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In this paper we model a canonical acoustic thin shell wormhole (CATSW) in the framework of
analogue gravity systems. In this model we apply cut and paste technique to join together two
spherically symmetric, analogue canonical acoustic solutions, and compute the analogue surface
density/surface pressure of the fluid using the Darmois–Israel formalism. We study the stability
analyses by using a linear barotropic fluid (LBF), chaplygin fluid (CF), logarithmic fluid (LogF),
polytropic fluid (PF), and finally Van der Waals Quintessence (VDWQ). We show that a kind of
analog acoustic fluid with negative energy is required at the throat to keep the wormhole stable.
It is argued that, CATSW can be a stabile thin-shell wormhole if we choose a suitable parameter
values.
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I. INTRODUCTION

According to the General Theory of Relativity, there is a possibility to form a wormhole by connecting two different
spacetime regions of the universe [1, 2]. Recently traversable wormhole solutions were found by Morris and Thorne
[3, 4], who argued that, if traversable wormholes exist, one needs to invoke a negative energy at the throat which
sometimes is known as exotic matter [4]. The idea was put forward by Visser, who introduced the concept of thin
shell wormholes, which allows us to construct a wormhole simply by cutting and pasting two space-time regions [4–8].
This method attracted a lot of interest among physicists and a number of papers have been written on this topic (see
for example[9–33]).

In a seminal paper, Unruh [34], for the first time found an analogy connecting black holes and sonic black holes
and raised the question whether is possible to detect the Hawking radiation (sometimes known as Hawking–Unruh
radiation) in a laboratory [35]. One can show that, under linearized perturbations, the equations of motion of a
moving fluid is an equivalent way to describe the propagation of a massless scalar field in a curved spacetime [36].
One particular example is to study the wave equation for sound waves in a moving fluid as an analogue for light waves
in a curved spacetime[45].

In the context of analogue black hole models a number of interesting analogue metrics have been found, up to a
conformal factor. In particular, the Schwarzschild type metric solution known as a canonical acoustic metric and the
Painleve–Gullstrand acoustic metric [36], a rotating analogue metric [36–38], analogue AdS and dS black hole solutions
[41] and references therein. Furthermore Nandi et al [44] introduced the idea of acoustic traversable wormholes and
showed that this analogy model can be used to investigate the nature of curvature singularity, to study the light ray
trajectories in an optical medium is equivalent to the sound trajectories in its acoustic analog. On the other hand,
acoustic black holes are studied to calculate the quasinormal modes, superradiance and area spectrum by Saavedra
[39, 40].

In this paper, we aim to model a spherically symmetric, thin shell wormhole within the framework of analogue
gravity systems. In particular, we aim to explore the stability of the acoustic wormhole by modeling the analogue
fluid with a linear barotropic fluid(LBF) [46, 47], chaplygin fluid (CF) [48, 49, 53, 54], logarithmic fluid (LogF) [13, 20],
polytropic eqiation of state for the fluid, [50], Van der Waals Quintessence (VDWQ) [52].

The paper is organized as follows. In Section 2, we review the canonical acoustic metric. In section 3, we construct
an analogue, canonical thin shell wormhole and show show that an analog exotic fluid with negative energy is required
at the throat to keep the wormhole stable. In Section 4 we investigate the stability analyses by modeling the analogue
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fluid by a linear barotropic fluid (LBF), chaplygin fluid (CF), and logarithmic fluid (LogF), polytropic fluid and Van
der Waals Quintessence (VDWQ). In Section 5, we comment on our results.

