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ABSTRACT

A fourth order accurate matching operator is constructed on a hexagonal grid, for the
interpolation of the mixed boundary value problem of Laplace’s equation, by using
the harmonic properties of the solution. With the application of this matching oper-
ator for the connection of the subsystems, the Block-Grid method (BGM), which is
a difference-analytical method, has been analysed on a hexagonal grid, for the solu-
tion of both the Dirichlet and mixed boundary value problems of Laplace’s equation
with singularities. First of all, BGM is considered on staircase polygons and it is justi-
fied that when the boundary functions outside the finite neighbourhood of the singular
points are from the Holder classes C®*, 0 < A < 1, the error of approximation has
an accuracy of O (h4) , where h is the mesh size. The analysis of this method is ex-
tended to special polygons whose interior angles are o7, o € {%, %, 1,2}, and for
the Dirichlet problem of Laplace’s equation it is proved that, with the application of
BGM, it is possible to lower the smoothness requirement on the boundary functions
to C**, 0 < A < 1, outside the finite neighbourhood of the singular points, in order
to obtain an accuracy of O (h4). For the demonstration of the theoretical results on
staircase polygons, BGM has been applied on an L-shaped domain for two examples,
which has a singularity at the vertex with an interior angle of 37”, where Dirichlet and
mixed boundary conditions are assumed respectively. The slit problem, which has the
strongest singularity due to the interior angle of 27 at the vertex of the slit, has been
considered on a parallelogram with a slit, in order to illustrate the results obtained on
polygons with interior angles of a7, o € {%, %, 1,2} . The second example on a par-
allelogram demonstrates the application of BGM on a domain with two singularities as

it is assumed that the vertices with interior angles of 2?” are singular points. Solutions
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of the numerical examples are consistent with the theoretical results obtained.

Keywords: Hexagonal grids, Laplace’s equation, singularity problem, block-grid method.
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Laplace denklemi sinir problemleri i¢in, dordiincii derece hata pay1 olan birlestirme
(matching) operatorii petek diigtimleri iizerinde kurulmustur. Bu enterpolasyon oper-
atoriiniin kurulumu icin ¢6ziimiin harmonik 6zellikleri kullanilmistir. Alt sistemlerin
birlestirilmesinde uygulanan matching operatorii ile Block-Grid metodu (BGM), petek
aglar iizerinde analiz edilmistir. Bu metod, tekilligi olan Laplace denkleminin Dirich-

let ve karisik (mixed) sinir problemlerine uygulanmistir.

Ik 6nce BGM, i¢ agilar1 o« T, o€ {%, 1, %, 2} olan ¢okgenler iizerinde incelenmistir.
Tekil noktalardan belli bir uzaklikta olan sinir tizerindeki fonksiyonlar C 671, 0<A<l,
Holder gruplarindan oldugu zaman yakinsaklik hatasinin O (h4) oldugu kanitlanmigtir

(h ag araligidir).

Ilaveten, BGM nin analizi 6zel cokgenler iizerine genisletilmistir. Bu 6zel cokgenlerin
i¢ agilan a;w, a; € {%, %, 1,2}, olarak verilmigtir. Laplace’in Dirichlet probleminin
yaklagik ¢coziimii i¢in, bu ¢okgenler iizerinde, tekil noktalardan belli bir uzaklikta olan
sinir fonksiyonlarinin C**,0 < A < 1, Holder grubundan olmasi ve BGM metodunun

uygulanmast ile hata paymnmn yine O (h*) oldugu kanitlanmistir.

Teorik sonuclarin niimerik ¢oziimlemesi icin BGM, i¢ acilarindan biri 37” olan L-

sekilli (L-shaped) ¢okgende uygulanmgtir. Agilan o7, o € {%, %, 1,2}, olan ¢ok-
genler tizerinde BGM’nin uygulanmasini gostermek {iizere, i¢ acis1 27 oldugundan
dolay1 en giiclii tekillige sahip olan kesik problemi (slit problem), paralelkenar iiz-

erinde ¢oziilmiistiir. Yine paralelkenar iizerinde, ZT” i¢ acili kenarlarin ikisinde de tekil-

lik oldugu varsayilarak BGM ile Laplace sinir problemi ¢oziimlenmistir. Elde edilen



sayisal ¢oziimlerin teorik sonuglarla uyumlu oldugu sergilenmistir.

