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ABSTRACT

A fourth order accurate matching operator is constructed on a hexagonal grid, for the

interpolation of the mixed boundary value problem of Laplace’s equation, by using

the harmonic properties of the solution. With the application of this matching oper-

ator for the connection of the subsystems, the Block-Grid method (BGM), which is

a difference-analytical method, has been analysed on a hexagonal grid, for the solu-

tion of both the Dirichlet and mixed boundary value problems of Laplace’s equation

with singularities. First of all, BGM is considered on staircase polygons and it is justi-

fied that when the boundary functions outside the finite neighbourhood of the singular

points are from the Hölder classes C6,λ , 0 < λ < 1, the error of approximation has

an accuracy of O
(
h4) , where h is the mesh size. The analysis of this method is ex-

tended to special polygons whose interior angles are α jπ, α j ∈
{1

3 ,
2
3 ,1,2

}
, and for

the Dirichlet problem of Laplace’s equation it is proved that, with the application of

BGM, it is possible to lower the smoothness requirement on the boundary functions

to C4,λ , 0 < λ < 1, outside the finite neighbourhood of the singular points, in order

to obtain an accuracy of O
(
h4). For the demonstration of the theoretical results on

staircase polygons, BGM has been applied on an L-shaped domain for two examples,

which has a singularity at the vertex with an interior angle of 3π

2 , where Dirichlet and

mixed boundary conditions are assumed respectively. The slit problem, which has the

strongest singularity due to the interior angle of 2π at the vertex of the slit, has been

considered on a parallelogram with a slit, in order to illustrate the results obtained on

polygons with interior angles of α jπ, α j ∈
{1

3 ,
2
3 ,1,2

}
. The second example on a par-

allelogram demonstrates the application of BGM on a domain with two singularities as

it is assumed that the vertices with interior angles of 2π

3 are singular points. Solutions
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of the numerical examples are consistent with the theoretical results obtained.

Keywords: Hexagonal grids, Laplace’s equation, singularity problem, block-grid method.
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ÖZ

Laplace denklemi sınır problemleri için, dördüncü derece hata payı olan birleştirme

(matching) operatörü petek düğümleri üzerinde kurulmuştur. Bu enterpolasyon oper-

atörünün kurulumu için çözümün harmonik özellikleri kullanılmıştır. Alt sistemlerin

birleştirilmesinde uygulanan matching operatörü ile Block-Grid metodu (BGM), petek

ağlar üzerinde analiz edilmiştir. Bu metod, tekilliği olan Laplace denkleminin Dirich-

let ve karışık (mixed) sınır problemlerine uygulanmıştır.

İlk önce BGM, iç açıları α jπ, α j ∈
{1

2 ,1,
3
2 ,2
}

olan çokgenler üzerinde incelenmiştir.

Tekil noktalardan belli bir uzaklıkta olan sınır üzerindeki fonksiyonlar C6,λ , 0< λ < 1,

Hölder gruplarından olduğu zaman yakınsaklık hatasının O
(
h4) olduğu kanıtlanmıştır

(h ağ aralığıdır).

İlaveten, BGM’nin analizi özel çokgenler üzerine genişletilmiştir. Bu özel çokgenlerin

iç açıları α jπ, α j ∈
{1

3 ,
2
3 ,1,2

}
, olarak verilmiştir. Laplace’ın Dirichlet probleminin

yaklaşık çözümü için, bu çokgenler üzerinde, tekil noktalardan belli bir uzaklıkta olan

sınır fonksiyonlarının C4,λ , 0 < λ < 1, Hölder grubundan olması ve BGM metodunun

uygulanması ile hata payının yine O
(
h4) olduğu kanıtlanmıştır.

Teorik sonuçların nümerik çözümlemesi için BGM, iç açılarından biri 3π

2 olan L-

şekilli (L-shaped) çokgende uygulanmıştır. Açıları α jπ, α j ∈
{1

3 ,
2
3 ,1,2

}
, olan çok-

genler üzerinde BGM’nin uygulanmasını göstermek üzere, iç açısı 2π olduğundan

dolayı en güçlü tekilliğe sahip olan kesik problemi (slit problem), paralelkenar üz-

erinde çözülmüştür. Yine paralelkenar üzerinde, 2π

3 iç açılı kenarların ikisinde de tekil-

lik olduğu varsayılarak BGM ile Laplace sınır problemi çözümlenmiştir. Elde edilen
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sayısal çözümlerin teorik sonuçlarla uyumlu olduğu sergilenmiştir.

Anahtar Kelimeler: Laplace denklemi, tekil problemi, Block-Grid metodu, petek

ağlar.
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Chapter 1

INTRODUCTION

Elliptic equations are widely used in many applied sciences to represent equilibrium or

steady-state problems. Among these Laplace’s equation, which is one of the most en-

countered elliptic equations, has been used to model many real-life situations such as

the steady flow of heat or electricity in homogeneous conductors, the irrotational flow

of incompressible fluid, problems arising in magnetism, and so on. However, obtain-

ing the approximate solution of elliptic equations is not straight-forward, as generally

singularities are experienced in the domain of definition.

These singularities can be categorised into three different types: angular singulari-

ties, interface singularities and infinity when the domain is unbounded (see [4] and

references therein). Angular singularities, in particular, arise as a result of reentrant

angles in the domain, discontinuity in the boundary functions or having mixed bound-

ary conditions. This leads to a reduction in the order of approximation if the classical

finite-difference or finite-element methods are applied, as the low-order derivatives of

the exact solution become unbounded at the singular points.

The angular singularity is easily demostrated in the example of Laplace’s equation

with Neumann-Dirichlet boundary conditions. Let D = D∪ γ be a closed polygonal

domain, γ denotes the sides of the polygon, and consider the following boundary-value
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problem:

∆u = 0 on D,

∂u
∂υ

= −1
r

∂u
∂θ

= A when θ = 0,

u = B when θ = Θ,

where ∆= ∂ 2u
∂ r2 +

1
r

∂u
∂ r +

1
r2

∂ 2u
∂θ

2 , A and B are constants. The exact solution of this problem

is:

i) u = B−Ar sinθ + Asinθ

cosΘ
r cosθ +∑

∞
k=0 akrαk cosαkθ , where αk =

π

Θ

(
k+ 1

2

)
,

Θ 6= π

2 ,
3π

2 ,

ii) u = B− Ar
Θ
(lnr cosθ −θ sinθ)−Ar sinθ +∑

∞
k=0 akrαk cosαkθ , where αk =

2k+1 when Θ = π/2, αk = (2k+1)/3 when Θ = 3π/2.

As can be seen from the exact solution, the strength of the singularity can be analysed

by looking at the different values angle Θ takes. For instance, the solution is only

analytic when Θ = π/2 and A = 0. In the case when Θ < π/2, it is easy to show that

u ∈C1. However, when π/2 < Θ < 2π, we obtain 1/4 < α1 < 1. Since

∂u
∂ r

= O
(
rα1−1) ,

the first derivative becomes unbounded as r tends to zero and u /∈ C1. Furthermore,

when Θ = 2π, α1 = 1/4 and hence

u = O
(

r1/4
)
,

2



which is the strongest singularity. Similar results are also obtained when we con-

sider Laplace’s equation with Dirichlet-Dirichlet, Dirichlet-Neumann or Neumann-

Neumann boundary conditions.

E.A. Volkov justified in [2] that the smoothness requirement on the boundary functions

can be lowered in order to obtain a second-order approximation using the 5− point

scheme in square grids, on a bounded domain. It was shown that if the boundary

functions belong to C2,λ , 0 < λ < 1, it is still possible to obtain the same order of

accuracy everywhere in the closed domain. Furthermore, A.A. Dosiyev proved in

[3] that when the 9− point scheme is considered in square grids, on a rectangular

domain, in order to acquire an accuracy of O
(
hk) , where h is the step size, k = 4,6,

the requirement of smoothness of the boundary functions can be reduced, and with the

boundary functions belonging to the Hölder classes Ck,λ , 0 < λ < 1, k = 4,6 this order

of accuracy can be obtained.

Clearly, the harmonic functions u(x,y) = r1/α cos θ

α
and v(x,y) = r1/α sin θ

α
, when

considered in a domain with an interior angle of απ, 1/2 < α ≤ 2, do not belong

to C2,λ , 0 < λ < 1. Even in the presence of singularities, E.A. Volkov has proved in

[40] that it is possible to obtain an order of approximation around the singular points,

depending on the interior angles of the polygon. It was justified that when the 5− point

scheme is applied in square grids, for the numerical solution of Laplace’s equation with

Dirichlet boundary conditions, on a bounded domain with an interior angle of απ,

1/2 < α ≤ 2π, α 6= 1, the order of approximation obtained is O
(

h1/α

)
. Similarly, for

the mixed boundary-value problem, O
(

h1/2α

)
is obtained. Hence the approximation

is considerably worse than O
(
h2) .
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Throughout the last century, many methods have been constructed for highly accurate

approximations around singular points (for example [4]-[12] and references therein).

These methods are generally based on four main ideas, the first of these being classified

as Conformal Transformation Methods (CTM).

CTM is based on the idea that “If a domain Ω can be transformed to a simple do-

main Ω∗ such that the Laplacian solutions are explicity obtained, then the harmonic

functions on Ω can also be explicitly obtained”, see [9], [13]. Hence the Schwarz-

Christoffel transformation is applied to polygons with angular singularities, mapping

them onto rectangular domains.

Another set of methods is based on the idea of local refinement, where the domain is

separated into two as the “singular” part and the “nonsingular” part. The “nonsingular”

part is approximated using the finite-difference or finite-element methods, with step

size h. In order to balance the errors in the “singular” part, however, h is taken as a

much smaller value, and the same method is applied as in the “nonsingular” part with

the new value of h (see [10], [11], [14], [35]-[38]).

The singular functions method also provides a basis for the derivation of methods

approximating around singular points. We let

u(r,θ) =
∞

∑
i=1

Dirα i sinα iθ ,

be the solution near the singular point O, where

Di =
2
Θ

r−α i
0

∫
Θ

0
u(r0,θ)sinα iθdθ

4



is the exact solution of the coefficients Di, i = 1,2, ... , where r0 denotes the radius of

the sector separating the singular point. Hence, approximating the coefficients Di, and

applying a transformation of the form

w = u−
L

∑
i=1

D̂irα i sinα iθ ,

where D̂i is the approximation of Di, the singularity can be removed. Usually, the

approximation of one or two coefficients is enough to remove the singularity of the

series u(r,θ) (see [8], [16]).

Finally, Combined Methods are also widely applied for the approximation of elliptic

equations in domains containing singular points. Similar to Local Refinement, the do-

main is partitioned as the “singular” part and the “nonsingular” part. However, differ-

ent methods are applied in the separated parts of the domain, providing the advantage

of using the most suitable method for the subdomain. Nevertheless, special care must

be taken for the connection of subsystems. Some of these methods are given in [15],

[20], [35], [17], [31].

It was commented in [4] by Z.C. Li that “ The ideal numerical methods of the 21st

century should be like the combined methods, where all methods can be employed

together, and integrated in a very harmonious way such that to utilize fully their merits

and also to avoid their shortcomings”. Thus, drawing attention to the significance

of exploring the combination of existing methods, in the improvement of numerical

methods.
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Among many combined methods, the Block-Grid Method (BGM) introduced in [15]

by A.A. Dosiyev, for the solution of Laplace’s boundary-value problem, is considered

as one of the more highly accurate methods, not only for the approximation of the so-

lution, but also for the approximation of its derivatives around singular points. BGM, a

difference-analytical method, is the combination of two methods: the finite-difference

method, which is regarded as one of the simplest methods in realization and is highly

accurate, is applied in the “nonsingular” part of the domain, and the Block Method

(BM), is applied in the “singular” part.

BM was first introduced by E.A. Volkov in [1], and is an extremely accurate method,

which can be used for the numerical solution of Laplace’s boundary-value problem.

The method is based on the approximation of the integral representation of harmonic

functions using rectangular quadrature nodes, inside the finite number of sectors of

disks, half-disks and disks covering the domain. The approximate solution and its

derivatives converge exponentially in proportion to the number of quadrature nodes,

and the method can be successfully applied when the boundary functions are algebraic

polynomials or analytic functions (see [18], [19]).

Therefore, the application of this method only on the “singular” parts of the domain

removes the restriction on the boundary functions to be analytic or algebraic polyno-

mials in the “nonsingular” part, making the BGM more fitting to a wider number of

boundary value problems. In [20], the BGM is applied for the approximation of the

mixed boundary-value problem of Laplace’s equation on staircase polygons. The “sin-

gular” parts of the domain are covered by blocks and are separated from the rest of the

polygon with the use of artificial boundaries, and the remaining parts of the polygon

6



are covered by overlapping rectangles, which are approximated with the use of the

9− point scheme on square grids with step size h. A sixth-order interpolation opera-

tor, called the matching operator, is constructed for connecting all the subsystems, and

thus it is justified that it is possible to obtain sixth order accuracy everywhere in the

polygon, including the “singular” parts. Despite the high accuracy obtained by BGM,

the application of the method was restricted to having square grids in the “nonsingular”

part of the domain and using a staircase polygon.

Hexagonal grids are favored in many applied problems such as dynamical meteorology

and oceanography (see [24]-[26]), due to its wavelike structure. Another advantage of

using hexagonal grids is that eventhough the 7− point scheme on a hexagonal grid and

the 9− point scheme on a rectangular grid both give fourth order accuracy when the

boundary functions are from the Hölder classes C6,λ , 0 < λ < 1, the 7− point scheme

on a hexagonal grid has the computational advantages of having easier algorithms to

implement and requiring less memory space, due to having a 7-diagonal matrix rather

than 9-diagonal.

However, they have not been widely applied in the approximation of the singularity

problem using combined methods, as an interpolation function for connecting the sub-

systems, with the required order of accuracy, did not exist. Moreover, when hexagonal

grids are considered on a rectangular domain, applying the 7− point scheme for the

approximation of near-boundary nodes resulted in some nodes of evaluation emerging

through the side of the domain. Thus, making the use of hexagonal grids difficult on

staircase polygons. Moreover in [22], it was justified by A.A. Dosiyev and S.C. Bu-

ranay that when square grids are used in the “nonsingular” part of the staircase poly-

7



gon, and the boundary functions in this part of the domain are from the Hölder classes

C4,λ , 0 < λ < 1, the application of the BGM still gives fourth order accuracy. Hence,

giving the same order of accuracy as the hexagonal grid, but with less requirement of

smoothness on the boundary functions.

In this thesis, the use of hexagonal grids have been investigated for the solution of

Laplace’s equation with singularities, with the application of BGM, and it is justified

that it is possible to approximate Laplace’s equation by retaining the advantages pro-

vided by hexagonal grids. Moreover, it is justified that in certain type of polygons it

is more advantageous to use the 7− point scheme on a hexagonal grid, rather than the

9− point scheme on a square grid.

In Chapter 2, we derive the hexagonal grid version of the BGM on staircase poly-

gons. Section 2.2 is devoted to the analysis of the 7− point scheme on a rectangular

domain, and in Section 2.3 an interpolation operator, called the matching operator, is

constructed on hexagonal grids with fourth order accuracy, for the connection of the

subsystems within the polygon. With the aid of this matching operator, the hexagonal

grid version of BGM is applied for the Dirichlet problem of Laplace’s equation. It is

justified that it is possible to obtain fourth-order accuracy everywhere in the polygon,

when the boundary functions in the “nonsingular” part are from C6,λ , 0 < λ < 1. The

solution in the “singular” part of the domain is defined as a harmonic function, and

the derivatives of the solution are also approximated in these parts of the domain by a

simple differentiation of this function. It is proved that the errors of the derivatives of

order p, p = 1,2, ..., are O
(

h4/rp−λ j
j

)
, where λ j =

1
α j
, and α jπ is the interior angle

at the vertices of the polygon, α j =
{1

2 ,1,
3
2 ,2
}
.

8



In Chapter 3, the hexagonal grid version of BGM is applied for the numerical solution

of Laplace’s equation with mixed boundary conditions, again on a staircase polygon.

For the approximation in the rectangles covering the “nonsingular” part of the domain,

interpolation formulae are constructed for near-boundary nodes and nodes lying on the

boundary of the sides with Neumann conditions, by using the harmonic properties of

the solution. Furthermore, the construction of the matching operator is extended for

the interpolation of the points near sides with Neumann boundary conditions. Again it

is justified that when the boundary functions in the “nonsingular” part are from C6,λ ,

0 < λ < 1, fourth-order accuracy is obtained everywhere in the polygon.

In Chapter 4, it is proved that the hexagonal grid version of BGM can be extended to

the approximation of Laplace’s equation with Dirichlet boundary conditions on poly-

gons with interior angles of α jπ, α j ∈
{1

3 ,
2
3 ,1,2

}
. Moreover, it is justified that in

order to obtain fourth-order accuracy everywhere in this domain, the requirement for

the smoothness of the boundary functions can be lowered so that when the boundary

functions outside the “singular” parts of the domain are from the Hölder classes C4,λ ,

0 < λ < 1, an accuracy of O
(
h4) is obtained, where h is the step size.

Chapter 5 demonstrates the numerical realization of the theoretical results obtained in

Chapters 2, 3 and 4.

The results of this thesis are presented in [31] and [41]-[44].
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Chapter 2

HEXAGONAL GRID VERSION OF THE BLOCK-GRID

METHOD FOR THE DIRICHLET PROBLEM ON STAIRCASE

POLYGONS

2.1 Description of the Block-Grid Method (BGM)

We define by G a simply connected polygon and denote the sides of this polygon by γ j,

j = 1,2, ...,N, (γ0 = γN), numbered in the positive (counterclockwise) direction, with

γ = ∪N
j=1γ j, and the vertices of this polygon are represented by

.
γ j = γ j−1∩ γ j. These

vertices have an interior angle of α jπ, where α j ∈
{1

2 ,1,
3
2 ,2
}
, i.e. G is a staircase

polygon. Moreover, s is used to define the arclength measured along the sides of this

polygon in the positive direction, where s j is the value of s at
.
γ j, and r j,θ j represent

the polar system of coordinates, measured in the positive direction from γ j, with pole

at
.
γ j.

We consider the boundary value problem

∆u = 0 on G, (2.1.1)

u = ϕ j on γ j, j = 1,2, ...,N, (2.1.2)

where ϕ j are given functions, and

ϕ j ∈C6,λ (γ j), 0 < λ < 1, 1≤ j ≤ N. (2.1.3)

10



In addition, when the interior angle at the vertex
.
γ j is π/2, the following conjugation

conditions are assumed to be satisfied:

ϕ
(2q)
j (s j) = (−1)q

ϕ
(2q)
j−1(s j), q = 0,1,2,3. (2.1.4)

At the vertices
.
γ j, for α j 6= 1

2 , conditions (2.1.4) are not required to be satisfied, more

precisely, the values of ϕ j−1 and ϕ j at these vertices might not be the same. However,

the condition imposed on the boundary functions on γ j−1 and γ j, when α j 6= 1/2, is

that the boundary functions should be given as algebraic polynomials of arclength s

measured along γ represented as

τ j−1

∑
k=0

a jkrk
j and

τ j

∑
k=0

b jkrk
j , (2.1.5)

respectively, where a jk and b jk are numerical coefficients, and τ j−1 and τ j are the

degrees of these polynomials.

