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ABSTRACT

In this thesis, new type g-Bernstein - Kantorovich polynomials (g > 0) and
complex g-Szasz-Kantorovich operators (g > 1) are introduced. In additon, The
exact order of approximation, quantitative Voronovskaja-type theorems,
simultaneous approximation properties for complex g-Bernstein - Kantorovich
polynomials (q > 0), complex Széasz-Kantorovich and complex q-Szasz-

Kantorovich operators (g > 1) are studied.

Keywords : g-Bernstein - Kantorovich polynomials, g-Szasz-Kantorovich operator,

complex Szasz-Kantorovich operator, q-Szasz-Kantorovich operator.



OZET

Bu tezde, yeni tip karmasik g-Bernstein - polinomlar1 (g > 0) ve karmasik g-
Szasz-Kantorovich operatorleri (g > 1) tanimlanmistir. Buna ek olarak, karmagsik g-
Bernstein-Kantorovich  polinomlarinin (g > 0) , karmasik Szasz-Kantorovich
operatdriiniin ve karmasik q-Szasz-Kantorovich operatoriiniin (¢ > 1) yakisaklik

oranlari, yakinsaklik 6zellikleri ve Voronovskaja tipi teoremler incelenmistir.

Anahtar Kelimeler: g-Bernstein - Kantorovich polinomlari, g-Szasz-Kantorovich
operatdrii, karmasik Szasz-Kantorovich operatorii, karmasik q-Szasz-Kantorovich

operatori.
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NOTATIONS and SYMBOLS

the set of natural numbers,

is the sign indicating equal by definition .

the set of natural numbers including zero,

the set of complex numbers,

the set of real number,

the set of positive real numbers,

an open interval,

a closed interval

= max{P,(2); |z| <}

:={f € C([0,00)): lim LX)Z exists and is finite}
x>0 ]+ X

={z€C:|z| <R} withR>1

uniform norm on C[0, +o0) the space of all real

valued bounded functions on [0,+c0),

space of all analytic function on Mk.

= sup{|f (x)|: x € X}
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Af (%))

ARf ()

Cla, b]

is the forward difference defined as
Af(%5) = f(x501) = f (%) = £ (3 + 1) = £ (7)),
with step size h
A°f(x5) = f(x7),A7f (%) = A" (x))
is the finite difference of order k €N,
with step size h eR\{0} and starting point

x € X. Its formula is given by

k (k
AFf (%) = Z(—l)'”(jjf(x+ ih),

i=0

the set of all real-valued and continuous functions

defined on the compact interval [a, b]



Chapter 1

INTRODUCTION

The first constructive (and simple) proof of Weierstrass approximation theorem was given by S.
N. Bernstein [40]. He gave an alternative proof to the Weierstrass Approximation Theorem. He

introduced the following polynomial

n

k
B,()(x) = an,ku)f(;), fi0,11-R

k=0

where p,(x) = (})x* (1 - x)'"™, x € [0,1].

In 1997, George M. Phillips [41] suggested the g analogue of the Bernstein polynomials as

follows:

Byy(f)(x) = Zf([ > )[ ] S (1-gh).  fecio

If one replaces x € [0, 1] by z € C, in the expression of B, ,(f)(x) where f is supposed to be

analytic function, then we get the following complex g—Bernstein polynomals

Bua(HE) = Zf([ ) )[ ] #1(1- 7).

The analogue of the Bernstein polynomials on an unbounded interval is Szasz-Mirakjan oper-

ator. If f: [0,00) > R and V n € N the Szasz-Mirakjan operators (Szasz [18], Mirakjan [19])



S, 1 Cy([0,00)) — C ([0, 0)) are defined by

J
C ¢ (ifmy, x € 10,09)

Si(H=e™)
I

1+x2

where C, ([0, +00)) := { FeC(0,0)) : 1im&} exists and is finite.

The following complex Szdsz-Mirakjan operator is obtained from real version, simply replacing

the real variable x by the complex z € C,

s J
5, (N @ =) L F i,

j=0

In this thesis, we studied approximation properties of complex g-Bernstein-Kantorovich, com-

plex Szasz-Kantorovich and complex g-Szasz-Kantorovich operators.
This thesis was organized as follows

In Chapter 2, the following studied.

e Some basic definitions and properties related to q-integers,
e Some auxilary results in complex analysis are mentioned,

¢ main definitions, some elementary properties and approximation properties of Bernstein
operators, Szdsz-Mirakjan operators and their g analogues of real variable as well as

complex variable.



In Chapter 3, we introduced the following complex g-Bernstein-Kantorovich operators (g > 0)

nq (f Z)—ank(q,z)f ([ T ) t (1.0.1)

n :
where z € C and p,;(q;2) = Z H” k= 1(1 - qu) .Notice that in the case ¢ = 1, these
k

operators coincide with the classical Kantorovich operators. For 0 < ¢ < 1, the operator
K,,:C[0,1] = C[O0, 1] is positive and for g > 1 it is not positive. The problems studied in this
thesis in the case ¢ = 1 were investigated in [29] and [13]. Our study on the operator (1.0.1) is

listed below;

¢ Quantitative estimates of the convergence for complex g-Bernstein-Kantorovich-type op-

erators attached to an analytic function in a disk of radius R > 1 and center 0,

e Voronovskaja type result in compact disks, for complex g-Bernstein-Kantorovich opera-

tors (1.0.1) attached to an analytic function in Mg, R > 1 and center 0O,

e The order of approximation for complex g-Bernstein-Kantorovich operators (1.0.1).

The approximation properties for the following complex Szasz-Mirakjan operators

S () (@) = e-'”z("f) F i), x € 10,00)

j=0

were studied by S. Gal [22] and Mahmudov [29].

For the convergence of S, (f; x) to f (x), usually f is supposed to be of exponential growth, that
is |f (x)] < Cexp(Bx), for all x € [0, c0), with C, B > 0, (see Favard [17]). Also, concerning
quantitative estimates in approximation of f (x) by S, (f;x), in [20], it is proved that under

some additional assumptions on f, we actually have |S, (f;x) — f (x)| < %, for all x € [0, 00),



n € N. In [21] Gal, under the condition that f : [0,c0) — C of exponential growth, obtained
quantitative estimates in closed disks with center in origin. Unlike the convergence results in
[22], all the results in the present thesis are obtained in the absence of the exponential-type
growth conditions for analytic f in the disk. The approximation properties of the g-Szasz-
Mirakjan operators are studied in [39].

In Chapter 4, we introduce the following complex Szdsz-Kantorovich operators

1
= J
K, (f;)=e" ) (”_Z‘) (1.0.2)
= I

If f is bounded on [0, o) then it is clear that K, (f;z) are well defined for all z € C. In this

chapter,

e we investigate the quantitative estimates of the convergence for complex Szasz-Kantorovich

operators (1.0.2) attached to an analytic function in a disk of radius R > 1 and center 0,

e we prove Voronovskaja-type theorem and saturation of convergence for complex Szdsz-

Kantorovich operators (1.0.2).

The approximation properties of g-Szasz-Mirakjan operators in compact disks were studied for
g = 1 in Gal [23] (see also Gal [13], pp. 114-120) and for ¢ > 1 in Mahmudov [27]. Also,
it is worth noting that the approximation properties for other complex Bersntein-type operators
were collected by the book Gal [13].

In Chapter 5 we introduce and study approximation properties of the following complex g-

Széasz-Kantorovich operators in the case g > 1,

Lil,! 4 [n+ 1],

1
> [n] 1 |+t

Kn,q(f;Z) Z qq Z ( ! ) ) ff(q[]]q )dt. (1.0.3)
j=0 2 0



If f is bounded on [0, +oc0) then it is clear that K, ,(f; z) is well-defined for all z € C.

In this chapter, the following results were obtained:

e The upper estimates in approximation by K, ,(f;z)(1.0.3) and by its derivatives,

e The quantitative and qualitative Voronovskaja-type results in compact disks for K, ,(f; z)

(1.0.3),

e The exact estimate in the approximation by the complex g-Szasz-Kantorovich operators

(1.0.3).



Chapter 2

PRELIMINARY and AUXILIARY RESULTS

In this Chapter, some basic results of Quantum Calculus, Complex analysis and Approximation
Theory are collected. These results can be found in standard books on g-Calculus, Complex

Analysis and Approximation Theory, see examples, [1], [2], [5], [13], and [41].

2.1. Elements of g—Calculus

In this section we will give some definitions related to g—integer.

Definition 2.1.1 [1] For each integer k > 0, the g-integer [k],is defined by

1- .
i | T i ge R,
kl,=1+q +..+¢q = -4
k, if g=1

Note that, [0], = 0.

Definition 2.1.2 [1] For each integer k > 0, the g-factorial [k],! is defined by

K, k= 1],..[1,, if k=1,2,3,..
1, if k=0.

[k],! =

Definition 2.1.3 [1] For integers 0 < j < k, the g-binomial coefficient is defined by

k (k]! B k



Definition 2.1.4 [1] The g-analogue of (x — a)" is a polynomial of the form

1 ifn=0
(x—a)Z =

(x —a) (x — qga) (x - qza) (x - q”‘1a> if n>1.
Definition 2.1.5 [1] For fixed 1 # q > 0, we denote the g-derivative D, f (x) of f by

S(gx)—f(x)
S X #0

D,f (x) :=
1 (0), x=0

Example 2.1.6 [1] Compute the g-derivative of f(x) = x*, where n is a positive integer. By

definition

(g —x* ¢ -1, .
SRR i

D x"
Proposition 2.1.7 [1] For any integer n,
Dy (x - a)Z =[n](x - a)g_1 )

Lemma 2.1.8 [1] For any integer k > 0 and a be a number. Gauss’s Binomial Formula defined

as,

k| k
k _ JG-D/2 j k=]
(x+ a)q = E q a’x" .

=0l J
q



Lemma 2.1.9 [1] For a nonnegative integer n, we have

1 (K], [k+ 1, [k+ =1,
=1 E .
(1-x)f ’ /],

In addition, for |g| < 1, we have

lim [k], = lim = —

k—o0

and

. k . (1 _ qk)(l _ qk—l) (1 _ qk—j+1)
I | Y I (e
1

A-9(1-¢*..(d-¢g’)

(2.1.2)

If we apply the formulas (2.1.1) and (2.1.2) to Gauss’s and Heine’s Binomial Formulas, we

obtain, the following two identities of formal power series in x (|g| < 1),as k — oo.

(o)

R N x! | 2.13
(1 + 2 ;ﬂ (1= (1-¢%)..(1 - ¢ =

1 - x/
(1-x7 Z(1 —9(1-¢*)...(1 —¢))

S (H)
2=).(
()
- ; o (2.1.4)



which resembles Taylor’s expansion of the classical exponential function

The series (2.1.3 ) and (2.1.4) are called Euler’s first and Euler’s second identities, or E1 and
E2. E1 and E2 are obtained by Gauss and Heine.

Definition 2.1.10 [1] A g-analogue of the classical exponential function e is

8

Exponential function on g based can also be expressed in terms of infinite product as follows

ﬁ(1+(q—1> =) iflgl> 1

~.
[«

eq(x) = s
pN=

2.2. Bernstein Polynomials

This section contains some theorems which are related to Bernstein polynomials. see [2]. Given

a function f defined on the closed interval [0, 1], we define the Bernstein polynomial

B, (f;x) = Zf(k/n) " (1 - xt (2.2.1)
k=0 k



for any integer n > 0. B, (f; x) is a polynomial in x is of degree < n.

For all n > 1, Bernstein polynomials have the following property,

B, (f;0) = f(0) and B, (f;1) = f(1)

which is called end point interpolation property.

In addition, the following identities will be useful for us

n

n
)Ck (1 _ x)nfk
=0\ k

x+(1-x)"=1.

B, (1;x)

so that the Bernstein polynomial for the constant function 1 is also 1. Since

=02

For 1 < k < n, Bernstein polynomial for the function ¢ is

k
B,(t;x) = Z— X (1= x)r*
=0\ k
n n _
= x KA = x)t
=1\ k-1

10



Putting [ = k-1

il n-1
=x (1 =x)=x
=0 l
Finally, for a function 7>
n k2
B, (t2; x) = ) 2+ =)k
= k
= X*+-x(1-x

Theorem 2.2.1 [2] Given a function f € C|[0, 1] and any € > 0, there exists an integer N such

that
lf(x) = B, (f; 0] <&, 0<x<1

foralln> N.

Theorem 2.2.2 [2] Let f(x) be a bounded function on [0, 1]. For any x € [0, 1] at which f” (%)

exists,then

1 ”
limn (B, (f:) - f(0) = 5x(1 =0 f (x).

2.3. q-Bernstein Polynomials

In this section, we are given some general information about the g-Bernstein polynomials, see

[2] and [41].

11



Generalization of Bernstein polynomials based on the g-integers, which were proposed by

Phillips [41], as given below:

1 k n n—k-1 ,
B, (f:x) = Zf(&) (1 -¢'x) (2.3.1)
=\l | g =0
q
where n > 0. Here on empty product is taken to be equal to 1.
Note that, also B, , (f; x) can be written in the form B,(f; g, x). When g = 1, we recover the

classical Bernstein polynomials.

For all g > 0, g-Bernstein polynomials have the following property,

B, (f:4,0) = f(0)and B, (f;q,1) = f (1)

is called end point interpolation property. It is known that the cases 0 < ¢ < 1 and ¢ > 1 are not
similar to each other. This difference is caused by the fact that, for 0 < g < 1, B, 4 are positive

linear operators on C[0, 1] while for g > 1, the positivity fails.

