buildings
under earthquake excitation. In fact, it can be applied as a rapid evaluation method. In
this method, only parameters which are able to describe both the properties of building
and ground motions characteristic should be considered. Therefore the selection of
them should be taken into account.

5.1.1 Structural parameters

In this study, the structural parameters were selected without any relations to the
engineering analysis, such as, top displacement, first mode period, inter-story drift,
etc., and they were chosen based solely on the geometry of the structure. Therefore
nine parameters were selected and defined as:

Building height / width ratio (h/b)

Length / width ratio in plan (b/d)

Number of stories (N)

Number of bays (B)

Maximum bay length (M)

Total moment of inertia for first story columns (lIc)

Total moment of inertia for first story beams (Ig)

Total bars area for first story columns (Bc)

Total bars area for first story beams (Bg)
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Also, the ranges of each parameter are shown in Table 5.1.

Table 5.1: The range of structural parameters

Parameters Range of parameters
h/b 1.476-1.958
b/d 0.730-0.885
N 4-8
B 3-4
M (m) 3-3.8
Ic (cm?) 0.01155-0.1022
g (cm?) 0.00135-0.004725
Bc (cm?) 180.96-1507.96
Be (cm?) 79.02-381.92

5.1.2 Ground motion parameters

Since the earthquake is a complex phenomenon that is still not completely known,
therefore the selection of effective ground motion parameters is not easy. In the recent
century, many researches have been done in order to find the relation between ground
motion parameters and building responses. Newmark et al. (1973) used PGV, PGA
and PGD in order to draw the elastic response spectra. Extensive research has been
conducted on the PGA/PGYV ratio, for measuring the frequency content of the strong
ground motions (Tso et al., 1992). In these studies, the best parameters among the

various constraints were determined using mathematical function and regression
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analysis. Riddell and Garcia (2001) used a set of 52 earthquake records, in order to
establish the relationship between twenty-three intensity parameters of earthquake and
four response variables including hysteretic energy, input energy, elastic and inelastic
spectral ordinates. The results showed that no parameter could be singly satisfied over
the entire frequency range. Indeed, they found that each ground acceleration, ground
velocity and ground displacement indices were effective in the acceleration sensitive
region, velocity sensitive region and displacement sensitive region, respectively.

In this study, a six story frame was selected and excited by 200 different ground
motion records with various moment magnitudes (5.2 <M < 8.3), different source-to-
site distances and strike-slip fault mechanism from the PEER source (PEER, 2013).

The distribution of dominant frequency for the records is shown in Figure 5.1. Also
the proportion between PGA and effective time duration of records are presented in
Figure 5.2. Figures 5.3 and 5.4 show the relationship between sites epicentral distances

versus moment magnitude and 5-95% time duration, respectively.
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Figure 5.1: The dominant frequency values of records
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Therefore nine parameters of earthquake including; PGA, PGV, PGD, PGA/PGV,
PGA/PGD, PGV/PGD, dominant frequency, effective time duration and fault line
distance were selected as input data. The ranges of ground motion parameters are
provided in Table 5.2. Also the amount of damage which is obtained based on

nonlinear time history analysis of each record was considered as output.
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Table 5.2: The ranges of ground motion parameters

Parameters Definition Range of parameters
PGA Peak Ground Acceleration (g) 0.01-0.775
PGV Peak Ground Velocity (cm/s) 1.1-109.8
PGD Peak Ground Displacement (cm) 0.12-65.89

PGA/PGV Ratio of PGA to PGV (g/cm.s™) 0.002155-0.029773

PGA/PGD Ratio of PGA to PGD (g/cm) 0.00211-0.558333

PGV/PGD Ratio of PGV to PGD (s%) 0.761548-20
D.F. Dominant frequency (Hz) 0.146-9.4238
T.D. 5-95 % Time Duration (S) 1.98-57.17
E.D. Epicentral Distance (km) 0.5-217.4

In order to find a good relationship between input and output data and also find the
more effective parameters of ground motion on the building performance, a MLP
neural network was applied. In this network, all data was normalized between zero and
one, then were shuffled and divided into three parts, i.e. 70 percent of total data for
training process, 15 percent for validating process and 15 percent for testing process.

For finding the best fit of each data set, the RMSE, the mean square error (MSE)
and the correlation coefficient (R) were considered (Darper and Smith, 1998). These

criteria are described below:
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Root Mean Square Error (RMSE):
RMSE is often used as a tool for measuring the difference between the predicted
values and the actual values of one dataset. It is a good estimation for the standard

deviation of a random set of the databases and is defined as:

Z?:l(xpre —Xpal )2
n

RMSE = \/ 4.7)

MSE is the mean square error and is calculated as the square of RMSE as follows:

MSE = RMSE? (4.8)

Correlation Coefficient (R):

The correlation coefficient (R) is the measurement of the linear relationship degree
between the two variables (predicted values and actual values). The range of

correlation coefficient values change between +1 and -1 and is defined as:

Y (Xi—X)«(Y;—T)

R =
\/Z?=1(Xi_)?)2*2?=1(yi—7)2

(4.9)

where X; is actual value, X is mean of actual values, Y; is predicted value, Y is mean
of predicted values and n is number of data set.

In this step, the network was trained based on all input data that are represented by
nine neurons in input layer, optimum neurons in hidden layer and a neuron in output
layer. The number of neurons in hidden layer was determined based on trial and error.
Therefore twenty neurons were employed for this layer with tansig activation function.
In training process, the network stopped at 19 iterations with gradient and MSE equal
to 0.01871 and 0.00583, respectively. Also the best validation performance was
0.05820 and occurred at epoch 13. The values of RMSE, MSE, R, mean (i) and
standard deviation (o) of errors are presented in Table 5.3. Figure 5.5 shows that the
process of network training and error histogram for all data. The concentration of error

bins around the zero line shows that the network was able to predict the damage values
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with high accuracy. Moreover, the regression and fit function for train, validation, test

and all data are shown in Figure 5.6.

Table 5.3: The RMSE, MSE, R, u and o values for each set of data

Train Data | Validation Data Test Data All Data

RMSE 0.10920 0.24123 0.35997 0.19108
MSE 0.01192 0.05820 0.12958 0.03651

R 0.94892 0.81771 0.66528 0.85220

K -0.01521 0.04780 -0.02412 -0.00709

c 0.10852 0.24049 0.36530 0.19143

X Gradient = 0.018705, at epoch 19 Error Histogram with 20 Bins
b3 1 i ' ‘ . ‘ ‘ ‘ ‘ ' S iTrz‘amln‘g I_
£ 107 = [ validation
> 107 L L I L L L L L L il -;:rsnt Error ||
gzggo?égo?‘fé';:»’f’tﬁ

13 Epochs Errors = Ta‘rgets - Outputs

Figure 5.5: The network training process and error histogram
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Figure 5.6: The regression and fit function for each set of data

In order to find the effective parameters of ground motion, the training process of
network was repeated for nine times and in each time, one of the ground motion

parameters was eliminated. Therefore, the number of neurons in input layer was

reduced to eight. The results of this process are shown in Table 5.4.
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Table 5.4: The RMSE, MSE, R, p and o values for all data.