Let E =
{

j : α j 6= 1/2, j = 1,2, ...,N
}

denote the set of vertices of G, called the “sin-

gular” vertices. We construct two fixed block sectors in the neighborhood of
.
γ j, j ∈ E,

denoted by T i
j = Tj(r ji)⊂G, i = 1,2, where 0 < r j2 < r j1 <min

{
s j+1− s j,s j− s j−1

}
,

and Tj(r) =
{(

r j,θ j
)

: 0 < r j < r,0 < θ j < α jπ
}
. The function Q j(r j,θ j) is con-

structed on the closed sector T 1
j , j ∈ E. It is required that:

i) Q j(r j,θ j) is harmonic and bounded on the open sector T 1
j ,

ii) continuous everywhere on T 1
j apart from the point

.
γ j, j ∈ E, when ϕ j−1 6= ϕ j,

11



iii) continuously differentiable on T 1
j\

.
γ j,

iv) satisfies the given boundary conditions on γ j−1∩T 1
j and γ j∩T 1

j , j ∈ E.

The function Q j(r j,θ j) with the properties i)− iv) is given in [1] in the form

Q j(r j,θ j) = b j0 +
a j0−b j0

α jπ
θ j +

τ j−1

∑
k=0

a jkrk
jζ jk

(
r j,θ j

)
+

τ j

∑
k=0

b jkrk
jζ jk

(
r j,α jπ−θ j

)
,

(2.1.6)

where

ζ jk
(
r j,θ j

)
=


rk

j
θ j coskθ j+lnr j sinkθ j

α jπ coskα jπ
, sinkα jπ = 0,

rk
j

sinkθ j
sinkα jπ

, sinkα jπ 6= 0.
. (2.1.7)

Let

R j(r j,θ j,η) =
1

α j

1

∑
k=0

(−1)kR

((
r

r j2

)1/α j

,
θ

α j
,(−1)k η

α j

)
, j ∈ E, (2.1.8)

where

R(r,θ ,η) =
1− r2

2π(1−2r cos(θ −η)+ r2)
(2.1.9)

is the kernel of the Poisson integral for a unit circle. It can be easily verified that

R j(r j,θ j,η)> 0, 0 < θ , η < α jπ, j ∈ E. (2.1.10)

Discretization of the integral representation given in the following Lemma, using rect-

12



angular quadrature nodes, is used for the approximation of problem (2.1.1), (2.1.2)

around the “singular” vertices
.
γ j, j ∈ E.

Lemma 2.1.1 The solution u of problem (2.1.1), (2.1.2) can be represented on T 2
j\Vj,

j ∈ E, in the form

u(r j,θ j) = Q j(r j,θ j)+
∫

α jπ

0
(u(r j2,η)−Q j(r j2,η))R j(r j,θ j,η)dη , (2.1.11)

where Vj is the curvilinear part of the boundary of sector T 2
j .

Proof. The proof follows from Theorems 3.1 and 5.1 in [1].

We define the approximate solution in the polygon G by applying a version of the

BGM introduced in [15] (see also [20]).

In order to apply the BGM, two more sectors, T 3
j and T 4

j , are added to the sectors

T 1
j ,T

2
j , with 0 < r j4 < r j3 < r j2, r j3 = (r j2 + r j4)/2 and T 3

k ∩ T 3
l = /0, k 6= l, where

k, l ∈ E. Also, we define GT = G\(∪ j∈ET 4
j ). Below we give an explanation of how the

method is applied on the polygon G.

i) Double sectors T i
j = Tj(r ji), i = 2,3, are used to block the vertices

.
γ j, j ∈

E. Overlapping rectangles Πk,k = 1,2, ...,M, cover the rest of the polygon such that

the distance from Πk to a singular point
.
γ j is greater than r j4 for all k = 1,2, ...,M,

and ∪M
k=1Πk is called the “nonsingular” part of the domain. G\∪M

k=1 Πk is called the

“singular” part of the domain and sectors T 3
j , j ∈ E, cover the “singular” parts, j ∈ E.

ii) On each rectangle Πk, the seven point difference scheme for the approximation

of Laplace’s equation on a hexagonal grid is used, with step size hk ≤ h, h a parameter,

13



and for the approximate solution on T 3
j , j ∈ E, a quadrature formula of the harmonic

function (2.1.11) is used.

iii) The subsystems are connected by the matching operator S4 formed in Section

2.3

iv) Schwarz’s alternating procedure is used for solving the finite difference system

formed for Laplace’s equation on the rectangles covering DT

The application of this method is demonstrated in Figure 2.1, on a staircase polygon

with one singular vertex, where the "nonsingular" part of the domain is covered by four

overlapping rectangles.

Figure 2.1. Application of the Block-Hexagonal Grid Method on a staircase polygon

In order to approximate problem (2.1.1), (2.1.2), the following steps are taken: We

denote by Πk ⊂ GT , k = 1,2, ...,M, fixed open rectangles, whose sides a1k and a2k

14



are parallel to to the sides of G, and G ⊂
(
∪M

k=1Πk
)
∪
(
∪ j∈ET 3

j

)
⊂ G. The sides of

Πk are denoted by ηk, Vj is the curvilinear part of the boundary of the sector T 2
j and

t j =
(
∪M

k=1ηk
)
∩T 3

j .

For the arrangement of the rectangles Πk, k = 1,2, ...,M, it is required that any point

P lying on ηk∩GT , 1≤ k ≤M, or located on Vj ∩G, j ∈ E, lies inside at least one of

the rectangles, i.e. Πk(P),1 ≤ k(P) ≤M, and that the distance from P to GT ∩ηk(P) is

not less than some constant κ0 independent of P. The quantity κ0 is called the gluing

depth of the rectangles Πk,k = 1,2, ...,M.

We introduce the parameter h ∈ (0,κ0/4] and consider a hexagonal grid on Πk,k =

1,2, ...,M, with maximal possible step hk ≤ min{h,min{a1k,a2k}/4}. Let Πh
k be the

set of nodes on Πk, ηh
k be the set of nodes on ηk, and let Π

h
k = Πh

k ∩ ηh
k . We de-

note the set of nodes on the closure of ηk ∩GT by ηh
k0, and the set of nodes on Πh

k

whose distance from the boundary ηk ∩GT of Πk is h
2 by η∗hk0. We also have Π∗hk

denoting the set of nodes whose distance from the boundary ηk1 of Πk is h
2 and

Π0h
k, = Πh

k�
(
Π∗hk ∪η∗hk0

)
. Let th

j be the set of nodes on t j, and let ηh
k1 be the set of

remaining nodes on ηk. We also specify a natural number n≥
[
ln1+κ h−1]+1, where

κ > 0 is a fixed number and the quantities n( j) = max
{

4,
[
α jn

]}
,β j = α jπ/n( j) and

θ
m
j = (m−1/2)β j, j ∈ E, 1≤m≤ n( j). On the arc Vj we choose the points

(
r j2,θ

m
j
)

,1≤ m≤ n( j) and denote the set of these points by V n
j . Finally, let

ω
h,n =

(
∪M

k=1η
h
k0

)
∪
(
∪M

k=1η
∗h
k0

)
∪
(
∪ j∈EV n

j
)
, Gh,n
∗ = ω

h,n∪
(
∪M

k=1Π
h
k

)
.

Consider the system of equations
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uh = Suh on Π
0h
k , (2.1.12)

uh = S∗muh +E∗mh(ϕm) on Π
∗h
k , η

h
k1∩ γm 6=�, (2.1.13)

uh = ϕm on η
h
k1∩ γm, (2.1.14)

uh(r j,θ j) = Q j(r j,θ j)+

+β j

n( j)

∑
q=1

R j(r j,θ j,θ
q
j)
(

uh(r j2,θ
q
j)−Q j(r j2,θ

q
j)
)

on th
j ,(2.1.15)

uh = S4(uh,ϕ) on ω
h,n, (2.1.16)

where 1≤ k ≤M, 1≤ m≤ N, j ∈ E, ϕ = {ϕ j}N
j=1 and

Su(x,y) =
1
6

(
u(x+h,y)+u

(
x+

h
2
,y+

√
3

2
h

)
+u

(
x− h

2
,y+

√
3

2
h

)

+u(x−h,y)+u

(
x− h

2
,y−
√

3
2

h

)
+

+u

(
x+

h
2
,y−
√

3
2

h

))
(2.1.17)

S∗ju(x,y) =
1
7

(
u

(
x+

h
2
,y−
√

3h
2

)
+u(x+h,y)+

u

(
x+

h
2
,y+

√
3h
2

)
, (2.1.18)
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E∗jh(ϕ j) =
1
21

(
2ϕ j

(
y+

√
3h
2

)
+8ϕ j(y)+2ϕ j

(
y−
√

3h
2

))
. (2.1.19)

The operator (2.1.18) and the corresponding right-hand side (2.1.19) are constructed in

the right coordinate system with the axis x j directed along γ j+1 and the axis y j directed

along γ j.

The solution of the system of equations (2.1.12)-(2.1.16) is an approximation of prob-

lem (2.1.1), (2.1.2) on Gh,n
∗ .

Theorem 2.1.2 There is a natural number n0 such that for all n≥ n0 and h ∈ (0, κ0
4 ],

where κ0 is the gluing depth, the system of equations (2.1.12)− (2.1.16) has a unique

solution.

Proof. Let vh be a solution of the system of equations

uh = Suh on Π
0h
k , (2.1.20)

uh = S∗muh on Π
∗h
k , η

h
k1∩ γm 6=�, (2.1.21)

uh = 0 on η
h
k1∩ γm, (2.1.22)

uh(r j,θ j) = β j

n( j)

∑
q=1

R j(r j,θ j,θ
q
j)uh(r j2,θ

q
j) on th

j , (2.1.23)

uh = S4uh on ω
h,n, (2.1.24)

where 1 ≤ k ≤ M, 1 ≤ m ≤ N, j ∈ E. To prove the given theorem, it is necessary

and sufficient to show that max
Gh,n
∗
|vh| = 0. Since the operators S, S∗j and S4 have

non-negative coefficients and their sum is less than or equal to one, by the maximum
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principle (see Chapter 4 in [21]) follows that the nonzero maximum value of the func-

tion vh can be at the points on ∪ j∈Eth
j . From the estimation (2.29) in [33] follows the

existence of the positive constants n0 and σ > 0 such that for n≥ n0,

max
(r j,θ j)∈Tj

3
β j

n( j)

∑
q=1

R j(r j,θ j,θ
q
j)≤ σ < 1. (2.1.25)

Taking (2.1.25) into account in (2.1.23) follows that the nonzero maximum value can

not be at the points on ∪ j∈Eth
j either. Since the set Gh,n

∗ is connected, from (2.1.22)

follows that max
Gh,n
∗
|vh|= 0.

Let uh be the solution of the system of equations (2.1.12)-(2.1.16). The function

Uh(r j,θ j) = Q j(r j,θ j)+β j

n( j)

∑
q=1

R j(r j,θ j,θ
q
j)
(

uh(r j2,θ
q
j)−Q j(r j2,θ

q
j)
)

(2.1.26)

is the discretization of the integral representation (2.1.11) with the use of the composite

mid-point rule. The solution u of problem (2.1.1), (2.1.2), in the “singular” parts of

the polygon G, is approximated with the use of the function Uh(r j,θ j) on the closed

blocks T 3
j , j ∈ E.

2.2 Approximation on a rectangular domain using the seven-point

scheme in a hexagonal grid

Let Π = {(x,y) : 0 < x < a,0 < y < b} be an open rectangle, γ j, j = 1,2,3,4, be its

sides, including the ends, numbered in the positive direction starting from the left-hand

side, (γ0 ≡ γ4,γ1 ≡ γ5), γ = ∪4
j=1γ j stands for the boundary of Π and

.
γ j = γ j−1∩ γ j
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is the jth vertex. We consider the boundary value problem

∆u = 0 on Π, (2.2.1)

u = ϕ j on γ j, j = 1,2,3,4, (2.2.2)

where ∆ = ∂ 2/∂x2 +∂ 2/∂y2, ϕ j is a given function of arclength s taken along γ , and

ϕ j ∈C6,λ (γ j), 0 < λ < 1, j = 1,2,3,4. (2.2.3)

At the vertices s = s j, the conjugation conditions

ϕ
(2q)
j (s j) = (−1)q

ϕ
(2q)
j−1(s j), q = 0,1,2,3, (2.2.4)

are satisfied.

Let h > 0, with a/h ≥ 2, b/
√

3h ≥ 2 integers. We assign Πh a hexagonal grid on Π,

with step size h, defined as the set of nodes

Π
h =

{
(x,y) ∈Π : x =

k− l
2

h, y =

√
3(k+ l)

2
h, k = 1,2, ...; l = 0,±1,±2, ...

}
.

(2.2.5)

Let γh
j stand for the set of nodes lying on γ j and let

.
γ

h
j = γ j ∩ γ j+1, γh = ∪(γh

j ∪
.
γ

h
j),

Π
h
= Πh∪ γh. Also let Π∗h denote the set of nodes whose distance from the boundary

γ of Π is h
2 and Π0h = Πh\Π∗h.
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We consider the system of finite difference equations

uh = Suh on Π
0h, (2.2.6)

uh = S∗juh +E∗jh(ϕ j) on Π
∗h, (2.2.7)

uh = ϕ j on γ
h
j , j = 1,2,3,4, (2.2.8)

where

Su(x,y) =
1
6

(
u(x+h,y)+u

(
x+

h
2
,y+

√
3

2
h

)
+u

(
x− h

2
,y+

√
3

2
h

)

+u(x−h,y)+u

(
x− h

2
,y−
√

3
2

h

)
+u

(
x+

h
2
,y−
√

3
2

h

))
(2.2.9)

S∗ju(x,y) =
1
7

(
u

(
x+

h
2
,y−
√

3h
2

)
+u(x+h,y)+

u

(
x+

h
2
,y+

√
3h
2

))
, (2.2.10)

E∗jh(ϕ j) =
1
21

(
2ϕ j

(
y+

√
3h
2

)
+8ϕ j(y)+2ϕ j

(
y−
√

3h
2

))
. (2.2.11)

From formulae (2.2.9) and (2.2.10) follows that the coefficients of the operators Su(x,y)

and S∗ju(x,y) are non-negative, and their sums do not exceed one. Hence, on the basis

of maximum principle the solution of system (2.2.6)-(2.2.8) exists and is unique (see

[21]).

20



We use c,c0,c1, ..., to stand for constants in the expressions below, which are indepen-

dent of h.

Lemma 2.2.1 Let

v1 = Sv1 + fh on Π
0h,

v1 = S∗jv1 on Π
∗h,

v1 = 0 on γh,

and

v2 = Sv2 + f h on Π
0h,

v2 = S∗jv2 + f ∗h on Π
∗h,

v2 = ηh on γh,

where fh, f h, f ∗h and
_
ηh are arbitrary grid functions. Assume the following inequalities

hold:

_
f
∗
h ≥ 0, | fh| ≤

_
fh and

_
ηh ≥ 0.

Then

|v1| ≤ v2.

Proof. The proof of this lemma follows by analogy to the proof of the comparison

theorem (see Chapter 4 in [21]).
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Theorem 2.2.2 Let u be the solution of problem (2.2.1), (2.2.2) and uh be the solution

of system (2.2.6)− (2.2.8). Then

max
Π

h
| uh−u |≤ ch4. (2.2.12)

Proof. Let

εh = uh−u, (2.2.13)

where u is the trace of the solution of problem (2.2.1),(2.2.2) on Π
h
, and uh is the

solution of system (2.2.6)− (2.2.8). Then, the error function εh satisfies the following

system:

εh = Sεh +Ψh on Π
0h, (2.2.14)

εh = S∗jεh +Ψ
∗
h on Π

∗h, (2.2.15)

εh = 0 on γ
h, (2.2.16)

where

Ψh = Su−u, (2.2.17)

Ψ
∗
h = S∗ju−u+E∗jh(ϕ j) (2.2.18)

are the truncation errors of equations (2.2.6) and (2.2.7), respectively.

On the basis of conditions (2.2.3) and (2.2.4), and from Theorem 3.1 in [27] follows
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that u ∈C6,λ (Π), 0 < λ < 1. Then, by Taylor’s formula, we obtain (see [28])

max
(x,y)∈ Π

|Ψh(x,y)| ≤ c1h4M6, (2.2.19)

where

Mq = sup
(x,y)∈Π

{∣∣∣∣ ∂ qu(x,y)
∂xp∂yq−p

∣∣∣∣ , p = 0,1, ...,q
}
. (2.2.20)

We represent the solution of (2.2.14)-(2.2.16) as

εh = ε
1
h + ε

2
h, (2.2.21)

where

ε
1
h = Sε

1
h +Ψh on Π

0h, (2.2.22)

ε
1
h = S∗jε

1
h on Π

∗h, (2.2.23)

ε
1
h = 0 on γ

h, (2.2.24)

and

ε
2
h = Sε

2
h on Π

0h, (2.2.25)

ε
2
h = S∗jε

2
h +Ψ

∗
h on Π

∗h, (2.2.26)

ε
2
h = 0 on γ

h. (2.2.27)

To estimate ε1
h we use Gerschgorin’s Majorant method (see [29], Chapter 5) by taking
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the function

Y (x,y) = h4c1M6(a2 +b2− x2− y2). (2.2.28)

For Y (x,y), we have

Y = SY +h6c1M6 on Π
0h, (2.2.29)

Y = S∗jY +µh on Π
∗h, (2.2.30)

Y = h4c1M6(a2 +b2− x2− y2) on γ
h, (2.2.31)

where µh =
c1M6h4

7 (4a2 + 4b2 + 3h2 + 4hx− 4x2− 4y2) ≥ 0. On the basis of (2.2.22)-

(2.2.24), (2.2.29)-(2.2.31) and Lemma 2.2.1, we obtain

∣∣ε1
h
∣∣≤ Yh. (2.2.32)

Hence,

max
(x,y)∈Πh

∣∣ε1
h
∣∣≤ max

(x,y)∈Π

|Y | ≤ c2h4M6. (2.2.33)

Now the estimation of equations (2.2.25)-(2.2.27) is considered. By Taylor’s formula

about each of the points (h
2 ,y) ∈Π∗h and from (2.2.18), we have

max
(x,y)∈Π∗h

|Ψ∗| ≤ c3M4h4. (2.2.34)

On the basis of maximum principle, we obtain

max
(x,y)∈Πh

∣∣ε2
h
∣∣≤ 7

4
max

(x,y)∈Π∗h
|Ψ∗h| ≤ c4M4h4. (2.2.35)
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From (2.2.16), (2.2.33) and (2.2.35) it follows that

max
(x,y)∈Πh

|εh| ≤ ch4. (2.2.36)

2.3 Construction of the fourth order matching operator in a

hexagonal grid

Let z = x+ iy be a complex variable and let Ω = {z : |z| < 1} be a unit circle. Using

Taylor’s formula, any harmonic function u on Ω with u ∈C4,0(Ω) can be expressed in

the form:

u(x,y) =
3

∑
k=0

ak Re zk +
3

∑
k=1

bk Im zk +O(r4), (2.3.1)

where (x,y) ∈Ω and r =
√

x2 + y2,

a0 = u(0,0),a1 =
∂u(0,0)

∂x
,a2 =

1
2

∂ 2u(0,0)
∂x2 ,a3 =

1
3!