Anahtar Kelimeler: Laplace denklemi, tekil problemi, Block-Grid metodu, petek

aglar.
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Chapter 1

INTRODUCTION

Elliptic equations are widely used in many applied sciences to represent equilibrium or
steady-state problems. Among these Laplace’s equation, which is one of the most en-
countered elliptic equations, has been used to model many real-life situations such as
the steady flow of heat or electricity in homogeneous conductors, the irrotational flow
of incompressible fluid, problems arising in magnetism, and so on. However, obtain-
ing the approximate solution of elliptic equations is not straight-forward, as generally

singularities are experienced in the domain of definition.

These singularities can be categorised into three different types: angular singulari-
ties, interface singularities and infinity when the domain is unbounded (see [4] and
references therein). Angular singularities, in particular, arise as a result of reentrant
angles in the domain, discontinuity in the boundary functions or having mixed bound-
ary conditions. This leads to a reduction in the order of approximation if the classical
finite-difference or finite-element methods are applied, as the low-order derivatives of

the exact solution become unbounded at the singular points.

The angular singularity is easily demostrated in the example of Laplace’s equation
with Neumann-Dirichlet boundary conditions. Let D = D U7 be a closed polygonal

domain, y denotes the sides of the polygon, and consider the following boundary-value



problem:

Au = OonD,
Jdu 1du
— = ———=Awh =
ER 30 when 6 =0,

u = Bwhen =0,

2 2 . .
where A = % + %% + r% g—el;, A and B are constants. The exact solution of this problem

is:

i) u=B—Arsinf + ’igisngrcose + Y oaxr® cos a0, where o = § (k+ %) ,

O£

ii) u=B—% (Inrcos® — Osin) — Arsin + L7, apr®cos a0, where oy =

2k+1when ® = 7/2, ay = (2k+1)/3 when ® = 37/2.

As can be seen from the exact solution, the strength of the singularity can be analysed
by looking at the different values angle ® takes. For instance, the solution is only
analytic when ® = /2 and A = 0. In the case when ® < 7/2, it is easy to show that
u € C'. However, when /2 < ® < 27, we obtain 1/4 < a; < 1. Since

du

ou _ o —1
or O(rl )’

the first derivative becomes unbounded as r tends to zero and u ¢ C'. Furthermore,

when ® = 27, @y = 1/4 and hence

u=0<r1/4),



which is the strongest singularity. Similar results are also obtained when we con-
sider Laplace’s equation with Dirichlet-Dirichlet, Dirichlet-Neumann or Neumann-

Neumann boundary conditions.

E.A. Volkov justified in [2] that the smoothness requirement on the boundary functions
can be lowered in order to obtain a second-order approximation using the 5 — point
scheme in square grids, on a bounded domain. It was shown that if the boundary
functions belong to C2* 0 < A <1, it is still possible to obtain the same order of
accuracy everywhere in the closed domain. Furthermore, A.A. Dosiyev proved in
[3] that when the 9 — point scheme is considered in square grids, on a rectangular
domain, in order to acquire an accuracy of O (hk) , where h is the step size, k = 4,6,
the requirement of smoothness of the boundary functions can be reduced, and with the
boundary functions belonging to the Holder classes C**, 0 < A < 1, k = 4,6 this order

of accuracy can be obtained.

0 _ /a8
cosy, and v(x,y) = r/ sin ;, when

Clearly, the harmonic functions u (x,y) = r!/®

considered in a domain with an interior angle of am, 1/2 < o < 2, do not belong
to C2*, 0 < A < 1. Even in the presence of singularities, E.A. Volkov has proved in
[40] that it is possible to obtain an order of approximation around the singular points,
depending on the interior angles of the polygon. It was justified that when the 5 — point
scheme is applied in square grids, for the numerical solution of Laplace’s equation with
Dirichlet boundary conditions, on a bounded domain with an interior angle of o,
1/2 < a <2m, a +# 1, the order of approximation obtained is O (hl/ O‘) . Similarly, for
the mixed boundary-value problem, O (hl/ 20‘) is obtained. Hence the approximation

is considerably worse than O (hz) .