II. CANONICAL ACOUSTIC BLACK HOLES

We can start by writing the spherically symmetric solution of incompressible fluid or the so–called canonical acoustic
black hole metric found by Visser written as follows [36, 42]

ds2 = −c2dt2l +

(
dr ± cr

2
0

r2
dtl

)2

+ r2
(
dθ2 + sin2 θdφ2

)
. (1)

In which c is the speed of sound through the fluid, v is the fluid velocity, and tl is the laboratory time. Morover c
is related with the velocity v as follows

v = c
r2
0

r2
. (2)

However it is more convenient to write the metric (1) as a Schwarzschild type metric. If we introduce the
Schwarzschild time coordinate t, which is related to the laboratory time tl by the following coordinate transformation

dt→ dtl ±
r2
0/r

2

c (1− (r4
0/r

4))
dr. (3)

Then, it’s not difficult to show that we end up with a spherically symmetric acustic metric also known as a canonical
acoustic black hole as [42, 43]

ds2 = −c2f(r)dt2 +
dr2

f(r)
+ r2(dθ2 + sin2 θ dφ2) (4)

in which

f(r) = 1− r4
0

r4
. (5)

The event horizon of the canonical acoustic black hole is computed by solving grr(rh) = 0, so that one gets

rh = r0. (6)

The corresponding gravitational acceleration for the acoustic black hole horizon can be computed as follows

κ0 =
∂vr

∂r

∣∣∣∣
r=rh

=
2c

r0
. (7)

The analogue Hawking temperature for the canonical acoustic black holes due to the emission of phonons is given
by [42]

TH =
κ0

2πc
=

1

πr0
(8)

Without loss of generality from now on we can set the speed of sound to unity, i.e. c = 1. In what follows we are
going to make use of the metric (4) to model CATSW.

III. CANONICAL ACOUSTIC THIN SHELL WORMHOLES

Let us now proceed to use cut and paste technique to construct a CATSW using the metric (4) and choosing two
identical regions

M (±) =
{
r(±) ≥ a, a > rh

}
, (9)
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in which a is choosen to be grater than the event horizon rh. If we now paste these regular regions at the boundary
hypersurface Σ(±) =

{
r(±) = a, a > rH

}
, then we end up with a complete manifold M = M+

⋃
M−. In accordance

with the Darmois–Israel formalism the coordinates on M can be choosen as xα = (t, r, θ, φ). On the other hand for
the coordinates on the induced metric Σ we write ξi = (τ, θ, φ) which are related to the coordinates on M by the
following coordinate transformation

gij =
∂xα

∂ξi
∂xβ

∂ξj
gαβ . (10)

Finally for the parametric equation on the induced metric Σ we write

Σ : F (r, τ) = r − a(τ) = 0. (11)

Note that in order to study the dynamics of the induced metric Σ, in the last equation we let the throat radius of
the wormhole to be time dependent by incorporating the proper time on the shell i.e., a = a(τ). More specifically
making use of the (10), for the induced metric we have

ds2
Σ = −dτ2 + a(τ)2

(
dθ2 + sin2 θ dφ2

)
. (12)

The junction conditions on Σ reads

Sij = − 1

8π

([
Ki

j

]
− δij K

)
. (13)

Note that in the last equation Sij = diag(−σ, pθ, pφ) is the energy momentum tensor on the thin-shell, on the other

hand K, and [Kij ], are defined as K = trace [Ki
i] and [Kij ] = Kij

+ −Kij
−, respectively. Keeping this in mind, we

can go on by writing the expression for the extrinsic curvature Ki
j as follows

K
(±)
ij = −n(±)

µ

(
∂2xµ

∂ξi∂ξj
+ Γµαβ

∂xα

∂ξi
∂xβ

∂ξj

)
Σ

. (14)

The unit vectors nµ
(±), which are normal to M (±) are choosen as

n(±)
µ = ±

(∣∣∣∣gαβ ∂F∂xα ∂F

∂xβ

∣∣∣∣−1/2
∂F

∂xµ

)
Σ

. (15)

Then the extrinsic curvature components are calculated as [21]

Kθ±
θ = Kϕ±

ϕ = ±1

a

√
f(a) + ȧ2, (16)

and

Kτ±
τ = ∓ 2ä+ f ′(a)

2
√
f(a) + ȧ2

, (17)

in which the prime and the dot represent the derivatives with respect to r and τ , respectively. Using the definitions
[K

ij
] ≡ K+

ij
−K−

ij
, and K = tr[Kij ] = [Ki

i], and the surface stress–energy tensor S
ij

= diag(σ, pθ, pϕ) it follows the
Lanczos equations on the shell

− [Kij ] +Kgij = 8πSij . (18)