∂ 3u(0,0)
∂x3 , (2.3.2)

b1 =
∂u(0,0)

∂y
,b2 =

1
2

∂ 2u(0,0)
∂x∂y

,b3 =
1
3!

∂ 3u(0,0)
∂x2∂y

. (2.3.3)

In accordance with the solutions obtained in [15], the fourth order matching operator

is constructed in a hexagonal grid, by assuming that the expression:

S4u = ∑ξ kuk, (2.3.4)
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where uk = u(Pk), Pk is a node of the hexagonal grid Πh, gives the exact value of any

harmonic polynomial of the form

F3(x,y) =
3

∑
k=0

ak Rezk +
3

∑
k=1

bk Imzk,

at each point P ∈Π, and

ξ k ≥ 0, ∑ξ k ≤ 1. (2.3.5)

We use Π0 to denote the set of points P ∈Π such that all the nodes Pk to evaluate S4u

by using the expression (2.3.4) lie in Π
h
, and Π01 contains the points P, where some of

the nodes Pk emerge through the side γ j, j = 1,2,3,4. Furthermore, “grid line” is used

to mean the line connecting two neighbouring grid nodes.

Position 1. The point P ∈Π0 lies on a grid line. We place the origin of the rectangular

system of coordinates on the node P0 and direct the positive axis of x along the grid

line, so that P = P(δh,0), 0 < δ ≤ 1/2, and take the nodes (see Figure 2.2):

P0(0,0), P1(h,0), P2(
h
2
,

√
3h
2

), P3(−
h
2
,

√
3h
2

),

P4(
h
2
,−
√

3h
2

), P5

(
−h

2
,−
√

3h
2

)
.

First, the coefficients λ
′
j, j = 0,1,2,3, satisfying the equation
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Figure 2.2. Nodes used on the hexagon

u0 = λ
′
0u+λ

′
1u1 +λ

′
2u2 +λ

′
3u3 (2.3.6)

are obtained for the harmonic polynomials Rezn, n = 0,1,2,3, where u = u(P) , uk =

u(Pk), k = 0,1,2,3, z = x+ iy. Hence we attain the system

λ
′
0 +λ

′
1 +λ

′
2 +λ

′
3 = 1,

δλ
′
0 +λ

′
1 +

1
2

λ
′
2−

1
2

λ
′
3 = 0,

δ
2
λ
′
0 +λ

′
1−

1
2

λ
′
2−

1
2

λ
′
3 = 0,

δ
3
λ
′
0 +λ

′
1−λ

′
2 +λ

′
3 = 0. (2.3.7)

Solving system (2.3.7) we get
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λ
′
0 =

−µ0
−1+δ

,

λ
′
1 =

(
2δ +δ

3
)

µ0

3(−1+δ )
,

λ
′
2 = −δ µ0,

λ
′
3 =

1
3

(
−δ +2δ

2
)

µ0,

where µ0 = 1/(1−δ +δ
2). We rearrange (2.3.6) for u, thus obtaining

u =
u0

λ
′
0
− λ

′
1

λ
′
0

u1−
λ
′
2

λ
′
0

u2−
λ
′
3

λ
′
0

u3. (2.3.8)

Next we consider the nodes P4(
h
2 ,−

√
3h
2 ) and P5

(
−h

2 ,−
√

3h
2

)
which are symmetric to

the points P2 and P3, respectively, with respect to the x-axis. Since Imzk = 0,k = 1,2,3

for y = 0, and odd with respect to y, and Rezk, k = 0,1,2,3, is even with respect to y,

from (2.3.8) we have

u =
u0

λ
′
0
− λ

′
1

λ
′
0

u1−
λ
′
2

2λ
′
0

u2−
λ
′
3

2λ
′
0

u3−
λ
′
2

2λ
′
0

u4−
λ
′
3

2λ
′
0

u5 (2.3.9)

Hence the fourth order matching operator S4 can be expressed as:

S4u =
5

∑
k=0

λ kuk, (2.3.10)

which gives the exact value of the harmonic polynomial F3(x,y) at the point P, with
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the coefficients

λ 0 = −(−1+δ )
(

1−δ +δ
2
)
, (2.3.11)

λ 1 =
2δ +δ

3

3
, (2.3.12)

λ 2 = λ 4 =
−(−1+δ )δ

2
, (2.3.13)

λ 3 = λ 5 =
(−1+δ )

(
−δ +2δ

2
)

6
. (2.3.14)

It can be easily verified that

λ 0 > 0,λ j ≥ 0, j = 1,2,3, for 0 < δ ≤ 1/2, (2.3.15)

and

5

∑
k=0

λ k = 1. (2.3.16)

Remark 2.3.1 When 1/2 < δ < 1, the node P1, which is the nearest node to P, is taken

as the origin.

Position 2. The point P ∈Π0 lies inside a grid cell of the hexagonal grid.

Again, we place the origin of the rectangular system of coordinates at the node P0

and direct the positive axis of x along the grid line, so that P has the coordinates

P
(

δh,
√

3hκ

2

)
, where 0 < δ ,κ ≤ 1/2. A fictitious grid is formed from the arrange-

ment of the following points:
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P′0

(
κh
2
,

√
3hκ

2

)
,P′1

(
h+

κh
2
,

√
3hκ

2

)
,P′2

(
h
2
+

κh
2
,

√
3h
2

+

√
3hκ

2

)
,

P′3

(
−h

2
+

κh
2
,

√
3h
2

+

√
3hκ

2

)
,P′4

(
h
2
+

κh
2
,−
√

3h
2

+

√
3hκ

2

)
,

P′5

(
−h

2
+

κh
2
,−
√

3h
2

+

√
3hκ

2

)
.

Each of the nodes P′k, k = 0,1, ...,5 of the fictitious grid falls on a grid line and for the

approximation of P the expression

S4u =
5

∑
k=0

λ ku(P′k) (2.3.17)

is used. As P′k, k = 0,1, ...,5, all lie on grid lines, each of these points need to be

approximated using the matching operator as follows:

S4u =
5

∑
k=0

λ kS4u(P′k). (2.3.18)

It is demonstrated by Figure 2.4 that only 17 nodes are needed for the evaluation of

(2.3.18).

Hence, we form the matching operator as

S4u =
16

∑
k=0

ξ ku(Pk), (2.3.19)

where ξ k, k = 0, ...,16, are defined by the coefficients obtained earlier and

ξ k ≥ 0,
16

∑
k=0

ξ k = 1. (2.3.20)
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The structure of the hexagonal grid also plays an important role in the approximation

of the solution using the matching operator. We consider the two types of triangles in

each hexagon, Type A and Type B as shown in Figure. 2.3.

Figure 2.3. Shapes of triangles in a hexagon

It is obvious that when δ > κ

2 , the point
(

δh,
√

3h
2 κ

)
is in a triangle of Type A and

when δ < κ

2 it is in a triangle of Type B. In the case when δ = κ

2 , P is lying on a grid

line.

We start by examining triangles of TypeA, with 0 < δ ,κ ≤ 1/2. The nodes needed in

the evaluation of S4u are shown in Figure. 2.4.

The case 1/2 < δ < 1, 0 < κ ≤ 1/2 has a similar layout, where the 17 nodes used have

the same layout as the reflection of the nodes in Figure 2.4 about the line x = 0. The

figure for the case 0 < δ ≤ 1/2, 1/2 < κ < 1 is also given below (see Figure. 2.5).

The final case 1/2 < δ ,κ < 1 again has the same distribution as the reflection of the

nodes in Figure 2.5, about the line x = 0.

In the case when P falls into a triangle of Type B, we rotate the fictitious grids formed

for Type A with an angle of 180◦, for all four cases of δ and κ specified earlier.

Position 3. P ∈ Π01, where u = ϕ j on the side γ j, j = 1,2,3,4, and ϕ j ∈C4,λ
(

γ j

)
,
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Figure 2.4. when P falls inside a grid cell and 0 < δ ,κ ≤ 1/2.

Figure 2.5. when P falls inside a grid cell and 0 < δ ≤ 1/2, 1/2 < κ < 1

0 < λ < 1.

We position the origin of the rectangular system of coordinates on γ j so that the point

P lies on the positive y axis, and the x axis is in the direction of the vertex
.
γ j+1 along
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γ j. It is obvious that ∑
3
k=1 bk Imzk = 0 if y = 0, where z = x+ iy. Hence, when the

function ϕ j ∈C4,λ
(

γ j

)
, 0 < λ < 1, is represented using Taylor’s formula about the

point x = 0 in the neighborhood |z| ≤ 4h of the origin, we define ak, k = 0,1,2,3, of

(2.3.2) as

ak =
1
k!

∂ kϕ j (0)
∂xk .

We let

∼
u(x,y) = u(x,y)−

3

∑
k=0

ak Rezk =
3

∑
k=1

bk Imzk +O
(
h4) (2.3.21)

for y > 0, and keeping in mind that Imzk is odd extendable, we complete the definition

with
∼
u(x,y) =−∼u(x,−y) for y < 0. Clearly, in the given neighborhood,

∼
u(x,y) is equal

to the harmonic polynomial ∑
3
k=1 bk Imzk, with an accuracy of O

(
h4) . To form an

expression for the matching operator S4∼u we use

S4∼u = ∑
0≤ j≤16

µ j

(
u−

3

∑
k=0

ak Rezk

)
(Pj),

or,

S4∼u = ∑
0≤ j≤5

ν j

(
u−

3

∑
k=0

ak Rezk

)
(Pj),
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where

µ j ≥ 0, ∑
0≤ j≤16

µ j ≤ 1; ν j ≥ 0, ∑
0≤ j≤5

ν j ≤ 1. (2.3.22)

Hence adding the term

(
3

∑
k=0

ak Rezk

)
(P),

to S4∼u, the approximation at any point P ∈ Π01 can be obtained for the solution u of

problem (2.2.1),(2.2.2) as:

u = S4∼u+

(
3

∑
k=0

ak Rezk

)
(P)+O(h4). (2.3.23)

Remark 2.3.2 The expression (2.3.23) follows from the expressions (2.3.17) or (2.3.19)

and contains less grid nodes Pl for the points on the boundary γ of Π.

Let ϕ =
{

ϕ j

}4

j=1
. The matching operator S4 is represented as:

S4(u,ϕ) =


S4u on Π0

S4(u−∑
3
k=0 ak Rezk)+

(
∑

3
k=0 ak Rezk)(P), on Π01∪ γ

. (2.3.24)

Theorem 2.3.3 Let the boundary functions ϕ j, j = 1,2,3,4 in problem (2.2.1),(2.2.2)

satisfy the conditions

ϕ j ∈ C4,λ (γ j),0 < λ < 1, (2.3.25)

ϕ
(2q)
j (s j) = (−1)q

ϕ
(2q)
j−1(s j), q = 0,1,2. (2.3.26)
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Then

max
(x,y)∈Π

∣∣S4(u,ϕ)−u
∣∣≤ c5h4, (2.3.27)

where u is the exact solution of problem (2.2.1), (2.2.2).

Proof. According to Theorem 3.1 in [27] from the conditions (2.3.25) and (2.3.26)

follows that u ∈C4,λ (Π). Then on the basis of (2.3.1), (2.3.10), (2.3.19), (2.3.23) and

Remark 2.3.2, we obtain the inequality (2.3.27).

We define the function ûh as follows

ûh = S4(uh,ϕ) on Π, (2.3.28)

where uh is the solution of the finite difference problem (2.2.6)− (2.2.8).

Theorem 2.3.4 Let the conditions (2.2.3) and (2.2.4) be satisfied. Then the function

ûh is continuous on Π, and

max
(x,y)∈Π

| ûh−u |≤ c6h4, (2.3.29)

where u is the solution of the problem (2.2.1), (2.2.2).

Proof. From the construction of the expression S4(uh,ϕ) it follows that ûh = uh on Πh,

and ûh = ϕ j on γh
j , j = 1,2,3,4. The continuity of ûh on Π follows from the continuity

S4(uh,ϕ) on each closed triangle Type A and Type B, and from the equality ûh = uh on

Πh. By Remark 2.3.2 and from the condition ûh = ϕ j on γh
j , j = 1,2,3,4, follows the

continuity of the function ûh on the closed rectangle Π. By virtue of (2.2.3) and (2.2.4)
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follows that u ∈C6,λ (Π), 0 < λ < 1 (see Theorem 3.1 in [27]). Then, on the basis of

(2.3.15), (2.3.16), (2.3.20), (2.3.23) Theorem 2.2.2, Theorem 2.3.3 and (2.3.28), we

obtain

max
(x,y)∈Π

| ûh−u |≤ max
(x,y)∈Π

| S4(u,ϕ)−u |+ max
(x,y)∈Π

∣∣S4(uh−u,0)
∣∣

≤ c5h4 +
16

∑
k=0

ξ k max
(x,y)∈Π

h
|uh−u| ≤ c6h4.

2.4 Error analysis of the Block-Grid equations

Let

εh = uh−u, (2.4.1)

where uh is the solution of the system (2.1.12)-(2.1.16) and u is the trace of the solution

of (2.1.1), (2.1.2) on Gh,n
∗ . On the basis of (2.1.1), (2.1.2), (2.1.12)-(2.1.16) and (2.4.1),

εh satisfies the following difference equations:

εh = Sεh + r1
h on Π

0h
k , (2.4.2)

εh = S∗mεh + r2
h on Π

∗h
k , η

h
k1∩ γm 6=�, εh = 0 on η

h
k1∩ γm, (2.4.3)

εh(r j,θ j) = β j

n( j)

∑
q=1

R j(r j,θ j,θ
q
j)εh(r j2,θ

q
j)+ r3

jh, (r j,θ j) ∈ th
j , (2.4.4)

εh = S4
εh + r4

h on ω
h,n, (2.4.5)
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where 1≤ k ≤M, 1≤ m≤ N, j ∈ E and

r1
h = Su−u on ∪M

k=1 Π
0h
k , r2

h = S∗mu+E∗mh(ϕm)−u on ∪1≤k≤M Π
∗h
k , (2.4.6)

r3
jh = β j

n( j)

∑
q=1

R j(r j,θ j,θ
q
j)
(

u(r j2,θ
q
j)−Q j(r j2,θ

q
j)
)

(2.4.7)

−(u
(
r j,θ j

)
−Q j(r j,θ j)) on ∪ j∈E th

j ,

r4
h = S4(u,ϕ)−u on ω

h,n. (2.4.8)

Since all the rectangles Πk, k = 1,2, ...,M are located away from the singular vertices

.
γ j, j ∈ E of the polygon G at a distance greater than r j4 > 0 independent of h, by

virtue of the conditions (2.2.3) and (2.2.4), up to sixth order derivatives of the solution

of problem (2.1.1),(2.1.2) are bounded on ∪M
k=1Πk. Then, by the Taylor formula, from

(2.4.6), we obtain

max
∪M

k=1Π0h
k

∣∣r1
h
∣∣≤ c1h6, max

∪M
k=1Π∗hk

∣∣r2
h
∣∣≤ c2h4. (2.4.9)

Furthermore, as ωh,n ⊂ ∪M
k=1Πk from (2.4.8) and Theorem 2.3.3, we have

max
ωh,n

∣∣r4
h
∣∣≤ c3h4. (2.4.10)

By analogy to the proof of Lemma 6.2 in [20], it is shown that there exists a natu-

ral number n0, such that for all n ≥ max
{

n0,
[
ln1+κ h−1]+1

}
, κ > 0 being a fixed

number,

max
j∈E

∣∣∣r3
jh

∣∣∣≤ c4h4. (2.4.11)

Theorem 2.4.1 There exists a natural number n0 such that for all
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n≥max
{

n0,
[
ln1+κ h−1]} , κ > 0 being a fixed number,

max
Gh,n
∗

|uh−u| ≤ ch4. (2.4.12)

Proof. Let Πh
k∗ be one of the rectangles covering the domain G, with a hexagonal

grid, and let th
k∗ j = Π

h
k∗ ∩ th

j . Furthermore, assume th
k∗ j 6= /0 and that vh is a solution

of the system (2.4.2)-(2.4.5) under the condition that r1
jh,r

2
jh and r3

jh are defined as in

(2.4.6)-(2.4.8) in Π
h
k∗, but are zero in Gh,n

∗ \Π
h
k∗. It can be clearly seen that

W = max
Gh,n
∗

|vh|= max
Π

h
k∗

|vh| . (2.4.13)

We represent the function vh on Gh,n
∗ as

vh =
4

∑
p=1

vp
h , (2.4.14)

where the functions vp
h , p = 2,3,4, are defined on Π

h
k∗ as a solution of the system of

equations

v2
h =


Sv2

h on Π0h
k∗

S∗jv
2
h on Π∗hk∗

,v2
h = 0 on η

h
k∗1, (2.4.15)

v2
h(r j,θ j) = r2

jh,(r j,θ j) ∈ th
k∗ j,v

2
h = 0 on ω

h,n

v3
h =


Sv3

h on Π0h
k∗

S∗jv
3
h on Π∗hk∗

,v3
h = 0 on η

h
k∗1, (2.4.16)

v3
h(r j,θ j) = 0,(r j,θ j) ∈ th

k∗ j,v
3
h = r3

jh on ω
h,n
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v4
h =


Sv4

h + r1
jh on Π0h

k∗

S∗jv
4
h + r1

jh on Π∗hk∗

,v4
h = 0 on η

h
k∗1, (2.4.17)

v4
h(r j,θ j) = 0,(r j,θ j) ∈ th

k∗ j,v
4
h = 0 on ω

h,n

with

vp
h = 0, p = 2,3,4, on Gh,n

∗ \Π
h
k∗. (2.4.18)

Moreover, keeping in mind equations (2.4.14)-(2.4.18), the function v1
h satisfies the

system of equations

v1
h =


Sv1

h on Π0h
k

S∗jv
1
h on Π∗hk

,v1
h = 0 on η

h
k1, (2.4.19)

v1
h = β j

n( j)

∑
q=1

R j(r j,θ j,θ
q
j)

4

∑
p=1

vp
h(r j2,θ

q
j),(r j,θ j) ∈ th

j

v1
h = S4

(
4

∑
p=1

vp
h

)
on η

h
k0, 1≤ k ≤M, j ∈ E,

where we presume that the functions vp
h , p = 2,3,4, are known.

Taking into account (2.4.11), Remark 2.3.2 and Theorem 2.2.2, on the basis of (2.4.15)-

(2.4.17) and the maximum principle, the following inequalities are obtained:

W2 = max
Gh,n
∗

∣∣v2
h
∣∣≤ ch4, (2.4.20)

W3 = max
Gh,n
∗

∣∣v3
h

∣∣≤ ch4, (2.4.21)

W4 = max
Gh,n
∗

∣∣v4
h
∣∣≤ ch4. (2.4.22)
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Next, the estimation of the function v1
h is considered. On the basis of (2.1.25), (2.3.15),

(2.3.16), Remark 4.2.10 and the gluing condition of the rectangles Πk,k = 1,2, ...,M,

by means of [30], for the estimation of the system (2.4.19), there exists a real number

µ∗,0 < µ∗ < 1, independent of h, such that for all h≤ κ0 and

n≥max
{

n0,
[
ln1+κ h−1]+1

}
we have

W1 = max
Gh,n
∗

∣∣v1
h
∣∣≤ µ

∗W. (2.4.23)

From (2.4.13), (2.4.14) and estimations (2.4.20)-(2.4.23), we obtain

W = µ
∗W +

4

∑
i=2

Wi. (2.4.24)

Hence,

W = max
Gh,n
∗

|vh| ≤ ch4. (2.4.25)

In the case when th
k∗ j = /0, (2.4.25) is proved similarly. As there is only a finite number

of rectangles covering the domain G, inequality (2.4.12) follows.