Eliminated RMSE MSE R u o
Parameter
PGA 0.19337 | 0.03739 | 0.84401 | 0.00379 | 0.19382
PGV 0.23130 | 005350 | 0.80124 | -0.08361 | 0.21620
PGD 0.20957 | 0.04392 | 0.82806 | -0.01935 | 0.20920
PGAPGV | 023459 | 005503 | 0.77255 | -0.01081 | 0.23493
PGA/PGD 0.21979 | 004831 | 0.82541 | 0.05024 | 0.21450
PGV/PGD 0.22133 | 0.04899 | 079408 | 0.01137 | 0.22159
Dominant 0.24655 | 0.06079 | 0.79006 | -0.10129 | 0.22535
Frequency
Effective Time | 019903 | 0.03961 | 0.83377 | 0.00186 | 0.19952
Duration
Fault line 0.19532 | 003815 | 0.84128 | -0.01292 | 0.19538
Distance

Based on extracted results (see Table 5.4), the minimum values of R were obtained
for PGA/PGV, dominant frequency, PGV/PGD and PGV cases, respectively which is
expressing that the network was sensitive to these parameters. Therefore the network
was run based on these four parameters as input data (four neurons in input layer), ten
hidden layer neurons (optimum neurons) and a neuron in output layer. In training
process, the network stopped at 25 iterations with gradient and MSE equal to 0.00431

and 0.0332, respectively. Also the best validation performance was 0.01136 and
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occurred at epoch 19. The values of RMSE, MSE, R, p and o are presented in Table

5.5. Moreover, Figure 5.7 shows the fitting function and regression for train,

validation, test and all data.

Table 5.5: The RMSE, MSE, R, u and o values for each set of data.

Train Data Validation Test Data All Data

Data
RMSE 0.18401 0.10659 0.27995 0.19277
MSE 0.03386 0.01136 0.07837 0.037161
R 0.87230 0.90892 0.65085 0.84514
u -0.00065 0.000099 -0.02014 -0.00346
c 0.18467 0.10841 0.28400 0.19323

Train Data: R=0.8723

Validation Data: R=0.90892
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Figure 5.7: The regression and fit function for each set of data
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The value of R obtained from two networks consist of all input data (nine
parameters) and four sensitive data (four parameters) were obtained equal to 0.85220
and 0.84514, respectively which is showing around 0.8% difference between them.
Also it should be considered that whereas the sample frame was in intermediate period
region, the velocity controlled responses is more effective among the earthquake
parameters. Therefore for buildings in this period range, it is suggested to use the above
effective parameters which are sufficiently enough for evaluation of vulnerability
instead of considering more ground motion characteristics.

Thus, in this study, the ground motion parameters has been selected based on above
obtained results of previous section including; PGV, PGA/PGV, PGV/PGD and

dominant frequency. The ranges of these parameters are tabulated in Table 5.6.

Table 5.6: The range of ground motion parameters

Parameters Range of parameters
PGV 3.385-245.3
PGA/PGV 0.004-0.03
PGV/PGD 1.036-12.008
D.F. 0.22-1.929

5.1.3 Data generation, training and testing of ANN

In this section, again MLP neural network were employed to predict the
vulnerability of sample buildings. For this aim, twenty suitable ground motion records
were selected which had most correlation with design spectrum and scaled to ten

different level of PGA. Then each scaled records applied to each sample. Therefore,
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based on this process, 600 input data were generated. In this network, three layers were
used including thirteen neurons in input layer, optimum neurons in hidden layer and a
neuron in output layer which is representing the imposed damage values of sample
buildings. Then the data were normalized and presented to the network. Also, the linear
normalization method was used in order to change the input parameters range between

zero and one using the equation 4.10 as:

S, = % (4.10)
where S, is the normalized value, x is variable, x,,;, is minimum value of all data and
Xmazx 1S Maximum value of all data.

All normalized data were shuffled and divided to three sets for training, validating
and testing process. The number of neurons and type of activation function in hidden
layer are very important parameters for network training process. In common
networks, linear activation function was applied in output layer. However, for the
hidden layer, different functions can be used depending on dataset. In this study, ten
activation functions were examined and based on minimum error of test data, the best
function was selected. The formulation and shape of these functions are shown in

Table 5.7. The number of hidden layer neurons and suitable activation function were

obtained based on minimum test error as following equation:
K 10T
Error (%) = (%) %100 (4.11)

where 0; is the output of the neural network, T; is the desired output, k is the number
of testing or training samples, m is the number of testing or training segments and n
is the number of neural network outputs for the testing or the training procedures

(Ozbay et al., 2006).
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Table 5.7: Activation functions properties (Cortes and Vapnik (1995))

Function name Formula Graph
- : 0, x<0 | - =
Hard-limit transfer function fx) = {1' >0 —F
Symmetric hard-limit Fl) = {—1, x<0 | =
transfer function L1, x=0 o
Log-sigmoid transfer Flx) = 1 e
function T (A4exp(=x)) | ] 2 o 8
Positive linear transfer £) = {0, x <0 B e
function — x=0 | P

Radial basis transfer
function

f(x) = exp(—x?)

Normalized radial basis

exp(—x*)

transfer function flx) = sum(exp(—x2)) e
s 0 x <0 H
Saturating linear transfer o XU g o,
fﬂnction fx) = { x, 0<x=s1 s
1 , X = S e SR
Symmetric Saturating linear Fl) = { ;1 " ’; j ;11 2
transfer function 1) > 1 71 77777
v
Hyperbolic tangent sigmoid B 2 IR eI
transfer funCtion f(x) - (1 + exp(_zx)) 1 7?1 777 :?‘- 77777 4
Triangular basis transf reo 0 1 é“
riangular basis transfer ) x<—1 | AR
function = {1 — x|, -1<x<1 | - - _O__f_l_____x
0, x>1 B

Based on equation 4.11, for each function, the error values of test data were

calculated and the optimum number of hidden layer neurons was obtained. For
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different number of neurons, the test error values of each activation function are shown

in Figure 5.8.
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Figure 5.8: Number of hidden neurons versus test error

Moreover, the optimum number of hidden layer neurons and the test error values

for each activation function are shown in Table 5.8. The results showed that hyperbolic

tangent sigmoid function with thirty neurons (minimum test error) was the best

activation function for this set of data.