Note that for a given radius a, the energy density on the shell is σ, while the pressure p = pθ = pϕ. If we now
combine the above results for the surface density

σ = −
√
f(a) + ȧ2

2πa
, (19)

and the surface pressure

p =

√
f(a) + ȧ2

8π

[
2ä+ f ′(a)

f(a) + ȧ2
+

2

a

]
. (20)
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Since we are going to study the wormhole stability at a static configuration we need to set ȧ = 0, and ä = 0. For
the surface density in static configuration it follows that

σ0 = −
√
f(a0)

2πa0
, (21)

and similary the surface pressure

p0 =

√
f(a0)

8π

[
f ′(a0)

f(a0)
+

2

a0

]
. (22)

It’s obvious from Eq. (21) that the surface density is negative, i.e. σ0 < 0, which implies that the weak and
dominant energy conditions are violeted. At this stage it’s interesting to calculate the amount of exotic matter at the
wormhole by using the integral

Ωσ =

∫ √
−g (ρ+ pr) d3x. (23)

But since we are dealing with a thin–shell wormhole we must choose pr = 0 and ρ = σδ(r − a), where δ(r − a) is
the Dirac delta function. Solving this integral leads to the following result

Ωσ =

∫ 2π

0

∫ π

0

∫ ∞
−∞

σ
√
−g δ(r − a)dr dθ dφ. (24)

Finally the energy density of the exotic matter located on a thin shell surface is calculated as

Ωσ = −2a0

√
1− r4

0

a4
0

. (25)

The wormhole can have attractive/repulsive nature, to see this let us calculate the the observes four–acceleration
aµ = uν∇νuµ, in which uµ is the four velocity. We are left with the radial component of the acceleration

ar = Γrtt

(
dt

dτ

)2

=
2r4

0

a5
0

. (26)

The test particle obeys the equation of motion if

d2r

dτ2
= −Γrtt

(
dt

dτ

)2

= −ar. (27)

From Eq. (26) follows three special cases. We can recover the geodesic equation if ar = 0, wormhole is attractive
if ar > 0, and repulsive if ar < 0.

IV. STABILITY ANALYSIS

In this section we are going to analyze the stability of the CATSW. Starting from the energy conservation it follows
that

d

dτ
(σA ) + p

dA

dτ
= 0, (28)

where A = 4πa2 is the area of the wormhole throat. By replacing σ(a) we can find the equation of motion as follows

ȧ2 = −V (a), (29)

with the potential

V (a) = f(a)− 4π2a2σ2(a). (30)
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In order to investigate the stability of CATSW let us expand the potential V (a) around the static solution by
writing

V (a) = V (a0) + V ′(a0)(a− a0) +
V ′′(a0)

2
(a− a0)2 +O(a− a0)3. (31)

From Eq. (30) we can find the first derivative of V (a)

V ′(a) = f ′(a)− 8π2a σ(a) [σ(a) + a σ′(a)] . (32)

Furthermore if we use

σ′(a) = −2

a
[σ(a) + p(a)] , (33)

we can rewrite the first derivative of V (a) as

V ′(a) = f ′(a) + 8π2a σ(a) [σ(a) + 2p(a)] . (34)

The second derivative of the potential is

V ′′(a) = f ′′(a) + 8π2 {[aσ′(a) + σ(a)] [σ(a) + 2p(a)] + aσ(a) [σ′(a) + 2p′(a)]} . (35)

If we now use σ′(a) + 2p′(a) = σ′(a)[1 + 2p′(a)/σ′(a)], and introduce the function p = ψ(σ), for the first derivative
we have ψ′ = dp/dσ = p′/σ′, which implies σ′(a) + 2p′(a) = σ′(a)(1 + 2ψ′). Putting all together the above results,
from Eq. (35) we obtain

V ′′(a0) = f ′′(a0)− 8π2
{

[σ0 + 2p0]
2

+ 2σ0 [σ0 + p0] (1 + 2ψ′)
}
. (36)

