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The unbounded center-of-mass (CM) energy of oppositely moving colliding particles near horizon emerges also in 1 + 1-
dimensional Horava-Lifshitz gravity. This theory has imprints of renormalizable quantum gravity characteristics in accordance
with the method of simple power counting. Surprisingly the result obtained is not valid for a 1-dimensional Compton-like process
between an outgoing photon and an infalling massless/massive particle. It is possible to achieve unbounded CM energy due to
collision between infalling photons and particles. The source of outgoing particles may be attributed to an explosive process just
outside the horizon for a black hole and the naturally repulsive character for the case of a naked singularity. It is found that absence
of angular momenta in 1 + 1-dimension does not yield unbounded energy for collisions in the vicinity of naked singularities.

1. Introduction

It is known that in spacetime dimensions less than four
gravity has no life of its own unless supplemented by external
sources. With that addition we can have lower dimensional
gravity and we can talk of black holes, wormholes, geodesics,
lensing effect, and so on in analogy with the higher dimen-
sions. One effect that attracted much interest in recent times
is the process of particle collisions near the horizon of black
holes due to Bañados et al. [1] which came to be known as the
BSW effect. This problem arose as a result of imitating the
rather expensive venture of high energy particle collisions in
laboratory. From curiosity the natural question arises: is there
a natural laboratory (a particle accelerator) in our cosmos that
we may extract information/energy in a cheaper way? This
automatically drew attention to the strong gravity regions
such as near horizon of black holes. Rotating black holes host
greater energy reservoir due to their angular momenta and
attention naturally focused therein first [2, 3]. In case the
metric is static and diagonal, there are reasons to consider the
collision process in the vicinity of a naked singularity as well.

We note from physical grounds that outgoing particles
from the event horizon of a black hole cannot occur. Hawking
radiation particles/photons emerge too weak to compare

with infalling particles. Thus collision of two particles can
only be argued if both are infalling toward the horizon
of a black hole. Such a process, however, yields no BSW
effect in the nonrotating metrics, which is our main interest
in this study. In order to have an unbounded CM energy
in a collision process both particles must be taken in the
same coordinate frame and in opposite directions. This is
possible in the vicinity of a naked singularity whose repulsive
effect compels particles/photons to make collisions with an
infalling particle/photon. From the outset we state that such
a collision taking place near the naked singularity in the
absence of angular momenta does not yield an unbounded
CM energy. To extend our study to cover also collisions
near black holes we assume that some unspecified process,
such as disintegration decay process of some particles, yields
outgoing particles photons while the partners fall into the
hole. For a thorough analysis of all these problems covering
the ergosphere region of a Kerr black hole, Penrose process,
particle collisions, and so on one must consult [4].

In general one considers the radial geodesics and upon
energy-momentum conservation in the center-of-mass (CM)
frame the near horizon limit is checked whether the energy
is bounded/unbounded. Our aim in this study is to consider
black hole solutions in 1 + 1-dimensional Horava-Lifshitz
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(HL) gravity [5] and check the BSW effect in such reduced
dimensional theory. Let us remark that at the Planck scale
in higher dimensions the spherical part 𝑟2𝑑Ω2𝐷−2 of the line
element is less effective compared to the time and radial
components. For this reason 1+1-dimension becomes signif-
icant at the Planck scale. For a number of reasons HL gravity
is promising as a candidate for a renormalizable quantum
gravity physics which has been yearned for a long time [6].
The key idea in HL- gravity is the inhomogeneous scaling
properties of time and space coordinates which violate the
Lorentz invariance. Arnowitt-Deser-Misner (ADM) splitting
of space and time [7] constitutes its geometrical background.
BSW effect in lower/higher dimensions has been worked
out by many authors [8–44]. Following the similar idea
we consider black hole solutions and naked singularities
in 1 + 1-dimension and search for the same effect in this
lower dimension. It should be added that with 1 + 1-
dimensional HL theory the simplest nontrivial solution is
the solution describing an accelerated particle in the flat
space of Rindler frame. This justifies also the meaning of the
vector field (𝑎𝑖) as the acceleration in the HL gravity. The
role of Rindler acceleration in 3 + 1-dimension as a possible
source of flat rotation curves and geodesics motion has been
discussed recently [45]. It is our belief that the results in lower
dimensions are informative for higher dimensions and as a
toy model can play the role as precursors in this regard. Even
a Compton-like process can be considered at the toy level
between amassless photon outgoing from a naked singularity
and a particle falling into the naked singularity.The diverging
CM energy results in the case of photon-particle collision in1 + 1-dimension under specific conditions.