99



Table 5.8: The optimum number of neurons and test error values for different
activation functions

Function Optl_mum Number of Test Error (%)
hidden neurons
Hard-limit transfer function 45 14.10
Symmetric hard_—llmlt transfer 20 14.50
function
Log-sigmoid transfer function 25 4.21
Positive linear transfer function 30 5.09
Radial basis transfer function 25 5.33
Normalized radla_l basis transfer 10 446
function
Saturating I|n_ear transfer 10 4.37
function
Symmetric Saturatl_ng linear 15 467
transfer function
Hyperbolic tangent sigmoid
transfer function 30 413
Triangular ba_5|s transfer 15 441
function

In training process, the networks stopped after 41 iterations with MSE and Gradient
equal to 0.0121 and 0.00518, respectively. The best validation performance was
0.040328 at epoch 35. The values of RMSE, MSE, R, p and o are presented in Table
5.9. Also the weight matrix and bias terms of each network layer were represented in

appendix C.
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Table 5.9: The RMSE, MSE, R, u and o values for each set of data

Train Data Validation Data | Test Data All Data

RMSE 0.11950 0.20082 0.20921 0.15037
MSE 0.01428 0.040328 0.04377 0.02261
R 0.96290 0.90163 0.88393 0.94116

H -0.005615 -0.03355 -0.05502 -0.01722

c 0.11951 0.19910 0.20298 0.14951

Figure 5.9 shows the error histogram for all data. The concentration of error bins
around the zero line shows that the network is able to predict the damage values with
high accuracy. Moreover, the regression and fit function for train, validation, test and

all data are shown in Figure 5.10.
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Figure 5.10: The regression and fit function for each set of data

Therefore, using the obtained results of ANN, the amount of damage was predicted
and the fragility curves were drawn. Figures 5.11, 5.12 and 5.13 represent the fragility
curves for different limit states and each story building which compared to real
fragility curves, respectively. Also, the amounts of mean and standard deviation of log-
normal cumulative distribution function which were used for drawing the fragility

curves are shown in Table 5.10.
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Table 5.10: The used mean and standard deviation values for drawing the fragility
curves for analysis and ANN methods

Analysis (IDA) ANN
Level Minor- |Moderate-| Sever- | Minor- |Moderate-| Sever-
Moderate| Sever |Collapse Moderate| Sever |Collapse
4 0.28 0.39 0.78 0.27 0.36 0.82
Mean
6 0.35 0.45 0.83 0.35 0.44 0.88
8 0.45 0.61 1.13 0.43 0.63 1.29
4 0.64 0.67 0.89 0.60 0.74 0.93
Standard
Deviation | 6 0.66 0.69 0.91 0.64 0.65 0.93
8 0.71 0.79 1.07 0.67 0.75 1.19

Also this network was used for prediction of other nonlinear dynamic responses of
sample buildings. In this case, two responses of nonlinear analysis including; the top
displacement and the base shear force were selected as output parameters of network.
Again the network was trained for each of them and the forecast data was compared
to actual data. The results showed that the network was able to predict these parameters
with high precision. The comparison of actual value with forecast value and the
regression of each data set for the top displacement and the base shear force data are

shown in Figures 5.14-5.17, respectively.
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Figure 5.14: Comparison of actual and forecast values for the top displacement data
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106



Base shear force (KN)
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Figure 5.16: Comparison of actual and forecast values for the base shear force data
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The regression and fit function for the base shear force data




5.2 Classification of damage

For classification of the imposed global damage, the SVM was used and classify
the damage to three classes including; Repairable (Economic), Beyond Repair (Not
Economic) and Loss of Building (Collapse). Indeed, this machine specified the
discriminator (hyperplane) for each class with maximum margin between classes
based on feature space of input data. For generation of discriminator, the kernel trick
was used in SVM. In this study, four common kernel tricks were applied in SVM in
order to find the best kernel function including; Linear Kernel Function, Polynomial
Kernel Function, Gaussian Kernel Function and Sigmoid Kernel Function as presented

in Table 5.11.

Table 5.11: Properties of kernel functions (Cortes and Vapnik (1995))

Kernel function Expression Comment
Linear K(xi,xj) =r+ a.xiT.xj a>0
Polynomial K(x,x) = (r + a.x].x)P a>0
. 1 2
Gaussian K(x; %) = exp(—ﬁnxi —x ) o#0
Sigmoid K(xi,xj) = tanh(B, + ﬁl.xl-T.xj) B1>0

X;, x; are input vectors and r, a, o, B, and f3; are kernel parameters.

Therefore, the optimal hyperplane decision function is expressed as the following:
y =sign Qi a;.v;. K(x;,x) +b). (4.12)
5.2.1 Data generation

As mentioned in section 4.7.3, again the same data set which was obtained based

on nonlinear time history analysis was used with the exception that in the output data,
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the three classes based on the Park & Ang damage definition (see Table 3.4) was

considered. The sample number of each class is shown in Figure 5.18.

400 -
-E 300 | 292
7 239
.E‘ 200 -
[*5]

100 69

1]
1 2 3
Class Number

Figure 5.18: Distribution of data used in this study

In order to find the best kernel function, the total accuracy prediction scores of the
test data were calculated. Also, the kernel parameters (p, r, @, g, B, and ;) and penalty
factor (c) should be determined to reach the maximum margin between classes and the
minimum classification error between real and predicted data. The amounts of p,
r,a, B, and f; were obtained using trial and error. Also for the two remaining
parameters (c and o), the grid-search method was applied and the best values were
selected automatically using Libsvm-3.17 (Chang and Lin, 2013) in the Matlab
software. The results showed that 122, 129, 135 and 133 class labels from the total of
180 test-data class labels were correctly predicted for linear, polynomial (5 degree),
gaussian and sigmoid functions, respectively. The total accuracy values of test data
versus different kernel functions are shown in Figure 5.19. Therefore the gaussian

function was chosen as an efficient kernel trick function.
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Figure 5.19: The total accuracy of test data for different kernel functions

5.2.2 M-SVM model

After determining the best activation function (Gaussian function), a set of
normalized data which include 600 input data and each data containing thirteen
elements were shuffled and then applied to this machine that 70% and 30% of the total
data were used for training and testing process, respectively. Figure 5.20 shows the
comparison of actual classes and predicted classes of the imposed global damage for
train data, test data and all data of M-SVM. In this Figure, the hollow circles and stars
are indicating the actual classes and predicted classes, respectively which if the
classification be correctly done, then the hollow circles and stars will overlap together.
The obtained results showed that the M-SVM has predicted the classes No. 1 and No.
3 with high precision. However, for class No. 2, this performance was poor. Because

the number of data for this class compared to classes No. 1 and No. 3 was low,
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therefore for this class, the M-SVM could not determine the proper margins based on

feature of input data.
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Figure 5.20: Comparison of the actual and predicted classes for train data, test data
and all data of M-SVM