Theorem 2.3.1 [42] (I'inskii and Ostrovska). Given g € (0,1) and f € C|0, 1], there exists a

continuous function B 4(f; x) such that
B, (f;x) = Beoy(f;x) for x €[0,1] asn — oo.

where

Beoy(f:2) = ,Z;f(l_"k)%ﬂ(l—m ifxel0,1)
wFim =1 &

f(l)’ lf'.le

12



Theorem 2.3.2 [2] The generalized Bernstein polynomial may be expressed in the form

n

B,(fiq0 =y

ol ok s (23.2)
k=0

q

where

with 80f; = f; = £ (Lj]/ [n)

In particular, we need to evaluate B, (f;q, x) for f = 1, x, x* in order to justify applying the
Bohman-Korovkin Theorem on the uniform convergence of monotone operators. Due to the

above Theorem 2.3.2, for f(x) = 1;

B,(1;q,x) = 1. (2.3.3)

for f(x) = x; we have

Aofo=fo=0.80f0 = fi = fo=1/In,,

and it follows from Theorem 2.3.2 that

B, (x;q,x) = x. (2.3.4)

13



For f(x) = x*; we have

Aofo=fo=0,Afo=1/In];

and

g(1+q)

Aéfo =h-0+q9 fi+qfo= [n]fi

Thus from Theorem 2.3.2

n 1 n 1+
B,,(xz;q,x) = X — 4+ X g +4)

1| g 2| I

1 [n],[n— 1], (1 +¢q) x(1 - x)
X+
[n], (1+4q) [n](zi

,  x(1I—-x)
+ .
[n],

(2.3.5)

Theorem 2.3.3 [2] Let (q,) denote a sequence such that q, € (0,1) and g, — 1 asn — oo.
Then, for any f € C[0,1], B, (f; g, x) converges uniformly to f(x) on [0, 1], where B, (f; q,, x)
is defined by (2.3.2) with q = q,.

2.4. Auxilary Results in Complex Analysis

In this section we give some known results and methods in Complex Analysis which we use
in our study (See [3] and [4]).
Let My := {z € C: |z] < R} with R > 1 and assume that F' is a segment included in My and the
compact subset considered will be the closed disks M, ={z€C:|z<r} withl <r<R.

In addtion, H (M) is the space of all analytic functions on Mg. For f € H (IMg) we assume

14



that f (z) = X_o am".

Theorem 2.4.1 (Cauchy) [3] Letr > O and f : M, — C be analytic in M, and continuous in

M,. Then, foranyl € {0,1,2,...} and all |z| < r we have

0) S(u)
1@ =5 [ Lo

whereT' = {z€C: |zl = r}and i* = —1.

Theorem 2.4.2 (Weierstrass) [3] Let G C C be an open set. If the sequence (f,), oy of analytic
functions on G converges to the analytic function f, uniformly in each compact in G, then for

any | € N, the sequence of lth derivatives ( f,fl))neN converges to O uniformly on compact in G.

Indeed, note that by the above Cauchy’s formula we can write as

Jo ) — f(w)

27-[ r (l/t _ Z)l+l

@) - ) = du,

from which by passing to modulus the theorem easily follows.

Finally, we state a basic result very useful in the proofs of the approximation results and

called Bernstein’s inequality for complex polynomials in compact disks.

n

Theorem 2.4.3 [4] Let P,(z) = Zakzk be with a; € C, forall k € {0,1,2,...,} and for r > 0
k=0
denote ||P,||, = max {P,(2);|z| < r}. Then

(i) For all |z| < 1 we have < n||Pll; ;

(ii) If r > O then for all |z| < r we have

< 2P,

15



2.5. Bernstein Polynomials on Compact Disks

This section contains some theorems which are related to complex Bernstein polynomials, see

[13].

If in the expression of B, (f; x) one replaces x € [0, 1] by z in some regions in C (containing
[0, 1]) where f is suppused to be analytic, then we obtain the following complex Bernstein

polynomials;

C k
B, (f:2)= ) Pu (z)f(;l),
k=0

where

Pk (2) = (Z)Zk (1-2"*, zeC.

Theorem 2.5.1 [13]

(i) (Bernstein) [5] For the open G C C, such that M, c G and f : G — Cis analytic in G,

the complex Bernstein polynomials

n

n
B,(f;9=)| [|[FA-2"fl/m),
=0 | k
uniformly convergence to f in M. Here M, denotes an open unit disk.

(ii) (Tonne) (6] If f(z) = Y 2" is analytic in an open disk M, , f(1) is a complex number
k=0
and there exist M > 0 and m € N such that |c,| < M (k+ 1)", for allk = 0, 1,2, ... then

B, (f; z) converges uniformly (as n — oo) to f on each closed subset of M .

(iii) (Kantorovich) [S]If f is analytic in the interior of an ellipse of foci 0 and 1, then B, (f; z)

16



converges uniformly to f (z) in any closed set contained in the interior of ellipse.

The following upper quantitative estimates results were obtained by Sorin Gal [7], [8] and [9].

Theorem 2.5.2 [7] Suppose that R > 1 and f : My — C is analytic in Mg, that is f(z) =

> ek, forall z € Mg.
i=0

(i) Let 1 < r < R be arbitrary fixed. For all |z < r and n € N, we have

B, (f:2) - )l < 2.

n

where 0 < D, (f) = w sz(j -1 |cj| 172 < oo. (ii) For the simultaneous approximation by
]:
complex Bernstein polynomials, we have: if 1 < r < r; < R are arbitrary fixed, then for all

|zl <randn,l €N,

Cn (f) l!rl

n (7’1 _ r)l+1 ’

BY(H@-f"@)| <

where D, (f) is given as at the above item(i) .

The next theorem gives the Voronovskaja-type results in compact disks for B, (f;2) .

Theorem 2.5.3 [8] Let R > 1 and suppose that f : Mg — C is analytic in Mg, that is we can

write f(z) = io] cZ, for all z € Mg .
k=0
(i) The following Voronoskaja-type result in the closed unit disk holds

2
Z_sz”(z) g 10M(]2‘)|2z z |.
n

B, (f;2) - f(2)— o

17



foralln €N,z € My, where 0 < M(f) = 3 k(k = 1)(k = 2)? |cx] < oo.
k=3

(ii) Let r € [1,R). Then for all n € N, |z| < r, we have

-2 . SM.(f) (1 +r)
f (@] < 2 )

B, (f;2) - f(2)— o

where M,(f) = 3 lexl k(k = 1)(k = 2242 < co,
k=3

Also, S. Gal proved that the order of approximation for complex Bernstein polynomials in

Theorem 2.5.2 (i) and (ii) are exactly 1/n.

Theorem 2.5.4 [9] Let R > 1,My = {z € C;|z| < R} and let us suppose that f : My — C is
analytic in My, that is we can write f (z) = Y, ci2k, for all z € My . If f is not a polynomial of
k=0

degree < 1, then for any r € [1,R) we have

D,
1B, (f) = fll, > n(f), neN,

where ||f]|, = max {f(z); |z| < r} and the constant D, (f) depends only on f and r.

Corollary 2.5.5 [9] Let R > 1,My = {z € C;|z| < R} and let us suppose that f : Mg — C is

analytic in M. If f is not a polynomial of degree < 1, then for any r € [1, R) we have

1
1B, (f) = fll, ~ o neEN,

where the constant in the equivalence depend on f and r.

In the case of simultaneous approximation presented in the following theorem.

18



Theorem 2.5.6 [9] Let My = {z € C;|z| < R} be with R > 1 and let us suppose that f : M —
C is analytic in Mg,i.e. f(z) = Y. cx2t, for all z € M. Also, let 1 < r <r, < Randl € N be
k=0

fixed. If f is not polynomial of degree < max {1,l — 1}, then we have

BY () - fO

~ —

b

" n

where the constant in the equivalence depend on f,r,r; and p.

2.6. Complex g-Bernstein Polynomials

In this section we give the approximation and shape properties of the complex g-Bernstein
polynomials. For f : [0,1] — C, the complex g-Bernstein polynomials are defined simply

replacing x by z in the Phillips [41] definition in (2.31), that is

eV ILIAYRL .
B,(f;q,2) = f(—q) &I (1-¢'z),neN,zeC.
; [n]q k Jj=0 ( )

Here the empty product is equal to be 1. Also, note that for ¢ = 1, we obtain the classical
complex Bernstein polynomials.
S. Ostrovska investigated the convergence properties for g-Bernstein polynomials in the case

g > 1 and she has obtained the following results.

Theorem 2.6.1 [10] Let g € (1, 00), and let f be a function analytic in an e-neighborhood of

[0, 1]. Then for any compact set K C D, :={z: |z| < &},

B.(f:9,2) =3 f(z) forze Kasn — oo.
The expression f,(x) = f(x) means uniform convergence of a sequence {f,(x)} to f(x).
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Theorem 2.6.2 [10] If f is a function analytic in a disk My, R > 1, then for any compact set

K C Dg_y,

B.(f;9,2) 3 f(z)forze Kasn — o
Theorem 2.6.3 [10] If f is an entire function, then for any compact set K C C,

B.(f:9,2) =3 f(z) forze Kasn — oo.

For g > 1, S. Ostrovska proved that B,(t"; g,z) converges to 7" essentially faster than the

classical Bernstein polynomial.

Theorem 2.6.4 (Ostrovska [12] and Gal [11]) Let g > 0, R > 1, My = {z € C;|z| < R} and
let us suppose that f : Mg — C is analytic in Mg.That is we can write f (2) = i et for all
k=0

Z € Mg . Then for the complex g-Bernstein polynomials we have the estimate

Yyq (f)

q

|B.(f;q9,2) — f(2)| < , foralln € N,

valid for alln € N and |z| < r, with 1 < r < R, where

0< Y,y (f)=2) (k=Dlk—1],lel
k=2
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Morever,
Yoy () <2 (k= Dled ¥ := M, (f) < o,
k=2

forallr € [1,R) and q € (0, 1], while if g > 1, then Y., (f) < oo, forallg < Rand r € [1, g)
Remark 2.6.5 [13]

1) Let 0 < g < 1 be fixed. Since [n], — (1 = q)™' as n — o in the estimate in Theorem
2.6.4, we do not obtain convergence of B, (f;q,z) to f(z). But this situation can be improved
by choosing 0 < q = q, < 1 with q, // 1 as n — oo. Since in this case [n],, — o asn — oo;
from Theorem 2.6.4 we get uniform convergence in My, .

1

2)If q > 1, since the estimate ¢— < %
q

then by Theorem 2.6.4, it follows that r > 1 withrq <R,
we have B, (f;q,z) — f (z) as n — oo, uniformly for |z| < r.
For 0 < g < 1, Voronovskaja-type results for the for complex g-Bernstein polynomials are given

by the following theorem.

Theorem 2.6.6 [11] Let 0 < g < 1, R > 1, Mz = {z€ C;|z| < R} and let us suppose that

f : Mg — Cis analytic in Mg, that is, we can write f (z) = Y. cx2", for all z € M.
k=0
(i) The following estimate holds:

2=2 IM(f)lz(l - 2)|
2[n],,f (@) < e :

q

Bn(f;q’z)_f(z)_

forallneN, z € M, where 0 < M(f) = § lexl k (k= 1) (k = 2)* < co.
k=3

21



(ii) Let r € [1,R). Then

-2 9K, (f)(1 +r)
o, @S e

2[n p

Bn(f;q,Z)—f(Z)—

foralln €N, 2| < r, where K,(f) = 3 lexlk (k = 1) (k = 2)% % < oo,
k=3

Remark 2.6.7 [13] In the hypothesis on fin Theorem 2.6.6 by choosing 0 < g, < 1 withq, /1

as n — oo, it follows that

(z-2)/@

lim[nly, [B,, (f34n,2) = f@)] = :

uniformly in any compact disks included in the open disks of center 0 and radius R.

In the following theorems, Gal obtained the exact order in approximation by complex g-Bernstein

polynomials and their derivatives on compact disks.

Theorem 2.6.8 [11] Let 0 < g, < 1 with limg, = 1, R > 1, My = {z € C;|z| < R} and let us
suppose that f : Mg — C is analytic in M. That is we can write f (2) = 3. cx2~, for all 7 € M.
k=0

If f is not a polynomial of degree < 1, then for any r € [1, R) we have

D

" (1, ,

Bg, ()= f €N,

where ||f||, = max{|f (2)|;|z| < r} and the constant D,(f) > 0 depends on f, r and on the

seqeuence (qy,),cn but it is independent of n.

Corollary 2.6.9 [11] Let 0 < g, < 1 with limg, = 1, R > 1, My = {z € C;|z] < R} and let us

suppose that f : M — C is analytic in Mg. If f is not a polynomial of degree < 1, then for
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any r € [1,R) we have

Bn,q,, (f) - f N,

! €
~ _, n
T [nl,

where the constant in the equivalence depend on on f, r and on the seqeuence (q,),oy but are

independent of n.

Remark 2.6.10 [13] Theorem 2.6.8 and Corollary 2.6.9 in the case when q, = 1 for alln € N

were obtained by Theorem 2.5.4 and Corollary 2.5.5.

Theorem 2.6.11 [13] Let 0 < g, < 1 be with limg, = 1, R > 1, My = {z € C;|z] < R} and let

us suppose that f : Mg — C is analytic in My, i.e. f(z) = X i for all z € My. Also, let
k=0

1 <r<r <RandleN be fixed. If f is not a polynomial of degree < max {1, p — 1}, then we

have

1
T Inl,

By, () = f¢

where the constant in the equivalence depend on f,r,ry, p and on the sequence (q,), , but are
independent of n.
2.7. Szasz-Mirakjan Operators

Let N be a set of positive integer number and Ny = N U {0}. If f : [0,00) - R and ¥V n € N the
Széasz-Mirakjan operators (Szdsz [18], Mirakjan [19] S, : C; ([0, 00)) — C ([0, c0)) given by

J
C f (ifmy, x € 10,09)

Si(H=e™)
=0
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1+x2

where C, ([0, +00)) := {f € C([0,00)) : lim SO exists and is ﬁnite} .S, (f) (x) can be also writ-
ten in the form S ,(f; x). In the convergence of S, (f; x) to f(x), f(x) is to be exponential growth,
thatis | f (x)| < Ce®*, forall x € [0, 00), with C, B > 0. Also, Totik [20] was studied quantitative

estimates of this converges and he proved that the following inequality;
C,
IS, (f;x)— f(x)|< —forall xeR,, ne N
n

The complex Szdsz-Mirakjan operators is obtained from real version, simply replacing x by

complex one 7 in the real version. That is

] J
Su(f:2) = e-"zz(’%)f (jm) (27.1)

J=0

S. Gal proved that approximation and Voronovskaja theorems with quantitative estimates for
complex Szasz-Mirakjan operators attached to analytic functions in a disks of radius R > 1 and

center 0.