Organization of the paper is as follows. In Section 2, we
review in brief the 1 + 1-D HL theory with a large class
of black hole and naked singularity solutions. CM energy
of colliding particles near horizon and naked singularity is
considered in Section 3. Section 4 proceeds with applications
to particular examples. The case of particle-photon collision
is studied separately in Section 5. The paper ends with our
conclusion in Section 6.

2. 1 + 1-D HL Black Hole/Naked Singularity

HL formalism in 3 + 1-D makes use of the ADM splitting of
time and space components as follows:

𝑑𝑠2 = −𝑁2𝑑𝑡2 + 𝑔𝑖𝑗 (𝑑𝑥𝑖 + 𝑁𝑖𝑑𝑡) (𝑑𝑥𝑗 + 𝑁𝑗𝑑𝑡) , (1)

where 𝑁(𝑡) and 𝑁𝑖 are the lapse and shift functions, respec-
tively. The action of this theory is

𝑆 = 𝑀2𝑃𝑙2 ∫𝑑3𝑥 𝑑𝑡√𝑔 (𝐾𝑖𝑗𝐾𝑖𝑗 + 𝜆𝐾2 + 𝑉 (𝜙)) , (2)

where 𝐾𝑖𝑗 is the extrinsic curvature tensor with trace 𝐾 and
Planck mass𝑀𝑃𝑙. 𝑉(𝜙) stands for the potential function of a
scalar field 𝜙, and 𝜆 is a constant (𝜆 > 1). Reduction from3 + 1-D to 1 + 1-D results in the action [5]:

𝑆 = ∫𝑑𝑡 𝑑𝑥 (−12𝜂𝑁2𝑎21 + 𝛼𝑁2𝜙2 − 𝑉 (𝜙)) (3)

where 𝜂= constant and𝛼= constantwill be chosen to be unity
and 𝑎1 = (ln𝑁). Let us comment that a “prime” denotes𝑑/𝑑𝑥. We note that also the first term in 𝑆 is inherited from
the geometric part of the action while the other two terms are
from the scalar field source. For simplicity we have set also𝑀𝑃𝑙 = 1.

It has been shown in [5] that by variational principle a
general class of solutions is obtained as follows:

𝑁(𝑥)2 = 2𝐶2 + 𝐴𝜂 𝑥2 − 2𝐶1𝑥 + 𝐵𝜂𝑥 + 𝐶3𝜂𝑥2 (4)

in which 𝐶2, 𝐴, 𝐶1, 𝐵, and 𝐶 are integration constants.
Reference [5] must be consulted for the physical content of
these constants.

The line element is

𝑑𝑠2 = −𝑁 (𝑥)2 𝑑𝑡2 + 𝑑𝑥2
𝑁(𝑥)2 (5)

with the scalar field

𝜙 (𝑥) = ln√2𝐶2 + 𝐴𝜂 𝑥2 − 2𝐶1𝑥 + 𝐵𝜂𝑥 + 𝐶3𝜂𝑥2 . (6)

Note that the associated potential is

𝑉 (𝜙 (𝑥)) = 𝐴 + 𝐵𝑥3 + 𝐶𝑥4 (7)

and the Ricci scalar is calculated as

𝑅 = −2𝜂 (𝐴 + 𝐵𝑥3 + 𝐶𝑥4 ) . (8)

There is naked singularity when 𝐴 = 𝐶1 = 0 and 𝐶2 = 𝐵 =𝐶 = 𝜂 = 1, so that there is no horizon for

𝑁(𝑥)2 = 2 + 1𝑥 + 13𝑥2 . (9)

Another black hole solution reported by Bazeia et al. [5] is
found by taking 𝐶1 ̸= 0, 𝐶2 ̸= 0, 𝐵 ̸= 0, and 𝐴 = 𝐶 = 0.