Theorem 2.4.2 We consider the approximation of the solution of problem (2.1.1),

(2.1.2) on the sectors T ∗j , j ∈ E, where r∗j = (r j2 + r j3)/r j2. Let uh be the solution of

the system of equations (2.1.12)-(2.1.16) and let an approximate solution of problem

(2.1.1), (2.1.2) be found on blocks T ∗j , j ∈ E, by (2.1.26). There is a natural number n0

such that for all n≥max
{

n0,
[
ln1+κ h−1]} , κ > 0 being a fixed number, the following
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estimations hold

∣∣Uh(r j,θ j)−u(r j,θ j)
∣∣ ≤ c0h4 on T 3

j , (2.4.26)∣∣∣∣ ∂ p

∂xp−q∂yq

(
Uh(r j,θ j)−u(r j,θ j)

)∣∣∣∣ ≤ cph4/rp−1/α j
j on T 3

j\
.
γ j, (2.4.27)

where j ∈ E, 0≤ q≤ p, p = 1,2, ... .

Proof. On the basis of (2.1.17) we have, on the closed block T ∗j , j ∈ E

Uh(r j,θ j)−u(r j,θ j) = β j

n( j)

∑
q=1

R j(r j,θ j,θ
q
j)
(

u(r j2,θ
q
j)−Q j(r j2,θ

q
j)
)

−
∫

α jπ

0
(u(r j2,η)−Q j(r j2,η))R j(r j,θ j,η)dη

+β j

n( j)

∑
q=1

R j(r j,θ j,θ
q
j)
(

uh(r j2,θ
q
j)−u(r j2,θ

q
j)
)

(2.4.28)

Since r∗j = (r j2 + r j3)/r j2, by (2.4.11),

∣∣∣∣∣β j

n( j)

∑
q=1

R j(r j,θ j,θ
q
j)
(

u(r j2,θ
q
j)−Q j(r j2,θ

q
j)
)

(2.4.29)

−
∫

α jπ

0
(u(r j2,η)−Q j(r j2,η))R j(r j,θ j,η)dη

∣∣∣∣≤ ch4 on T ∗j , j ∈ E

On the basis of (2.1.17), Theorem 2.4.1 and using the boundedness of the kernel R j we

obtain

∣∣∣∣∣β j

n( j)

∑
q=1

R j(r j,θ j,θ
q
j)
(

uh(r j2,θ
q
j)−u(r j2,θ

q
j)
)∣∣∣∣∣≤ ch4 on T ∗j , j ∈ E (2.4.30)
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Combining (2.4.29) and (2.4.30), as T 3
j ⊂ T ∗j we obtain the inequality

∣∣Uh(r j,θ j)−u(r j,θ j)
∣∣≤ c0h4 on T 3

j , j ∈ E (2.4.31)

Let

εh(r j,θ j) =Uh(r j,θ j)−u(r j,θ j) on T ∗j , j ∈ E (2.4.32)

From (2.1.17) and (2.4.31) follows that εh(r j,θ j) is continuous on T ∗j , and is a solution

of the boundary value problem (2.1.1), (2.1.2), where 0≤ θ j ≤ α jπ. As T 3
j ⊂ T ∗j , j ∈

E, considering (2.4.30)-(2.4.32) and taking into account Lemma 6.12 in [1], inequality

(2.4.27) follows.

2.5 The use of the Schwarz’s alternating method for the solution of

the system of block-grid equations

It is clear from Section 2.1 that for the approximate solution of problem (2.1.1), (2.1.2),

it is first necessary to consider the solution in the domain Gh,n
∗ . Hence, first of all, the

solution of the system of equations (2.1.12)-(2.1.16) is taken into account. Then the

solution itself and its derivatives of order p, p = 1,2, ..., follows for any point of T 3
j

and T 3
j\

.
γ j, with the use of formula (2.1.17). Therefore, it is only necessary to justify

the method of finding a solution of the system of equations (2.1.12)-(2.1.16), as stated

in [15].

In a similar manner to [15], we define classes Φτ ,τ = 1,2, ...,τ∗, of rectangles Πk,k =

1,2, ...,M. Class Φ1 includes all rectangles whose intersection with the boundary γ of
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the polygon G contains a certain segment of positive length. Class Φ2 contains all of

the rectangles which are not in the class Φ1, whose intersection with rectangles of Φ1

contains a segment of finite length, and so on.

Let

Φ
h
τ0 = ∪k:Πk∈Φτ

Π
h
k0,τ = 1,2, ...,τ∗,

Gh
∗0 = ∪τ∗

τ=1Φ
h
τ0.

For the solution of the system of equations (2.1.12)-(2.1.16), Schwarz’s alternating

method is carried out in the following form. We start with a zero approximation u(0)h

to the exact solution uh of system (2.1.12)-(2.1.16). Finding u(1)h for all j ∈ E with

(2.1.15) on th
j and with (2.1.16) on ηk0, we solve system (2.1.12)-(2.1.16) on the grids

Π
h
k constructed on the rectangles belonging to the class Φ1 and then to the class Φ2

and so on. The next iteration follows in a similar manner. Consequently, we have the

sequence u(1)h ,u(2)h , ... defined as follows:

u(m)
h (r j,θ j) = Q j(r j,θ j)+ (2.5.1)

+β j

n( j)

∑
q=1

R j(r j,θ j,θ
q
j)
[
S4(u(m−1)

h (r j2,θ
q
j),ϕ)−Q j(r j2,θ

q
j)
]

on th
j ,

u(m)
h = S4u(m−1)

h on ω
h,n (2.5.2)
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u(m)
h = Su(m)

h on Π
0h
k , (2.5.3)

u(m)
h = S∗ju

(m)
h +E∗jh(ϕ j) on Π

∗h
k , (2.5.4)

u(m)
h = ϕ j on η

h
k1, (2.5.5)

Theorem 2.5.1 For any h≤κ0\4 and n≥max
{

n0,
[
ln1+κ h−1]+1

}
, system (2.1.12)-

(2.1.16) can be solved by Schwarz’s alternating method with an accuracy of ε > 0, in a

uniform metric with the number of iterations O(lnε−1), independent of h and n, where

κ0 is the gluing depth and κ is a constant independent of h.

Proof. Theorem 2.5.1 is proved by analogy to Theorem 3 in [15], with the system

under consideration being (2.5.1)-(2.5.5).
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Chapter 3

HEXAGONAL GRID VERSION OF THE BLOCK-GRID

METHOD FOR THE MIXED PROBLEM ON STAIRCASE

POLYGONS

3.1 Approximation on a rectangular domain using a hexagonal

grid with mixed boundary conditions

Let Π = {(x,y) : 0 < x < a, 0 < y < b} be an open rectangle, γ j, j = 1,2,3,4, be its

sides, numbered in the positive direction starting from the left-hand side, (γ0≡ γ4,γ1≡

γ5). Also let
.
γ j = γ j ∩ γ j+1 be the jth vertex,

.
γ = ∪4

j=1

(
γ j∩ γ j+1

)
be the set of all

vertices of Π and γ = ∪4
j=1γ j represent the whole boundary of Π. We consider the

boundary value problem

∆u = 0 on Π, (3.1.1)

ν ju+ν ju
(1)
n = ν jϕ j +ν jψ j on γ j, j = 1,2,3,4, (3.1.2)

where ∆ = ∂ 2/∂x2 + ∂ 2/∂y2, ν j is a parameter taking the values 0 or 1, and ν j =

1−ν j. Furthermore, u(1)n is the derivative along the inner normal, ϕ j and ψ j are given

functions and

1 ≤ ν1 +ν2 +ν3 +ν4 ≤ 4, (3.1.3)

ν jϕ j +ν jψ j ∈ C6,λ (γ j), 0 < λ < 1, j = 1,2,3,4. (3.1.4)
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At the vertices s = s j (s is defined the same as in Section 2.1 and s j is the beginning of

γ j), the conjugation conditions

ν jϕ
(2q+δ τ−2)
j +ν jψ

(2q+δ τ )
j = (−1)q+δ τ+δ τ−1(ν j−1ϕ

(2q+δ τ−1)
j−1 +ν j−1ψ

(2q+δ τ )
j−1 )

(3.1.5)

are satisfied, where τ = ν j−1+2ν j, δ ω = 1 for ω = 0, δ ω = 0 for ω 6= 0, q= 0,1, ...,Q,

Q = [(6−δ τ−1−δ τ−2)/2]−δ τ .

Let h > 0, with a/h≥ 2, b/
√

3h ≥ 2 integers. We let Πh stand for a hexagonal grid on

Π, with step size h, where the set of these nodes are expressed as

Π
h =

{
(x,y) ∈Π : x =

k− l
2

h, y =

√
3(k+ l)

2
h, k = 1,2, ...; l = 0,±1,±2, ...

}
.

Let γh
j be the set of nodes on the interior of γ j,

.
γ

h
j = γ j ∩ γ j+1 and γh = ∪4

j=1γh
j . In

addition, let Π∗h stand for the set of nodes whose distance from the boundary γ of Π is

h
2 and Π0h = Πh/Π∗h. Hence Π

h
= Π0h∪Π∗h∪ γh.

We consider the system of finite difference equations

uh = Suh on Π
0h, (3.1.6)

uh = S∗juh +E∗jh(ϕ j,ψ j) on Π
∗h, (3.1.7)

uh = ν jS juh +E jh(ϕ j,ψ j) on γ
h
j , (3.1.8)

uh = ν jν j+1
.
S juh +

.
E jh(ϕ j,ϕ j+1,ψ j,ψ j+1) on

.
γ

h
j , j = 1,2,3,4, (3.1.9)

where
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Su(x,y) =
1
6

(
u(x+h,y)+u

(
x+

h
2
,y+

√
3

2
h

)
+u

(
x− h

2
,y+

√
3

2
h

)
+

+u(x−h,y)+u

(
x− h

2
,y−
√

3
2

h

)
+

+u

(
x+

h
2
,y−
√

3
2

h

))
, (3.1.10)

the operators S∗j ,E
∗
jh,S j,E jh,

.
S j and

.
E jh are constructed in the right coordinate system

with the axis x j directed along γ j+1 and the axis y j directed along γ j, and have the

expressions:

S∗ju(x,y) =
ν j

7

(
u

(
x+

h
2
,y−
√

3h
2

)
+u(x+h,y)+u

(
x+

h
2
,y+

√
3h
2

))
+

ν j

5

(
u

(
x− h

2
,y−
√

3h
2

)
+u

(
x+

h
2
,y−
√

3h
2

)
+u(x+h,y)+

u

(
x+

h
2
,y+

√
3h
2

)
+u

(
x− h

2
,y+

√
3h
2

))
, (3.1.11)

E∗jh(ϕ j,ψ j) =
ν j

7

(
ϕ j

(
y+

√
3h
2

)
+ϕ j

(
y−
√

3h
2

)
+2ϕ j(y)−

h2

4
ϕ
(2)
j (y)+

h4

4!8
ϕ
(4)
j (y)

)
+

ν j

5

(
hψ j−

h3

3!4
ψ

(2)
j +

h5

5!16
ψ

(4)
j

)
, (3.1.12)

S ju(x,y) =



1
3

(
u
(

x+ h
2 ,y−

√
3h
2

)
+u(x+h,y)+u

(
x+ h

2 ,y+
√

3h
2

))
on j = 1,3,

1
6

(
u(x−h,y)+2u

(
x− h

2 ,y+
√

3h
2

)
+2u

(
x+ h

2 ,y+
√

3h
2

)
+u(x+h,y)

)
on j = 2,4,

(3.1.13)
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E jh(ϕ j,ψ j) =


ν j

(
2h
3 ψ j +

h3

3!3ψ
(2)
j + 2h5

5!3 ψ
(4)
j

)
+ν jϕ j on j = 1,3,

ν j

(
−
√

3h
3 ψ j +

√
3h5

5!3 ψ
(4)
j

)
+ν jϕ j on j = 2,4,

(3.1.14)

and

.
S ju(x,y) =

1
3

(
u(x+h,y)+2u

(
x+

h
2
,y+

√
3h
2

))
, (3.1.15)

.
E jh(ϕ j,ϕ j+1,ψ j,ψ j+1) = ν jϕ j +ν jν j+1ϕ j+1

−ν jν j+1

[
1
6

(
2h
(

2ψ j +
√

3ψ j+1

)
+
√

3h2
ψ

(1)
j+1

+
2h3

3!
ψ

(2)
j −

2
√

3h4

4!

(
ψ

(3)
j +ψ

(3)
j+1

)
+

+
2h5

5!

(
2ψ

(4)
j −
√

3ψ
(4)
j+1

))]
(3.1.16)

Since the coefficients in the operators (3.1.10), (3.1.11), (3.1.13) and (3.1.15) are non-

negative and their sum do not exceed one, taking the maximum principle into account,

system (3.1.6)-(3.1.9) has a unique solution (see [21]).

Let γ = γ1∪γ2, where γ1 and γ2 contain the prescribed values of u and the normal

derivative u(1)n respectively. Accordingly, the set of nodes on the interior of γ1 and

γ2 are denoted by γ1h and γ2h,
.
γ

2h
m = γ2

m ∩ γ2
m−1, 1 ≤ m ≤ 4,

.
γ

2h
= ∪1≤ j≤4

.
γ

2h
j and

.
γ

1h
=

.
γ

h\
.
γ

2h
. In addition, the set of nodes whose distance from the boundary γ1 of Π

is h/2 is denoted as Π∗h1 , and Π∗h2 = Π∗h\Π∗h1 denotes the set of nodes whose distance

from γ2 is h/2.

Lemma 3.1.1 Let
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v1 = Sv1 + fh on Π
0h,

v1 = S∗jv1 on Π
∗h
1 ,

v1 = S∗jv1 + f ∗h on Π
∗h
2 ,

v1 = 0 on γ
1h
j ∪

.
γ

1h
j ,

v1 = S jv1 + f ′h on γ
2h
j ,

v1 =
.
S jv1 +

.
f h on

.
γ

2h
j , j = 1,2,3,4,

and

v2 = Sv2 + f h on Π
0h,

v2 = S∗jv2 + f̃h on Π
∗h
1 ,

v2 = S∗jv2 + f ∗h on Π
∗h
2 ,

v2 = f̂h on γ
1h
j ∪

.
γ

1h
j ,

v2 = S jv2 + f ′h on γ
2h
j ,

v2 =
.
S jv2 +

.
f h on

.
γ

2h
j , j = 1,2,3,4,

where fh, f ∗h , f ′h,
.
f h and f h, f̃h, f ∗h, f̂h, f ′h,

.
f h are arbitrary grid functions. If the condi-

tions

f̃h, f̂h ≥ 0,

| fh| ≤ f h, | f ∗h | ≤ f ∗h,
∣∣ f ′h∣∣≤ f ′h and

∣∣∣ .f h

∣∣∣≤ .
f h
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are satisfied, then

|v1| ≤ v2.

Proof. The proof of this lemma follows by analogy to the proof of the comparison

theorem (see [21]).

Everywhere below we will denote constants which are independent of h and

of the cofactors on their right by c,c0,c1, ..., generally using the same notation for

different constants for simplicity.

Theorem 3.1.2

Let u be the trace of the solution of problem (3.1.1), (3.1.2) on Π
h, and uh be the

solution of system (3.1.6)-(3.1.9). Then

max
Π

h
|uh−u| ≤ ch4. (3.1.17)

Proof. Let εh = uh−u, where u is the trace of the solution of problem (3.1.1), (3.1.2)

on Π
h and uh is the solution of system (3.1.6)-(3.1.9). The error function εh satisfies

the following system:
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εh = Sεh +Ψ
0
h on Π

0h, (3.1.18)

εh = S∗jεh +Ψ
∗
jh on Π

∗h, (3.1.19)

εh = ν jS jεh +Ψ jh on γ
h
j , (3.1.20)

εh = ν jν j+1
.
S jεh +

.
Ψ jh on

.
γ

h
j , j = 1,2,3,4, (3.1.21)

where

Ψ
0
h = Su−u, (3.1.22)

Ψ
∗
jh = S∗ju−u+E∗jh(ϕ j,ψ j), (3.1.23)

Ψ jh = ν jS ju−u+E jh(ϕ j,ψ j), (3.1.24)

.
Ψ jh = ν jν j+1

.
S ju−u+

.
E jh(ϕ j,ϕ j+1,ψ j,ψ j+1), (3.1.25)

are the truncation errors of equations (3.1.6)-(3.1.9).

On the basis of conditions (3.1.3)-(3.1.5) and by Theorem 3.1 in [27], it follows

that u ∈C6,λ (Π), 0 < λ < 1. Hence by Taylor’s formula, we obtain (see [28]),

max
(x,y)∈ Π

∣∣Ψ0
h(x,y)

∣∣≤ c1h6M6. (3.1.26)

By using Taylor’s formula we also obtain
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max
(x,y)∈ Π

∣∣Ψ jh(x,y)
∣∣≤ c2h6M6, (3.1.27)

and

max
(x,y)∈ Π

∣∣∣ .Ψ jh(x,y)
∣∣∣≤ c3h6M6, (3.1.28)

where

Mq = sup
(x,y)∈Π

{∣∣∣∣ ∂ qu(x,y)
∂xp∂yq−p

∣∣∣∣ , p = 0,1, ...,q
}
. (3.1.29)

Finally, using Taylor’s formula about the point (h/2,y) ∈Π∗h we obtain

max
(x,y)∈ Π

∣∣∣Ψ∗jh(x,y)∣∣∣≤ c4h4M4 (3.1.30)

when ν j = 1, and

max
(x,y)∈ Π

∣∣∣Ψ∗jh(x,y)∣∣∣≤ c5h6M6 (3.1.31)

when ν j = 0.