Theorem 2.7.1 [21] Let My = {z € C;|z] < R} with 1 < R < +00 and suppuse that f : [R, o) U

Mg — C is continuous in [R, +o0) U M, analytic in M, i.e. f(z) = Y, ek, for all z € Mg, and
k=0

that there exists M, C, B > 0 and A € (}Q, 1) , with the property |ci| < M‘:—I; forallk =0,1,...,

(which implies |f (2)] < MeP? for all z € Mg ) and |f (x)| < CeP*, for all x € [R, +00).

() Let1 <r < }4 be arbitrary fixed. For all |z| < r and n € N, we have

D rA
2
n

1S. (f32) = f2)] <

where Dyy = 43 o (k + 1) (rA) < oo,
k=2
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@) If1<r<nrn< % are arbitrary fixed, then for all |z7| < r and n,l € N,

l!rlD A
SO(f;20 - )| < — .
n f f ( | l’l(r] _r)l+]

where D,, 4 is given as at the above point (i).

Voronovskaja-type formula with quantitative estimate for the complex Szasz-Mirakjan opera-

tors is given by the following theorem.

Theorem 2.7.2 [21] Suppose that the hypothesis on the function f and the constant R, M, C,

B, A in the statement of Theorem 2.7.1 hold and let 1 < r < % be arbitrary fixed.

(i) The following upper estimate in the Voronovskaja-type formula holds

y 3MA |z]
$2(fi0 = O - = @] < B e+ DA
k=2

foralln e N,|z] <r.

(ii) We have the following equivalence in the Voronovskaja’s formula

1

~ TS
n2

SuD=f=5-f

r

where the constant in the equivalence depend on f and r but are independent of n.

In the next theorem, Sorin Gal proved that the order of the approximation is exactly 1/n in

theorem 2.7.1 .
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Corollary 2.7.3 [21] In the hypothesis of Theorem 2.7.1, if f is not a polynomial of degree< 1
in the case (i) and if f is not a polynomial of degree < I, (I > 1) in the case (ii), then % is in fact

the exact order of approximation.

The exponential-type growth condition on the function f was ignored by S. Gal. Then, he was

obtained the following results.

Theorem 2.7.4 [22] For 2 < R < 4+ let f : [R, 00) U My — C be bounded on [0, +0) and

analytic in M. That is f(z) = Y, a2, for all z € M.
k=0
(i) Let 1 <r < § then for all |z| < r and n € N it follows

D,;
1S, (f2) = f@)] < ,

n

with D, = 63 lex] (k — D2r)*! < co.
k=2

@) If1<r<n< § then for all |z| < r and n,l € N it follows

I'r\D,,
ST @ - 0| < rl—il,
n (r1 - r)

where D,, ¢ is as above.

Theorem 2.7.5 [22] For 2 < R < +oo let f : [R,00) U My — C be bounded on [0, +o0) and

analytic in Mg, that is f(z) = Y. ci2", for all z € M. Also, let 1 < r < g.
k=0

(i) Forall|z]l < rand n € N it follows

S N@ - - nf" @ < Yr,,f.,'f—z',
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with Y,y = 263, leel (k = 12 (k = 2) 2 < oo,
k=3

(it) For all n € N we have

1

5
n2

SuH=f=5-f

.
where the constant in the equivalence depend on f and r but are independent of n.

In additon, Gal proved that the order of approximation in Theorem 2.7.4 is exactly i

Theorem 2.7.6 [22] Let2 < R < 400, 1 < r < § and f : [R,00) U My — C be bounded on

[0, +00) and analytic in Mg, that is f(z) = Y. ¢, for all z € Mg. If f is not a polynomial of
k=0

degree < 1, then the estimate

D, (f)

n

”Sn(f)_f”r 2

neN,

holds, where the constant D, (f) depends on f and r but is independent of n.

Theorem 2.7.7 [22] Let 2 < R < o0 and f : [R,00) U My — C be bounded on [0, +0) and
analytic in My, that is f(z) = Y, ez, forallz € Mg . If1 < r < § is arbitrary fixed and if f is
k=0

not polynomial of degree< 1, then the estimate

1
”Sn(f)_f”r'\' ;’HGN’

holds, where the constant in the equivalence depend only on f and r.

Theorem 2.7.8 [22] Let2 < R < +co and f : [R, ) U Mg — C be bounded on [0, +o0) and
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analytic in M, that is f(z) = Y. i7", for all z € M.
k=0

Ifl<r<r<? 5, L€ Nand if f is not a polynomial of degree< I, then we have

where the constants in the equivalence depend only on f,r,ry and p.

2.8. Complex q-Szasz-Mirakjan Operators

q—Széasz-Mirakjan operators were defined and their approximation properties were investigated

n [23] and [25]. In [23], g— Szasz-Mirakjan operators defined as follows

Tl (K, by [l
S = E( )Zf( )[k],, o

k=

where 0 < x < (1—})%’ f € C[0,00) and {b,} is a sequence of positive numbers such that

limb, = co.

n—oo

Mahmudov [24] has obtained new g—Szdsz-Mirakjan operators as the following

1 > [k] e [1]E X
Su(fiq,%) = = > f(k_z—[;])q(z) TR 2.8.1)
_l_[()(l+(1—q)qj[n]qx)k:0 q g ¢!

]:

where x € [0,00),0 < g < 1and f €C [0, ).

Mahmudov [24] investigated convergence properties of this operators (2.8.1). Also Mahmu-
dov [24], obtained the inequalities for the weighted approximation error of g— Szdsz-Mirakjan
operators. In addition, Mahmudov [24] discussed Voronovskaja-type formula for g— Szasz-

Mirakjan operators (2.8.1). In [26], Mahmudov introduced the following g—Szasz operators in
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the case g > 1.

oo K k k
[ q) Ll x ey (— [n]qq_kx) (2.8.2)

]
M,(f:q,x) = =
Jia-9 ;?ﬁmq¢%>mg

Mahmudov [26] proved that the rate of approximation by the g— Szdsz-Mirakjan operators
(2.8.2) (g > 1) is g7" versus % for the classical Szdsz-Mirakjan operators (2.7.1).Also, Mahmu-
dov [27] constructed the following complex generalized Szasz-Mirakjan operators based on the

g- integer, in the case g > 1

() 1 .
&m%@ﬁgy@mhﬂ“mg%VWﬂZ) (283)

and he investigated approximation properties of complex g- Szasz-Mirakjan operators(2.8.3)
in compact disks. Firstly, Mahmudov [27] obtained the following quantitative estimates of the
convergence for complex g-Szdsz-Mirakjan operators attached to an analytic function in a disk

of radius R > 2 and center 0.

Theorem 2.8.1 [27] Let 1 < g < 1—; < oo and suppose that f : [R, o) UMy — C is continuous

and bounded in [R, o) UMz and analytic in M. Let 1 <r < 2% be arbitrary fixed. For all |z|[< r

and n € N, we have

Dy

[n],

Sna(f;2) = f@)] <

where D,y =2 3, |cp|(m—1) (2qr)m_1 < 00,

m=2

Theorem 2.8.1 shows that, the rate of approximation g-Szasz-Mirakjan operators (g > 1) is of

order g™ versus }l for the classical Szdsz-Mirakjan operators, see [21]. Secondly Mahmudov
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[27] gives Voronovskaja type result in compact disks, for complex g-Szasz-Mirakjan operators

attached to an analytic in Mg, R > 2 and center O.

Theorem 2.8.2 [27] Let 1 < g < § < oo and suppose that f : [R, o) UMy — C is continuous
and bounded in [R, 00| UMy and analytic in M. Let 1 < r < % be arbitrary fixed. The following

Voronovskaja-type result holds. For all |z|l< r and n € N, we have

41zl
S _

D lewl (m = 1) (m = 2) 2gr)"

2
[n q m=2

1
S,(fi9,2) — f(2) — —L,;(f;2)
[n],

where

D,f)-f @) .
==, ifg>1
Lq (f; Z) = f”( ;]
)2 . _
2 l‘f q = 1

Thirdly, Mahmudov [27] proved that the order of approximation in Theorem 2.8.1 is exactly

q " versus rll for the classical Szdsz-Mirakjan operators (see [21]).

Theorem 2.8.3 [27] Let 1 <g< %, 1<r< 2% and f : [R, c0) U My — C be bounded on [0, o)

and analytic in My. If f is not a polynomial of degree < 1, the estimate

Sng ()= f|| = Drg(f), neN,

holds, where the constant D,.,(f) depends on f,q and r but is independent of n.

Theorem 2.8.4 [27] Let 1 < g < §,1 <r< %. If a function is analytic in the disks Mg,

then|S, (f;q,2) — f(2)| = o (g™") for infinite number of points having an accumulation point on
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Mg)24 if and only if f is linear.

The next theorem shows that L, (f;z),g > 1, is continuous about the parameter g for f €

H(MR),R>2.

Theorem 2.8.5 [27] Let R > 2 and f € H(My). Then for any r,0 <r <R,

qli_)r{qu(f;Z):Ll (f32)

uniformly on Mg.
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Chapter 3

APPROXIMATION THEOREMS FOR COMPLEX q-BERNSTEIN
KANTOROVICH OPERATORS

In this chapter, we introduce complex Bernstein-Kantorovich operators based on the g-integers
and investigate their approximation properties. Morever, Voronovskaja type results and quanti-
tative estimates of the convergence for the complex g-Bernstein-Kantorovich operators attached

to disc My are obtained.

3.1. Construction and Auxilary Results
Let Mg be a disc Mg := {z € C : |z] < R} in the complex plane C. Denote by H (M) the space
of all analytic functions on M. For f € H (Mg) we assume that f(z) = },-_,anz". Firstly,

Ostrovska studied convergence properties of complex g-Bernstein polynomials, proposed by

Phillips [28], defined by

B,(f;q.x) = f(—") X 1-¢'x) = f(—") Puk (g x)
; [n], k 1/:0[ ( ) k=0 [, )
q

Later many author studied approximation properties of g-Bernstein and g-Bernstein type oper-
ator. See [13] and references their in. It is known that the cases 0 < ¢ < 1 and ¢ > 1 are not
similar to each other. This difference is caused by the fact that, for 0 < g < 1, B, , are positive
linear operators on C[0, 1] while for g > 1, the positivity fails. The lack of positivity makes the

investigation of convergence in the case ¢ > 1 essentially more difficult than that for 0 < g < 1.

We introduce new type complex Bernstein-Kantorovich operators based on the g-integer, in the

case g > 0.

Definition 3.1.1 For f € HMg), g > 0 and n € N, we define the following q-Bernstein-
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Kantorovich operators

K., (f; z)—ank(q,z)ff([ T ) (3.1.1)

n k n—k—1 i
where z € C and p, (¢;2) = [Tiz (1 - qu).
k

Notice that in the case ¢ = 1 these operators coincide with the classical Bernstein-Kantorovich
operators. For 0 < g < 1 the operator K,,, : C[0,1] — C[O0, 1] is positive and for g > 1 it is not

positive.

To investigate approximation properties of g-Bernstein-Kantorovich operators, we need to sev-
eral lemmas. First lemma gives formula for K, ,(e,; z). Using this formula we can easily calcu-

late the value of K,, 4(e,; ).

Lemma 3.1.2 Let g > 0. Foralln € N, m € NU{0}, z € C we have

g’ [nl]

[n+ 117 (m—j+1)

K4 (en;2) = Zml "

Bug(eji2). (3.1.2)
=0\ J

where e, (z) = 7".

Proof. Using the definition of K, , (f;z), for f(z) = e,(z) = 2" one can obtain.

m q/ k]J - J

an(em,z)—ZPnk(q’Z)Zf . [n+1]

n m m q-"[k]é 1 y
= Dn, (q;Z) mf "I gy
; ¢ ; ] [fl+ l]q 0
— Y . < qj [k]é
_kzz(;pn,k(q,z); e
| ¢’ In; [k
_JZ:(; i [n+1]g1(m—J+1)Z[]Jpnk(q,Z)
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N ¢’ [nl; d ([k]q)f |
| om ¢/ In]
= | n+ 1] (m—j+ I)Zf( )p"’k(‘]’Z)
=0\ J
B"vq(ej;Z)
ol B g’ [n]
an(em;Z):Z . [n+1] (m ]+1) nq(ej;Z).

~
1l
[«

~

K, (em; z)| is bounded by 7" in the disc of radius r > 1.

Lemma 3.1.3 Forallze M,, r > 1 we have

Kn,q (em;Z)| < }”m, n, me€ N.

Proof. Indeed, using the inequality

B, , (e j;z)‘ < r/ (see S. Ostrovska [10]) we get

Kn,q (em; Z)| <

Bn,q (ej; Z)’
—_

<ypm

a =0\ j
_ 1 +gql[n], m,m_ .
N\Nm+n, ) " 77

The third lemma gives recurrence formula for K, ; (€,,41;2) .
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Lemma 3.14 ForallnmeN, ze C, 1 # g > 0, we have

(1 =2)
Kn,q (em+132) = TDqKn,q (em; 2) +ZKn,q (em32) (313)
q
. 1 f m+ 1 q’ [n]é
m+1 — g
[n+ 117" 4 j (m—j+2)

(m+ Dglnl,— jln+1], ( ) )
' (m + Dqn], na\“5 <

Proof. We know that (see Gal [13])

z(1-2)

[n]q Dan,q (ej; Z) = Bn,q (ej+1;Z) - ZBn,q (ej; Z) .