Also for evaluation of the obtained results from classified data, the confusion matrix
is used and is defined as an error matrix or a contingency table to determine the
performance of network. Each element of this matrix expresses the number of actual
classes versus predicted classes. The structure of confusion matrix is shown in Figure

5.21.
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Figure 5.21: Sample of confusion matrix

whereas TP is a true positive observation, TN is a true negative observation. FN is
a false negative since observation is an actual negative (-) but the classifier label is
positive (+) and FP is a false positive since observation is an actual positive (+),
nonetheless, the classifier label is negative (-). For assessment of this matrix, some

parameters can be used which are shown in Table 5.12.
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Table 5.12: Properties of parameters used for evaluation of confusion matrix

Name Definition Function
Sensitivity or
SEN = ——
Recall (SEN) The rate of true positive TP+ FN
Specificity
SPC = ———
(SPC) The rate of true negative FP+TN
. The fraction of observations TP
Precision e " PRE = ——
classified as positive that are TP + FP
(PRE) .
actually positive
i TP+ TN
Accuracy The proportlo_n c_)f the total ACC =
number of predictions that are TP + TN + FP + FN
(ACC)
correct
The proportion of the total £ _ FP+ FN
Error number of predictions thatare | “""°" T TP ¥ TN + FP + FN
incorrect
NPV The negative predictive values R —
J P NPV TN + FN
PPV The positive predictive values PPV = —
P P v TP + FP

The confusion matrix for the train data, test data and all data of M-SVM are given

as below:
188
Confusion matrix for the traindata = | 19
19
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Total accuracy= 80.00%, C=03.668, c =17.910

69 3 8
Confusion matrix for thetestdata = |6 3 8
18 2 63

Total accuracy= 75.00%, C=13.4543, ¢ =22.242

254 12 26
Confusion matrix forthe alldata= | 25 18 26
35 10 194

Total accuracy= 77.67%, C=2.3784, c =14.424

Based on extracted confusion matrices, the amounts of SEN, SPC, PRE, ACC,
Error, NPV and PPV for each class and each set of data are presented in Table 5.13.
The obtained results from these parameters showed that the performance of class No.
1 and No. 3 are very close and their PRE’s are equal to 86.99 % and 81.17 %,
respectively. Also, the low value of PRE for class No. 2 represents inaccuracies for

classification of this class.
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Table 5.13: The SEN, SPC, PRE, ACC, Error, NPV and PPV values for each class

Train Data Test Data All Data

Class | Class | Class | Class | Class | Class | Class | Class | Class
1 2 3 1 2 3 1 2 3

SEN (%) | 83.19 | 63.64 | 77.91 | 74.19 | 37.50 | 79.75 | 80.89 | 45.00 | 78.86

SPC (%) | 87.63|90.45|91.13 | 87.36 | 91.62 | 80.20 | 86.71 | 90.89 | 87.29

PRE (%) | 88.68 | 26.92 | 85.90 | 86.25 | 17.65 | 75.90 | 86.99 | 26.09 | 81.17

ACC (%) | 85.24 | 89.05 | 85.71 | 80.56 | 89.14 | 80.00 | 83.67 | 87.83 | 83.83

Error (%) | 14.76 | 10.95 | 14.29 | 19.44 | 10.86 | 20.00 | 16.33 | 12.17 | 16.17

NPV (%) | 81.73 | 97.83 | 85.61 | 76.00 | 96.84 | 83.51 | 80.52 | 95.86 | 85.60

PPV (%) | 88.68 | 26.92 | 85.90 | 86.25 | 17.65 | 75.90 | 86.99 | 26.09 | 81.17

5.2.3 MM-SVM model

For generation of MM-SVM, a one-layer feed-forward MLP neural network
(Chiddarwar and Babu, 2010; Yilmaz and Kaynar, 2011) was used at first level, then
the output of this network was applied to M-SVM in form of input data. This combined

ANN was named MM-SVM and is shown in Figure 5.22.
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Figure 5.22: The architecture of combined MLP with M-SVM (MM-SVM)

At the first level of MM-SVM, 600 input data was applied to MLP neural network.
For training process, the Levenberg—Marquardt back propagation algorithm was
employed to update the weights and bias terms of the MLP network. Therefore, using
this network led to a change in the primal data space from the thirteen dimensions to
one dimension. The MLP network consists of thirteen neurons in the input layer,
optimum neurons in the hidden layer and one neuron in the output layer. The gaussian
and linear activation functions were used for the hidden layer and the output layer of
the MLP network, respectively. In addition, the number of hidden layer neurons was
determined based on the minimum test error and is obtained equal to thirty.

In the training process of MLP, the network stopped after 85 iterations with MSE
and gradient equal to 0.0520 and 0.0266, respectively. In addition, the best validation
performance was 0.19188 at epoch 79. The values of RMSE, MSE, R, u and o are

presented in Table 5.14.
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Table 5.14: The RMSE, MSE, R, u and o values for each set of data

Train Data Validation Data Test Data All Data
RMSE 0.23761 0.43804 0.37704 0.29938
MSE 0.05646 0.19188 0.14216 0.089627
R 0.96675 0.88962 0.93072 0.945832
H -0.015535 -0.065719 -0.043856 -0.0075951
c 0.23739 0.43551 0.37658 0.29953

As seen in Table 5.14, the RMSE and MSE variables in validating cases are greater
than variables in training and testing cases. Also the amount of Rs ranged between
0.88962 and 0.96675. Figure 5.23 compares the real output values and the predicted
values of all data. The most variation of errors for all data set were determined between
-0.5 and +0.5 which successfully represents the network damage prediction values
with high accuracy. The regression and fit function for the train, validation, test and
all data are shown in Figure 5.24. The high value of R (around 0.95) indicates a good
relationship between predicted values and actual values for the total response in the
MLP model. Moreover, the histogram of error for all data is presented in Figure 5.25.
The concentration of the bins error around the zero line with mean -0.0075951 and
standard deviation 0.29953 for all set of data represents a good performance of this

network.
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Comparing the real and predicted values
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Figure 5.24: The regression and fit function for each set of data
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Figure 5.25: The error histogram for all data