We represent the solution of (3.1.18)-(3.1.21) as

εh = ε
1
h + ε

2
h, (3.1.32)
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where

ε
1
h = Sε

1
h +Ψ

0
h on Π

0h, (3.1.33)

ε
1
h = S∗jε

1
h on Π

∗h
1 , (3.1.34)

ε
1
h = S∗jε

1
h +Ψ

∗
jh on Π

∗h
2 , (3.1.35)

ε
1
h = 0 on γ

1h
j ∪

.
γ

1h
j , (3.1.36)

ε
1
h = S jε

1
h +Ψ jh on γ

2h
j , (3.1.37)

ε
1
h =

.
S jε

1
h +

.
Ψ jh on

.
γ

2h
j , j = 1,2,3,4, (3.1.38)

and

ε
2
h = Sε

2
h on Π

0h, (3.1.39)

ε
2
h = S∗jε

2
h +Ψ

∗
jh on Π

∗h
1 , (3.1.40)

ε
2
h = S∗jε

2
h on Π

∗h
2 , (3.1.41)

ε
2
h = ν jS jε

2
h on γ

h
j , (3.1.42)

ε
2
h = ν jν j+1

.
S jε

2
h on

.
γ

h
j , j = 1,2,3,4. (3.1.43)

To estimate ε1
h, we take the function v2 in Lemma 3.1.1 as

v2(x,y) = h4c6M6(a2 +b2− x2− y2). (3.1.44)
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Hence,

max
Π

h

∣∣ε1
h
∣∣≤ max

(x,y)∈Π

|v2| ≤ c7h4M6. (3.1.45)

Now taking (3.1.30) and (3.1.39)-(3.1.43) into account, on the basis of maximum

principle, we obtain

max
Π

h

∣∣ε2
h
∣∣≤ 7

4
max
Π∗h1

∣∣∣Ψ∗jh∣∣∣≤ c8h4M4. (3.1.46)

From (3.1.18)-(3.1.21), (3.1.32), (3.1.45) and (3.1.46) it follows that

max
Π

h
|εh| ≤ ch4. (3.1.47)

3.2 Construction of the matching operator for the mixed boundary

value problem

The construction of the fourth order matching operator S4u on a hexagonal grid, for

approximating the solution of Laplace’s equation with Dirichlet boundary conditions,

is given in detail in [31] and Section 2.3. A summary of these results is provided here

before extending the method to the construction with Neumann boundary conditions.

Let ϕ j and ψ j be the given functions defined in (3.1.2), and ϕ =
{

ϕ j

}4

j=1
, ψ ={

ψ j

}4

j=1
. The estimation P ∈Π by S4(uh,ϕ,ψ) is given linearly by the values of the

function uh at the nodes of the hexagonal grid constructed in the rectangle Π
h
P and the

assigned boundary values ϕ(p), p = 0,1,2,3, ψ(q), q = 1,2,3. The pattern of S4 lies in
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a neighbourhood O(h) of the point P, where

S4(uh,ϕ,ψ) =
16

∑
k=0

λ kuh (Pk) , (3.2.1)

λ k ≥ 0,
16

∑
k=0

λ k = 1,

and

u−S4(u,ϕ,ψ) = O
(
h4) ,

uniformly on Π.

Let
◦
Π denote the set of points P ∈Π such that all the nodes Pk to determine expression

(3.2.1) belong to Π
h and

◦
Π1,

◦
Π2 contain the points P ∈Π where some of the nodes Pk

emerge through the side γh
1,m, γh

2,m, 1≤ m≤ 4, respectively. The cases when the point

P belongs to one of the sets
◦
Π,
◦
Π1 is given in detail in [31] and Section 2.3. Hence, we

consider the case when P lies inside the set
◦
Π2.

Assume P ∈
◦
Π2, where u = ψm on the side γ2,m and ψm ∈ C4,λ (γ2,m), 0 < λ < 1,

1≤ m≤ 4.

Let z = x+ iy be a complex variable and let Ω = {z : |z| < 1} be a unit circle. For a

harmonic function u on Ω with u ∈C4,0(Ω), by Taylor’s formula, any point (x,y) ∈Ω

can be represented as

u(x,y) =
3

∑
k=0

ak Re zk +
3

∑
k=1

bk Im zk +O(r4), (3.2.2)
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where r =
√

x2 + y2,

a0 = u(0,0),a1 =
∂u(0,0)

∂x
,a2 =

1
2

∂ 2u(0,0)
∂x2 ,a3 =

1
3!

∂ 3u(0,0)
∂x3 ,

b1 =
∂u(0,0)

∂y
,b2 =

1
2

∂ 2u(0,0)
∂x∂y

,b3 =
1
3!

∂ 3u(0,0)
∂x2∂y

. (3.2.3)

The origin of the rectangular system of coordinates is placed on γ2,m so that the point

P lies on the positive y− axis, and the x− axis is in the direction of the vertex
.
γm+1

along γ2,m. Since ψm ∈C4,λ (γ2,m), the solution u of problem (3.1.1), (3.1.2) is

u ∈C5,λ (Π).

Hence, in the neighbourhood |z| ≤ 4h of the origin, by Taylor’s formula, we obtain

∂u(x,y)
∂y

∣∣∣∣
y=0

=
∂u(0,0)

∂y
+ x

∂ 2u(0,0)
∂x∂y

+
x2

2!
∂ 3u(0,0)

∂x2∂y
+

x3

3!
∂ 4u(0,0)

∂x3∂y
+O

(
h4) . (3.2.4)

Keeping in mind that u(1)n = ψm, we have

∂u(x,y)
∂y

∣∣∣∣
y=0

= ψm(x) = ψm(0)+ x
∂ψm(0)

∂x

+
x2

2!
∂ 2ψm(0)

∂x2 +
x3

3!
∂ 3ψm(0)

∂x3 +O
(
h4) . (3.2.5)

Based on (3.2.4) and (3.2.5), we have the expressions

∂u(0,0)
∂y

= ψm(0),
∂ 2u(0,0)

∂x∂y
=

∂ψm(0)
∂x

,

∂ 3u(0,0)
∂x2∂y

=
∂ 2ψm(0)

∂x2 ,
∂ 4u(0,0)

∂x3∂y
=

∂ 3ψm(0)
∂x3 . (3.2.6)
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By (3.2.3) and (3.2.6), we can write the coefficients bk, k = 1,2,3, as

bk =
1
k!

∂ k−1ψm(0)
∂xk−1 , k = 1,2,3.

Let

û(x,y)≡ u(x,y)−
3

∑
k=1

bk Imzk =
3

∑
k=0

ak Rezk +O(h4), (3.2.7)

for y > 0, and for y < 0 we have û(x,y) = û(x,−y). By (3.2.7), in the neighbourhood

|z| ≤ 4h, û(x,y) corresponds to ∑
3
k=0 ak Rezk with an accuracy of O(h4), as this poly-

nomial is even relative to the x− axis. Hence, using the expression for S4û, u(P) can

be approximated by the equation

u(x,y) = S4û+

(
3

∑
k=1

bk Imzk

)
(P). (3.2.8)

Combining the result obtained above with the expressions in [31], the matching oper-

ator can be expressed as:

S4 (u,ϕ,ψ) =


S4u on

◦
Π,

S4 (u−∑
3
k=0 ak Rezk)+ (∑3

k=0 ak Rezk)(P) on
◦
Π1,

S4 (u−∑
3
k=1 bk Imzk)+ (∑3

k=1 bk Imzk)(P) on
◦
Π2.

(3.2.9)

Theorem 3.2.1 Let the boundary functions ϕ j, ψ j, j = 1,2,3,4, in problem (3.1.1),
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(3.1.2) satisfy the conditions

ν jϕ j +ν jψ j ∈ C4,λ (γ j), 0 < λ < 1, (3.2.10)

ν jϕ
(2q+δ τ−2)
j +ν jψ

(2q+δ τ )
j = (−1)q+δ τ+δ τ−1

(
ν j−1ϕ

(2q+δ τ−1)
j−1 +

+ν j−1ψ
(2q+δ τ )
j−1

)
, (3.2.11)

with q = 0,1,2. Then

max
(x,y)∈Π

∣∣S4u−u
∣∣≤ c9h4, (3.2.12)

where u is the exact solution of problem (3.1.1), (3.1.2).

Proof. According to Theorem 3.1 in [27], from the conditions (3.2.10) and (3.2.11)

follows that u ∈ C4,λ (Π). Then, the inequality (3.2.12) follows from Theorem 3.4 in

[31].

3.3 Block-Grid equations with mixed boundary conditions

The BGM is applied for the approximation of Laplace’s equation with mixed boundary

conditions, with the employment of the following changes in the method described in

Section 2.1.

We consider the approximation of the following problem, in the staircase polygon G

defined in Section 2.1:
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∆u = 0 on G, (3.3.1)

ν ju+ν ju
(1)
n = ν jϕ j +ν jψ j on γ j, j = 1,2, ...,N, (3.3.2)

where ∆ = ∂ 2/∂x2 + ∂ 2/∂y2, ν j is a parameter taking the values 0 or 1 and ν j =

1−ν j. Furthermore, u(1)n is the derivative along the inner normal, ϕ j and ψ j are given

functions and

1 ≤
N

∑
k=1

νk ≤ N, (3.3.3)

ν jϕ j +ν jψ j ∈ C6,λ (γ j), 0 < λ < 1, j = 1,2, ...,N. (3.3.4)

We presume that conjugation conditions (3.1.5) are satisfied at the vertices
.
γ j whose

interior angles are π/2. It is not required that the boundary functions at the vertices

with an interior angle of α jπ 6= π/2 are compatible, however, it is requested that the

boundary functions on the adjacent sides of these vertices are algebraic polynomials of

the form (2.1.5).

Let E =
{

j : α j 6= 1/2, j = 1,2, ...,N
}
. Two fixed block sectors are constructed in the

same form as in Section 2.1, in the neighbourhood of
.
γ j, j ∈ E, denoted by T i

j =

Tj(r ji)⊂ G, i = 1,2. The function Q j(r j,θ j) will have one of the forms (3.2)− (3.9),

defined in [1], depending on the nature of the boundary conditions specified on γ j−1

and γ j.
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We set, (see [1])

R(m,m,r,θ ,η) = R(r,θ ,η)+(−1)mR(r,θ ,−η),

R(1−m,m,r,θ ,η) = R(m,m,r,θ ,η)− (−1)mR(m,m,r,θ ,π−η),

where

R(r,θ ,η) =
1− r2

2π(1−2r cos(θ −η)+ r2)

is the kernel of the Poisson integral for a unit circle. The kernel is specified as

R j(r j,θ j,η) = λ jR

(
ν j−1,ν j,

(
r j

r j2

)λ j

,λ jθ j,λ jη

)
, j ∈ E,

where

λ j =
1

(2−ν j−1ν j−ν j−1ν j)α j
. (3.3.5)

We outline the procedure for obtaining the algebraic system of equations, for the nu-

merical solution of problem (3.3.1), (3.3.2).

Let Πk ⊂ GT , k = 1,2, ...,M, be certain fixed open rectangles with sides a1k and a2k

parallel to the x and y axes, and G ⊂
(
∪M

k=1Πk
)
∪
(
∪ j∈ET 3

j

)
⊂ G. We use ηk to rep-

resent the sides of the rectangle Πk, Vj denotes the curvilinear part of the boundary of

the sector T 2
j and t j =

(
∪M

k=1ηk
)
∩T 3

j . The overlapping condition is defined the same

as in Section 2.1, and the gluing depth is denoted by κ0.

Let Πh
k be the set of nodes on Πk, ηh

k is the set of nodes on ηk and Π
h
k = Πh

k ∩ηh
k .
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Also let ηh
k0 stand for the set of nodes on ηk ∩GT , th

j be the set of nodes on t j and

ηh
k1 be the remaining nodes on ηh

k . Furthermore, we let Π̃h
k denote the set of nodes

whose distance from the boundary ηh
k1 of Πk is h

2 , ω̃
h
k stands for the set of nodes whose

distance from ηh
k0 or th

j is h
2 and Π̂h

k = Πh
k \
(

Π̃h
k ∪ ω̃

h
k

)
. The expressions n, n( j), β j

and V n
j are defined the same as in Section 2.1.

Hence, we have

ω
h,n =

(
∪M

k=1η
h
k0

)
∪
(
∪ j∈EV n

j
)
∪
(
∪M

k=1ω̃
h
k

)
, Gh,n
∗ = ω

h,n∪
(
∪M

k=1Π
h
k

)
.

Let

R(q)
j
(
r j,θ j

)
=

R j(r j,θ j,θ
q
j)

max
{

1,β j ∑
n( j)
p=1 R j(r j,θ j,θ

p
j )
} (3.3.6)

By (3.3.6), it is easy to demonstrate that

0≤ R(q)
j
(
r j,θ j

)
≤ R j(r j,θ j,θ

q
j), 0 < θ j, θ

q
j < α jπ, 1≤ q≤ n( j), j ∈ E. (3.3.7)

Furthermore, as it was stated in [33], there exists positive constants n0 and σ > 0, such

that for n≥ n0 and ν j−1 +ν j ≥ 1,

max
Tj

3
β j

n( j)

∑
q=1

R j(r j,θ j,θ
q
j)≤ σ < 1, (3.3.8)

and on the basis of (3.3.6) and (3.3.7),

0≤ β j

n( j)

∑
q=1

R(q)
j
(
r j,θ j

)
≤ 1, j ∈ E, (3.3.9)
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when ν j−1 = ν j = 0.

Consider the system of difference equations

uh = Suh on Π̂
h
k , (3.3.10)

uh = S∗muh +E∗mh(ϕm,ψm) on Π̃
h
k , (3.3.11)

uh = νmSmuh +Emh(ϕm,ψm) on η
h
k1∩ γm, (3.3.12)

uh = νmνm+1
.
Smuh +

.
Emh(ϕm,ϕm+1,ψm,ψm+1) on η

h
k1∩ γm∩ γm+1,(3.3.13)

uh(r j,θ j) = Q j(r j,θ j)+

+β j

n( j)

∑
q=1

R j(r j,θ j,θ
q
j)
[
uh(r j2,θ

q
j)−Q j(r j2,θ

q
j)
]

on th
j ,(3.3.14)

uh = S4(uh,ϕ,ψ) on ω
h,n, (3.3.15)

where 1≤ m≤ N, 1≤ k ≤M, j ∈ E and Suh, S∗muh, E∗mh(ϕm,ψm),

Smuh,
.

Emh(ϕm,ψm),
.
Smuh and

.
Emh(ϕm,ϕm+1,ψm,ψm+1) are defined as equations (3.1.10)-

(3.1.16) in Section 3.1, respectively.

Theorem 3.3.1 There is a natural number n0 such that for all n≥ n0 and h ∈ (0,κ0],

where κ0 is the gluing depth, system of equations (3.3.10)-(3.3.15) has a unique solu-
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tion.

Proof. Let vh be a solution of the system of equations

vh = Svh on Π̂
h
k , (3.3.16)

vh = S∗mvh on Π̃
h
k , (3.3.17)

vh = νmSmvh on η
h
k1∩ γm, (3.3.18)

vh = νmνm+1
.
Smvh on η

h
k1∩ γm∩ γm+1, (3.3.19)

vh(r j,θ j) = β j

n( j)

∑
q=1

R j(r j,θ j,θ
q
j)vh(r j2,θ

q
j) on th

j , (3.3.20)

vh = S4vh on ω
h,n, (3.3.21)

where 1≤ m≤ N, 1≤ k ≤M and j ∈ E. For the proof of this theorem, it is necessary

and sufficient to show that max
Gh,n
∗
|vh| = 0. Since the sum of the coefficients in the

operators Svh, S∗mvh, Smvh,
.
Smvh and S4vh are not more than one, and they are all non-

negative, on the basis of the maximum priciple (see Chapter 4 in [21]), vh will not take

its nonzero maximum value in Π̂h
k , Π̃h

k , ωh,n, or in ηh
k1 ∩ γm, ηh

k1 ∩ γm ∩ γm+1 when

νm = 1. Hence we consider the nodes in ∪ j∈Eth
j . Taking (3.3.7), (3.3.8) and (3.3.9)

into account, again by the maximum principle, it is not possible to obtain the nonzero

maximum value of vh in ∪ j∈Eth
j either.

Therefore, the maximum value is attained at ηh
k1∩γm or ηh

k1∩γm∩γm+1 when νm = 0
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and, by system (3.3.16)-(3.3.21), it follows that

max
Gh,n
∗

|vh|= 0.

Let uh be the solution of the system of equations (3.3.10)-(3.3.15). The function

Uh(r j,θ j) = Q j(r j,θ j)+β j

n( j)

∑
q=1

R j(r j,θ j,θ
q
j)
(

uh(r j2,θ
q
j)−Q j(r j2,θ

q
j)
)

(3.3.22)

is called an approximate solution of the problem (3.3.1),(3.3.2) on the closed block T 3
j ,

j ∈ E.

3.4 Error analysis of the new system of Block-Grid Equations

Let

εh = uh−u, (3.4.1)

where uh is the solution of the system (3.3.10)-(3.3.15) and u is the trace of the solution

of (3.3.1), (3.3.2) on Gh,n
∗ . On the basis of (3.3.1), (3.3.2), (3.3.10)-(3.3.15) and (3.4.1),

εh satisfies the system of equations:
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εh = Sεh + r1
h on Π̂

h
k , (3.4.2)

εh = S∗mεh + r2
h on Π̃

h
k , (3.4.3)

εh = νmSmεh + r3
h on η

h
k1∩ γm, (3.4.4)

εh = νmνm+1
.
Smεh + r4

h on η
h
k1∩ γm∩ γm+1, (3.4.5)

εh(r j,θ j) = β j

n( j)

∑
q=1

R j(r j,θ j,θ
q
j)S

4
εh(r j2,θ

q
j)+ r5

jh on th
j , (3.4.6)

εh = S4
εh + r6

h on ω
h,n, (3.4.7)

where 1≤ m≤ N, 1≤ k ≤M, j ∈ E and

r1
h = Su−u on ∪M

k=1 Π̂
h
k , (3.4.8)

r2
h = S∗mu−u+E∗mh(ϕm,ψm) on ∪M

k=1 Π̃
h
k , (3.4.9)

r3
h = νmSm−u+Emh(ϕm,ψm) on

(
∪M

k=1η
h
k1

)
∩ γm, (3.4.10)

r4
h = νmνm+1

.
Smu−u+

.
Emh(ϕm,ϕm+1,ψm,ψm+1) (3.4.11)

on
(
∪M

k=1η
h
k1

)
∩ γm∩ γm+1,

r5
jh = β j

n( j)

∑
q=1

R j(r j,θ j,θ
q
j)
(

uh(r j2,θ
q
j)−Q j(r j2,θ

q
j)
)
−

−
(
u(r j,θ j)−Q j(r j,θ j)

)
on ∪ j∈E th

j , (3.4.12)

r6
h =


S4u−u on ωh

1,

S4 (u−∑
3
k=0 ak Rezk)+ (∑3

k=0 ak Rezk)(P) on ωh
2,

S4 (u−∑
3
k=1 bk Imzk)+ (∑3

k=1 bk Imzk)(P) on ωh
3.

(3.4.13)
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where P ∈ ωh
1 if all nodes of evaluation Pk of the matching operator S4 are in Gh,n

∗ ,

P ∈ ωh
2 if the side where the nodes of evaluation Pk emerge through has Dirichlet

boundary conditions, and P ∈ ωh
3 if the side where the nodes of evaluation Pk emerge

through has Neumann boundary conditions, and thus ωh,n = ωh
1∪ωh

2∪ωh
3.