Throughout the last century, many methods have been constructed for highly accurate
approximations around singular points (for example [4]-[12] and references therein).
These methods are generally based on four main ideas, the first of these being classified

as Conformal Transformation Methods (CTM).

CTM is based on the idea that “If a domain € can be transformed to a simple do-
main Q* such that the Laplacian solutions are explicity obtained, then the harmonic
functions on Q can also be explicitly obtained”, see [9], [13]. Hence the Schwarz-
Christoffel transformation is applied to polygons with angular singularities, mapping

them onto rectangular domains.

Another set of methods is based on the idea of local refinement, where the domain is
separated into two as the “singular” part and the “nonsingular” part. The “nonsingular”
part is approximated using the finite-difference or finite-element methods, with step
size h. In order to balance the errors in the “singular” part, however, & is taken as a
much smaller value, and the same method is applied as in the “nonsingular” part with

the new value of & (see [10], [11], [14], [35]-[38]).

The singular functions method also provides a basis for the derivation of methods

approximating around singular points. We let

u(r,0) =Y Dirsina;6,
i=1

be the solution near the singular point O, where

®
D,-:—rg“f/o u(ro, 0) sin ;06



is the exact solution of the coefficients D;, i = 1,2,... , where ry denotes the radius of
the sector separating the singular point. Hence, approximating the coefficients D;, and
applying a transformation of the form

L
wW=u— ZDir“" sin ;0
i=1

where D; is the approximation of D;, the singularity can be removed. Usually, the
approximation of one or two coefficients is enough to remove the singularity of the

series u(r, 0) (see [8], [16]).

Finally, Combined Methods are also widely applied for the approximation of elliptic
equations in domains containing singular points. Similar to Local Refinement, the do-
main is partitioned as the “singular” part and the “nonsingular” part. However, differ-
ent methods are applied in the separated parts of the domain, providing the advantage
of using the most suitable method for the subdomain. Nevertheless, special care must
be taken for the connection of subsystems. Some of these methods are given in [15],

[20], [35], [17], [31].

It was commented in [4] by Z.C. Li that “ The ideal numerical methods of the 21s¢
century should be like the combined methods, where all methods can be employed
together, and integrated in a very harmonious way such that to utilize fully their merits
and also to avoid their shortcomings”. Thus, drawing attention to the significance
of exploring the combination of existing methods, in the improvement of numerical

methods.



Among many combined methods, the Block-Grid Method (BGM) introduced in [15]
by A.A. Dosiyeyv, for the solution of Laplace’s boundary-value problem, is considered
as one of the more highly accurate methods, not only for the approximation of the so-
lution, but also for the approximation of its derivatives around singular points. BGM, a
difference-analytical method, is the combination of two methods: the finite-difference
method, which is regarded as one of the simplest methods in realization and is highly
accurate, is applied in the “nonsingular” part of the domain, and the Block Method

(BM), is applied in the “singular” part.

BM was first introduced by E.A. Volkov in [1], and is an extremely accurate method,
which can be used for the numerical solution of Laplace’s boundary-value problem.
The method is based on the approximation of the integral representation of harmonic
functions using rectangular quadrature nodes, inside the finite number of sectors of
disks, half-disks and disks covering the domain. The approximate solution and its
derivatives converge exponentially in proportion to the number of quadrature nodes,
and the method can be successfully applied when the boundary functions are algebraic

polynomials or analytic functions (see [18], [19]).

Therefore, the application of this method only on the “singular” parts of the domain
removes the restriction on the boundary functions to be analytic or algebraic polyno-
mials in the “nonsingular” part, making the BGM more fitting to a wider number of
boundary value problems. In [20], the BGM is applied for the approximation of the
mixed boundary-value problem of Laplace’s equation on staircase polygons. The “sin-
gular” parts of the domain are covered by blocks and are separated from the rest of the

polygon with the use of artificial boundaries, and the remaining parts of the polygon



are covered by overlapping rectangles, which are approximated with the use of the
9 — point scheme on square grids with step size 4. A sixth-order interpolation opera-
tor, called the matching operator, is constructed for connecting all the subsystems, and
thus it is justified that it is possible to obtain sixth order accuracy everywhere in the
polygon, including the “singular” parts. Despite the high accuracy obtained by BGM,
the application of the method was restricted to having square grids in the “nonsingular”

part of the domain and using a staircase polygon.