At the second level of MM-SVM, the obtained outputs of the first level (MLP
network) were applied to the M-SVM as input data. This set includes 600 input data
and each data consists of only one element. Figure 5.26 shows the comparison of the
actual classes and the predicted classes of the imposed global damage for the train
data, test data and all data of MM-SVM. For all classes, the results showed that the
MM-SVM has predicted the classification of global damage with high accuracy
compared to M-SVM. Indeed, the reduction in feature space of input data and creating
high relation between the input and output data by the MLP neural network led to

determining more precisely of margins for each class by the M-SVM.
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Figure 5.26: Comparison of the actual and predicted classes for train data, test data
and all data of MM-SVM

The confusion matrix for the train data, test data and all date of M-SVM are given
as below:

208 4 0
Confusion matrix for the traindata = | 3 44 5
0 4 152

Total accuracy= 96.19 %, C=5.6569, ¢ =0.7071

74 6 0
Confusion matrix for the testdata = |4 9 4
0 11 72

Total accuracy=86.11 %, C=1.17678, ¢ =0.2973

282 10 0
Confusion matrix for thealldata= | 7 53 9
0 14 225

Total accuracy= 93.33 %, C=181.0193, ¢ =0.0526
Based on extracted confusion matrices from MM-SVM, the amounts of SEN, SPC,
PRE, ACC, Error, NPV and PPV for each class and each set of data are presented in

Table 5.15. The maximum and minimum of error were obtained equal to 13.89% and
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1.67% for class No. 2 and class No. 1, respectively. Also for all data, the PRE values
for class No. 1, class No. 2 and class No. 3 were extracted equal to 96.58%, 76.81%
and 94.14% respectively.

Table 5.15: The SEN, SPC, PRE, ACC, Error, NPV and PPV values for each class

Train Data Test Data All Data

Class | Class | Class | Class | Class | Class | Class | Class | Class
1 2 3 1 2 3 1 2 3

SEN (%) 98.58 | 84.62 | 96.82 | 94.87 | 34.62 | 94.74 | 97.58 | 68.83 | 96.15

SPC (%) | 98.09 | 97.83 | 98.48 | 94.12 | 94.81 | 89.42 | 96.78 | 96.94 | 96.17

PRE (%) 98.11 | 84.62 | 97.44 | 92.50 | 52.94 | 86.75 | 96.58 | 76.81 | 94.14

ACC (%) | 98.33 | 96.19 | 97.86 | 94.44 | 86.11 | 91.67 | 97.17 | 93.33 | 96.17

Error (%) | 1.67 | 3.81 | 214 | 556 |13.89 | 8.33 | 2.83 | 6.67 | 3.83

NPV (%) 98.56 | 97.83 | 98.11 | 96.00 | 89.57 | 95.88 | 97.73 | 95.48 | 97.51

PPV (%) | 98.11 | 84.62 | 97.44 | 9250 | 52.94 | 86.75 | 96.58 | 76.81 | 94.14

The above obtained results for all three classes showed that the MM-SVM model
to be highly suited to classification of global damage for R/C wide-beam buildings and
provide reference for future seismic assessment of this building's type.

5.3 Case study (Kutup building)

In this section, an existing R/C slab column frame with wide beams and rectangular
columns was considered as the case study. This building is constructed in Famagusta
city and still in use as a residential building. This building is shown in Figure 5.27. It

has seven floors which the height of the first and the second stories are 2.9m and 3.6m,
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respectively. Also the rest of stories heights are 2.85m. The building dimensions are
14.4m and 16.75m in X and Y directions, respectively. For beams and columns,
different sections were used in each story. The plans and details of model are
mentioned in appendix D. For nonlinear time history analysis, IDARC software was
used. In modeling, the amount of the live load and dead load were considered
200 kg/m? and 500 kg/m?, respectively. The compressive strength of concrete, yield
and ultimate strength of steel were considered as 15MPa, 220MPa and 300MPa,
respectively. Whereas the first mode period in Y direction is more that X direction, the

building was excited only in weaker direction.

Figure 5.27: The Kutup Building (case study)
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5.3.1 Classical method (IDA)

Based on proposed mythology that presented and mentioned in Figure 3.11, the
fragility curves were derived for three different damage levels using the Park & Ang
limit states criteria (Table 3.3). Furthermore, the log-normal cumulative distribution
function were applied as probability function. Figure 5.28 illustrates the obtained

fragility curves for each limit states.

Probability of exceeding damage (%)

— Minor-Moderae(Analysis) ——-—-—-Moderate-Sever e(Analysis — — Severe-Collapse{Analysis)

Figure 5.28: The fragility curves for case study building (classical method)

5.3.1 Neural network Method (ANN)

Before running the ANN analysis, the input data should be prepared for MLP neural
network. This data consists of building dimension and geometry of the structural
elements. Table 5.16 shows the amount of these parameters. Also for ground motion
indices, the same values were considered. For training of MLP neural network, 70%
and 30% of all obtained data from nonlinear time history analysis of four, six and eight

story models were considered and used for train and validation progress, respectively.
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Table 5.16: The amount of structural parameters

Parameters Value of parameters
h/b 1.44
b/d 0.86
N 7
B 5
M (m) 3.6
Ic (m?) 0.0349
I (M*) 0.00495
Bc (cm?) 494.74
Bs (cm?) 222.8

In training process, the network stopped at 24 iterations with gradient and MSE
equal to 0.0133 and 0.0377, respectively. Also the best validation performance was
0.0537 and occurred at epoch 18. Figure 5.29 shows the process of network training
and error histogram for all data. The regression and fit function for train, validation,

and all data are shown in Figure 5.30.
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Figure 5.29: The network training process and error histogram
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Figure 5.30: The regression and fit function for each set of data
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After training of the network, the test data (input data from case study) was applied
to network for test progress. The amounts of error between classical method and ANN
are shown in Figure 5.31. Also by using the obtained results from ANN, the fragility
curves were drawn. Figure 5.32 shows the obtained fragility curves for each limit state.
Also the compared fragility curves based on classical method and ANN are shown in

Figure 5.33.

Error Value

Number of Test Data

Figure 5.31: The error value for test data
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-
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Probability of exceeding damage (%)
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Figure 5.32: The fragility curves for case study building (ANN method)
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Figure 5.33: Comparison of the generated fragility curves by analysis and ANN methods
for case study building
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Chapter 6

DISCUSSION

In this study, the obtained fragility curves from incremental nonlinear time history
analysis for these sample buildings represented that the vulnerability for four story
building was more than six and eight story buildings. Also, the obtained responses due
to Duzce-Turkey record with PGA equal to 0.5g showed that the first failure was
happened in beams and then continued in columns. Furthermore, the amounts of
damages for upper level beams were more than lower level beams and this process was
inversed for story columns. The story displacement and the story shear were increased
and decreased with number of levels, respectively. Also the analysis showed that the
modal participation factor in first mode is much higher than other modes which
represents the first mode is dominant. Furthermore, the relative modal weight for
sample buildings in first mode was changing between 70% and 80%. In the following,
the process of plastic hinges for one beam and two columns with different section areas
were drawn and showed that although the first plastic hinges occurred in beams and
then expanded in columns (The principle of the weak beam - strong column), but the
amount of dissipated energy in beams were much less than columns.