Analogous to the proof of Lemma 6.2 in [20], there exists a natural number n0, such

that for all n≥max
{

n0,
[
ln1+κ h−1]+1

}
, κ > 0 being a fixed number,

max
j∈E

∣∣∣r5
jh

∣∣∣≤ c1h4. (3.4.14)

Furthermore, as the set ωh,n ⊂ ∪M
k=1Πk, by Theorem 3.2.1, we have

max
ωh,n

∣∣∣r6
h

∣∣∣≤ c2h4. (3.4.15)

Theorem 3.4.1 Assume that conditions (3.3.3), (3.3.4) are satisfied, and the conju-

gation conditions (3.1.5) hold at the vertices with interior angles of π/2. Then there

exists a natural number n0 such that for all n≥max
{

n0,
[
ln1+κ h−1]} , κ > 0 being a

fixed number,

max
Gh,n
∗

|uh−u| ≤ ch4. (3.4.16)

Proof. Consider an arbitrary rectangle Πh
k∗, which is one of the overlapping rectangles

covering the "nonsingular" part of the domain G with a hexagonal grid, and let th
k∗ j =

Π
h
k∗ ∩ th

j . Let th
k∗ j 6= /0 and assume vh is a solution of system (3.4.2)-(3.4.7) in the case

when r1
h, r2

h, r3
h, r4

h, r5
jh and r6

h are expressed the same as in (3.4.8)-(3.4.13) in Π
h
k∗, but
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are zero in Gh,n
∗ �Π

h
k∗. It is clear that

W = max
Gh,n
∗

|vh|= max
Π

h
k∗

|vh| . (3.4.17)

We represent vh on Gh,n
∗ in the form

vh =
4

∑
χ=1

vχ

h , (3.4.18)

where the functions vχ

h ,χ = 2,3,4, are defined on Π
h
k∗ as a solution of the system of

equations

vχ

h = Svχ

h + rχ

1 (h) on Π̂
h
k∗, (3.4.19)

vχ

h = S∗mvχ

h + rχ

1 (h) on Π̃
h
k∗,

vχ

h = νmSmvχ

h + rχ

1 (h) on η
h
k∗1∩ γm,

vχ

h = νmνm+1
.
Smvχ

h + rχ

1 (h) on η
h
k∗1∩ γm∩ γm+1,

vχ

h (r j,θ j) = rχ

2 (h) on th
k∗ j,

vχ

h = rχ

3 (h) on ω
h,n.

with

vχ

h = 0, χ = 2,3,4 on Gh,n
∗ �Π

h
k∗, (3.4.20)
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rχ

1 (h) = 0 when χ = 3,4 and

rχ

1 (h) =



r1
h on Π̂h

k∗,

r2
h on Π̃h

k∗,

r3
h on ηh

k∗1∩ γm,

r4
h on ηh

k∗1∩ γm∩ γm+1,

when χ = 2,

rχ

2 (h) =


0, χ = 2,4,

r5
jh, χ = 3,

and

rχ

3 (h) =


0, χ = 3,4,

r6
h, χ = 2.

Hence considering the systems of equations (3.4.18)-(3.4.20), we define a function v1
h

satisfying

v1
h = Sv1

h on Π̂
h
k , (3.4.21)

v1
h = S∗mv1

h on Π̃
h
k ,

v1
h = νmSmv1

h on η
h
k1∩ γm,

v1
h = νmνm+1

.
Smv1

h on η
h
k1∩ γm∩ γm+1,

v1
h(r j,θ j) = β j

n( j)

∑
q=1

R j(r j,θ j,θ
q
j)

4

∑
χ=1

vχ

h (r j2,θ
q
j) on th

j ,

v1
h = S4

(
4

∑
χ=1

vχ

h

)
on ω

h,n, 1≤ m≤ N, 1≤ k ≤M, j ∈ E,

where the functions vχ

h , χ = 2,3,4 are presumed to be known.
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Taking into account Theorem 2.1.2, (3.4.14), (3.4.15), (3.4.20) and since the rectangles

Πk, k = 1,2, ...,M, are located away from the singular vertices at a distance more than

r4 j, on the basis of the maximum principle,

W2 = max
Gh,n
∗

∣∣v2
h
∣∣≤ ch4, (3.4.22)

W3 = max
Gh,n
∗

∣∣v3
h

∣∣≤ ch4, (3.4.23)

W4 = max
Gh,n
∗

∣∣v4
h
∣∣≤ ch4. (3.4.24)

The rest of the proof follows analogously to the proof of Theorem 6.3 in [20], by taking

into account systems (3.4.19), (3.4.21) and inequalities (3.4.22)-(3.4.24).

Theorem 3.4.2 There exists a natural number n0 such that for all n≥max
{

n0,
[
ln1+κ h−1]} ,

κ> 0 being a fixed number, the approximation of problem (3.3.1), (3.3.2) on the blocks

T 3
j , j ∈ E, by the function (3.3.22) satisfies the following inequalities:

∣∣Uh(r j,θ j)−u(r j,θ j)
∣∣≤ c0h4 on T 3

j , j ∈ E, (3.4.25)

We also have, for the case when λ j is an integer, ν j−1 and ν j are 0 or 1, and p≥ λ j,

or the case ν j−1 = ν j = 0 when p = 0 and λ j takes any value, the inequality

∣∣∣∣ ∂ p

∂xp−q∂yq

(
Uh(r j,θ j)−u(r j,θ j)

)∣∣∣∣≤ cph4 on T 3
j . (3.4.26)

Furthermore, for any λ j, if ν j−1 +ν j ≥ 1, 0≤ p < λ j or ν j−1 = ν j = 0, 1≤ p < λ j,

we have

∣∣∣∣ ∂ p

∂xp−q∂yq

(
Uh(r j,θ j)−u(r j,θ j)

)∣∣∣∣≤ cph4/rp−λ j
j on T 3

j . (3.4.27)
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Finally, for noninteger λ j, any ν j−1, ν j, and p > λ j, we have

∣∣∣∣ ∂ p

∂xp−q∂yq

(
Uh(r j,θ j)−u(r j,θ j)

)∣∣∣∣≤ cph4/rp−λ j
j on T 3

j�
.
γ j, (3.4.28)

where 0≤ q≤ p, λ j is defined the same as (3.3.5) and u is the solution of the problem

(3.3.1), (3.3.2).

Proof. The proof is obtained on the basis of (3.3.22), Lemma 2.1.1, (3.3.8), (3.3.9) and

Theorem 3.4.1, and follows by analogy to Theorem 6.4 in [20].

3.5 The use of Schwarz’s alternating method

As stated in Section 2.5 and [15], it is first required to justify the method of finding a

solution of the system of equations (3.3.10)-(3.3.15). The classes Φτ ,τ = 1,2, ...,τ∗,

of rectangles Πk,k = 1,2, ...,M, are defined the same as in [15].

For the solution of the system of equations (3.3.10)-(3.3.15), Schwarz’s alternating

method is carried out in the same form as in Section 2.5. Again, we start with a zero

approximation u(0)h to the exact solution uh of the system (3.3.10)-(3.3.15), and we

obtain the sequence u(1)h ,u(2)h , ... as follows:
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u(m)
h (r j,θ j) = Q j(r j,θ j)+

+β j

n( j)

∑
q=1

R j(r j,θ j,θ
q
j)
[
S4(u(m−1)

h (r j2,θ
q
j),ϕ)−Q j(r j2,θ

q
j)
]

on th
j , (3.5.1)

u(m)
h = S4u(m−1)

h on ω
h,n (3.5.2)

u(m)
h = Su(m)

h on Π̂
h
k , (3.5.3)

u(m)
h = S∗pu(m)

h +E∗ph(ϕ p,ψ p) on Π̃
h
k , (3.5.4)

u(m)
h = ν pSpu(m)

h +Eph(ϕ p,ψ p) on η
h
k1∩ γ p, (3.5.5)

u(m)
h = ν pν p+1

.
Spu(m)

h +
.
E ph(ϕ p,ϕ p+1,ψ p,ψ p+1)

on η
h
k1∩ γ p∩ γ p+1. (3.5.6)

where 1≤ k ≤M, 1≤ p≤ N, j ∈ E, m = 1,2, ... .

Remark 3.5.1 Theorem 2.5.1 remains valid and is proved by analogy to Theorem 7.1

in [20], with the system under consideration being (3.5.1)-(3.5.6).
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Chapter 4

A FOURTH ORDER APPROXIMATION ON A SPECIAL TYPE

OF POLYGON WHEN THE BOUNDARY FUNCTIONS ARE

FROM C4,λ

4.1 Boundary value problem on a special type of polygon

Let D be an open simply-connected polygon with interior angles α jπ, α j ∈
{1

3 ,
2
3 ,1,2

}
,

let the sides of this polygon be denoted by γ j, j = 1,2, ...,N,enumerated counterclock-

wise, and
.
γ j = γ j∩ γ j−1 be the vertices of D.

The following boundary value problem is taken into consideration in the domain D:

∆u = 0 on D, (4.1.1)

u = ϕ j, on γ j, j = 1,2, ...,N, (4.1.2)

where ∆≡ ∂ 2/∂x2 +∂ 2/∂y2, ϕ j, j = 1,2, ...,N, are given functions, and

ϕ j ∈C4,λ
(

γ j

)
, 0 < λ < 1, 1≤ j ≤ N. (4.1.3)

In addition, at the vertices
.
γ j, for α j = 1/3, the following conjugation conditions are

satisfied:

ϕ
(3p)
j−1
(
s j
)
= ϕ

(3p)
j
(
s j
)
, p = 0,1. (4.1.4)
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It is not required that the boundary functions at the vertices with an interior angle of

α jπ 6= π/3 are compatible, however, same as before, it is requested that the boundary

functions on the adjacent sides of these vertices are algebraic polynomials of the form

(2.1.5).

We apply the BGM given in detail in [15] and Section 2.1 in the domain D. The fol-

lowing is required for this application:

Let E =
{

j : α j 6= 1/3, j = 1,2, ...,N
}
. Two fixed block sectors are constructed in

the same form as in Section 2.1, in the neighbourhood of
.
γ j, j ∈ E, denoted by

T i
j = Tj(r ji)⊂G, i = 1,2, and we assume the function Q j(r j,θ j) has the form (2.1.6),

(2.1.7). Furthermore, we let R j(r j,θ j,η) be defined as (2.1.8). The application of

this method requires the construction of two more sectors T 3
j and T 4

j , where 0 < r j4 <

r j3 < r j2. Let DT = D\
(
∪ j∈ET 4

j

)
. The following steps are taken for the realization:

1) We blockade the singular corners
.
γ j, j ∈ E, by the double sectors T i

j (r ji),

i = 2,3, with T 2
k ∩ T 3

l = /0, k 6= l, k, l ∈ E, and cover the polygon D by overlapping

parallelograms denoted by D′l, l = 1,2, ...,M, and sectors T 3
j , j ∈ E, such that the

distance from D′l to
.
γ j is not less that r j4 for all l = 1,2, ...,M.

2) On the parallelograms D′l, l = 1,2, ...,M, we use the 7-point scheme for the

hexagonal grid with the step size hl ≤ h, h a parameter, for the approximation of

Laplace’s equation, and the singular parts T 3
j , j ∈ E, are approximated by using the

harmonic function defined in Lemma 2.1.1.

The rest of the description follows by analogy to the description given in [15] and

Section 2.1.

73



In order to obtain a numerical solution of problem (4.1.1), (4.1.2), an algebraic system

of equations is formed using the following notation:

Let D′l ⊂DT , l = 1,2, ...,M, be open fixed parallelograms and D⊂
(
∪M

l=1D′l
)
∪
(
∪ j∈ET 3

j

)
⊂

D. We denote by η l the boundary of D′l, l = 1,2, ...M, by Vj the curvilinear part of

the boundary of the sector T 2
j , and let t j =

(
∪M

l=1η l
)
∩ T 3

j . For the arrangement of

the parallelograms D′l, l = 1,2, ...,M, it is required that any point P lying on η l∩ DT ,

1≤ l ≤M, or lying on Vj∩D, j ∈ E, falls inside at least on of the parallelograms D′l(P),

1≤ l(P)≤M, depending on P, where the distance from P to DT ∩η l(P) is not less than

some constant κ0 independent of P. κ0 is called the gluing depth of the parallelograms

D′l, l = 1,2, ...,M.

Let h ∈ (0,κ0/4] be a parameter, and define a hexagonal grid on D′l, 1 ≤ l ≤M, with

maximal positive step hl ≤ h, such that the boundary η l lies entirely on the grid lines.

Let D′lh be the set of grid nodes on D′l, ηh
l be the set of nodes on η l, and let D′lh =

D′lh∪ηh
l . Furthermore, ηh

l0 denotes the set of nodes on (η l ∩DT ) \ t j, ηh
l1 = ηh

l \η
h
l0

and th
j denotes the set of nodes on t j. Finally we have

ω
h,n =

(
∪M

l=1η
h
l0

)
∪
(
∪ j∈EV n

j
)
, Dh,n
∗ = ω

h,n∪
(
∪M

l=1D′lh
)
.

Consider the system of difference equations

uh = Suh on D′lh, (4.1.5)

uh = ϕ on η
h
l1, (4.1.6)
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uh(r j,θ j) = Q j(r j,θ j)+ (4.1.7)

+β j

n( j)

∑
k=1

R j(r j,θ j,θ
k
j)
[
uh(r j2,θ

k
j)−Q j(r j2,θ

k
j)
]

on th
j ,

uh = S4 (uh,ϕ) on ω
h,n, (4.1.8)

where 1≤ l ≤M, j ∈ E, and the operator S is defined as

Su(x,y) =
1
6

(
u(x+h,y)+u

(
x+

h
2
,y+

√
3

2
h

)
+u

(
x− h

2
,y+

√
3

2
h

)

+u(x−h,y)+u

(
x− h

2
,y−
√

3
2

h

)
+u

(
x+

h
2
,y−
√

3
2

h

))
.

The solution of system (4.1.5)-(4.1.8) is the approximation of the solution of problem

(4.1.1), (4.1.2) on Dh,n
∗ .

Theorem 4.1.1 There is a natural number n0 such that for all n ≥ n0 and h ≤ κ0/4,

where κ0 is the gluing depth, the system of equations (4.1.5)-(4.1.8) has a unique

solution.

Proof. Let wh be a solution of the system of equations

wh = Swh on D′lh, (4.1.9)

wh = 0 on η
h
l1, (4.1.10)

wh(r j,θ j) = β j

n( j)

∑
q=1

R j(r j,θ j,θ
q
j)wh(r j2,θ

q
j) on th

j , (4.1.11)

wh = S4 (wh,0) on ω
h,n, (4.1.12)
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where 1≤ l ≤M and j ∈ E. For the proof of this theorem, it is necessary and sufficient

to show that max
Dh,n
∗
|wh| = 0. Since the sum of the coefficients in the operators Swh,

and S4wh do not exceed one, and they are all positive, by the maximum principle (see

Chapter 4 in [21]), wh will not take its nonzero maximum value on D′lh, or ωh,n. Hence

we consider the nodes in ∪ j∈Eth
j . Taking (2.1.10) and (2.1.25) into account, again by

the maximum principle, for all n ≥ n0 (n0 is the given integer defined in Section 2.1),

it is not possible to obtain the nonzero maximum value of wh in ∪ j∈Eth
j either.

Therefore, the maximum value is attained at ηh
l1. As Dh,n

∗ is connected, by system

(4.1.9)-(4.1.12) it follows that

max
Dh,n
∗

|wh|= 0.

Next, the numerical solution in the “singular” parts of the domain is considered. For the

approximation of problem (4.1.1), (4.1.2) on the closed block T 3
j , j ∈ E, the function

Uh(r j,θ j), which is defined as (2.1.26), is applied.

4.2 Error analysis of the 7-point approximation on the

parallelogram D′

Let D′ be one of the parallelograms covering the “nonsingular” part of the polygon

D defined in Section 4.1. The boundaries of the parallelogram D′ are denoted by γ ′j,

enumerated counterclockwise starting from left, including the ends,
.
γ
′
j = γ ′j−1 ∩ γ ′j,

j = 1,2,3,4, denotes the vertices of D′, γ ′ = ∪4
j=1γ ′j and D′ = D′ ∪ γ ′. Furthermore

γ ∩ γ ′ 6= /0, but the vertices
.
γ
′
m with an interior angle of αmπ 6= π/3 are located either
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inside of D, or on the interior of a side γm of D, 1 ≤ m ≤ N. We define the open

parallelogram D′ as

D′=
{
(x,y) : 0 < y < a, d− y/

√
3 < x < e− y/

√
3
}
, and the boundary value problem

(4.1.1)-(4.1.4) is considered on D′ :

∆v = 0 on D′, (4.2.1)

v = ψ j, on γ
′
j, j = 1,2,3,4, (4.2.2)

where ψ j are the values of the solution of problem (4.1.1)-(4.1.4) on γ ′.

Let h > 0, where (e−d)/h≥ 2, a/
√

3h ≥ 2 are integers. We assign to D′ a hexagonal

grid of the form

D′h =
{
(x,y) ∈ D′ : x = h

2(1− l)+ kh, y = l
√

3h
2 , k, l = 0,±1,±2,±3, ...

}
. Let γ ′jh be

the set of nodes on the interior of γ ′j, and

.
γ
′
jh = γ

′
j−1∩ γ

′
j, γ
′
h = ∪4

j=1γ
′
jh, j = 1,2,3,4,

D′h = D′h∪ γ
′
h.

We consider the system of finite difference equations:

vh = Svh on D′h (4.2.3)

vh = ψ j on γ
′
jh, j = 1,2,3,4, (4.2.4)

where

77



Sv(x,y) =
1
6

(
v(x+h,y)+ v

(
x+

h
2
,y+

√
3

2
h

)
+ v

(
x− h

2
,y+

√
3

2
h

)

+v(x−h,y)+ v

(
x− h

2
,y−
√

3
2

h

)
+ v

(
x+

h
2
,y−
√

3
2

h

))
.(4.2.5)

Since expression (4.2.5) has nonnegative coefficients and their sum is equal to 1, the

solution of system (4.2.3), (4.2.4) exists and is unique (see [21]).

Lemma 4.2.1 Let

ψ j(s) ∈C4,λ (γ ′j), 0 < λ < 1, (4.2.6)

and

ψ
(3p)
j−1 (s j) = ψ

(3p)
j (s j), p = 0,1, (4.2.7)

be satisfied on the vertices whose interior angles are α jπ = π/3, where j = 1,2,3,4.

Then the solution of problem (4.2.1), (4.2.2)

v ∈C4,λ (D′) (4.2.8)

Proof. The closed parallelogram D′ lies inside the polygon D defined in Section 4.1

and the vertices
.
γ
′
m with an interior angle of αmπ 6= π/3 are located either inside

of D or on the interior of a side γm of D, 1 ≤ m ≤ N. Since the boundary func-
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tions ϕ j, j = 1,2,3,4, in problem (4.1.1), (4.1.2) satisfy conditions (4.1.3) and (4.1.4),

(4.2.8) follows from the results in [34].

Let D′h,k be the set of nodes whose distance from the point P ∈ D′h to γ ′ is
√

3
2 kh,

1 ≤ k ≤ a∗, where a∗ =
[

dt

(
√

3h/2)

]
, [c] denotes the integer part of c, and dt is the

minimum of the half-lengths of the sides of the parallelogram.