Taking the derivative of the formula (3.1.2), using the above formula and multiplying obtained

z2(1-2)

identity i we get
o m g’ [n1]
¢Kng (€m}2) Z N Ty —— ,q(ej z)
=0\ J q
2d-2) | ™ ¢’ [nl; z(1-2)
D Kn, (em3;2) = p - D Bn ez
[n]q q q ; ] [I’L+ 1]q (I’I’l —j+ 1) [n]q q 4( J )
Bn,q(ejﬁ-] ;Z)—ZBn,q(ej;Z).
zd -2 o g’ [nl]
DqK’l,t] (em; Z) = m -
[n], ;‘ i+ g = j+ 1)

. (Bn,q (ej+1 ) Z) — 2By (ej ) Z))
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z1-2) Sl g’ [nl] .
Tl Drfralenia) = Z P EENACETERY Bra(esi2)

S| m q’ [n])
_ZZ PN ICERACENES) B (¢:7)

Ko g(em:z)

m+1 1 1
< (1 ) m CIJ [l’l]] (ej; Z)

DK ms> <) = B,
[]q (e 2 ; _]—1 [n+1]m(m ]+2) 4

- ZKn,q (em; Z)

and

z(1 -z
0 = ( )DqKn,q (em;2) + 2K, 4 (€; 2) —

[n],

m+1 m qj l[n]j 1

[+ 11 - j+2) Bua (¢:9)

=1l j-1

: met | 1 ¢lnt] .
If we add K, ,(ep+152) = 2 =0 mBn,q (e j;Z) on both sides of the above
. q

J
equation, we obtain

z(1-2)
Kn,q (em+152) = ———D Kn .q (em;2) + ZKn,q (em; 2)

[n],

mlom+ 1 q’ [n]
D [+ 17— j+ 25 ney
=0 J J

m+1 m q]l[]jl

[+ 11 (m—j+2) Buq (¢:2)

=1l j-=1
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z(1-2)

Kn,q (em+1 5 Z)

[n],
w1
+ 2,
J=1 J
’"Z“ m
=1l j-1

Using the identity

——D,K, ,(e,;2) +zK

1
[n+ 117" (m +2)

nq (em; Z) +

¢’ [nl]

na(:9)

[n+um%m ]+m

g’ [l

[n+ 117 (m—j+2) ”q(ej;z)

We may obtain the desired formula (3.1.3)

z(1-2)
Kn,q (ems152) = [n]
q
o+
+ 2,
Jj=1 J
mZ“ m+1
=1 J
z(1-2)
Kn,q (ems132) = [n]
q
o+
+ 2,
Jj=1 J

—D an (em, Z) + Zan (em’ Z) +

1
[n+ 117" (m +2)

g’ [n]

Byg4lejiz
[n+ 1% (m—j+2) a{e5)

j g [n]}!

D K (em; 7))+ ZKn,q (em;2) +

m+nm+uym—ﬂ4f”@”§

1
[n+ 117" (m +2)

¢ [n})! (Cl[n]q J )
[

[+ 10 m—j+2)\[n+ 1], (m+1)
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z(1-2) 1

Kn €nm+152) = —D Kn €ms 2 +ZKn €ms2) +
a(@m132) [nl, * aleni2) a(ni) [n+ 117" (m +2)
. mZ“ m+ 1 g [n]{ll—1 (m+1Dgqln],—jln+1] (e-'z)
- . (n+ 11" (m—j+2) (m+1)[n+1] AN
j=1 Jj q q
z(1-2)
Kn,q (em+152) = TDqKn,q (em;2) + ZKn,q (em; 2)
q
+mz+1 m+1 g’ [n])! (m+ Dglnl,—jln+1], ( )
n €,
S| |mrm=j+2) e D1, a\epz

3.2. Convergence Properties of K, ,

We start with the following quantitative estimates of the convergence for complex g-Bernstein-

Kantorovich operators attached to an analytic function in a disk of radius R > 1 and center

0.

Theorem 3.2.1 Let f € H (Mp).

(i) LetO0<g<land1 <r <R. Forallze M, and n € N, we have

-1
< 3+¢
2[n],

Ky (f;2) - f @)

D lanlmm+ 1) " (32.1)
m=1

(i1) Letl<q<R<ooand1Sr<§.F0rallz€Mrandn€N, we have

Kiq(f:2) = @) < i] D lanlmm+ 1) g"r" (32.2)

[n 9 m=1
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Proof. (i) The use of the above recurrence we obtain the following relationship

1 —
Kn,q (em; Z) —€n (Z) = < ([l’l] Z) DqKn,q (em—l;z) (323)
q
_ 1 &N m|
+2K, 4 (€n-1:2) + [+ 1];,, ; j m
mq [n], — jln+ 1], . "
( mq ], )B”’q (e55) ==

We can easily estimate the sum in the above formula as follows.

1 | m . . 1 j j ‘
[n+ 115 ; j 1, (m—j+1) (1 m mgq [n]q)Bn’q (ej,z)

m—1 j j . .
1 m—1 ¢’ [n]]

SR G L P R I | [P
[n+1]q = j m—jm—j+1 m  mq|[n],
4_qm‘l[n]Z’“

[+ 1]:;’
m—1
m(q [n], + 1) +q" ' [n])! m m
S — m S < rm
[n+ 115 1 +qln], q[n],

It is known that by a linear transformation, the Bernstein inequality in the closed unit disk

becomes

P, @] < 2P, forall ld<gr, r>1,
qr

(Where [|Pyll,, = max {|P, (2)] : [z] < gr}).

Pm(QZ)_Pm(Z)
qz — 2

Dy (P 2)| = <P,

q >

m
<l
qr
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for all |z| < r, where P, (z) is a complex polynomial of degree < m. From the above recurrence

formula (3.2.3) we get

Kn,q (em; Z) — €m (Z)|

Kn,q (em—l > Z) — €m-1 (Z)|

2|11 - z]
< D Kn, (em— ;Z) + |Z|
[n]q | q™ng 1 |
-1

mq m
r
[”]q

+

Kn,q (em’ Z) —€m (Z)|

rl+rm-1
Kn,q (em—l) t+r Kn,q (em—l > Z) — €m—1 (Z)|
[nl, qr ar
-1
+ mq n
[n],
2m o
<r Kn,q (em—l;Z) — €n-1 (Z)| +—q
[n],
-1
+ mq r’ﬂ
[n],
(3 + q‘l) m
<r Kn,q (em—l;Z) — €m-1 (Z)| +—r" (324)
[n],

By writing the last inequality for m = 1,2, ...,step by step the following we easily obtain the

following;

|K,, (e 2) — e (2)]
@+q4yﬁm+r@+q4ﬂm—lhwi+
[n], [n],
2(3 i q_l) om - 2)r’"_2 ot P
[n],
(3+47)

[n],

[n],

r

r

mMm+m—-1+..+1)
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K (o r)— (3+g")m@m+1) .
n(em:2) — en (2)] < T P (3.2.5)
q

Since K, , (f;z) is analytic in Mg, we can write

(o0

Kn,q (fa 7) = Z amKn,q (em;2), 7 € Mg,

m=0

which together with (3.2.5) immediately implies for all |z| < 7,

[ee)
> lanl

Kn,q (f’ Z) - f (Z)| < Kn,q (em; Z) —€n (Z)l
m=0
(3 + q_l) N m
W;|cm|m(m+ r

(i1) To prove Theorem 3.2.1 (i) we again use the formula (3.2.3) and the following estimations

are obtained.

Lom) o i |
[n+1]';; j qj[n]é(m—j+l)(l_E_mq[n]q)B"’q(ej’Z)
1

m q'nl] j j

1 | m-1
p—_——DY LT i (o)
[n+ ]q = j m—jm—j+ m  mq|n],
qm—l [n];n—l
[n+l]g1

m—1
2m (q [n], + 1) +q"! [n]ZHrm J2m+l o,
[+ 117 ST+l

IA
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From the above recurrence formula (3.2.3), we get

|z| |1 — z]
[n],
2m+ 1
;
[n+1],

Krz,q (em—l;z) — €p-1 (Z)|

|DyKivg (€13 2)| + 12l

Kn,q (em;2) —en (Z)| <

mn

Kug(en;2) — €, ()|
rl+rm-1

Kn,q (em—l 5 Z) — €m-1 (Z)|

Kn,q (em—l)”qr +r

7], gqr
2m+ 1
+
[n+1],
2m—-1) , | .
<1 |Kng (em-132) — em—1 (Z)| + g L
[n],
2m+1
+ r
[n+1],
4m m_.m
< r|Kng (en-132) = emot @ + ——¢"r".
[n],

By writing the last inequality for m = 1,2, ..., we easily obtain, step by step the following

IKn (em; Z) —€m (Z)I

< 4_mqm + I’4 (m — 1) m—lrm—l
[n], [n],
4(m-2 4
+r2—(m ) M2 P ——gr
[n], [n],
4
= —q""Mm+m-1+..+1)
[n],
2m(m + l)q’”r’”.
[n],

Since K, , (f;2) is analytic in Mg, we can write

(9]

Kng(f:0= ) anKog(en;2), z€ Mg,

m=0
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which together with (3.2.6) immediately implies for all |z] < r

IA

Kn,q (em; Z) —€n (Z)|

Kuq (f;2) - £ )

[ee]
> land
m=0

2 - m
= ; ol m (m + 1) (gr)".

Remark 3.2.2 (i) Since [n], — (1 - q)_1 as n — oo in the estimate in Theorem ( 3.2.1 )(i) we

do not obtain convergence of K, , (f;z) to f (2). But this situation can be improved by choosing
0<q=g,<lwithg, /1 asn — oo. Since in this case [n], — o0 asn — oo, from Theorem

(3.2.1)(i) we get uniform convergence in M,.

(ii)Theorem (3.2.1)(ii) says that for functions analytic in Mg, R > q, the rate of approximation
by the g-Bernstein-Kantorovich operators (q > 1) is of order q7" versus 1/n for the classical

Kantorovich operators.

3.3. Voronovskaja Type Results

Let f € H(Mg). Let us define

_ 1-2)(D _
-2, ¢ o) qf(z)l f(z)), ¢ H <Rl R qo 1

L,(f;2) = 1_22 (- )1—q‘ (3.3.1)
2Zf’(z)+Z zzf”(z), if z/<R 0<g<1
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It is not difficult to show that

L,(f;2)
o Imlg-mo o 1-27 O |
=q(l-2) ) ap———7"" + —— a,,mz"
; q - 1 2 m=1
N m—1 1 - ZZ N m—1
:an,n([l]q+...+[m—1]q)z 1-2)+ > Zammz , g> 1.
m=1 m=1

=[], +..+[m-1],

In order to prove quantitative Voronovskaja type result we need the following polynomials. We

consider the cases 0 < g < 1 and g > 1 separately.

If0<g<l1

1_2Z m_l_Z(l_Z)

2in+ 11, © 2+l

m—2

En,m (Z) = Kn,q (em; Z) —€n (Z) - m (I’l’l - 1) < ,

Ifg>1

1-2 m—1 1=
En,m (Z) = K”a‘] (em; Z) —€n (Z) _ﬁmzm_l_ Z [.]]q Ma
j=1

Here it is assumed that Z?:l [/], = 0.
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Lemma 3.3.1 Letn,m € N.

(a) 1If 0 < g < 1, we have the following recurrence formula;

En,m (Z)
z(1-2) _
= —[n]q Dq (Kn,q (em—l 5 Z) — €1 (Z)) + ZEn,m—] (Z)
m—1 [m—11,\ ., 1-22
_([n+ 1, I, )Z =9 1,°
1 m m C[j [n]é
+["+112?; j|m=j+D
mq[n], — jln+1]
' :nq 1], “Bug (eﬁz)~ (3.3.2)
(b) If g > 1, we have
Eym(2)
z(1-2)
= Dq (Kn,q (em—l;Z) — €m-1 (Z)) + ZEn,m—l (Z)
[n],
[m - 1]q m=1,1 _ N _ -2z -1
' mz (-2 2[n+ l]q,Z
1 m | m q’ [n]é mq[nl, — jln+1], .
TG Zo JmE DT mgta, (e122)- (333)

Proof. (a) It is immediate that E, , (z) is a polynomial of degree less than or equal to m and

that E,0 (2) = Eyy (2) = 0.
Using the formula (3.1.3), we get

z(I-2)
Kn,q (em;2) = —DqKn,q (em—l ;2) + ZKn,q (em-152)
[n],
1 mf mo| gt [l
+[ + 17! Z ;| (m - 'wjl)
n+lly =\ J

mq [n]q - .][n + 1]q .
( mn+1], )B"’q(ef’z)'
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Then

_ Z(l _Z) . m—1 m—2
E,m(@) = [, (D, {Kog (en1:2) ="'} + Im = 11,2772}
1-2z
E, m -1 m—1
+2E,m-1(2) + 2 +2[n+1]q(m )2
z(1-2) -
+——(m—-1)(m—-2)7"
ey, D2k
+Z’": m g [n]é—l (mq [n], — jln+ 1]q)B (e._z)
S ey m=j+ D\ min+ 1], mer
-2z 4 z(1-2) -
_ m o m R _ 1 n .
TP T e T
A simple calculation leads to the following relationship
z(1-2) e
En,m (x) = [n—]qu {an (em-132) — 2 l} + ZEn,m—l(Z)
m—1 -1 1-2
+7"1 (1 —Z){[ o _ m )} - < gl
[n], [n+1], 2[n+1],

| om g’ [n1]
+ — ,
]Z:(; j [n+ 117 (m—j+1)

mq [n]q - _][l’l + 1]q .
( mq [n], )BM (ej’ Z)’

which is the desired recurrence formula.
(b) It is immediate that E, , (z) is a polynomial of degree less than or equal to m and that
En,O (Z) = En,l (Z) =0.