𝑁(𝑥)2 = 2𝐶2 − 2𝐶1𝑥 + 𝐵𝜂𝑥 . (10)

This solution develops the following horizons:

𝑥±ℎ = 𝐶22𝐶1 ± √Δ, Δ = 𝐶224𝐶21 +
𝐵2𝜂𝐶1 . (11)

As Δ = 0 they degenerate; that is, 𝑥+ℎ = 𝑥−ℎ .
The Hawking temperature is given in terms of the outer

(𝑥+ℎ ) horizon as follows:

𝑇𝐻 = (𝑁 (𝑥)2)
4𝜋

𝑥=𝑥+
ℎ

. (12)
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For the special case 𝐶2 = 0, 𝐶1 = −𝑀, and 𝐵 = −2𝑀 the
horizons are independent of the mass𝑀:

𝑥±ℎ = ± 1
√𝜂 (𝜂 > 0) . (13)

The temperature is then given simply by

𝑇𝐻 = 𝑀𝜋 . (14)

This is a typical relation between the Hawking temperature
and the mass of black holes in 1 + 1-dimension [46].

In the case of 𝐶2 = 1/2, 𝐵 = −2𝑀, 𝜂 = 1, and 𝐴 = 𝐶 =𝐶1 = 0 it gives a Schwarzschild-like solution;
𝑁(𝑥)2 = 1 − 2𝑀𝑥 . (15)

On the other hand, the choice of the parameters, for𝐶2 =1/2, 𝐵 = −2𝑀, 𝐶 = 3𝑄2, 𝜂 = 1, and 𝐴 = 𝐶1 = 0, gives a
Reissner–Nordstrom-like solution.

𝑁(𝑥)2 = 1 − 2𝑀𝑥 + 𝑄2𝑥2 . (16)

As in the general relativity we can make particular choice
of the parameters so that we end up with a naked singularity
instead of a black hole. The choice 𝑄2 > 𝑀2 in (16),
for instance, transforms the HL- black hole into a naked
singularity at 𝑥 = 0. Similarly𝑀 < 0 turns (15) into a naked
singular metric at 𝑥 = 0.
3. CM Energy of Particle Collision near

the Horizon of the 1 + 1-D HL Black Hole

Here we will derive the equations of motion of an˜uncharged
massive test particle by using the method of geodesic Lag-
rangian. Such equations can be derived from the Lagrangian
equation,

L = 12 [−𝑁 (𝑥)2 ( 𝑑𝑡𝑑𝜏)
2 + 1

𝑁 (𝑥)2 (
𝑑𝑥𝑑𝜏)
2] , (17)

in which 𝜏 is the proper time for time-like geodesics (or
massive particles). The canonical momenta are

𝑝𝑡 = 𝑑L𝑑 ̇𝑡 = −𝑁 (𝑥)2 ̇𝑡, (18)

𝑝𝑥 = 𝑑L𝑑�̇� = �̇�
𝑁 (𝑥)2 (19)

The 1 + 1-D HL black hole has only one killing vector 𝜕𝑡.
The associated conserved quantity will be labeled by 𝐸. From
(18), 𝐸 is related to𝑁(𝑥)2 as

−𝑁 (𝑥)2 ̇𝑡 = −𝐸. (20)

Hence,

̇𝑡 = 𝐸
𝑁 (𝑥)2 . (21)

The two velocities of the particles are given by 𝑢𝜇 =𝑑𝑥𝜇/𝑑𝜏. We have already obtained 𝑢𝑡 in the above derivation.
To find 𝑢𝑥 = �̇�, the normalization condition for time-like
particles, 𝑢𝜇𝑢𝜇 = −1 [1, 47], can be used as

𝑔𝑡𝑡 (𝑢𝑡)2 + 𝑔𝑥𝑥 (𝑢𝑥)2 = −1. (22)