Lemma 4.2.2 Let wk
h 6= const. be the solution of the system of equations

wk
h = Swk

h + f k
h on D′h,k,

wk
h = Swk

h on D′h\D′h,k,

wk
h = 0 on γ

′
h,

and zk
h 6= const. be the solution of the system of equations

zk
h = Szk

h +gk
h on D′h,k,

zk
h = Szk

h on D′h\D′h,k,

zk
h = 0 on γ

′
h,

where 1≤ k ≤ a∗. If
∣∣ f k

h

∣∣≤ gk
h, then

∣∣∣wk
h

∣∣∣≤ zk
h, 1≤ k ≤ a∗. (4.2.9)

Proof. The proof follows analogously to the proof of the comparison theorem given in

[21].
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Lemma 4.2.3 Let v be the trace of the solution of problem (4.2.1), (4.2.2) on D′h, and

vh be the solution of system (4.2.3), (4.2.4). If

ψ j(s) ∈C4,λ (γ ′j), 0 < λ < 1, j = 1,2,3,4,

and

ψ
(3p)
j−1 (s j) = ψ

(3p)
j (s j), p = 0,1,

on the vertices with an interior angle of α jπ = π/3, j = 1,2,3,4, then

max
D′h

|v− vh| ≤ ch4. (4.2.10)

Proof. Let εh = vh− v on D′h. Clearly

εh = Sεh +(Sv− v) on D′h, (4.2.11)

εh = 0 on γ
′
h. (4.2.12)

Let D′1h contain the set of nodes whose distance from the boundary γ ′ is
√

3h
2 , and

hence for (x,y)∈D′1h, (x+sH,y+sK)∈D′ for 0≤ s≤ 1, H =±h
2 ,±h, K = 0,±

√
3h
2 ,

H2 +K2 > 0, and D′2h = D′h\D′1h.

Moreover, let

εh = ε
1
h + ε

2
h. (4.2.13)
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We rewrite problem (4.2.11), (4.2.12) as

ε
1
h = Sε

1
h +(Sv− v) on D′1h,

ε
1
h = Sε

1
h on D′2h,

ε
1
h = 0 on γ

′
h, (4.2.14)

and

ε
2
h = Sε

2
h on D′1h,

ε
2
h = Sε

2
h +(Sv− v) on D′2h,

ε
2
h = 0 on γ

′
h. (4.2.15)

In order to obtain an estimation for Sv− v on D′1h, we use Taylor’s formula. On the

basis of Lemma 4.2.1, we have

|Sv− v| ≤ c3M4h4 on D′1h, (4.2.16)

where

Mq = sup
(x,y)∈D′

{∣∣∣∣ ∂ qu(x,y)
∂xp∂yq−p

∣∣∣∣ , p = 0,1, ...,q
}
.

Since at least two values of ε1
h in Sε1

h are lying on the boundary γ ′h, on which ε1
h = 0,

from (4.2.14), (4.2.16) and the maximum principle (see [21]), we obtain
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max
D′h

∣∣ε1
h
∣∣≤ 2

3
max

D′h

∣∣ε1
h
∣∣+ c3M4h4.

Hence

max
D′h

∣∣ε1
h
∣∣≤ c4h4, (4.2.17)

where c4 = 3c3M4.

Next, we consider the estimation of ε2
h. Let D′2h,k be the set of nodes whose distance

from the point P ∈ D′2h to γ ′ is
√

3
2 kh, 2 ≤ k ≤ a∗, where a∗ =

[
dt

(
√

3h/2)

]
, [c] denotes

the integer part of c, and dt is the minimum of the half-lengths of the sides of the paral-

lelogram. Furthermore, D′2h,1 ≡ D′1h and D′2h,0 ≡ γ ′h. Since the vertices with α j =
1
3 of

the parallelogram D′ are never used as a node of the hexagonal grid for the estimation

of |Sv− v| on D′2h,k, 2≤ k ≤ a∗, we use the inequalities

max
p+q=6

∣∣∣∣∂ 6v(x,y)
∂xp∂yq

∣∣∣∣≤ c0ρ
λ−2 on D′\γ ′m,

for the sixth order derivatives, where ρ is the distance from (x,y) ∈ D′ to γ ′m. Hence,

we obtain

|Sv− v| ≤ c5h6/(kh)2−λ on D′2h,k, 2≤ k ≤ a∗. (4.2.18)
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Consider a majorant function of the form

Yk =


3m if P ∈ D′2h,m, 0≤ m≤ k,

3k if P ∈ D′2h,m, m > k.
(4.2.19)

Hence Yk is a solution of the finite difference problem

Yk = SYk +µk on D′2h,k,

Yk = SYk on D′h \D′2h,k,

Yk = 0 on γ
′
h. (4.2.20)

where 1≤ µk ≤ 3, 1≤ k ≤ a∗.

We represent the solution of system (4.2.15) as the sum of the solution of the following

subsystems:

ε
2
h,k = Sε

2
h,k +µ

′
k on D′2h,k,

ε
2
h,k = Sε

2
h,k on D′h \D′2h,k,

ε
2
h,k = 0 on γ

′
h, (4.2.21)

where 1≤ k ≤ a∗, µ ′k = 0 when k = 1 and
∣∣µ ′k∣∣≤ c6

h4+λ

k2−λ
when k = 2,3, ...,a∗.

By (4.2.20), (4.2.21) and Lemma 4.2.2, follows that

∣∣ε2
h,k
∣∣≤ c6

h4+λ

k2−λ
Yk. (4.2.22)
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Hence, by taking (4.2.21) and (4.2.22) into consideration, we have

max
D′h

∣∣ε2
h
∣∣ ≤ a∗

∑
k=1

ε
2
h,k ≤

a∗

∑
k=1

c6
h4+λ

k2−λ
Yk

≤ 3c6h4+λ
a∗

∑
k=1

1
k1−λ

≤ c7h4. (4.2.23)

On the basis of (4.2.13), (4.2.17), and (4.2.23), we have estimation (4.2.10).

4.3 Error estimation of the Block-Grid equations on D

Let

εh = uh−u, (4.3.1)

where uh is the solution of the system (4.1.5)-(4.1.8), and u is the trace of the solution

of problem (4.1.1), (4.1.2) on Dh,n
∗ . It is easy to show that (4.3.1) satisfies the system

of equations

εh = Sεh + r1
h on D′lh,

εh = 0 on η l1∩ γm,

εh(r j,θ j) = β j

n( j)

∑
k=1

R j(r j,θ j,θ
k
j)εh(r j2,θ

k
j)+ r2

jh on th
j ,

εh = S4(εh,0)+ r3
h on ω

h,n, (4.3.2)
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where 1≤ m≤ N, 1≤ l ≤M, j ∈ E, and

r1
h = Su−u on ∪M

l=1 D′lh, (4.3.3)

r2
jh = β j

n( j)

∑
k=1

R j(r j,θ j,θ
k
j)
[
uh(r j2,θ

k
j)−Q j(r j2,θ

k
j)
]

−(u(r j,θ j)−Q j(r j,θ j)) on ∪ j∈E th
j , (4.3.4)

r3
h = S4(u,ϕ)−u on ω

h,n. (4.3.5)

Lemma 4.3.1 Let the boundary functions ϕ j, j = 1,2,3,4, in problem (4.1.1), (4.1.2)

satisfy conditions (4.1.3), (4.1.4). Then

max
ωh,n

∣∣r3
h

∣∣≤ c5h4, (4.3.6)

where ϕ = ∪N
j=1ϕ j.

Proof. The function S4(u,ϕ) is defined as equation (3.14) in [31]. Keeping in mind

the gluing depth κ0 for the positioning of the points in ωh,n, conditions (4.1.3), (4.1.4)

and estimation (4.64) in [34], estimation (4.3.6) follows.

Lemma 4.3.2 There exists a natural number n0 such that for all

n≥max
{

n0,
[
ln1+κ h−1]+1

}
, κ > 0 being a fixed number,

max
j∈E

∣∣∣r2
jh

∣∣∣≤ c6h4.

Proof. The proof follows by analogy to the proof of Lemma 6.2 in [20].

Theorem 4.3.3 Assume that conditions (4.1.3), (4.1.4) hold. Then there exists a nat-
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ural number n0 such that for all n ≥ max
{

n0,
[
ln1+κ h−1]+1

}
, κ > 0 being a fixed

number,

max
Dh,n
∗

|uh−u| ≤ c8h4. (4.3.7)

Proof. Consider an arbitrary parallelogram D′l∗ and let th
l∗ j = D′l∗ ∩ th

j . Assume that

th
l∗ j 6= /0, zh is the solution of system (4.3.2), and r1

h, r2
jh, r3

h are defined the same as

(4.3.3)-(4.3.5) on D′l∗, but are zero on Dh,n
∗ \D′l∗. Hence,

V = max
Dh,n
∗

|zh|= max
D′l∗
|zh| . (4.3.8)

We represent the function zh as

zh =
4

∑
q=1

zq
h, (4.3.9)

where

z2
h = Sz2

h + r1
h on D′l∗,

z2
h = 0 on η

h
l∗1∩ γm,

z2
h = 0 on th

l∗ j,

z2
h = 0 on ω

h,n, (4.3.10)
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z3
h = Sz3

h on D′l∗,

z3
h = 0 on η

h
l∗1∩ γm,

z3
h = r2

jh on th
l∗ j,

z3
h = 0 on ω

h,n, (4.3.11)

z4
h = Sz4

h on D′l∗,

z4
h = 0 on η

h
l∗1∩ γm,

z4
h = 0 on th

l∗ j,

z4
h = r3

h on ω
h,n, (4.3.12)

and

zq
h = 0,q = 2,3,4, on Dh,n

∗ \D′l∗. (4.3.13)

Hence by (4.3.9)-(4.3.13), z1
h satisfies the system of equations

z1
h = Sz1

h on D′l,

z1
h = 0 on η

h
l1∩ γm,

z1
h = β j

n( j)

∑
k=1

R j(r j,θ j,θ
k
j)

4

∑
q=1

zq
h(r j2,θ

k
j) on th

l j,

z1
h = S4

(
4

∑
q=1

zq
h

)
on ω

h,n, (4.3.14)
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where 1 ≤ m ≤ N, 1 ≤ l ≤M, j ∈ E, and the functions zq
h, q = 2,3,4, are assumed to

be known.

As the solution of system (4.3.10), z2
h, is the error function of the finite difference

solution with step size hl∗ ≤ h, of system (4.2.3), (4.2.4), by (4.3.13), the maximum

principle and Lemma 4.2.3, we have

V2 = max
Dh,n
∗

∣∣z2
h
∣∣≤ c9h4. (4.3.15)

Also, for the solutions of systems (4.3.11) and (4.3.12), as the operator S has coef-

ficients which are nonnegative and their sum do not exceed one, by the maximum

principle, (4.3.13), Lemma 4.3.1 and Lemma 4.3.2, we obtain the inequalities

V3 = max
Dh,n
∗

∣∣z3
h

∣∣≤ c10h4, (4.3.16)

V4 = max
Dh,n
∗

∣∣z4
h
∣∣≤ c11h4. (4.3.17)

Now we consider the solution of v1
h. Taking into consideration (2.1.25), (4.3.14), the

maximum principle, and the gluing condition of D′l, l = 1,2, ...,M, T 2
j , j ∈ E, for all

n≥max
{

n0,
[
ln1+κ h−1]+1

}
, κ > 0 being a fixed number, we have the inequality

V1 = max
Dh,n
∗

∣∣z1
h
∣∣≤ λ

∗V +
4

∑
q=2

max
Dh,n
∗

∣∣zq
h

∣∣ , (4.3.18)

where 0 < λ
∗< 1. By (4.3.8), (4.3.9), (4.3.15), (4.3.16), (4.3.17) and (4.3.18), we have

V = max
Dh,n
∗

|zh| ≤ c12h4.
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Hence (4.3.7) follows.

Remark 4.3.4 Let uh be the solution of the system of equations (4.1.5)-(4.1.8) and let

an approximate solution of problem (4.1.1),(4.1.2) be found on blocks T 3
j , j ∈ E, by

(2.1.26). Then Theorem 2.4.2 holds and the proof of the Theorem follows by analogy

to the proof of Theorem 2 in[15], by taking estimation (4.3.7) into account.

4.4 Schwarz’s alternating method for the solution of block-grid

equations in D

For the approximation of the solution of problem (4.1.1), (4.1.2), we first of all consider

the solution in Dh,n
∗ . Thus, we need to apply Schwarz’s alternating procedure for the

numerical solution of the system of equations (4.1.5)-(4.1.8). The procedure follows

by analogy to the method described in Section 2.5, with the following system under

consideration:

u(m)
h (r j,θ j) = Q j(r j,θ j)+

+β j

n( j)

∑
k=1

R j(r j,θ j,θ
k
j)
[
S4(u(m−1)

h (r j2,θ
k
j),ϕ)−Q j(r j2,θ

k
j)
]

on th
j , (4.4.1)

u(m)
h = S4u(m−1)

h on ω
h,n (4.4.2)

u(m)
h = Su(m)

h on D′l,h, (4.4.3)

u(m)
h = ϕ on η l1, (4.4.4)

where 1≤ l ≤M, j ∈ E, m = 1,2, ... .
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Remark 4.4.1 Theorem 2.5.1 remains valid and is proved by analogy to Theorem 3 in

[15] for system (4.4.1)-(4.4.4).
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Chapter 5

NUMERICAL EXPERIMENTS

5.1 Examples solved in a hexagonal grid for the Dirichlet problem

5.1.1 Examples on a rectangular domain

Consider the rectangular domain

Π =

{
(x,y) ∈ D : 0 < x < 1,0 < y <

√
3

2

}
,

with the boundary γ. The hexagonal grid (2.2.5), denoted Πh, is assigned to Π, and γh

denotes the set of nodes on the boundary γ.

Example 5.1.1 We consider the problem

∆u = 0 on Π,

u = v(x,y) on γ,

where

v(x,y) = ey sinx (5.1.1)

is the exact solution of the problem in the rectangular domain Π.

This example is solved using Incomplete LU-Decomposition Method (see [29], Chap-

ter 5), and all the calculations are carried out in double precision. As a convergence
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h ‖εh‖
Π

h Rm
Π

h

2−3 1.15727×10−7

2−4 7.33698×10−9 15.7731

2−5 4.58658×10−10 15.9966

2−6 2.89896×10−11 15.4765

2−7 2.02482×10−12 14.3171

Table 5.1. Approximations in a rectangle with smooth exact solution

test, we request the maximum residual error to be 10−12 and v(0)h = 0 is used as the

initial value.

Table 5.1 gives the values obtained in the maximum norm of the difference be-

tween the exact and approximate solutions, for the values of h = 2−k,k = 3,4,5,6,7,

i.e., ‖εh‖
Π

h = max
Π

h |v− vh| . The order of convergence Rm
Π

h
=
‖v−v2−m‖

Π
h∥∥∥v−v

2−(m+1)

∥∥∥
Π

h

has also

been included, where O(h4) order of accuracy corresponds to 24 of the value Rm
Π

h
.

Example 5.1.2 We consider the same problem as in Example 5.1.1 with the exact so-

lution

v(x,y) =
1
2

ln(x2 + y2)Rez7− tan−1(
y
x
) Imz7. (5.1.2)

which is less smooth than (5.1.1). The results obtained are consistent with the theoret-

ical results and are summarized in Table 5.2.
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h ‖εh‖Πh Rm
Πh

2−3 1.9285677×10−4

2−4 1.1998304×10−5 16.0737

2−5 7.4809403×10−7 16.0385

2−6 4.67808169×10−8 15.9915

2−7 2.922653×10−9 16.0063

Table 5.2. Approximations in a rectangle with less smooth exact solution

S4u 1.56912199976621

Exact 1.56912199014188

|εh(P1)| 9.624329x10−9

Table 5.3. Results for approximation of inner points with the matching operator

5.1.2 The matching operator

Examples of the matching operator have also been considered in the domain Π. The

coordinate P1(0.55,0.4387) is chosen, where P1 ∈Π0, and

u(x,y) = ex cosy, (5.1.3)

is assumed to be the exact solution. The result in Table 5.3 is obtained using h = 2−4

and demonstrates the high accuracy of the above constructed matching operator.

The second coordinate considered demonstrates the accuracy of the approximate solu-

tion at near-boundary points. The point chosen is P2(0.195938,0.02), where P2 ∈Π01

and equation (2.3.23) is used for approximation. Again, the harmonic function (5.1.3)

is used as the exact solution. As a third example, a point near one of the corners of the

domain, P3 (0.005,0.005) has been considered, where the nodes of evaluation emerge
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h |εh(P2)| |εh(P3)|

2−4 1.716286x10−8 3.85255412x10−8

2−5 5.385032x10−10 4.3619541x10−9

2−6 2.2436186x10−10 3.41679468x10−10

2−7 2.4942270x10−11 2.8927971x10−12

Table 5.4. Results for approximation of near boundary points with the matching

operator

through both adjacent sides of the corner. The function

u(x,y) = ey cosx

is used as the exact solution. The results obtained are summarized in Table 5.4.

5.1.3 Solutions in an L-Shaped domain

An example is solved in an L-Shaped domain with an angle singularity at the origin,

where α1π = 3π/2. The domain is defined by

Ω =

{
(x,y) :−1≤ x≤ 1,−

√
3

2
≤ y≤

√
3

2

}
\Ω1, .

where Ω1 =
{
(x,y) : 0≤ x≤ 1,−

√
3

2 ≤ y≤ 0
}

and is covered by four overlapping

rectangles and a sector. The singular part is defined to be the region

Ω
S =

{
(x,y) :−1

2
≤ x≤ 1

2
,−
√

3
4
≤ y≤

√
3

4

}
\ΩS

1

where ΩS
1 =

{
(x,y) : 0≤ x≤ 1

2 ,−
√

3
4 ≤ y≤ 0

}
, and the nonsingular part is ΩNS =

Ω/ΩS. The system of Block-Grid equations in the "nonsingular" part of the domain is
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solved by Schwarz’s alternating method. The solution at the quadrature nodes lying on

the curvilinear part of the boundary of sector T 2
1, whose radius is taken as 0.75, and the

overlapping boundaries of the rectangles are renewed after each Schwarz’s iteration.

The solution at the nodes on the circular arc, the inner boundaries of the overlapping

rectangles and the nodes in the set ∪4
k=1η∗hk0 are renewed using the matching opera-

tor constructed above. Since the boundary functions are harmonic polynomials on the

sides γ1 and γ0 ≡ γ6, the approximation of the solution at the points whose neigh-

bouring nodes emerge through these sides are approximated using the function u−Q1.

Finally, the solution on the singular part is approximated using the integral representa-

tion.

The problem considered is

∆u = 0 on Ω,

u = v(x,y) on γ,

where

v(x,y) = θ + r2/3 sin
(

2
3

θ

)
+Rez5 + Imz5,

is the exact solution. Accordingly, the function Q1(r1,θ 1) used in the integral repre-

sentation is constructed as

Q1(r1,θ 1) = θ 1 + r5
1(cos(5θ 1)+ sin(5θ 1)).