Using the formula (3.1.3), we get

z(I-2)
Kn,q (em;2) = TDqKn,q (em—l ;2) + ZKn,q (em-152)
q

1 i m | ¢ [n])!

B
m—1 _
[+ 1 S| =+ D)

’ mn+1], na\6p%
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Then

Z(l _Z) -1 [m_ l]qszl (1 _Z)
En,m (Z) = D Kn, (em— ;Z) - Zm +
[l o {Kna e } [nl,
1-2z " & g1 -2)

+2E 1+ 7"+ —— m - 1)7" + _

@ 43"+ 5o i (m—1)z 2 [/, TEST)

| m I [n]] mq[n],— jln+1
+Z 131 - i+ 1 ( Q[ ]q ][ ]q)B”’q(ej;Z)

= |+ m =+ D) mq [n],
1= 2 g (1-2)

2[n+ l]q = [n+ 1
A simple calculation leads to the following relationship
z(1-2)
En,m (Z) = Dq {Kn,q (em—l > Z) - em—l} + ZEn,m—l(Z)
[n],
11 -2 [m-1], 1-2z .,
- Z
[n], [n+ 1], 2[n+1],
1 N[ om i) (mq(n], - jln+1

4 mz q : q ( qlnl,—Jjl ]q)Bn,q(ej;Z),

[n+ 115 < j (m—j+1) mq [n],

which is the desired recurrence formula. =

Remark 3.3.2 Lemma 3.1.4 and 3.3.1 are true in the case g = 1. In the formulae we have to

replace g—derivative by the ordinary derivative.

The next theorem gives Voronovskaja type result in compact disks, for complex g-Bernstein-

Kantorovich operators attached to an analytic function in Mg, R > 1 and center 0.

Theorem 3.3.3 Let f € H (Mg).
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(i) LetO0<g<land1 <r <R Forall 7€M, and n € N we have

1 -
(i) = f(D) = [n f()—Z[( 1]f”<)
q
2427 < )
i Zlamlm(m D2, (3.3.4)

(i) Let1<q<R<ooand1<r< . For all z € Ml, and n € N, we have

iD= @) = 1 PRSIRATL

Z (@l m (m = 1) g7

[ ]q m=2
Proof. (i) For 0 < ¢ < 1, as previously E,,, (z) describe Lemma (3.3.1) as the following

1 -
En,m (Z) = < ([I’l] Z) Dq (Kn,q (em—l 5 Z) — €m-1 (Z)) + ZEn,m—l (Z)
q

m-—1 [m_l]q) —1 I_ZZ -1
_ _ m 1 _ o m
([n 0, I, )° =2-3% 1,°

J

1 & m| ¢l mglnl,-jn+1], .
2, m—-j+1)  mqlnl, Bug(e:3)

En,m (Z) = n Dq (Kn,q (em—l 5 Z) —€m-1 (Z)) + ZEn,m—l (Z)

1 ety " _(m—l _m-1]
2+ 11,0 I+l \ln+1l, Il

! - oo m=D
mq [] B, 4 (en;2) TERIR

qm l[n]m anq(em 152)

‘])Zm—l (1 _ Z)

qm—2 [n]zz—Z

2[n+1]’"

1 &G m | 4nl) mginl, - jln+1], .
+[n+1];"Z m—j+1)  mqlnl, o(¢9)

J
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After simple calculations we get

z(1-2)

En,m () = Dq (Kn,q (€m-152) = em-1 (Z)) + ZEn,m—l ()
[n], —
I ’
-1 [m-1]
_( _ Q)Zm—l (1 _Z)
[n+1], [n],
I3
+ 1 (Zm - Bn (em;z))
[n+1], .
Iy
1 m—1 [n]m—l
+ 1 - Bn €ms <
[n+1], [ [n+ 1707 ] alen?)
Is
1 g [n])!
+ —1|B,,(em-1:2
2[n+1]q([n+1];"-1 a (-1
Is
+ ;(z’"‘l — B, (e 1'z))
2[n+1], e
I
(m-1) ., -2
- " ” Bn m—15
[n+ l]qq 1 g (€n-132)
Iy
T nl)  mqln), - jln+1]
(1 q q
Bn is
[n+1] Z j <m ]+1) mq [nl, ales?)
Iy
9
n,m (Z) = Zlk
k=1
Firstly, we estimate I3, Ig. It is clear that
-1 -2
< & )("21 )t (14 1),
2[nl
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and

-1 -1
< 2= 1B, (e 1i0)] < e (3.3.6)
2[n+1]q 2[n+1]q
Secondly, using the known inequality
-1 |x%<) (I-x),0<x<1
k=1 k=1
to estimate /s, I, Io
I g [l
|I| < 1 - Bn €m> 2%
: [n+1], ( [n+ 110" a(en2)
m-1
< 5T
[n+ 1],
1 g [nl)!
I, < I - Bn €n-1-%
e 2[n+1]q( [n+ 17" a(en9)
< m—-1
T 2n+17
1 Sl m-2 m(m— 1
5 G 2 TEITEET
7 20 j J)m—=j
. Ln]é (1 - i - J )rj
(m—j+1) m  mq|n],
(I+g Hmm—1)[n+1]7
S rm
[n+ 117
1+q! -1
- Ltrg mm— 1), (3.3.7)
[n+ l]q
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Finally, we estimate 14, I;. We use [13]

1
Ll+|L| < " — By (em;
LI+ < m+1hk (€3 2)
1
+ Bn m—15 -7
1y, P emid) 2 |

2[m=1],(m—1) ”
r

[n], [n+ 1],
[m—-2],(m-2)

[n], [n+ 1],

Using (3.2.5), (3.3.6), (3.3.7) and (3.3.8) in (3.3.5) finally we have (m > 3)

E,m (2)]

r([ll’li: z ‘Dq (K”’q (em-152) = em-1 (Z))| +r

m-1D)m-2) ., 2[m-1],(m-1)
1
MY R PN FFS T

IA

En,m—l (Z) | +

m_l - m—l n—1 [m_z]q(m_z) m—1
+ 2 + 2
[n+1]; 2[n+11; [n], [n+ 1],
N m-1) el (1 +qg Hm(@m- Dr’"
2[n+1]; [n+1]]
(1+7r)
L [I’l]qr ‘Dq (Kn,q (em—l;Z) — €m-1 (Z))' +r En,m—l (Z)|
m-1)m=-2) ,_, 2m-17% ,  m—1
1
T U e, T
m—1 1 m-2¢° ., (m-1)
t— + 7 ST
2[n+11; [n]g[n+1], 2[n+ 1],
(1+g Hm(m=1)
+
[n+1]]
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r(l - r) 'Dq (Kn,q (em—l;z) — €m-1 (Z))' +r En,m—l (Z)|
[n],

2 2 2
+2(m—21) r’"+2(m —21) r’"+(m_2l)r’"+(m_21) m
(n], [n]; [n]; [n],
+(m—1)2rm+(m— )r (1+611)M(m—1)

[n]] [n]] [n]]

Eyp 1(Z)| r(1+r)m—1

_ -1 12
8m(m2 1)? N (1+q )mz(m 1)
[n], [n],
3447 - 1)?
(3+4 )mz(m -
[n],
_1)2 -1 —1)?
+8m(m - 1) o (1+¢ )mz(m 1) n
(n], [n],
(12+2¢7)m(m -1y’
En,m—l (Z)| + l"m

[n]]

Eym (2)]

IA

IA

E,m ()|

Kn,q (em—l) — €m-1 qr

m

E,m (2)]

IA

r En,m—l (Z)| +

Eym (2)|

IA

r

As a consequence, we get

(12+2¢7)m(m - 1)’

[

En . < 2m
m(@)| T q"r
This inequality combined with
na (f12) = f @) = fU— ﬂﬂ mwmw

immediately implies the required estimate in statement.

Note that since f@ = 3> . a,,m (m — 1) (m — 2) 7"~ and the series is absolutely convergent for

all |z] < R, it easily follows the finiteness of the involved constants in the statement.

(b) For g > 1, a simple calculation and the use of the recurrence formula (3.1.3) lead us to
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the following relationship;

1 -
En,m (Z) = < ([l’l] Z) Dq (Kn,q (em—l;z) — €mn-1 (Z)) + ZEn,m—l (Z)
q

[m—-11,
11, (1_©+[n+ﬂq

1 m—1 [n]m—l
+ -4 L
1, 1
N 1 qm—l [n];n—l
2[n+ 1], \ [n+ 177
1
‘—_
2[n+1],

(2" = Bug (s )

J Bn,q (em; Z)

- l] Bn,q (em—l 5 Z)

Cm=Dg"2 [y

2[n+ 117

(Bn,q (em—l 5 Z) - Zm_l) Bn,q (em—l 5 Z)

1 & m ¢’ [nl]  mqnl,—jln+1],
Z nq (ej; Z)

(m—j+1) mq [n],

+ 1"
[n+ 117 =\

= Zgllk. (3.3.9)

Firstly, we estimate I3, Ig. It is clear that

[m - l]q

[n]y [n + 1],
(m—1)

2[n+11;

|L;] P+ ) (3.3.10)

(m—1)
2[n+11;

m—1

|]8| Bn,q (em—l 5 Z)l <

Secondly, using the known inequality

1—1;[xksk](1—xk),05xk31,
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to estimate /s, I¢, .

1 m—1 [n]m—l -1
|I5| < 1 - 1 ! 1 Bn,q (em;Z)| < n 3 "
[n+ 1], [n+ 115~ [n+ 1],
1 g" " [n])! m—1
Il < =————|1- ———||Bug(en-130| < ——
2[n+1], [n+ 117 2[n+1];
] | m-2 m(m—1)
bl < G m—jym—j—1)
q jZO ] .] .]
. ﬂ (1 - i — J ),,j
(m—j+1) m  mgq|n],
3 2m(m=D)[n+1177  2m(m—1)
< r' =
[n+ 117 [n+ 11
Finally, we estimate 14, I;. We use [13]
|I4| + |I7| |Z - Bn (ema Z)| ; 15 Z) - Zm_
- [n+ 1],, i + 1],
2[m—1],(m—1) +[m—2]q(m—2)
[n], [n+ 1], [n], [n+ 1],

Using (3.2.6), (3.3.10), (3.3.11) and (3.3.12) in (3.3.9) finally we have (m > 3)

1
Enn ()] < r( ”) 1Dy (Kg (en1:2) = et )|+ 7 |Enns )
+—[m— Jy r’"_l(l+r)+2[m_1]q(m_l)rm
[n], [n+ 1], [n], [n+ 1],
m-1 . m-1 _, [m=2],(n=-2)
+ ST+ ST+
[n + 1]q 2[n+ 1] [n], [n+ 1],
m-1) , ., 2m@m- 1)
+ ———r _—
2[n+11; [n+11
r(l +7r)m-—
nm (Z)| - n,q (em—l) - em—1||qr +r En,m—l (Z)|

[n],
+grm
[n];
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(3.3.11)

|
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En,m (Z)l < (m _ 1) (1 + r) 2(1’]’1 _ 1)’an(m—l)rm—l +r

En,m— (Z)
[n], [n], ! |
10m[m—-1], .
[(nl?
4 -1 2 1 —1
En,m (Z)l <r En,m—l (Z)I + Lz)qurm 4 Mz)qmrm
g [n],
14 —1)?
En,m (Z)' <r En,m—l (Z)| + &2) Zmr_m.
[n];

As a consequence, we get

l4m@m—-17* ,
_— r

[n]]

En,m (Z)| <

This inequality combined with

(59

< )l

m=1

1
Koy (f;2)— f(@)— i L (9 E,. )

+ 1],

immediately implies the required estimate in statement. Note that since
f@ =3* sa,m(@m—1)(m-2)7" and the series is absolutely convergent for all |z| < R, it

easily follows the finiteness of the involved constants in the statement. m

Remark 3.3.4 (i) In the hypothesis on f in Theorem 3.3.3, (i) choosing 0 < q, < 1 withq, /1

as n — oo, it follows that

z(1-2)

sz' (2) + 3

1
}}1_}1’1;10 [l’l + l]qn [Kn,qn (f, Z) - f(Z)] = >

f/l (Z)

uniformly in any compact disk included in the open disk Mg.

(ii) Theorem 3.3.3 (ii) gives explicit formulas of Voronovskaja-type for the q-Bernstein-Kantorovich
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polynomials for g > 1.
(iii) Obviously that the best order of approximation that can be obtained from the estimate The-
orem 3.3.3(i) is O (1/ [n]ﬁn) and O (l/nz)for q = 1, while the order given by Theorem 3.3.3 (ii)

is O (1/q2”), q > 1, which is essentially better.

Next theorem shows that L, (f;z), ¢ > 1, is continuous about the parameter g for f € H (M),

R > 1.

Theorem 3.3.5 Let R > 1 and f € H(Mg). Then for any r,0 <r <R,
lim L, (f;2) = Li (f;2)
q—1+

uniformly on M,.

As an application of Theorem 3.3.3, we present the order of approximation for complex g-

Bernstein-Kantorovich operators.