In order to determine the limit states for this type of buildings and compare with
the values which are suggested by FEMA 356 (2000), the global damage was
calculated based on maximum inter-story drift damage index and the IDA curves were
drawn for each sample. The obtained results showed that the damage criteria for 10

and CP were 1% and 5%, respectively which is one percent more than FEMA 356
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(2000) in CP damage level and it indicates that these type of buildings have more
deformation in comparison with normal buildings.

According to this deformation, the effect of P-delta for this type of buildings is
significant. Therefore, in section 4.4, the effect of P-delta in fragility curves was
evaluated and the obtained curves showed that this effect was increased with number
of story and performance levels. Table 6.1 shows the RMSE values for with and
without P-delta effect cases. Based on this table, the RMSE values ranged between 7%
up to 28%.

Table 6.1: The difference between with and without P-delta effect cases by RMSE for
each building (%)

Story No. Minor - Moderate Moderate - Severe Severe - Collapse
4 6.87 10.05 12.19
6 10.95 16.17 20.16
8 19.41 20.13 28.29

In section 4.5, the effect of 2D models on fragility curves were compared with 3D
models. Whereas the IDARC software can model 2D and also 3D models, but only
can analyze in one direction, therefore many researches were performed on frame
models instead of 3D models. Always there is a question whether a 2D model can
express almost all features of a 3D model. For this purpose, 2D models were selected
and the obtained fragility curves were compared with 3D models. Table 6.2 shows the
RMSE values for 2D and 3D cases. Based on this table, the 2D models have less
capacity than the 3D models. Also, the RMSE values between 2D and 3D curves

ranged between 15% up to 30%. In fact, a 2D model can be used as a convenient
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alternative for a 3D model when all the frames of 3D model were equal in terms of

size, dimension and loading (neglect torsion effect).

Table 6.2: The difference between 2D and 3D models by RMSE for each building

(%)

Story No. Minor - Moderate Moderate - Severe Severe - Collapse
4 16.73 19.11 37.59
6 14.34 11.94 27.89
8 20.34 17.94 29.76

In section 4.6, the effect of aftershock was evaluated. Whereas, this effect has been
ignored almost in all codes and also there is not enough time to repair the damaged
structural members after the main shock, therefore the aftershocks effect should be
taken into account. In this study, based on lack of data for Famagusta region, only five
earthquakes which contain the aftershocks effect were evaluated. By considering the
PGA ratio of aftershock to main shock as an index, the results showed that for low
ratios, the damage values had not changed. Whereas, for ratios around 1.5, the amount
of damages under aftershock was significant. Table 6.3 shows the amount of global
damage for main shock and aftershock cases. The obtained damage values of this data
with aftershock effect showed that the damage is between 2 to 8 times more than only
main shocks. Also it should be considered that the amount of damage under main

shocks were less than 0.1 and it cannot be generalized to all levels of damage.
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Table 6.3: The global damage under main shock and main shock along aftershock

cases
Damage
Earth quake Increasing
Name Level proportion
Main shocks Aftershocks

4 0.042 0.10 2.38

Chalfant Valley 6 0.029 0.067 2.31

8 0.013 0.036 2.78

4 0.033 0.265 8.03

Superstitn Hills 6 0.027 0.174 6.40

8 0.022 0.13 5.90

In section 5.1, the ANNSs were used in order to predict and classify the building
damage. In fact, the main aim was to generate the new method for rapid evaluation of
buildings vulnerability without any analysis. At the first, a MLP neural network was
applied to determine the effective ground motion parameters. As follows, with
considering thirteen structural and ground motion parameters, the network was trained
and the amount of damages were obtained for each samples and led to drawn fragility
curves. Table 6.4 shows the RMSE values for ANN and classical method (IDA).
Comparing the obtained curves from ANN and IDA curves showed that the RMSE

values were changed between 2% to 4% which is expressing the high performance of

network.
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Table 6.4: The difference between classical analysis and ANN methods by RMSE for
each building (%)

Story No. Minor - Moderate Moderate - Severe Severe - Collapse
4 2.04 4.28 4.01
6 0.68 1.90 2.70
8 242 1.71 3.26

Also the MLP network was applied for prediction of the top displacement and the
base shear force of samples and the regression value of all data were obtained around
96% and 99 %, respectively which represent high accuracy in predicting of these
parameters.

In section 5.2, the classification of building global damage was done using SVM.
Whereas, the percentage of input data for class No. 1, class No. 2 and class No. 3 were
equal to 48.67%, 11.5% and 39.83% of all data, respectively, the M-SVM model
showed a weak performance for classification of class with minimum members (class
No. 2). In fact, the SVM couldn’t realize the suitable margins for this class. Whereas,
the MM-SVM model was able to predict 44, 9 and 53 class label from the set of 52,
17 and 69 considered class label of the train, test and all data cases for class No. 2.
Indeed, using of the MLP model in first level of MM-SVM led to a reduction in the
dispersion and complication of feature space for input data and based on this reason,
in the second phase, the M-SVM was able to determine the margins for each class with
high precision. Table 6.5 compares the ACC-value for M-SVM and MM-SVM
models. The results showed that the MM-SVM classifier improves the performance in
terms of recognition rate and error rate significantly compared to M-SVM model for

one classification task of global damages.
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Table 6.5: Comparing the ACC-value for M-SVM and MM-SVM

Data Set M-SVM (%) MM-SVM (%) | Improvement (%)
Train data 80.00 96.19 16.19

Test data 75.00 86.11 11.11

All data 77.67 93.33 15.66

In section 5.3, in order to verify the presented methodology in this thesis, a case

study model was considered and evaluated. In training process, the MLP network did

not have any experience of test data. The RMSE values for these two methods are shown

in Table 6.6.

Table 6.6: The difference between classical method and ANN by RMSE for case study

building (%)

Damage Level

Minor-Moderate

Moderate-Severe

Severe-Collapse

1.848

3.984

4.282

Table 6.6 shows that the amounts of RMSE between classical method and ANN for

Minor-Moderate, Moderate-Severe and Severe-Collapse levels are 1.848%, 3.984%

and 4.282%, respectively which presents an increasing trend. Also these results show

that the presented methodology in this research can be used with high precision.
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Chapter 7

CONCLUSION

In this study, two main objectives were pursued. First, evaluation of seismic
vulnerability of wide-beam R/C buildings which were built in the Mediterranean area
and also available and still in used in North Cyprus. Second, using ANNs as an
alternative and rapid evaluation method for prediction and classification of imposed
damages with high precision. The following conclusions were obtained from this
investigation:

- Using obtained fragility curves, the vulnerability of buildings decreases with the
number of stories.