Hexagonal grids are favored in many applied problems such as dynamical meteorology
and oceanography (see [24]-[26]), due to its wavelike structure. Another advantage of
using hexagonal grids is that eventhough the 7 — point scheme on a hexagonal grid and
the 9 — point scheme on a rectangular grid both give fourth order accuracy when the
boundary functions are from the Holder classes C®*, 0 < A < 1, the 7 — point scheme
on a hexagonal grid has the computational advantages of having easier algorithms to
implement and requiring less memory space, due to having a 7-diagonal matrix rather

than 9-diagonal.

However, they have not been widely applied in the approximation of the singularity
problem using combined methods, as an interpolation function for connecting the sub-
systems, with the required order of accuracy, did not exist. Moreover, when hexagonal
grids are considered on a rectangular domain, applying the 7 — point scheme for the
approximation of near-boundary nodes resulted in some nodes of evaluation emerging
through the side of the domain. Thus, making the use of hexagonal grids difficult on
staircase polygons. Moreover in [22], it was justified by A.A. Dosiyev and S.C. Bu-

ranay that when square grids are used in the “nonsingular” part of the staircase poly-



gon, and the boundary functions in this part of the domain are from the Holder classes
C**, 0 < A < 1, the application of the BGM still gives fourth order accuracy. Hence,
giving the same order of accuracy as the hexagonal grid, but with less requirement of

smoothness on the boundary functions.

In this thesis, the use of hexagonal grids have been investigated for the solution of
Laplace’s equation with singularities, with the application of BGM, and it is justified
that it is possible to approximate Laplace’s equation by retaining the advantages pro-
vided by hexagonal grids. Moreover, it is justified that in certain type of polygons it
is more advantageous to use the 7 — point scheme on a hexagonal grid, rather than the

9 — point scheme on a square grid.

In Chapter 2, we derive the hexagonal grid version of the BGM on staircase poly-
gons. Section 2.2 is devoted to the analysis of the 7 — point scheme on a rectangular
domain, and in Section 2.3 an interpolation operator, called the matching operator, is
constructed on hexagonal grids with fourth order accuracy, for the connection of the
subsystems within the polygon. With the aid of this matching operator, the hexagonal
grid version of BGM is applied for the Dirichlet problem of Laplace’s equation. It is
justified that it is possible to obtain fourth-order accuracy everywhere in the polygon,
when the boundary functions in the “nonsingular” part are from C%* 0 <A < 1. The
solution in the “singular” part of the domain is defined as a harmonic function, and
the derivatives of the solution are also approximated in these parts of the domain by a
simple differentiation of this function. It is proved that the errors of the derivatives of
order p, p=1,2,..., are O <h4/rf_lj> , where A ; = aij, and o7 is the interior angle

at the vertices of the polygon, a; = {%, I, %,2} .



In Chapter 3, the hexagonal grid version of BGM is applied for the numerical solution
of Laplace’s equation with mixed boundary conditions, again on a staircase polygon.
For the approximation in the rectangles covering the “nonsingular” part of the domain,
interpolation formulae are constructed for near-boundary nodes and nodes lying on the
boundary of the sides with Neumann conditions, by using the harmonic properties of
the solution. Furthermore, the construction of the matching operator is extended for
the interpolation of the points near sides with Neumann boundary conditions. Again it
is justified that when the boundary functions in the “nonsingular” part are from o,

0 < A < 1, fourth-order accuracy is obtained everywhere in the polygon.

In Chapter 4, it is proved that the hexagonal grid version of BGM can be extended to
the approximation of Laplace’s equation with Dirichlet boundary conditions on poly-
gons with interior angles of o7, o; € {%, %, 1,2}. Moreover, it is justified that in
order to obtain fourth-order accuracy everywhere in this domain, the requirement for
the smoothness of the boundary functions can be lowered so that when the boundary
functions outside the “singular” parts of the domain are from the Holder classes cH*,

0 < A < 1, an accuracy of O (h?) is obtained, where / is the step size.