By substituting 𝑢𝑡 to (22), one obtains 𝑢𝑥 as
(𝑢𝑥)2 = 𝐸2 − 𝑁 (𝑥)2 (23)

for which an effective potential 𝑉eff can be defined by

(𝑢𝑥)2 + 𝑉eff = 𝐸2. (24)

Now, the two velocities can be written as

𝑢𝑡 = ̇𝑡 = 𝐸
𝑁 (𝑥)2 ,

𝑢𝑥 = �̇� = √𝐸2 − 𝑁 (𝑥)2.
(25)

We proceed now to present the CM energy of two
particles with two velocities 𝑢𝜇1 and 𝑢𝜇2 . We will assume that
both have rest mass𝑚0 = 1. The CM energy is given by

𝐸cm = √2√(1 − 𝑔𝜇]𝑢𝜇1𝑢]2). (26)

So

𝐸2cm2 = 1 + 𝐸1𝐸2𝑁(𝑥)2 −
𝜅√𝐸21 − 𝑁 (𝑥)2√𝐸22 − 𝑁 (𝑥)2

𝑁(𝑥)2 , (27)

where 𝜅 = ±1 corresponds to particles moving in the
same/opposite direction with respect to each other. We wish
to stress that our concern is for the case 𝜅 = ±1 since no
physical particle is ejected from the black hole. Note that𝐸1 and 𝐸2 are the energy constants corresponding to each
particle. In case the second term under the square root is too
small than the first one,

√𝐸2 − 𝑁 (𝑥)2 ≈ (𝐸 − 𝑁 (𝑥)22𝐸2 + ⋅ ⋅ ⋅) (28)

so that the higher order terms can be neglected and CM
energy of two particles can be written as [23]

𝐸2cm2 ≈ 1 + (1 − 𝜅) 𝐸1𝐸2𝑁(𝑥)2 +
𝜅2 (𝐸2𝐸1 +

𝐸1𝐸2) . (29)

The case with 𝜅 = +1 is obvious, in which the CM energy
becomes

𝐸2cm2 ≈ 1 + (𝐸22 + 𝐸21)2𝐸1𝐸2 , (30)

where the CM energy is independent of metric function, and
it gives always a finite energy. On the other hand 𝜅 = −1 gives

𝐸2cm2 ≈ 1 + 2𝐸1𝐸2𝑁(𝑥)2 −
(𝐸22 + 𝐸21)2𝐸1𝐸2 (31)

in which it gives unbounded CM energy near the horizon of
the HL black holes provided an outgoing particle mechanism
from the horizon is established. Otherwise the yield of two
ingoing particles collision remains finite.
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4. Some Examples

4.1. Schwarzschild-Like Solution. In the case of 𝐶2 = 1/2, 𝐵 =−2𝑀, 𝜂 = 1, and 𝐴 = 𝐶 = 𝐶1 = 0 it gives Schwarzschild-like
solution, where

𝑉 (𝜙 (𝑥)) = −2𝑀𝑥3 ,
𝑁 (𝑥)2 = 1 − 2𝑀𝑥 .

(32)

For the CM energy on the horizon, we have to compute
the limiting value of (27) as 𝑥 → 𝑥ℎ = 2𝑀, where the horizon
of the black hole is. Setting 𝜅 = −1 as it is, the CM energy near
the event horizon for 1 + 1 D Schwarzschild BH is

𝐸2cm (𝑥 → 𝑥ℎ) = ∞. (33)

This result for 4-D Schwarzschild Black hole is already
calculated by Baushev [24]. Hence, the condition of 𝜅 = −1,
when the location of particle 1 approaches the horizon and on
the other hand the particle 2 runs outward from the horizon
due to some unspecified physical process, yet yields 𝐸2cm →∞ so there is BSW effect for 1+1 Schwarzschild-like solution
when the condition 𝜅 = −1 is satisfied.
4.2. Reissner-Nordstrom-Like Solution. On the other hand,
the choice of the parameters, for 𝐶2 = 1/2, 𝐵 = −2𝑀,𝐶 = 3𝑄2, 𝜂 = 1, and 𝐴 = 𝐶1 = 0 gives the Reissner–
Nordstrom-like solution.