Theorem 3.3.6 Let 1 < g <R, 1 Sr<q—1§(0r0<qs L1 <r<R)and f € HMg). If f is

not a constant function then the estimate

|
>—Cr ) N9
STEST) a(f), me

Kig ()= f

holds, where the constant C,., (f) depends on f, q and r but is independent of n.
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Proof. For all z € Mg and n € N, we get

Kn,q (f, Z) _f(Z)
1
{Lq(f;z)+ [n+ 1]q(Kn,q(f;Z) -f@- Py Lq(f;z))}-
q

[n+ 1],

We apply

IE"+ Gll, = IFNl, = IGll,| = IF]l, = Gl

to get

1&g (1) = £,
1 1
[n+ 1], {”Lq (12|, = [n+ 11, ||Kng (f:2) = f ) — - l]qu (f:2) r},

Because by hypothesis f is not a constant in Mg, it follows ||Lq (f; z)”r > 0. Indeed, assuming

the contrary it follows that L, (f;z) = O forall z € Mg, that is

o 1 0o m—1

R
m=1 m=1 =1

. - ! m m—1

5(11 +a; + mZ:; [5 (m+ 1) ape — ap + apy ; [j]q —dm = [j]q =0

forall z € MR\ {0}. Thus a,, =0, m = 1,2, 3, ... Thus, f is constant, which is contradiction with

the hypothesis. m
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Now, by Theorem 3.3.3 we have

[n+1],

ng (f32) =

L,(f;2)

1

[n+ 1],

[n+1], 14
[nl, [nl, &

)2 2m

|| m? (m — " —0 as n—o

Consequently, there exists n; (depending only on f and r) such that for all, n > n; we have

L, (f: 2|, = [n + 11,

Kug(f32) = f (@) - Ly (f32)

[n+ 1],

which implies

&

+1] 2” L,(f:2), . foralln>n.

For1 <n <n;—1, we have

[re® > M+HAM+”qKq )
1
= M., 0,
b g, e ) >
which finally implies that
1K, SATFuTy Crq (),

for all n, with C,., (f) :min{ M, (f), ... M, - 1(f)

)
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Chapter 4

APPROXIMATION THEOREMS FOR COMPLEX
SZASZ-KANTOROVICH OPERATORS

In this Chapter, we investigate the order of approximation and quantitative estimates of the
convergence for the new type complex Szasz-Kantorovich operators. Morever, Voronovskaja-
type results with quantitative estimates for the new type complex Szasz-Kantorovich operators

attached to analytic functions on compact disks.

4.1. Construction and Auxilary Results
In this section, we introduce new type complex Szasz—Kantorovich operators. For f € H (M),
we assume that f(2) = 3, a.2". New type complex Szdsz-Kantorovich operators defined as

follows;

Definition 4.1.1 For f € H(My), z € C and n € N, we define the following Szdsz—Kantorovich

operators

n+

1
[e) j .
Kn(f;z):e-"zz(”Tz‘)ff(”i)dz @.1.1)
Jj=0 ) 0

where j € N.

If f is bounded on [0, o) then it is clear that K, (f; z) is well defined for all z € C . To investigate
approximation properties of Szdsz-Kantorovich operators, we need to several lemmas. First
lemma gives formula for K, ,(e,; z). Using this formula, we can easily calculate the value of

Kn,q(em; Z)-
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Lemma 4.1.2 Foralln € N, m € NU{0} and z € C, we have

where e, = 7".

K, (em; Z) = (

n(ex; 2)

m k
m n
-kDm;;(kln—k+lS

Proof. The recurrence formula can be derived by direct computation:

Then

K, (en;2) =

CERRE)

" d
t
el R m+1D)"(m-k+1)

jf

j=0

- Wﬂif

jk

By nt R <nz>f(
=i mn+D"m-k+1) = J!
1 2| om nk
Salex;
e+ D" &l [m—k+ D) (€ 2)

60
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K, (en; z)| is bounded by (2r)™ in the disc of radius r > 1.

4.1.2)



Lemma 4.1.3 For all z € C we have

K, (e;2)| < 2r)™", meN.

S, (ej;z)‘ < (2 from [13] p. 115, we get

Proof. Indeed, using the inequality

m

m n
Ky (e 2)| < Z N Ir——— |Sn(€j,Z)|
=0\ J
< 1S nlem: 2)|
< (zr)m
n
Lemma 4.1.4 We have
K =1, Ky(er:)=—+ "
nl€0;2) = 1, n\€152 _2(I’l+1) n+1Z’
1 2n n’
K, (e2;2) = s+ ST+ =2,
3(n+1) (n+1) n+1
1 n—1 1,

— 2' = ’
K, ((el ze0) ’Z) 3(n+ 1) ’ (n+ 1)2Z+ n+

61

(4.1.3)



Proof.

1
n+1)° ~
= Sn(eO;Z) = 1,

Kn (60; Z)

NE

0 nk
(k)msn(ek,Z)

1 (1) #
Kn(el,z) = (I’l+1);(k)msn(€k,z>

1 n
= Sn 5 Sn S
T DT Saend)
B 1 N n
T 2+l o+l
2
1 2\ nf
K, (es; = —S.(ex;
(239 (n+1)2k22;4(k)3—k (6x:2)
1 2n
= —8,(ep;2) + S.er;z
T D D e d)
n2
+— S .(erz
(n+1)>° (€9
1 2n n?

+ zZ+ zZ,
3n+1? m+1)? (nm+1)?

K, (e2;7) — 22K, (e1;2) + 2°K,, (e0; 2)
1 2n n

3(n+1)° i (n+ 1)2Z+ (n+ 1)2Z

1 n
-2 + + 72
Z(2(n+1) n+1z) ¢
1 n—1 1,
2+ 2Z+ ZZ
3(n+1) n+1 (n+1)

K, ((61 - 260)2 ;Z)

The third lemma gives recurrence formula for K, (€,,11;2) -
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Lemma 4.1.5 Foralln,m € N and z € C, we have

Koeniid) = K, (e:2) + 2K, (€i2) (4.1.4)
1 e+ 1 n’ 1 j
+ m , - (ej;z)
(n+1) = j m—-j+2)\n+1 @m+1)n

Proof. We know that, (see [13] p. 115)

S, (ej:z) = -nS,(e): )+ =S, (eje1:2) (4.1.5)

Taking the derivative of the formula (4.1.2) and using the above formula (4.1.5), we have

: 1 S| m n :
K, (en;2) = " Z ' m Sn(ej;Z)

_nSn(ej;Z)+{7lSil(ej+l;Z)
J

1 & m
:(n+1)'"Z N m—j+1)

(-nS , (es: )+ =S, (eu1:2))

=0\ J
, n 1 S| om n’
K,(en;2) = - —S.lej1s
n (en32) z(n+ )" & i (m—j+1) (e’“ Z)
1 "l m n
BTG ]Z; j Jm=i+D>" Sn(es:2)
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1 m+1

Z m n’ !
_Kn (em;Z) = m —.Sn €;,3) — ZKn(em;Z)-
n n+1) ; i-1 (m—-j+2) (J )

0= %Kn (em; 2) + 2K, (em; 2)
1 m+1 m I’l"_l
- —FS, e
(n+1)’"; -1 (m—j+2) (ejz)

It follows that

Z
K, (en+1:2) = ;Kn (em;2) + 2K, (em; 2)

1 AL 7T | ni
+ —FS5,lej;z
(n+1)m+1; . |m=-j+2) (J)
J J
1 m+l1 m nj_]
- — —S,lej;z
n+1) JZ:; i-1 (m—j+2) (’)
Ky (emi2) = 2K, (em:2) + 2Ky (e 0) + —— )
n (€m+15 = - €m; n €m; <
+H L= 0 B kEm T T 2 T (1 2)
1 ™l m+1 n 1
+ : -
(n+1)mj:1 F (m—-j+2) {n+1 (m+1)n

Z ’
K, (em+1;Z) = ZKn (em; Z) +zK, (em; Z)

1 "™l m+1 j 1
| AR I R
(n+1)mj:0 . m-j+2) \n+1 (@m+1)n

J
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Here we used the identity

m Define

(m2 - 2mz) 7!

E,n =K, (en;2) — ey - 4.1.
m(2) (€m;2) — en (2) T D) 4.1.7)
Lemma 4.1.6 Let n,m € N, we have the following recurrence formula
m—1
Epn (@) = = (Ky (e1:2) = et Q) + 2Bt () + 7!
n nn+1)
1 -t 1, N 1 N[ om n’
20+ Tarl” e &| S Jm=-jeD)
J
_ 1____}5,1 : 4.1.8
{ m mn (e’ Z) ( )

Proof. It is immediate that E,,, (z) is a polynomial of degree less than or equal to m and that

En,O (Z) =0.
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Using the formula (4.1.4), we get

Z ’
En,m (Z) = ZKH (em—l 5 Z) + ZKn (em—l 5 Z)

(n+1)m1jZ] = j+1)'(n+1_%)5”(ej’z)
m (Wl2 - ZmZ)
I TCES VI
Er @ = £ (K (o139 = 0 @) + (2
((n—1°=2(m - 1)z)z"!

m—1

+ ZEn,m—l (Z) + 7"+

2(n+1)
e S| e (- s
m (m2—2mz) m—1

m-—1
Zm—l+

Epp () = § (K (m-132) — emt (2)) +

(=17 =20n-1)z)z""  (m®-2mz)

+zE, o1 + -
“Enm-1 2n+ 1) 2n+ 1) °
1 | om n’ 1 j
+— - —|S5,le;
(n+ 1)™! JZ:(; j (m—-j+1) (n +1 mn) (ej Z)
Z , m—1,_
En,m (Z) = Z (Kn (em—l;z) — €m-1 (Z)) + ZEn,m—l + e !
((m —1)?=2zm - 1) —m? + 2mz)
+ m—1
2(n+ 1)
Z ’ -1 m—
En,m (Z) = ; (Kn (em—l;Z) — €m-1 (Z)) + ZEn,m—l + Z !

(m—1)* — m? m 7"

+
2+ 1) T+l
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< ’
En,m (Z) = lTl (Kn (em—l 5 Z) — €m—1 (Z)) + ZEn,m—l

+(2n +2Y(m—-1)+m—-1)n—-—m’n
2nn+ 1)

(”+1)m1]21 ;| m - J+1)(n+1_%)5”(ef’z)

m—1

2m—n-—72

En,m (Z) = E (Kn (em—l;z) —€m-1 (Z))I + ZEn,m—l + —Zm_l
n 2n(n+ 1)
m m ; 1 ]
_— Sn s
(n+1) IJZ: . | (m— ]+1)(n+1 mn) (ef Z)
1

m

+ Z
n+1

Z ’
En,m (Z) = Z (Kn (em—l 5 Z) — €m-1 (Z)) + ZEn,m—l + n

1 m—1 m

- +
2(n+1)Z S

(n+1) IJZ (m — J+1)(n+1_%)5"(ef’z)

which is the desired recurrence formula. m

4.2. Convergence Properties Of K,
In this section, we investigate the quantitative estimates of the convergence for complex Szasz-
Kantorovich-type operators attached to an analytic function in a disk of radius R > 1 and center

0.

Theorem 4.2.1 Let f € H(My) and f : [R, o) U Mg — C be bounded on [0, c0). If 1 < r < &,
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then for all |z| < r and n € N we have

[0e]

Ka (i~ F OIS 5 Y el mm+ D) 2" (42.1)

m=1
Proof. Using the recurrence formula (4.1.4) we obtain the following relationship:

Ky(em2) —en (@) = gK,; (m-132) + 2 (Ky (em132) — €m-1 (2))

" 4| [ gD
J o
-4 —}S,, :2). 422
{ m mn (e] Z) ( )

Jj=0 ]
B 1 mZ_l m—1 m n/ ’1 Jj o g ( )'
< — - - nl€js
(n+ 1" = j m—jm—j+1 m mn e
nm—l
+ S (em;
a1y emd)
2m(n+ D)™ 4 ! 2m + 1
< 21" < 2r)"
= n+ 1) @' s =7 @n

It is known that by a linear transformation, the Bernstein inequality in the closed unit disk

becomes

[P, @] < ZIPul,, forall i <r r>1,
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where P, (z) is a complex polynomial of degree < m. From the above recurrence formula

(4.2.2), we get

Kug(en;2) — €, (2)|

(I
< l; K, (€m—1§Z)| + 12| |K, (em-152) — em—1 (2)]
Cm+1)
- 22N™
L— (2r)
rm-—1
<= 1K, (em-DIl, + 71Ky (€m—152) — €m1 (2|
N Cm+1) 2r)"
+1
-1 2 1
< m=1) Q)"+ @m+ 1) 2"
n n+1

t+r |Kn (em—l;z) — €m-1 (Z)I

3m
< 1 |Kng (en12) = emy @] + == 20"

Writing the last inequality for k = 1, 2, ..., we easily obtain

m m—1
KntewD—en@l = Z3msrE030n 1)
m-2
LG LR IC R
n n
= 3(ir) m+m-1+..+1)
g ImmED o, 4.2.3)
2n

Since K, (f : z) is analytic in Mg, we can write

(9]

Ki(f:2) = ) anKalen;2),  z€ Mg

m=0
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which together with estimate (4.2.3) immediately implies for all |z| < r,

(o) (o)

IKa(f32) = FI < D lanl [Knen; D) = en(2)] < %Z | mim + 1) 2r)".

m=0 m=1

4.3. Voronovskaja Type Results of K,

The following theorem gives Voronovskaja type results in compact disks for complex Szasz-

Kantorovich operators attached to an analytic function in Mg, R > 1.