Chapter 5 demonstrates the numerical realization of the theoretical results obtained in

Chapters 2, 3 and 4.

The results of this thesis are presented in [31] and [41]-[44].



Chapter 2

HEXAGONAL GRID VERSION OF THE BLOCK-GRID
METHOD FOR THE DIRICHLET PROBLEM ON STAIRCASE

POLYGONS

2.1 Description of the Block-Grid Method (BGM)

We define by G a simply connected polygon and denote the sides of this polygon by v,
Jj=12,...,N, (Yo = 7y), numbered in the positive (counterclockwise) direction, with
Y= Uljy: 17;» and the vertices of this polygon are represented by j/j =7Y;_1NY;- These
vertices have an interior angle of o ;7, where ; € {%, 1, %,2}, 1.e. G is a staircase
polygon. Moreover, s is used to define the arclength measured along the sides of this
polygon in the positive direction, where s; is the value of s at j/j, and rj, 0 ; represent

the polar system of coordinates, measured in the positive direction from y;, with pole

aty;.

We consider the boundary value problem

Au = OongG, (2.1.1)

u = @;ony;, j=12,.,N, (2.1.2)
where ¢ ; are given functions, and

¢, €Co*(y;),0<A <1, 1<j<N. (2.1.3)

10



In addition, when the interior angle at the vertex y s /2, the following conjugation

conditions are assumed to be satisfied:

0 (s)) = (179 (s), ¢=0,1,2,3. (2.1.4)

At the vertices j/j, for o # %, conditions (2.1.4) are not required to be satisfied, more
precisely, the values of @;_; and ¢ ; at these vertices might not be the same. However,
the condition imposed on the boundary functions on ¥;_; and y;, when @ #1/2,1s
that the boundary functions should be given as algebraic polynomials of arclength s

measured along Y represented as

Tj-1

Tj
Y ajrfand Y by, (2.1.5)
k=0 k=0

respectively, where aj; and bj; are numerical coefficients, and 7; | and 7; are the

degrees of these polynomials.

LetE={j:a;#1/2, j=1,2,..,N} denote the set of vertices of G, called the “sin-
gular” vertices. We construct two fixed block sectors in the neighborhood of y ] €E,
denoted by T} =T;(rj;)) CG,i=1,2,where 0 <rj <rj <min{sj+1 —8j,8; —sj,l} ,
and Tj(r) = {(rj,0;) :0<r;<r,0<8; <o x}. The function Q;(r;,8;) is con-

structed on the closed sector T}-, J € E. It is required that:
i) Qj(r), 6 ;) is harmonic and bounded on the open sector T},

.. . =1 T
if) continuous everywhere on T ; apart from the point ¥;, j € E, when ¢@;_, #Q I
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iii) continuously differentiable on T}\}/ 2
iv) satisfies the given boundary conditions on Yi-1 ﬂT} and y; QT}, JEE.

The function Q;(r;, 6 ;) with the properties i) — iv) is given in [1] in the form

Ti1 Ti
aj—bjo \ k - k
Qj(rj,0)) =bjo+—=—=0,+ ), aprjC ;i (r),0;) + ), bixriC j (rj, 0= 6;),
j k=0 k=0
(2.1.6)
where
0 coskd j+Inr;sink ; . .
- , : , sinka ;= 0,
Ciulrj o) =4 1 ometor 2.1.7)
inko ; .
jsisrlll}cajjn’ sinka ;7 # 0.
Let

where

1—-72
27(1—2rcos(6 —n)+r?)

R(r,0,m) = (2.1.9)

is the kernel of the Poisson integral for a unit circle. It can be easily verified that

Ri(rj,0j,m)>0,0<6,n<a;r, j€E. (2.1.10)

Discretization of the integral representation given in the following Lemma, using rect-

12



angular quadrature nodes, is used for the approximation of problem (2.1.1), (2.1.2)

around the “singular” vertices j/j, JEE.