𝑁(𝑥)2 = 1 − 2𝑀𝑥 + 𝑄2𝑥2 , (34)

𝑉 (𝜙 (𝑥)) = −2𝑀𝑥3 + 3𝑄2𝑥4 (35)

So the CM energy is calculated by using the limiting value
of (31)

𝐸2cm (𝑥 → 𝑥ℎ=𝑀+√(𝑀2−𝑄2)) = ∞. (36)

So there is a BSW effect.

4.3. The Extremal Case of the Reissner-Nordstrom-Like Black
Hole. For the extremal case we have with𝑀 = 𝑄, from (34),

𝑁(𝑥)2 = (1 − 𝑀𝑥 )2 (37)

so that it also gives the same answer from (31) as

𝐸2cm (𝑥 → 𝑥ℎ) = ∞. (38)

4.4. SpecificNewBlackHole Case. Thenew 3-parameter black
hole solution given by Bazeia et al. [5] is chosen as

𝑁(𝑥)2 = 2𝐶2 − 2𝐶1𝑥 + 𝐵𝜂𝑥 (39)

with the potential

𝑉 (𝜙 (𝑥)) = 𝐵𝑥3 . (40)

For the special case 𝐶2 = 0, 𝐶1 = −𝑀, and 𝐵 = −2𝑀 we
have

𝑁(𝑥)2 = 2𝑀𝑥 − 2𝑀𝜂𝑥 (41)

with suitable potential which is

𝑉 (𝜙 (𝑥)) = −2𝑀𝑥3 . (42)

The CM energy of two colliding particles is calculated by
taking the limiting values of (31)

𝐸2cm (𝑥 → 𝑥ℎ) = ∞. (43)

Hence the BSW effect arises here as well.

4.5. Near Horizon Coordinates. We have explored the region
near the horizon by replacing 𝑟 by a coordinate 𝜌. The proper
distance from the horizon 𝜌 [48] is given as follows:

𝜌 = ∫√𝑔𝑥𝑥 (𝑥) 𝑑𝑥 = ∫𝑥
𝑥ℎ

1𝑁 (𝑥) 𝑑𝑥. (44)

Thefirst example is the Schwarzschild-like solutionwhich
is

𝑁(𝑥)2 = 1 − 2𝑀𝑥 (45)

so that proper distance is calculated as

𝜌 = ∫𝑥
𝑥ℎ

(1 − 2𝑀𝑥 )−1/2 𝑑𝑥

= √𝑥 (𝑥 − 2𝑀) + 2𝑀𝐺 sinh−1 (√ 𝑥2𝑀 − 1) .
(46)

The new metric is

𝑑𝑠2 = −(1 − 2𝑀𝑥 (�̃�)) 𝑑𝑡2 + 𝑑�̃�2, (47)

where �̃� ≃ 2√2𝑀(𝑥 − 2𝑀) so that it gives approximately

𝑑𝑠2 ≃ − 𝜌2
(4𝑀)2 𝑑𝑡2 + 𝑑𝜌2 (48)

which is oncemore the Rindler-type line element. Let us note
that this Rindler-type line element is valid within the near
horizon limit approximation. For practical purposes there
are advantages in adapting such an approximation which
conformswith the equivalence principle [48].TheCMenergy
of two colliding particles is given by

𝐸2cm2𝑚20 = 1

+ (4𝑀)2 (𝐸1𝐸2 − 𝜅√𝐸21 − 𝜌4/ (4𝑀)4√𝐸22 − 𝜌4/ (4𝑀)4)
𝜌2

(49)

so that there is BSW effect for 𝜅 = −1 when 𝜌 → 0.
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5. Particle Collision near
the Naked Singularity

There is a naked singularity for our 1 + 1-D HL model at the
location of 𝑥 = 0, with 𝑄2 > 𝑀2 in (16). In addition 𝑀 < 0
turns (15) into a naked singular metric at 𝑥 = 0. There is also
naked singularity whenwe choosemetric function as follows:

𝑁(𝑥)2 = 2 + 1𝑥 + 13𝑥2 = 6𝑥2 + 3𝑥 + 13𝑥2 . (50)

As it is given in (27), CM energy of the collision of two
particles generally is (for𝑁(𝑥) → ∞).