The results in Table 5.5 and 5.6 show the solution for different pairs of (h,N) , where

N is the number of quadrature nodes and h is the mesh size of the hexagonal grid.
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(h,N) ‖εh‖ΩNS Rm
ΩNS(

2−4,40
)

5.2742×10−4 14.7656(
2−5,60

)
3.57195×10−5

(2−5,100) 8.2649×10−7 15.3796(
2−6,100

)
5.373923×10−8

(
2−6,100

)
5.373923×10−8 15.7215(

2−7,125
)

3.418192×10−9

Table 5.5. Results obtained in "nonsingular" part of the L-shaped domain for the

Dirichlet problem

5.2 Examples solved in a hexagonal grid for Laplace’s equation

with mixed boundary conditions

5.2.1 Examples on a rectangular domain

To demonstrate the accuracy of the approximate solution obtained by the system of

equations (3.1.6)-(3.1.9), three examples have been solved in the domain

Π =

{
(x,y) : 0 < x < 1,0 < y <

√
3

2

}
, (5.2.1)

where γ j, j = 1,2,3,4, denotes the boundary of Π, numbered in the positive direction

starting from left, and γ = ∪4
j=1γ j. These examples are solved using block Gauss-

Seidel method, where each block is solved by Gaussian elimination, and all the calcu-

lations are carried out in double precision. As a stopping criteria, it is required that the

successive error is more than ε = 10−15, and zero is taken as the initial approximation.
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(h,N) ‖εh‖ΩS Rm
ΩS(

2−4,40
)

9.9742×10−4 11.7569(
2−5,60

)
3.57195×10−5

(2−5,100) 8.2649×10−7 14.9731(
2−6,100

)
5.373923×10−8

(
2−6,100

)
5.373923×10−8 16.5665(

2−7,125
)

3.418192×10−9

Table 5.6. Results obtained in "singular" part of the L-shaped domain for the Dirichlet

problem

First, we consider the boundary value problem

∆u1 = 0 on Π, (5.2.2)

u1 = v(1)n on γ2, (5.2.3)

u1 = v(x,y) on γ \ γ2, (5.2.4)

where we have Neumann boundary conditions on the side y = 0. The second example

considers the numerical solution of the problem

∆u2 = 0 on Π, (5.2.5)

u2 = v(1)n on γ1 and γ3, (5.2.6)

u2 = v(x,y) on γ2 and γ4, (5.2.7)

which has Neumann boundary conditions on the parallel sides, x = 0 and x = 1, and
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h
∥∥ε1

h

∥∥
Π

h R1,m
Π

h

∥∥ε2
h

∥∥
Π

h R2,m
Π

h

2−3 1.7922×10−7 1.8699×10−7

2−4 1.1238×10−8 15.948 1.1721×10−8 15.953

2−5 7.0395×10−10 15.964 7.3452×10−10 15.957

2−6 4.4033×10−11 15.987 4.5937×10−11 15.989

2−7 2.7868×10−12 15.801 2.9047×10−12 15.814

Table 5.7. Solutions on a rectangular domain with mixed boundary conditions

the final problem is

∆u3 = 0 on Π, (5.2.8)

u3 = v(1)n on γ1 and γ2, (5.2.9)

u3 = v(x,y) on γ3 and γ4, (5.2.10)

which has Neumann boundary conditions on the adjacent sides, x = 0 and y = 0. For

the solution of problems (5.2.2)-(5.2.10), the function

v(x,y) = ex cosy

is taken as the exact solution. Numerical results are obtained by solving the system of

equations (3.1.6)-(3.1.9) in the hexagonal grid (2.2.5), on the domain (5.2.1). Results

are given in Table 5.7 and Table 5.8, and are presented with the notation
∥∥ε i

h

∥∥
Π

h =

max
Π

h

∣∣ui−ui
h

∣∣ and Ri,m

Π
h =

‖ui−ui
2−m‖

Π
h∥∥∥ui−ui

2−(m+1)

∥∥∥
Π

h

, i = 1,2,3.
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h
∥∥ε3

h

∥∥
Π

h R3,m
Π

h

2−3 4.2635×10−7

2−4 2.6688×10−8 15.975

2−5 1.6687×10−9 15.993

2−6 1.0434×10−10 15.991

2−7 6.5528×10−12 15.923

Table 5.8. Solutions on a rectangular domain with Neumann boundary conditions on

adjacent sides

5.2.2 Solutions in an L-Shaped domain

To demonstrate the accuracy of the block-grid method for the solution of a problem

with mixed boundary conditions, an example has been solved in an L-shaped domain,

with a corner singularity at the origin, where the interior angle is 3π

2 . Four overlapping

rectangles Πk, k = 1,2,3,4, covered the "nonsingular" part of the domain. As a stop-

ping criteria for the Schwarz’s iterations, it is requested that the successive error on the

sides of the overlapping rectangles is 10−15. The system of finite-difference equations

in the rectangles are solved by using block Gauss-Seidel method, and the blocks are

solved by Gaussian elimination. All the calculations are carried out in double preci-

sion and u(0)h = 0 is taken as the initial value. Finally the harmonic function (2.1.26) is

applied for the approximation of the solution in the "singular" part of the domain.

Let

G =

{
(x,y) :−1 < x < 1, −

√
3

2
< y <

√
3

2

}
\G1,

where G1 =
{
(x,y) : 0≤ x≤ 1, −

√
3

2 ≤ y≤ 0
}

, and γ i, i = 1,2, ...,6 be the sides of
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(h,N) ‖εh‖GNS
Rm

GNS(
2−4,60

)
9.9569476946×10−6 17.3095(

2−5,75
)

5.7523082852×10−7

(2−5,125) 4.04386071850×10−9 16.2625(
2−6,135

)
2.4866231296272×10−10

(
2−6,95

)
1.485055436535×10−8 16.3341(

2−7,115
)

9.091693509155×10−10

Table 5.9. Results obtained in the "nonsingular" part of the L-shaped domain with

mixed boundary conditions

G, enumerated counterclockwise, starting from left. We consider the problem

∆u = 0 on G,

u = v(1)n on γ4,

u = v(r,θ) on γ \ γ4,

where

v(r,θ) =
1
4

r1/3 cos
(

θ

3

)
,

is the exact solution. Let Π∗ = G \ (∪4
k=1Πk), and GNS = G \Π∗, GS = G∩Π∗ de-

note the “nonsingular” and “singular” parts of G, respectively. We use the notation

‖εh‖GNS
= maxGNS |u−uh| and Rm

GNS
=
‖u−u2−m‖GNS∥∥∥u−u

2−(m+1)

∥∥∥
GNS

to denote the error approxima-

tion and order of convergence in the “nonsingular” part of G, and ‖εh‖GS
, Rm

GS
denote

the error approximation and the order of convergence in the “singular” part of G. The

results are presented in Table 5.9 and Table 5.10.
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(h,N) ‖εh‖GS
Rm

GS(
2−4,60

)
6.90196081185×10−6 23.7601(

2−5,75
)

2.90485160286×10−7

(2−5,125) 1.35236603096×10−9 25.2062(
2−6,135

)
5.365211053209×10−11

(
2−6,95

)
5.3680998049×10−9 26.7517(

2−7,115
)

2.00663609129×10−10

Table 5.10. Results obtained in the "singular" part of the L-shaped domain with

mixed boundary conditions

(h−1,N) (16,80) (32,100) (64,115) (128,125)∥∥∥ε
(1)
h,x

∥∥∥
GS

1.32313×10−6 1.80245×10−7 7.43531×10−8 1.20714×10−9

Table 5.11. ε
(1)
h,x = r2/3

(
∂Uh
∂x −

∂u
∂x

)
in the "singular" part of the L-shaped domain with

mixed boundary conditions

The derivatives of the solution have also been approximated in the “singular” part of the

domain. The errors ε
(1)
h,x = r2/3

(
∂Uh
∂x −

∂u
∂x

)
, ε

(2)
h,xx = r5/3

(
∂ 2Uh
∂x2 − ∂ 2u

∂x2

)
in the maximum

norm, are presented in Tables 5.11, 5.12, respectively. Furthermore, Figures 5.1 and

5.2 are given in order to demostrate the exact and approximate solutions obtained for

the derivatives.

(h−1,N) (16,100) (32,125) (64,150) (128,170)∥∥∥ε
(2)
h,xx

∥∥∥
GS

5.18289×10−6 5.33195×10−7 9.2546×10−9 3.07158×10−9

Table 5.12. ε
(2)
h,xx = r5/3

(
∂ 2Uh
∂x2 − ∂ 2u

∂x2

)
in the "singular" part of the L-shaped domain

with mixed boundary conditions
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Figure 5.1. The approximate solution (a) and exact solution (b) of ∂u
∂x , respectively, in

the "singular" part of the L-shaped domain with mixed boundary conditions using

polar coordinates

5.3 Examples solved on a special type of polygon

Two examples have been solved in the polygons defined in Chapter 4 in order to test

the effectiveness of the proposed method. In Example 5.3.1, it is assumed that there

is a slit in the domain D, thus causing a strong singularity at the origin. The vertex
.
γ1

containing the singularity, has an interior angle of α1π = 2π. In Example 5.3.2, we

consider a problem with two singularities. The vertices which contain the singularities

have interior angles of α jπ = 2
3π, j = 2,4. In this example, the exact solution is not

known.

After separating the “singular” part, in Example 5.3.1, the remaining part of the domain

is covered by 5 overlapping parallelograms, whereas in Example 5.3.2, the “nonsin-
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Figure 5.2. The approximate solution (a) and exact solution (b) of ∂ 2u
∂x2 , respectively, in

the "singular" part of the L-shaped domain with mixed boundary conditions using

polar coordinates

gular” part of the domain is covered by only two parallelograms. For the solution of

the block-grid equations, Schwarz’s alternating procedure is used. In each Schwarz’s

iteration the system of equations on the parallelograms is solved by the block Gauss-

Seidel method. The function Q j(r j,θ j) is constructed for each example, taking into

consideration the boundary conditions given on the adjacent sides of the vertices in

the “singular” parts, and equation (2.1.6) introduced in Section 2.1. Furthermore, the

derivatives are approximated in the “singular” parts for both of the examples.

The results are provided in Table 5.13-Table 5.17, and Figure 5.3-Figure 5.11.

Example 5.3.1 Consider the open parallelogram
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D =
{
(x,y) :−

√
3

2 < y <
√

3
2 ,−1− y√

3
< x < 1− y√

3

}
. We assume that there is a slit

along the straight line y = 0, 0 ≤ x ≤ 1. Let γ j, j = 1,2, ...,7, be the sides of D,

including the ends, enumerated counterclockwise starting from the upper side of the

slit (γ0 ≡ γ7), γ = ∪7
j=1γ j, and

.
γ j = γ j∩ γ j−1 be the vertices of D.

The application of the method in the parallelogram is demonstrated in Figure 5.3

Figure 5.3. Domain of the slit problem with the applicaiton of BGM

Let (θ 1,r1) ≡ (θ ,r) be a polar system of coordinates with pole in
.

γ1, where the

angle θ is taken counterclockwise from the side γ1

We consider the boundary value problem

∆u = 0 on D,

u = ϕ j on γ j, j = 1,2, ...,7, (5.3.1)
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where ϕ j is the value of the function

v(r,θ) = 0.5r1/2 sin θ

2 +0.8r3/2 sin 3θ

2 +2r2 cos2θ +2.5r3 cos3θ +2θ on γ j.

As ϕ0 = 2x2 +2.5x3 +4π and ϕ1 = 2x2 +2.5x3, we obtain the carrier function in the

form

Q1(r,θ) = 2θ +2(ξ 2(r,θ)+ξ 2(r,2π−θ))+

2.5(ξ 3(r,θ)+ξ 3(r,2π−θ)) ,

where ξ 2(r,θ) = r2 ((2π−θ)cos2(2π−θ)+ lnr sin2(2π−θ))/2π and

ξ 3(r,θ) = r3 ((2π−θ)cos3(2π−θ)+ lnr sin3(2π−θ))/2π.

The following notation is used in the Table 5.13. Let D′l, l = 1,2, ...,5, be the open

overlapping parallelograms, DNS =∪5
l=1D′l be the "nonsingular" part and DS = D\DNS

denote the "singular" part of D. In Table 5.13, the values are obtained in the maxi-

mum norm of the difference between the exact and the approximate solutions, for the

values of h = 2−k, k = 4,5,6,7, and n, which is the number of quadrature nodes on

Vj. The order of convergence, Rm
D =

‖v−v2−m‖D∥∥∥v−v
2−(m+1)

∥∥∥
D

have also been included. Figures

5.4, 5.5 illustrate the approximate solution uh, and the exact solution u in the “sin-

gular” part of the domain, respectively. We also present the error obtained between

the derivatives of the exact and the block-grid solutions ε
(1)
h = r1/2

(
∂u
∂x −

∂Uh
∂x

)
and

ε
(2)
h = r3/2

(
∂ 2u
∂x2 − ∂ 2Uh

∂x2

)
, in the maximum norm, in Tables 5.14 and 5.15, respectively.

Figures 5.6 and 5.7, 5.8 illustrate the shapes of the derivatives ∂u
∂x and ∂ 2u

∂x2 of the ob-

tained approximate and exact solutions. These figures demonstrate also the highly

accurate approximation of the derivatives.
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(h−1,n) ‖u−uh‖DNS
‖u−uh‖DS

Rm
DNS

Rm
DS

(16,70) 5.924280×10−5 5.191270×10−7

(32,70) 3.910378×10−6 4.794595×10−8 15.1501 10.8273

(64,110) 2.478126×10−7 2.558563×10−9 15.7796 18.7394

(128,130) 1.56560×10−8 1.27915×10−10 15.8286 20.0021

Table 5.13. Results obtained for the slit problem

(h−1,n) (16,70) (32,70) (64,110) (128,130)∥∥∥ε
(1)
h

∥∥∥
DS

7.89831×10−7 9.78871×10−8 4.29502×10−9 2.94108×10−10

Table 5.14. ε
(1)
h = r1/2

(
∂u
∂x −

∂Uh
∂x

)
in the "singular" part of the parallelogram with a

slit

(h−1,n) (16,70) (32,70) (64,110) (128,130)∥∥∥ε
(2)
h

∥∥∥
DS

3.7119×10−6 9.736×10−7 2.03211×10−8 9.30597×10−10

Table 5.15. ε
(2)
h = r3/2

(
∂ 2u
∂x2 − ∂ 2Uh

∂x2

)
in the "singular" part of the parallelogram with a

slit
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Figure 5.4. Approximate solution in the “singular” part of the slit problem

Figure 5.5. Exact solution in the “singular” part of the slit problem

Example 5.3.2 Let P be the open parallelogram

P =
{
(x,y) : 0 < y <

√
3

2 ,− y√
3
< x < 1− y√

3

}
, let γ j, j = 1,2,3,4, be the sides of P,

including the ends, numbered in the positive direction, starting from the left-hand side

(γ0 ≡ γ4,γ1 ≡ γ5), γ = ∪4
j=1γ j, and

.
γ j = γ j ∩ γ j−1 represents the jth vertex of P. We

consider a problem with two corner singularities at the vertices
.
γ2 and

.
γ4, where

α jπ = 2
3π, j = 2,4. The two “singular” corners of P are covered by sectors and

these areas are denoted by Pi
S, i = 1,2, and two overlapping parallelograms cover the

“nonsingular” part of the domain, denoted by Pi
NS, i = 1,2. Application of the method

for this example is demonstrated in Figure 5.9.

We consider the boundary value problem
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Figure 5.6. The approximate solution (a) and exact solution (b) of ∂u
∂x in the "singular"

part, respectively, of the slit problem.

Figure 5.7. The approximate solution of ∂ 2u
∂x2 in the "singular" part of the slit problem.
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Figure 5.8. The exact solution of ∂ 2u
∂x2 in the "singular" part of the slit problem.

Figure 5.9. Domain of the problem with double singularities

∆u = 0 on P,

u = 0 on γ j, j = 1,4,

u = 1 on γ j, j = 2,3. (5.3.2)
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2−m 2−5 2−6

R̃m
P1

NS
16.257 15.9884

R̃m
P2

NS
16.2387 16.0086

R̃m
P1

S
19.3268 12.7771

R̃m
P2

S
18.2604 14.0755

Table 5.16. Order of convergence for problem with double singularities

2−m 2−5 2−6

R̃m
P1

S
13.8404 19.6426

R̃m
P2

S
13.7489 19.6505

Table 5.17. Order of convergence of derivatives in the "singular" parts of the

parallelogram with double singularities

The functions Q j(r j,θ j), j = 2,4, constructed for each singularity are Q2 (r2,θ 2)= 1−

3θ 2
2π

and Q4(r4,θ 4) =
3θ 4
2π

.We have checked the accuracy of the obtained approximate

results uh by looking at the order of convergence using the formula R̃m
P =
‖u2−m−u2−m+1‖P
‖u2−m−1−u2−m‖P

,

which corresponds to 24, for the pairs (h,n)= (2−4,80), (2−5,100), (2−6,100), (2−7,90).

The results are presented in Table 5.16. Moreover, ∂ 2u
∂x2 has been approximated in the

“singular” part, where u is the unknown exact solution of problem (5.3.2). The results

are presented in Table 5.17 and illustrated further in Figures 5.10, 5.9.
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Figure 5.10. ∂ 2Uh
∂x2 in the “singular” part P1

S of the parallelogram with double

singularities

Figure 5.11. ∂ 2Uh
∂x2 in the “singular” part P2

S of the parallelogram with double

singularities
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Chapter 6

Conclusion

A matching operator of fourth-order accuracy is constructed on the closed rectangle,

for the numerical solution of Laplace’s equation in hexagonal grids. With the use of

this matching operator the Block-Grid method (BGM) has been applied and analysed

on staircase polygons, with a hexagonal grid, for the approximation of the Dirichlet

and mixed boundary-value problem of Laplace’s equation. The difficulties of having

neighbouring nodes emerge through the side of the domain while approximating the

solution on near-boundary nodes, and nodes lying on sides with Neumann boundary

conditions, are overcome by the construction of fourth-order accurate finite-difference

operators.

It is justified that an accuracy of O(h4) is obtained everywhere in the domain, where h

is the step size, when the boundary functions away from the singular points are from

the Hölder classes C6,λ , 0 < λ < 1.

The approximation of the Dirichlet problem of Laplace’s equation has also been con-

sidered on special type of polygons with interior angles of α jπ, α j ∈
{1

3 ,
2
3 ,1,2

}
. It

has been justified that in these polygons, with the application of BGM, the smoothness

of the boundary functions away from the singular points can be lowered down to C4,λ ,

0 < λ < 1, in order to obtain fourth-order accuracy everywhere in the domain.

In order to demonstrate the accuracy of these results, the L-shaped problem has been

considered, where the first example solved had Dirichlet boundary conditions on all
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sides of the domain, and in the second example Neumann boundary conditions were

assumed on one of the adjacent sides of the singular vertex.

For the realization of BGM on polygons with interior angles of α jπ, α j ∈
{1

3 ,
2
3 ,1,2

}
,

first of all the slit problem has been considered. As a second example, the computa-

tion of BGM was carried out in a domain with double singularities. All the solutions

obtained are consistent with the theoretical results.

As an extension of the results obtained in this thesis, it will be interesting to investigate

the solution of the biharmonic equation. Eventhough harmonic functions satisfy the bi-

harmonic equation, it does not always follow that biharmonic functions are harmonic.

Hence BGM can not always be applied directly for the approximation of biharmonic

problems, but can be used by reducing them to two problems for the Laplace and Pois-

son equations.

Furthemore, for the generalization of the results in this thesis, it will also be worthwhile

to analyze BGM with nonanalytic boundary conditions, thus removing the restriction

of the boundary functions on the adjacent sides of the singular points to be algebraic

polynomials. Eventhough this restriction has been removed for the application of BGM

on staircase polygons with square grids (see [23]), the extension to hexagonal grids has

not been investigated.

Finally, considering BGM on three-dimansional domains will also be of interest. This

application will require a new construction of the matching operator with the use of

a different method than the one used in this thesis, and also a new definition of the

integral representation of the solution will be needed.
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