- The process of damage assessment showed that the first failure was occurred in
beams and then continued in columns. Furthermore, the amounts of damages for the
upper level beams were more than lower level beams and this process was inversed
for columns.

- The modal participation factor for the first mode was much than the other modes
which represents the first model is dominant. Also, the relative modal weight for four,
six and eight story buildings were obtained around 79.5%, 74% and 72%, respectively.

- By considering maximum inter-story drift as damage index, the obtained IDA
curves showed that the damage criteria for 10 and CP damage levels were obtained
equal to 1% and 5%, respectively which is 1% more than FEMA 356 (2000) criteria

for CP damage level.
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- The fragility curves for without considering the P-delta effect case showed that
this factor is impressive for this type of buildings. Also, the RMSE values represented
the difference around 6% up to 28% between with and without P-delta effect cases.

- Comparison the fragility curves for 2D and 3D models showed that the 2D models
cannot be used as suitable alternative for 3D models. Also, the RMSE values
represented the difference around 15% up to 30% between 2D and 3D cases.

- For high PGA ratio (around 1.5) of main shock to aftershock showed that the
effect of aftershocks is significant. The obtained damage values for this range of PGA
ratio represented that the increasing of damage between 2 up to 8 times more than
single main shocks. Also in this study, it should be considered that the amount of
damage under main shocks were less than 0.1 and it cannot be generalized to all levels
of damage.

- The effective ground motion parameters were identified based on ANNs. The
observed result from ANNSs showed that the minimum values of R were obtained for
PGA/PGV, dominant frequency, PGV/PGD and PGV parameters, respectively which
indicated the network is sensitive to these indices. Moreover, the ineffective
parameters consist of PGA, fault line distance, effective time duration, PGA/PGD and
PGD, respectively. Also it should be considered that since the sample frame was in
intermediate period region, the velocity controlled responses are more effective among
the earthquake parameters. The amount of obtained R from two networks consist of
all input data (nine parameters) and four sensitive data (four parameters) were obtained
equal to 0.85220 and 0.84514, respectively which is shown that around 0.8%
difference between them. Therefore for buildings in this period range, it is suggested
to use these effective parameters which are sufficiently enough for evaluation of

vulnerability instead of considering more ground motion characteristics.
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- For training the network, ten different activation functions were examined in order
to reach the optimum number of hidden layer neurons and the best function for network
training process. The results showed that among these functions, hyperbolic tangent
sigmoid activation function with thirty neurons in hidden layer had higher accuracy.
Also, for this type of data, using hard-limit transfer function and symmetric hard-limit
transfer function are not recommended.

- For prediction of the damage values, the MLP neural network was used with
thirteen neurons in input layer, thirty neurons in hidden layer and a neuron in output
layer. The amounts of R were obtained around 96%, 90%, 88% and 94% for train,
validation, test and all data, respectively.

- Comparison of damage predicted by IDA and ANN showed that this network is a
more efficient and time saving way for vulnerability evaluation of R/C wide-beam
buildings only using limited parameters of structural geometric and ground motion
characteristic. In addition, the high performance of network represented the selected
parameters are able to establish a good relation between the structural and ground
motion parameters (input data) and damage values (output data).

- The MLP network also was applied for prediction of the top displacement and the
base shear force of sample buildings. The results showed that the network was very
efficient and it was predicted these parameters with high precision.

- For classification of the imposed seismic damage under earthquake loads two
networks were used. In order to find the best kernel trick, four different kernel
functions were applied including; linear function, polynomial function (5 degree),
Gaussian function and sigmoid function and these functions were evaluated using
maximum accuracy of test data. The results showed that the Gaussian function had the

maximum accuracy and it was employed as an efficient kernel trick function.
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- Comparing the classification results of the M-SVM and MM-SVM showed that
the total accuracy of MM-SVM is more than M-SVM. Also for class No. 2 (class with
the lowest member), the obtained values of PRE indicated that the MM-SVM was
predicted the label of this class with high efficiency towards the M-SVM. Thus, the
MM-SVM was identified as an efficient network for classification of the imposed
global damage under earthquake loads and it can be used for similar R/C buildings
solely by selecting the structural geometric and ground motion parameters. In addition,
this method of damage classification can be used by the insurance companies because
it is easy and fast.

-Comparison between obtained fragility curves by classical method and ANN for
case study model showed that using neural network for predicting the damage level of
buildings can be applied as an alternative method with fast, easy and high accuracy
capability instead of classical method. Also it should be considered that a good and
available database, an appropriate ANN with compatible structure and another

effective parameters have crucial roles in this process.
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Appendix A: MLP neural network code

clc;

clear;

close all;

%% Read Data

in=xlIsread('in1.xlsx");

out=xIsread('outl.xIsx’);

X=in";

yx=out';

XS=X’;

ys=y’;

%% Create a Fitting Network

hiddenLayerSize = 300;

TF={"tangsig','purelin'};

net = newf(inputs,targets,hiddenLayerSize, TF);

% %Choose Input and Output Pre/Post-Processing Functions
% %For a list of all processing functions type: help nnprocess
net.inputs{1}.processFcns = {'removeconstantrows',' mapminmax'};
net.outputs{2}.processFcns = {'removeconstantrows’,'mapminmax'};
%% Setup Division of Data for Training, Validation, Testing
%% For a list of all data division functions type: help nndivide
net.divideFcn = 'dividerand'; % Divide data randomly
net.divideMode = 'sample’; % Divide up every sample
net.divideParam.Ratio = 70/100;

net.divideParam.Ratio = 70/100;

net.divideParam.Ratio = 70/100;

%% For help on training function ‘trainlm’ type: help trainim
%% For a list of all training functions type: help nntrain
net.trainFcn = 'trainPm’; % Levenberg-Marquardt

%% Choose a Performance Function

% %For a list of all performance functions type: help nnperformance
net.performFcn = 'rsmse’; % Mean squared error

% %Choose Plot Functions

%% For a list of all plot functions type: help nnplot
net.plotFcns = {'plotperform’,'ploterrhist’,'plotregression’, plotfit'};
net.trainParam.showWindow=true;
net.trainParam.showCommandLine=false;
net.trainParam.show=10;

net.trainParam.epochs=1;

net.trainParam.time=100;

net.trainParam.min_grad=10;

net.trainParam.goal=10;

net.trainParam.max_fail=1,;