𝐸2cm2 ≈ 1 − 𝜅 + 1
2𝑁 (𝑥)2 [2𝐸1𝐸2 + 𝜅 (𝐸21 + 𝐸22)] . (51)

For the case 𝜅 = ±1, when 𝑥 goes to zero, the CM energy
remains finite for radially moving particles.

𝐸2c.m.2
𝑥=0 → 1 − 𝜅. (52)

This suggests that although one of the particle is boosted
by the naked singularity, there is not any unlimited collisional
energy near such singularity. Note that Compton-like pro-
cesses were considered first in [4], where rotational effect of
Kerr black hole played a significant role. Our case here is
entirely free of rotational effects.

6. Photon versus an Infalling Particle

A massless photon can naturally scatter an infalling particle
or vice versa. This phenomenon is analogous to a Compton
scattering taking place in 1+1-dimension. Null-geodesics for
a photon can be described simply by

𝑑𝑡𝑑𝜆 = 𝐸1𝑁2
𝑑𝑥𝑑𝜆 = ±√𝐸21 − 𝑁2,

(53)

where 𝜆 is an affine parameter and 𝐸1 stands for the photon
energy. Defining 𝐸1 = ℎ𝜔0, where 𝜔0 is the frequency (with
the choice ℎ = 1)we can parametrize energy of the photon by𝜔0 alone.TheCMenergy of a photon and the infalling particle
can be taken now as

𝐸2cm = − (𝑝𝜇 + 𝑘𝜇)2 (54)

in which 𝑝𝜇 = 𝑚𝑢𝜇 and 𝑘𝜇 refer to the particle and photon, 2
momenta, respectively. This amounts to

𝐸2cm = 𝑚2 − 2𝑚𝑔𝜇]𝑢𝜇𝑘], (55)

where we have for the particle

𝑝𝜇 = 𝑚( 𝐸2𝑁2 , √𝐸22 − 𝑁2) (56)

and for the photon

𝑘𝜇 = ( 𝐸1𝑁2 , −𝐸1) . (57)

One obtains

𝐸2cm = 𝑚2 + 2𝑚𝐸1𝑁2 (𝐸2 + 𝜅√𝐸22 − 𝑁2) . (58)

In the near horizon limit this reduces to

𝐸2cm = 𝑚2 + 2𝑚𝐸1𝑁2 (𝐸2 + 𝜅𝐸2 − 𝑁22𝐸2) . (59)

Note that for 𝜅 = −1 we have 𝐸2cm given by

𝐸2cm = 𝑚2 (1 − 𝐸1𝑚𝐸2) (60)

which is finite between the collision of a photon and an
infalling particle and therefore is not of interest. As a matter
of fact the occurrence of outgoing photon from the event
horizon cannot be justified unless an explosive/decay process
is assumed to take place. As a result for 𝜅 = +1 from
(59) we obtain an unbounded 𝐸2cm between the collision
of infalling photon and particle. Let us add that “inverse”
Compton process in the ergosphere of Kerr black hole
was considered in [4] where the photon’s energy showed
increment due to rotational and curvature effects.The energy,
however, attained an upper bound which was finite. Our
result obtained here being entirely radial on the other hand
can hardly be compared with those of [4].