Theorem 4.3.1 Let f € H(My) and f : [R,00) U Mg — C be bounded on [0,00). If 1 <r < &

then for all |z| < r and n € N, we have

z(1 -
2(n+1)

ng (f32) = f(z

f"()

; Z @l m (m = 1) 2r)".
m=2

Proof. A simple calculation and applying the recurrence formula (4.1.4) leads us to the follow-

ing relationship

m—1
En,m (Z) = E (Kn (em—l 5 Z) — €m—1 (Z))’ + ZEn,m—l (Z) + Zm_l
n nn+1)
o T
- T+ " — " Sn ms
e it eyt Snlemd)
m—2 nm—l
T A 1 _1Sn ms +—Sn m—15
2(n+ 1)'"(’" WSnlenid) + o ynsn en-132)
m—2 j ]
l-=- _}Sn is
(n + 1) j (m j+ 1 { m mn (ej Z)
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Then

Ep (2) = fl (K (m-132) = €mt (2 + 2Epmr (2)

m—-1 1 1 n"™!
" m_Sn m; 1_—Sn m;
Paman taan @ TSt Z))+n+1( m+DWJ (en32)
= 1) S (enatiD) + — (S eprid) — ")
———— m—1)S, (en-1:2) + 57— (S (en-132) -
2(n+1)" YT LY=L
1 nm—l )
- 1_ Sn em—;z)
2<n+1>( e yt) e
m-2 m . .
joo
L—————}&,~;
(n+1)m | (m— ]+1){ m mn (e] Z)
=0\ J
9
Z:ZIk.
k=1

From the proof, we use Theorem 1.8.4 of [13],

6(m-1
2" =S, (em; 2| < % @n™!

It follows that

1
L] < — " — n (€ms
|4|_n+1lz Sn(ems 2|

<6W—DQNH
- nin+1)

2

and

I < m—1 _Sn 1)
|7|_2(n+1)|z (€m-152)|

<3m—mamﬂ
N nn+1)
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Applying the inequality

j=1 j=1
we have
nm—l
5| < 1 - Sn ms
Iﬂ_n+1( M+DWJ|(6ZN
m-—1
< @™,
(n+1)»>*
and

1 nm—l
Is| < (1 )ISn (€m-152)|

2+ D\ (n+ 1!
m-—1
2 m—1
= 2(n+l)2( )

For Iy, we have

E| om-2 m(m — 1) n’ Jj o
'Igls(n+1)mjz:;‘ j (m—j)(m—j—l)(m—j+1)‘1_;71_%‘ S"(ef"z)‘
2mm—1)(n+1)"2
= TEE @n
2m(m — 1) m—2
—
: (n+1)>° )
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Thus

Epm )|
< 2 |(Kn (€m-152) = em-1 (Z))/| +r En,m—l (Z)|
m—1 m—1 6(m ) m— 1
+n(n+1)r +n(n+1)( ) (n )(2)
e Ly 3(m—2)(2r)"?
2 (n + 1) nn+1)
m— l zm(m 1) m—2
— (2
2(l’l+1) ( ) (I’l+1)2 (l”)
Then
Epm (2|
L ITm= 13m(m—1) QA" + r|Epps (z)|
n r 2n
8m(m — 1)
2 m
T
132
< r[Eer @]+ D oy
132
<r En,m—l (Z)| + w (2;/-)’”
n

As a consequence, we get

_ 3
En @] < 22y

Note that since f@ = ¥*_, a,m(m — 1) (m —2) (m — 3)z"* and the series is absolutely con-

vergent for all |z| < R, it easily follows the finiteness of the involved constants in the statement.
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As an application of Theorem 4.3.1, we present the order of approximation for complex g-

Kantorovich operators. m

Theorem 4.3.2 Let f € H(Mg) and f : [R,c0) U My — C be bounded on [0, o). If1<r< §

and if f is not a constant function then the estimate

1
1K, () = fll. =2 ~C.(f), neN

holds, where the constant C, (f) depends on f and r but it is independent of n.

Proof. For all z € My and n € N we get

L2 () + 27 (2)

K, (i)~ f @) =
’ i ) (K,, (f;0-f@-52f(2) - ﬁf"(z))

We apply
IF+ Gll, = IFIl, = 1G] = IFll, = Gl

to get

=21 @+ 5@,
~[r(ki - r@-2r@- 51 Q)

S | =

1Kx (f) = fll, 2

Taking into account that by hypothesis f is not a polynomial of degree 0 in Mg, we get ||e;(1 —

e f” —ef'll- > 0.
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Indeed, supposing the contrary it follows that (1 — 2z)f"(z) + zf"'(z) = O for all |z] < r, that is
(zf' (2)) — 2zf"(z) = O for all |z| < r. The last equality is equivalent to zf"(z) = Ce* for all
|zl < r with z # 0. Therefore we get f'(z) = Cﬁ for all |z] < r with z # 0. But since f is
analytic in M,, we necessarily have C = 0, which unphes f'(z)=0and f(z) =cforall z € M,

a contradiction with the hypothesis.

Now, by Theorem 4.3.1 we have

(1 21)

f()——f(z)

Z|am|m<m—1> @r)" 50 as n— o.

m=2

Consequently, there exists n; (depending only on f and r) such that for all n > n; we have

(1 - 2Z) ’ Z i . (1 - ZZ) ’ Z ’”
15 f(z)+§f(z)r—n(n - B )‘
1(1-2
STESRM
which implies
1 |(1-=272) ,
||Kn(f)—f||,22—H( Z)f(z)+Z for all n > n,.
n 2

For1 <n < n;—1 we have

1K (f) = fll, = — (nllK N -1 = Mrn(f)>0
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which finally implies that

1
1K (F) = Al 2 = Cr ()

for all n, with C, (f) = min {M,; (f) . ... Mr2t (). 3| S52F @ + 57 )

) =
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Chapter 5

APPROXIMATION THEOREMS FOR COMPLEX
SZASZ-KANTOROVICH OPERATORS IN COMPACT DISKS, ¢ > 1

In this chapter, we introduce the new type complex g—Szasz—Kantorovich operators (¢ > 1) and
investigate qualitative and quantitative Voronovskaja-type results and the exact order of approx-
imation for the new complex g—Szasz—Kantorovich operators attached to analytic functions on

compact disks.

5.1. Construction and Auxilary results
In this section, we introduce new type complex g—Szisz—Kantorovich operators, ¢ > 1 and
some auxiliary results for this operators. The proof of the main results stated in the next section

require the following auxiliary lemmas.

The complex g—Szdsz—Kantorovich operators in the case g > 1, defined as

Definition 5.1.1 For f € H(Mg), g > 1 and n € N, we define the following complex q—Szdsz—

Kantorovich operators

oo [n]zj 1 1 qljl, +1
Kug(f:0 = ) eq(~Inlyq7'z ([j]qq!) q’“z”ff( [n-Zl] )d;, (5.1.1)
0

j=0

where j € N and z € C.

If f is bounded on [0, +c0) then it is clear that K,, ,(f; z) is well-defined for all z € C.
Lemma 5.1.2 Let g > 1. Foralln e N, m € NU{0} and z € C, we have

m

) 1 m\ " [n]l,; _
Kn,q (em;2) = [+ I]Z g ( )mSn,q(ek,z) (5.1.2)

where ¢,,(z) = 7".
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Proof. The recurrence formula can be derived by direct computation. Indeed,

¢ [nl;
[+ 17 (m—k + 1)

(1), Z)j 1

JU=1D

eq (_ [n]q qJZ)

Sn,q(ek;z)
1 Zml m | g nl,
[n+ 117 m-k+1)

This proves the lemma. =

Also we have:
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Lemma 5.1.3 Forall z € C we have

Kuq(em:2)| < (2gr)", meN, (5.1.3)

Proof. Indeed, using the inequality |S,,, (e i z)' < (2gr)’ (see relation (6), p. 1788 in Mahmudov

[27]), we get

m

i 71/
Kn,q (em;Z)| S 1 Z " M

e+ 1l | j Jm—Ji+D Sna(e2)
< |8 qems 2)| < 2gr)™
which proves the lemma. m The next result is immediate.
Lemma 5.1.4 We have
1 qnl],

K, ;00=1, K, 32) = + ,
q(€032) q(€n?) 2in+ 1], In+ll,

I 2qinl, ¢
2 + 2Z+ 2%
3[n+1]q [n+1]q [n+1]q
1 ZQ[n]q_l 1 2
>+ 7 <t 2% -
3[n+1]q [n+l]q [n+1]q

Kn,q (62; Z) =

Kmq ((61 - 260)2 ;Z) =

Also, K, ,(e,; z) 1s a polynomial of degree m in z.

The following recurrence formulas in Lemma 5.1.5 and Lemma 5.1.6 hold.
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Lemma 5.1.5 Foralln,meN, z € Cand g > 1, we have

Z
Kn,q (em;2) = _DqKn,q (em-132) + 2K, .q (em-132)

[n],
1 | m| 4l
+[n+1];"kz(; ke
ko ok
.{1 T }S,,,q(ek;z). (5.1.4)
q

Proof. We know that (see Mahmudov [27], p. 1788, the first relation just after relation (6) there)

Sn,q(ek+1;z) —D an(ek,Z)+Zan(ek,Z)
q

[n ]

Taking the derivative of the formula (5.1.4) and using the above formula we have

m—1 k
z 7],
_DqKn,q (em-132) = ( )

[n], [n+ 1]'" [n+ 1"

— 2
1 - 1\
! ( l)q 15 (erar:2)

[n+1]'"l -k

S (m - 1\¢ [nl}
n+1]’"12( ) ¢ Sn (e

1

Kn,q (em-1:2)

1 m m—1 kl[]k—l
o, Do om0 = [TZ( gt

ZKn,q(em—l s Z)
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It follows that

Kn,q (em;2) = _DqKn,q (em-1;2) + ZKn,q (em-1:2)

[n],

1 o mo| gt ng
+ —S., ;
[n+1]'anz(; o | ionales?
m _ k 1[ ]l; 1
—Sn ;
"+1]m1kZ‘ k1o (@)

—D an(em 152) + 2K, ,q(emfl;Z)
T ]q

1 | m

g [nl; kln+1], .
+[n+1]g1kz(; K m—k+1{1_ mq nl, }Sn,q(ek,z)

Here we used the identity (',:’__1) = (’l’:) . ﬁ ]

Define

1 - ZZ -1
En,m (Z) = Kn, (em; Z) — €n (Z) - mzm
g 2[n],
m-1 C[Zm 1
- I, (5.1.5)
— [n],
Lemma 5.1.6 Let n,m € N and g > 1. We have the following recurrence formula
En,m (Z) - [ ] D (K (em l»Z) €m-1 (Z)) + ZEn,m—l (Z)
q
(1-22) ., 1 Z’": m | 4"[nl;
2, ~ ALl |mok+
k k
1= ——— S (e 2). (5.1.6)
m  mqln],)
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Proof. It is immediate that E, ,, (z) is a polynomial of degree less than or equal to m and that

E,0(2)=0

Using the formula (5.1.4), we get

E,n(2) = ﬁ (D, (K (€n132) = en1 ) + Dy (7))
q

+ ZEn,m—l (Z) + (1 _ ZZ) (m - I)Zm_l + 2z
2[n],
gz (1-22) mz™!
k
+ Z[ ]q l, 20,
1 & m| 4l k k _
T p | mokeT = gl S
m=1 qzm—l
-7"= ) [k]
kZ::‘ “ Inl,
Then
-1
En,m (Z) _D (K (em 19Z) €m—1 (Z)) + uzm_l
[ ]q [n]q
(m—1)(1-27)7"" &5 gl
+ 2Bt + 2l kZ 1k, % o
_ (A =29mz"! -1y - 1
2[n]q Z:‘ 1 [n]q [n+ 117

X (m q[n k k
M e {1 ) e

which is the desired recurrence formula. m

5.2. Convergence Properties of K,, ,

Upper estimates in approximation by K, ,(f;z) and by its derivatives can be stated as follows.
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Theorem 5.2.1 Let 1 < g < ’—; and suppose that f : Mg |J[R, +00) — C is continuous and

bounded in Mg UIR, +0) and analytic in Mg, namely f(z) = >.,>_o an2" for all z € M.

()If1 <r< 25, then for all |z| < r and n € N, we have
(5.2.1)

3 (o]
Kug (i)~ f Q@] < 3 o ; il m (m + 1) 2gr)"

(i) If1 <r<r < % then for all |z| < rand n, p € N, we have
IC,
p'Cr(f) (5.2.2)

n]q(rl - r)p+l

KP (fi2) - [P (2) < [

where
3 = m
Cn(H) =3 ; | m (m + 1) Qqr1)" < 0.

Proof. (i) From the use of the recurrence formula in Lemma 5.1.5, we obtain the following

relationship
Z
€m (Z) = _Dq (Kn,q (em—l ; Z))

[n]

(K q(@n-1;2) — em_i (Z))

1 Z’": m | ¢ nl;
K |m- k+1
(5.2.3)

Kn,q (em; Z) -
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We can easily estimate the sum in the above formula as follows:

1 N omo| gt Inly k k
[n+1]Z’; k m—k+1{ _Z_mq[n]q}sn,q(ekaZ)
1 e m -1 m [n]'; K I
" - Snq(€r:2)
[n+1]q ; k m—rkm—-k+1 m qm[n] q \€k |
[n]) " g
+ W*gnq (em, Z)
(1 g7 mbn+ 107"+ 00y
< (2qr)"
[n+ 1]?
2m+1
= 2qr)" 5.24
~[n+ 1], (297) ( )

It is known that by a linear transformation, the Bernstein’s inequality (for polynomials) in the

closed unit disk becomes

P, (Z)| <z IPully» forall |z <gqr, r>1,
qr
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Where (lle @y = max {|P, (2)| : 2| < qr}) is a complex polynomial of degree < m. From the

above recurrence formula (5.2.3), we get

2]
Kn,q (em;2) —en (Z)| < m |DqKn,q (€mn-1; Z)| + 2] Kn,q (em-1;2) — em_i (Z)|
q
2m+1)
+ —— (2qr)"
[n+ 1],
r m—1
Kn,q (ema Z) —€n (Z)| < @7 Kn,q (em—l)”qr +r Kn,q (em—la Z) — €m-1 (Z)|
N 2m+1) Q2qr)"
[n+ 1],

(m—1) (2gr)"™"
[n], q

Kn,q (em—l;z) — €m-1 (Z)| +

Kn,q (em; Z) —€n (Z)| <r

2m+1)
+ F——
[n+ 1],

|Kn,q (em; Z) —€n (Z)| <r

(2qr)"

(2gr)"
[n],

Kpg(n132) = ey (@) + (m =1 +2m + 1)

(2gr)"
[n],

Ky (€n_132) — eyt (2)| + 3m

Kn,q (em; Z) —€n (Z)| <r

By writing the last inequality for k = 1, 2, ..., step by step we easily obtain, the following

m m—1
Ky (eni2) — en @l < m@+ ) L 4 p(m— 1) 2 + g) 222
[n], [n],
m—2
FPm-2Q+ 8 D o
[n], [n],
_ GO o mam—1 < D o (525
[n], 2[n],

Since K, , (f;z) is analytic in Mg, we can write

(o8]

Kn,q (fa 7) = Z amKn,q (em;2), z€M,.

m=0
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Indeed, for this purpose, for any m € N let us define

m

ful2) =Y 2l if 12l < rand f,,(x) = f(x) if x € (1, +00).