% %Train the Network

[net,tr] = train(net,inputs,targets);

%% Test the Network

outputs = net(inputs);

errors = gsubtract(targets,outputs);

performance = perform(net,targets,outputs);

153



%% Recalculate Training, Validation and Test Performance
trainIind=tr.trainInd;

trainlnputs = inputs(:,trainind);

trainTargets = targets(:,trainind);

trainOutputs = outputs(:,trainind);

trainErrors = traintargets-trainoutputs;

trainPerformance = perform(net,trainTargets,trainOutputs);

vallnd=tr.vallnd;

vallnputs = inputs(:,vallnd);

valTargets = targets(:,vallnd);

valOutputs = outputs(:,valind);

valErrors = valTargets-valOutputs;

valPerformance = perform(net,valTargets,valOutputs);

testInd=tr.testind;

testinputs = inputs(:,testind);

testTargets = targets(:,testind);

testOutputs = outputs(:,testind);

testError = testTargets-testOutputs;

testPerformance = perform(net,testTargets,testOutputs);

%% View the Network

% %view(net);

% % Plots

% % Uncomment these lines to enable various plots.

%%

figure;

plotperform(tr);

figure;

plottrainstate(tr);

figure;

plotfit(net,inputs,targets);

figure;

plotregression(trainTargets,trainOutputs, Train Data',...
valTargets,valOutputs,'Validation Data’,...
testTargets,testOutputs, Test Data',...
targets,outputs,’All Data’)

figure;

ploterrhist(errors);

PlotResults(targets,outputs,’All Data');

PlotResults(trainTargets,trainOutputs, Train Data’);

PlotResults(valTargets,valOutputs,'Validation Data’);

PlotResults(testTargets,testOutputs, Test Data’);
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Appendix B: SVM neural network code

clc;
clear;
close all;

%% addpath to the libsvm toolbox
addpath ('../libsvm-3.12/matlab");

%%

% Load training data

dirData = "./data’;

load (fullfile (dirData,'spiral_Nc2 _train"));
trainData = data (:,1:2); clear data;
trainLabel = label; clear label;

% Extract important information
labelList = unique (trainLabel);
NClass = length (labelList);
[Ntrain D] = size (trainData);

% Load test data set

dirData ="./data’;

load (fullfile (dirData,'spiral_Nc2 _all");
testData = data (:,1:2); clear data;
testLabel = label; clear label;

%%

Vo #it it Hit #H# it Hif HHE #i #H# HH HE#

% Parameter selection

Vo #it it Hit #H it #if HHE #i #HH HH HE#

% First we randomly pick some observations from the training set for parameter
selection

tmp = randperm (Ntrain);

evallndex = tmp (1:ceil (Ntrain/2));

evalData = trainData (evallndex,:);

evalLabel = trainLabel (evallndex,:);

Vo #it it Hit #H# it Hif HHE #i #H# HH HE#

% Automatic Cross Validation

% Parameter selection using n-fold cross validation
Ob H## #it #it ## #H #H HE H1 H#H Hi HHEH

%

==== 9% Note that the cross validation for parameter selection can use different
% number of fold. In tis example
% Ncv_param = 3 but
% Ncv_classif =50
% Also note that we don't have to specify the fold for cv for parameter
% selection as the algorithm will pick observations into each fold
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% randomly.
%

==== optionCV.stepSize = 5;

optionCV.c = 1;

optionCV.gamma = 1/D;

optionCV.stepSize = 7;

optionCV.bestLog2c = 0;

optionCV.bestLog2g = log2 (1/D);

optionCV.epsilon = 0.00765;

optionCV.Nlimit = 1000;

optionCV.svmCmd ='-¢;

Ncv_param = 3; % Ncv-fold cross validation cross validation

[bestc, bestg, bestcv] = automaticParameterSelection (evallLabel, evalData,
Ncv_param, optionCV);

Ob ## #it #it it #H # HE H#E HHE HE HHEH
% Classification using N-fold cross validation
Ob ## #it #it #it #H # H H#H HE HE HHE

% train the svm model using the best parameters

bestParam = ['-q -c ', num2str (bestc), ', -g ', num2str (bestg)];

model = ovrtrainBot (trainLabel, trainData, bestParam);

% classify the test data set based on the svm model

[predict_label, accuracy, decis_values] = ovrpredictBot (testLabel, testData,
model);

[decisValueWinner, predictedLabel] = max (decis_values,[],2);

Vo #it it Hit #H it #if HHE #i #HH HH HE#

% Make confusion matrix for the overall classification

Vo #it it Hit #H it #if HHE #i #HH HH HE#

[confusionMatrixAll,orderAll] = confusionmat (testLabel,predictedLabel);
figure; imagesc (confusionMatrixAll');

xlabel (‘actual class label");

ylabel (‘predicted class label’);

title (['confusion matrix for overall classification');

% Calculate the overall accuracy from the overall predicted class label
accuracyAll = trace (confusionMatrixAll)/sum(confusionMatrixAll (%));
disp ([Total accuracy is ',num2str (accuracyAll*100),'%1);

% Compare the actual and predicted class

figure;

subplot (1,2,1); imagesc (testLabel); title (‘actual class’);

subplot (1,2,2); imagesc (predictedLabel); title ('predicted class');
Ob H## #it #it #H #H #H1 T HE HiE #H 7 B A

% Plot the clustering results in 2D

Ob H## #it #it #H #H #H1 T HE HiE #H 7 B A

% Pick the 2D representation to plot

data = testData;

if D==2
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data2D = data (:,1:2);
elseif D>2
% Dimensionality reduction to 2D

% Y ***FF*E* Using MDS (Take longer time)
% distanceMatrix = pdist (data,'euclidean’);
% data2D = mdscale (distanceMatrix,2);

Op ******** Jsing classical MDS (Pretty short time)
distanceMatrix = pdist (data,'euclidean’);
data2D = cmdscale (distanceMatrix); data2D = data2D (:,1:2);
end
% plot the true label for the test setO
tmp = min (exp (zscore (decisValueWinner)),100);
tmp = tmp-min (tmp (:))+1;
tmp = tmp/max(tmp);

patchSize = 200*tmp;

colorList = generateColorList (NClass);

colorPlot = colorList (testLabel,:);

figure;

scatter (data2D (:,1),data2D (:,2),patchSize, colorPlot, filled"); hold on;

% plot the predicted labels for the test set

patchSize = patchSize/20;

colorPlot = colorList (predictedLabel,:);

scatter (data2D (:,1),data2D (:,2),patchSize, colorPlot, 'filled’);
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Appendix C: The weight matrix and bias terms
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Iy = [0.64]
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Appendix D: The case building study maps
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