7. Conclusion

Our aim was to investigate whether the BSW type effect
which arises in higher dimensional black holes applies also
to the 1 + 1-D naked singularity/black hole. The theory
we adapted is not general relativity but instead the recently
popular HL gravity. We employed the class of 5-parameter
black hole/naked singularity solutions found recently [5].The
class has particular limits of flat Rindler, Schwarzschild, and
Reissner-Nordstrom-like solutions. For each case we have
calculated the center-of-mass (CM) energy of the particles
and shown that the energy can grow unbounded for some
cases. In other words the strong gravity near the event
horizon affects the collision process with unlimited source
to turn it into a natural accelerator. The model we use
applies also to the case of a photon/particle collision with
different characteristics. It is observed that the CM energy
of the infalling particles from the rest at infinity will remain
finite in the CM frame at the event horizon of a black
hole. Contrariwise, unlimited CM energy will be attained
between the collision of the outgoing particles from the event
horizon region and infalling particles. It is also possible to
achieve the infinite energy between an infalling photon and
an infalling massive particle. However, we found finite CM
energy between an outgoing photon and infalling particle.
Finally, we must admit that absence of rotational effects in1 + 1-D restricts the problem to the level of a toy model in
which particles move on pure radial geodesics yielding finite
CM energy in the vicinity of a naked singularity.
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Garćıa black hole as a particle accelerator,” Physical Review D,
vol. 90, no. 10, Article ID 103006, 2014.

[17] A. Galajinsky, “Particle collisions on near horizon extremal
Kerr background,” Physical Review D, vol. 88, no. 2, Article ID
027505, 2013.

[18] V. P. Frolov, “Weakly magnetized black holes as particle acceler-
ators,” Physical Review D, vol. 85, no. 2, Article ID 024020, 2012.

[19] A. M. Al Zahrani, V. P. Frolov, and A. A. Shoom, “Critical
escape velocity for a charged particle moving around a weakly
magnetized Schwarzschild black hole,” Physical Review D, vol.
87, no. 8, Article ID 084043, 2013.

[20] J. Sadeghi and B. Pourhassan, “Particle acceleration in Horava-
Lifshitz black holes,” The European Physical Journal C, vol. 72,
no. 4, article 1984, 2012.

[21] J. Sadeghi, B. Pourhassan, and H. Farahani, “Rotating charged
hairy black hole in (2+1) dimensions and particle acceleration,”
Communications in Theoretical Physics, vol. 62, no. 3, pp. 358–
362, 2014.

[22] C. Liu, S. Chen, C.Ding, and J. Jing, “Particle acceleration on the
background of the Kerr–Taub–NUT spacetime,” Physics Letters.
B, vol. 701, no. 3, pp. 285–290, 2011.

[23] M. Patil and P. S. Joshi, “Ultrahigh energy particle collisions in
a regular spacetime without black holes or naked singularities,”
Physical Review D, vol. 86, no. 4, Article ID 044040, 2012.

[24] A. N. Baushev, “Dark matter annihilation in the gravitational
field of a black hole,” International Journal of Modern Physics D,
vol. 18, no. 8, pp. 1195–1203, 2009.

[25] M. Patil and P. S. Joshi, “Particle acceleration by Majumdar–
Papapetrou di-hole,”General Relativity and Gravitation, vol. 46,
no. 10, 2014.

[26] J. D. Schnittman, “Revised upper limit to energy extraction
from a kerr black hole,” Physical Review Letters, vol. 113, no. 26,
Article ID 261102, 2014.

[27] M. Patil and P. S. Joshi, “Naked singularities as particle accel-
erators,” Physical Review D, vol. 82, no. 10, Article ID 104049,
2010.

[28] M. Patil, P. S. Joshi, and D. Malafarina, “Naked singularities as
particle accelerators. II,”Physical ReviewD, vol. 83, no. 6, Article
ID 064007, 2011.

[29] A. Grib andY. Pavlov, “On particle collisions in the gravitational
field of the Kerr black hole,” Astroparticle Physics, vol. 34, no. 7,
pp. 581–586, 2011.

[30] M. Sharif and N. Haider, “Study of center of mass energy by
particles collision in some black holes,” Astrophysics and Space
Science, vol. 346, no. 1, pp. 111–117, 2013.

[31] I. Hussain, M. Jamil, and B. Majeed, “A slowly rotating black
hole in horava-lifshitz gravity and a 3+1 dimensional topo-
logical black hole: motion of particles and BSW mechanism,”
International Journal of Theoretical Physics, vol. 54, no. 5, pp.
1567–1577, 2015.

[32] S. Hussain, I. Hussain, and M. Jamil, “Dynamics of a charged
particle around a slowly rotating Kerr black hole immersed in
magnetic field,”The European Physical Journal C, vol. 74, no. 12,
2014.