J=0

From the hypothesis on f it is clear that for any m € N it follows |f,(x)| < C,,,, for all x €

[0, +00). This implies that for each fixed m,n € N and z,

([n]qlzl)j 1

TR

1Kng ()@ < oy Y leg(=[nlyg7/2)

J=0

(o¢]

since the last series is convergent (for fixed n and z). Therefore K, ,(f,,)(z) is well-defined.

Now, denoting

J ()

Jmi(2) = crer(z) if |z] < rand f, 1 (x) =
m+1

if x € (r, ),

It is clear that each f,,  is bounded on [0, c0) and that f,,(z) = Y., fux(2). Since from the

linearity of K, , we have

Kng(fa)@) = D ciKng(e0)(2), forall o] <,

k=0

It suffices to prove that lim,,_, K, ,(fn)(z) = K, 4(f)(z) for any fixed n € N and |z] < r. But

this is immediate from lim,, e ||, — fll, = 0, from ||f,, — flla0.+00) < llfw — fl; and from the
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inequality

A

|Kn,q(fm)(z) - Kn,q(f)(z)l = Mr,n ’ ”fm - f”B[0,00)
Mr,n”fm - f”r

IA

valid for all |z| < r. Here || - ||j0.+~) denotes the uniform norm on C[0, +o0)-the space of all

real-valued bounded functions on [0, +00).

In conclusion, together with (5.2.5) immediately implies for all |z] < r

Kug(em;2) — € (2)]

IA

Kuq(f:2) = f ()

[se]
> lan
m=0

3
21(nl,

IA

D lawlm (m + 1) (2gr)"
m=1

(ii) Denote by vy the circle of radius r; > r and center 0. For any |z| < r and v € y, we have

|[v —z| > r; — r and by the Cauchy’s formula, for all |z| < r and n € N, it follows

|K'(1f7q)(f; 7) — f(p)(Z)| p_‘ fKn,q(ﬁ V) — f(V)dv
%

2r (v —z)pt!
Cr] (f) . p_‘ . 27'”’1
[nl, 27 (rp—r)pt!

Cr1(f) P!’”I

[nl,  (ri — P!

IA
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5.3. Voronovskaja Type Results of K, ,

ForR > g > 1and |z] < §, we also define

1 -
2

D,f(2)-f (2)

27
f @+ =

Lq (f;Z) =

It is not difficult show that

2

[ee)

Ly(fid) =) an- V9@

m=1

m=1

where

m—1

mz

VO(2) = q([1], + ... + [m—11)7"" + 5

(1-22)

with the convention that [1], + ... + [m — 1], = 0 form = 1.

Theorem 5.3.1 Suppose that f : Mg |J[R, +o0) — C is continuous and bounded in Mg | J[R, +0)
and analytic in Mg, namely f(2) = Y_o amz" for all 7 € M.

(i)If1<2¢*<Rand1<r< %, then for all z € M, and n € N, we have

1
Kn,q (faz) - f(z) - @Lq (faZ)

< — i al m (m = 1) (24°r)"

9
[n]q m=2
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(i) Let 1 < g <R. Forany 1 <r < s, we have

lim [n]y(K,.4(f32) = f(2) = Ly(f32)

uniformly in M,, where

(o)

Ly(f;2) = ) an- V(2), 2 € M,

m=1

m—1

mz
2

V(@) = q([1]; + ... + [m = 112" " + (1-22),

with the convention that [1], + ... + [m — 1], = 0 for m = 1.

Proof. (i) A simple calculation and the use of the recurrence formula (5.1.4) lead us to the

following relationship

En,m (Z) = iDq (Kn,q (em—l 5 Z) — €mn-1 (Z)) + ZEn,m—l (Z)

[n],
! ey L q" [} |
+ zq [n]q (Sn,q (em—I’Z) —Z ) - 2q [l’l]q (1 - []’l T I]Zn)Sn’q (em_l,z)
m : 1 q" [nly .
+ 7 [I’l]q (Z - Sn,q (em; Z)) + q[n]q (1 - I+ I]Zl)Sn’q (em; 2)
(n =g [l |
2+ 1 S (€n-132)
1 m—=2 m qk [I’l]]; k K |
* [l’l+1]g1 — m'{l_a_mq[n]q}sn,q(eka@
8
= Z[k
k=1
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By Mahmudov [27], p. 1789, relation (8), we have

|Zm - Sn,q (em; Z)| <

[n],

It follows that

|I3| < Sn,q (em—l;

_
2q [n],
I 20m-1)

2(m—

<
2q[n], [n],
_ m=1 g™

(2

Applying the inequality

we have

m—1 m—1
s — 1o M
2q[n], [n+ 117
< q" " [n])!
2q[n], [n+ 117"
(m—1) m-1
2
< il (2gr)
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Z) _ Zm—1|

(2qr)"™?

Sn,q (em—l 5 Z)|

|
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and

1

qlnl,

2(m - 1) m—1
2
< [n]§ (24gr)

m—1 m—1
" 1 (1_61 [n], )

glnl, " 1!

-1
(m - )(qu)m—l

q

15| <

|Zm - Sn,q (em; Z)|

IA

S nq (€m3 2)|

IA

[n]
and

(m—1)g"2[n])">
2[n+ 117

(m-1) -
2
2[’1]2 (2¢gr)

|17

Sn,q (em—l ; Z)|

Hence

11(m-1)
—

q

L] + || + |Is] + |Is] + |I7] < (2gr)™!

For I3, we have

o2 m-2 m(m—1) q" [nl;
|18|<m2[ ](m—k)(m—k—l)(m—k"‘l)

q k=0 k
.{1—5— a }<2qr)m
m  gmln],
2m(m—1)[n+ 1107 2m(m— 1)
2 m
= TESF (2qr)" < ]2
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Therefore,

|Ewm 2)]
< n_r]qu (Kn,q (em—l;z) — €m-1 (Z)) | +r En,m—l (Z)l
q
11 (m—-1) me1 . 2m(m—1) m
Ay () — 2

21 2gn)™ + il (2qr)

r m-1
Sl e g @n-132) = €n1 D],

ll(m—l) m—1 2m(m—1) m

Enm— — 2 —— 2

+ 7 |Epn-r (@] + 2 InF 2gr)"" + i (2gr)
—1)? m
<r Enm—l (Z)| 3m(m ]2 ) (2 ? )
q
15m(@m—1) m
21l (2qr)
9m (m — 1)2 2\
= Enm—
<r 1 (Z)| [n]é ( )
which implies
p— 2 m
<r En,mfl (Z)| + M (2q27’)

[n]]

As a consequence, we get

< O9m (m - 1)3 (Zqzr)m

Note that since f¥(z) = 3°_, a,ym (m — 1) (m — 2) (m — 3) z"~* and the series is absolutely con-

vergent for all |z] < R, it easily follows the finiteness of the involved constants in the statement.
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(i) Let 1 < r < 5. Since % 4

3 as 1\, 0, evidently that given 1 < r <

t € (0, 1), such that 2q1”r < R. Because f is analytic in M, this implies that

Z |Cl |m4 (1+t)m(2r)m — Z |am| . m4(2ql+tr)m < 0o
m=1

for all z € M,.

%, there exists a

Also, the analyticity of f in Mg implies the convergence of the series ), _, |a,|(m + 1)2(2gr)™,

which means that for arbitrary € > 0, there exists n, such that an"zno w1 laml - (m + 1)?Q2gr)™ < &.

Now, by using the formula for L,(f;z) just before the statement of Theorem 5.2.1 and the

estimate for |E,, ,(z)| in the above point (i), for all z € M, and n > ny, we get

|[n]q(Kn,q(f; Z) -

no

IA

m=1

(@) = Ly(f;2)l

D lanl - 11y (Kyg(en: 2) = en(2) = V()

+ D lanl - (1K glen; D) = 2" + VL)1)

m=ngp+1

IA
[
5

+ 7 lanl - ([n)lKnglen: 2 = 21+ VIO (@)))

m=ng+1

Then

[n]y (K q(f32) =

no

< qZIam

f(@) = Ly(f;2)
9m(m - 1)3’[m]2

2"
q

* Z @l ([n]quq,q(em;z) -2+ VL))

m=np+1
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Note that for the last inequality we used the obvious inequality ¢*" < ¢*[m].

But by the proof of Theorem 5.2.1, (i), relationship (5.2.5), we have

3m(m + 1)
K, A< T L Qar)"
|Kpq(em; 2) — 27| < 20, (2qr)

for all z € M,.

Also, since [1], + ... + [m — 1], < (m — 1)[m — 1], it is immediate that

1+2
|‘/;(1;1)(Z)| < qrm_l(m -Dm-11, + > rmrm‘l

m

(m — 1)2(611’)'"_1 + %mr

IA

Therefore, we easily obtain

D7 lanl - ([n)glKngen: ) = 2" + VL))

m=ng+1
- 3m(m + 1 3
< Dl [%(2@'" +m = 1P(qn" " + Emrm]
m=ny+1
- 3m(m + 1 3
< >l [%(%mm +(m = 1 + Sm| 2qry”
m=ng+1
5 (o)
< 5 2 lanltm+ 17Qgn",
m=ng+1
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valid for all z € M Concluding, for all z € M and n > ngy, we have

n]y(Knq(f32) = f(2) — Ly(f32)]
0 Im(m — 1)*[m]?

< 2 . 9 . 27"
< q ;Iaml ol (2r)
5 [s]
5 laul - (m+ 172gn)"
m=ng+1
no
S m
+ Z lanl - (m -+ 172gr)"
m=ny+1
2 "0
5
+3 Z @l - (m -+ 1*2gr)"
m=ng+1
2 "0
< 2T N aplm
[ ]q m=1
+5 Z lanl - (m+ 1) (2gr)"
m=ny+1
2 "0
— 1+t (2r)
’1 m=1
+ Zl [l - (m -+ 1)72gr)"

I[n]y(Kug(f32) = £2) = Ly(f:2)| < (q e D Z|am| g Q" + 2.

2

9q
——_—— —» (0asn — oo and
(@-D[nl]

Now, since

D lanl - g = Y lay|m (24" < o,

m=1 m=1
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2
For the given € > 0, there exists n, such that (61_19)+t[n]; > an| - mtq+0m . 2ry" < /2 for all

n>n.
Note that n; depends on ¢, ¢ and & while ny depends on ¢, r and &, but both are independent of z.

As a final conclusion, for all n > max{ng, n;} and z € M,, we get

|[ng(Kng(f32) = f(2)) = Lg(f52) < 3e

which shows that

lim [n],(K,.4(f32) = f(2)) = Ly(f32), uniformly in M,.

The theorem is proved. m

As an application of Theorem 5.3.1, (ii) and of Theorem5.2.1, (i), we get the following exact

estimate in the approximation by the complex g-Szdz-Kantorovich operators.

Theorem 5.3.2 Suppose that f : Mg |J[R, +00) — C is continuous and bounded in Mg | J[R, +0)

and analytic in Mg. Let 1 < g < % and1<r< %.

If f is not a constant function in Mg then

1

~ —_—
r

[n],

Kn,q(f) - f

where the constants in the equivalence depend on f, q and r, but are independent of n ;
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Proof. Suppose that f given by f(z) = ., _,a,z" for all z € M, is such that the approximation

order in approximation by K, ,(f) is better than ﬁ, that is ||K,,,(f) — flI» < M[S']’ ,forall n € N,

where s, — 0 as n — oco. This would imply that lim,_,..[n],]| K, 4(f) — fll- = 0.

Then, by Theorem 5.3.1, (i), would immediately follow that L,(f;z) = O forall z € M,, where

L,(f;z) is defined in the statement of Theorem 5.3.1, (i1).

But L,(f;z) =0forall z € M, implies

00 00 m—1
%Z anz"" Zmamz +q ) an ) [l 7" =0
m= m=1 m=2 j=1
%i m+1) a1z —Zmamzm+qiam+1i[]]qzm=0
m= m=1 m=1 j=1

=

a; =0,

5 (m + D apm + qam+1z [/, = maw, m=1
j=1
ma,,

Lom+D+q) [J]
j=1

Ap+l =

for all z € Mg\ {0}. Thus we geta, = 0,m = 1,2,3,...., which implies that f is constant, a

contradiction with the hypothesis.

In conclusion, if f is not a constant function, then the approximation order cannot be better than

ﬁ, which combined with Theorem 5.2.1, (i), implies that the approximation order is exactly

L ] , which proves the theorem. =

Remark 5.3.3 By the obvious inequalities L L< L < q%, foralln € N and g > 1, it follows

[nlq




that the approximation order in Theorem 5.2.1, (i) and in Theorem 5.3.2 is geometrical, namely

qi,, with g > 1.
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