The wormhole is stable if and only if V ′′(a0) > 0. The equation of motion of the throat, for a small perturbation
becomes [47]

ȧ2 +
V ′′(a0)

2
(a− a0)2 = 0. (37)

Noted that for the condition of V ′′(a0) ≥ 0, CATSW is stable where the motion of the throat is oscillatory with

angular frequency ω =
√

V ′′(a0)
2 . In this work we are going to use five different models for the fluid to explore the

stability analysis; a linear barotropic fluid(LBF) [46, 47], chaplygin fluid (CF) [48, 49, 53, 54], logarithmic fluid (LogF)
[13, 20], polytropic eqiation of state for the fluid [50], and finally Van der Waals Quintessence (VDWQ) [52].

A. Stability analysis of CATSW via the LBF

In our first case, we choose a linear barotropic fluid with the equation of state given by [46, 47]

ψ = ωσ, (38)

it follows that

ψ′(σ0) = ω. (39)

Note that ω is a constant parameter. In order to see more clearly the stability we show graphically the dependence
of ω in terms of a0 for different values of the parameter r0 in Fig. 1.

B. Stability analysis of CATSW via the CF

According to the chaplygin fluid (CF), we can model the fluid with the following equation of state [48, 49, 53, 54]

ψ = ω

(
1

σ
− 1

σ0

)
+ p0, (40)

to find

ψ′(σ0) = − ω

σ2
0

. (41)

To see the stabiliy regions let us show graphically the dependence of ω in terms of a0 for different values of the
parameter r0, given in Fig. 2.
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FIG. 1: We plot the stability regions as a function of ω and radius of the throat a0. We have choosen three different values
r0 = 0.5, r0 = 1 and r0 = 2.

FIG. 2: Here we plot the stability regions as a function of ω and radius of the throat a0. We have choosen three different values
r0 = 1, r0 = 0.5 and r0 = 4.

C. Stability analysis of CATSW via the LBF

Our next example is the logarithmic fluid (LogF) [13, 20], with the equation of state

ψ = ω ln

(
σ

σ0

)
+ p0, (42)

then

ψ′(σ0) =
ω

σ0
. (43)

For detailed information we can show graphically the dependence of ω in terms of a0 by choosing different values
of the parameter r0, in Fig. 3.

D. Stability analysis of CATSW via polytropic fluid

The equation of state for the fluid according to the polytropic model can be written as [50, 51]

ψ = ωσγ , (44)

It follows that

ψ′(σ0) = ω γ σγ−1
0 (45)
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FIG. 3: The stability regions as a function of ω and radius of the throat a0, in which we have choosen three different values
r0 = 0.1, r0 = 0.5, r0 = 1 and r0 = 3.

For detailed information we plot ω in terms of a0 by choosing different values of the parameter r0, as shown in Fig.
4.

FIG. 4: Stability regions in terms of ω and radius of the throat a0 for different values of r0.
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E. Stability analysis of CATSW via Van der Waals Quintessence

The equation of state for the fluid according to the Van der Waals quintessence model can be written as [52]

ψ =
γσ

1−Bσ
− ασ2 (46)

where γ, B and α are constants. It follows that

ψ′(σ0) =
−2ασ(Bσ − 1)2 + γ

(Bα− 1)2
(47)

For more useful informations for the acustic wormhole stability we plot α and a0 for different values of the parameters
γ, r0 and B, as shown in Fig. 5.

FIG. 5: Stability regions of CATSW in terms of ω and radius of the throat a0 for different values of γ, B, and r0.

V. CONCLUSION

In this paper we constructed a spherically symmetric, canonical acoustic thin shell wormhole, in the context of
analogue gravity systems. We have used cut and paste method to join together two regular regions, then, we have
computed the analogue surface density and surface pressure of the fluid. The stability analyses is carried out using a
linear barotropic fluid, chaplygin fluid, logarithmic fluid, polytropic fluid, Van der Waals Quintessence, for the fluid
and shown that the wormhole can be stabile if one chooses suitable parameter values. We show that acoustic fluid
with negative energy is required at the throat to keep the wormhole stable.
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