[33] M. Amir and S. G. Ghosh, “Rotating Hayward’s regular black
hole as particle accelerator,” Journal of High Energy Physics, vol.
2015, no. 7, article 015, 2015.

[34] B. Pourhassan andU.Debnath, “Particle acceleration in rotating
modified hayward and bardeen black holes,” https://arxiv.org/
abs/1506.03443.

[35] A. A. Grib and Y. V. Pavlov, “Are black holes totally black?”
Gravitation and Cosmology, vol. 21, no. 1, pp. 13–18, 2015.



Advances in High Energy Physics 7

[36] A. A. Grib and Y. V. Pavlov, “High energy physics in the vicinity
of rotating black holes,” Theoretical and Mathematical Physics,
vol. 185, no. 1, pp. 1425–1432, 2015.

[37] C. Ding, C. Liu, andQ.Quo, “Spacetime noncommutative effect
on black hole as particle accelerators,” International Journal of
Modern Physics D, vol. 22, no. 04, Article ID 1350013, 2013.

[38] J. Yang, Y.-L. Li, Y. Li, S.-W. Wei, and Y.-X. Liu, “Particle
collisions in the lower dimensional rotating black hole space-
time with the cosmological constant,” Advances in High Energy
Physics, vol. 2014, Article ID 204016, 7 pages, 2014.

[39] H. Nemoto, U.Miyamoto, T. Harada, and T. Kokubu, “Escape of
superheavy and highly energetic particles produced by particle
collisions near maximally charged black holes,” Physical Review
D, vol. 87, no. 12, Article ID 127502, 2013.

[40] C. Zhong and S. Gao, “Particle collisions near the cosmological
horizon of a Reissner-Nordström-de Sitter black hole,” JETP
Letters, vol. 94, no. 8, pp. 589–592, 2011.

[41] C. Liu, S. Chen, and J. Jing, “Collision of two general geodesic
particles around a kerr—newman black hole,” Chinese Physics
Letters, vol. 30, no. 10, Article ID 100401, 2013.

[42] Y. Zhu, S. Wu, Y. Liu, and Y. Jiang, “General stationary charged
black holes as charged particle accelerators,” Physical Review D,
vol. 84, no. 4, Article ID 043006, 2011.

[43] U. Miyamoto, H. Nemoto, and M. Shimano, “Particle creation
by naked singularities in higher dimensions,” Physical Review
D, vol. 83, no. 8, Article ID 084054, 2011.

[44] Y. Li, J. Yang, Y.-L. Li, S.-W. Wei, and Y.-X. Liu, “Particle
acceleration in Kerr-(anti-)de Sitter black hole backgrounds,”
Classical and Quantum Gravity, vol. 28, no. 22, Article ID
225006, 2011.

[45] M. Halilsoy, O. Gurtug, and S. H. Mazharimousavi, “Rindler
modified Schwarzschild geodesics,” General Relativity and
Gravitation, vol. 45, no. 11, pp. 2363–2381, 2013.

[46] S. W. Hawking, “Black holes and thermodynamics,” Physical
Review D, vol. 13, no. 2, pp. 191–197, 1976.

[47] C.W.Misner, K. S.Thorne, and J. A.Wheeler,Gravitation, W.H.
Freeman & Co., San Francisco, Calif, USA, 1972.

[48] L. Susskind and J. Lindesay, An Introduction to Black Holes,
Information and the String Theory Revolution: The Holographic
Universe, World Scientific, Hackensack, NJ, USA, 2005.



Submit your manuscripts at
https://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

High Energy Physics
Advances in

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Fluids
Journal of

 Atomic and  
Molecular Physics

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in  
Condensed Matter Physics

Optics
International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Astronomy
Advances in

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Superconductivity

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Statistical Mechanics
International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Gravity
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Astrophysics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Physics 
Research International

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Solid State Physics
Journal of

 Computational 
 Methods in Physics

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Soft Matter
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Aerodynamics
Journal of

Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Photonics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Biophysics

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Thermodynamics
Journal of