Lemma 2.1.1 The solution u of problem (2.1.1), (2.1.2) can be represented on T?\Vj,

j € E, in the form

a;n
u(rj, 8;) ZQj(rjv9j)+/o (u(rj2,n) = Qj(rj2,M)R;(rj, 8 5,m)dn,  (2.1.11)
where V is the curvilinear part of the boundary of sector sz.

Proof. The proof follows from Theorems 3.1 and 5.1 in [1]. =

We define the approximate solution in the polygon G by applying a version of the

BGM introduced in [15] (see also [20]).

In order to apply the BGM, two more sectors, Tj3 and T;‘, are added to the sectors
le,sz, with 0 < rjy <rjz <rj, rjz=(rjp+rjs)/2 and Tk3 ﬂTl3 =0, k # 1, where
k,l € E. Also, we define Gt = G\ (Ujeg Tf). Below we give an explanation of how the

method is applied on the polygon G.

i) Double sectors T]? = T;(rji), i = 2,3, are used to block the vertices j/j, Jj €
E. Overlapping rectangles I1;,k = 1,2,...,M, cover the rest of the polygon such that
the distance from II; to a singular point j/]- is greater than rj4 for all k =1,2,... .M,
and UQ”: I is called the “nonsingular” part of the domain. G\ Uﬁ/’: 1 I is called the

“singular” part of the domain and sectors Tj3, Jj € E, cover the “singular” parts, j € E.

i) On each rectangle Iy, the seven point difference scheme for the approximation

of Laplace’s equation on a hexagonal grid is used, with step size hy < h, h a parameter,

13



. . =3 . .
and for the approximate solution on 7', j € E, a quadrature formula of the harmonic

function (2.1.11) is used.

iii) The subsystems are connected by the matching operator S* formed in Section

2.3

iv) Schwarz’s alternating procedure is used for solving the finite difference system

formed for Laplace’s equation on the rectangles covering D7

The application of this method is demonstrated in Figure 2.1, on a staircase polygon
with one singular vertex, where the "nonsingular" part of the domain is covered by four

overlapping rectangles.

I 1
05 r -
0k T . i\
05 F -
_'1 1 1 1
-1 -05 n ns 1

Figure 2.1. Application of the Block-Hexagonal Grid Method on a staircase polygon

In order to approximate problem (2.1.1), (2.1.2), the following steps are taken: We

denote by II; C Gr, k= 1,2,...,M, fixed open rectangles, whose sides aj; and ay;

14



are parallel to to the sides of G, and G C (UQ’IZIH;{) U (UJEET]?) C G. The sides of

I1; are denoted by 7y, V; is the curvilinear part of the boundary of the sector sz and

1= (ULn) NT;.

For the arrangement of the rectangles Iy, k = 1,2,...,M, it is required that any point
Plying on N, NGy, 1 <k <M, orlocated on V; NG, j € E, lies inside at least one of
the rectangles, i.e. IIyp) 1 < k(P) < M, and that the distance from P to G N1y p) is
not less than some constant s7) independent of P. The quantity ¢ is called the gluing

depth of the rectangles I,k =1,2,..., M.

We introduce the parameter i € (0, »1y/4] and consider a hexagonal grid on IT;, k =
1,2,...,M, with maximal possible step h; < min{h,min{a;,ax}/4}. Let Hg be the
set of nodes on IT, n’,z be the set of nodes on 1, and let ﬁz = HZ N nZ. We de-
note the set of nodes on the closure of n, N Gr by ni’o, and the set of nodes on Hi‘
whose distance from the boundary 1n; N Gr of Il is % by n;g. We also have H;:h
denoting the set of nodes whose distance from the boundary 1;; of Il is g and
Y = T\ (T Umnyg) - Let ¢ be the set of nodes on #;, and let 1y, be the set of
remaining nodes on 7. We also specify a natural number n > [ln1+"h_1] + 1, where
» >0 is a fixed number and the quantities n(j) = max {4, [a;n] } , B; = a;x/n(j) and
07 = (m—1/2)B;, j€ E, 1 <m <n(j). On the arc V; we choose the points (rj, 6"

,1 <m < n(j) and denote the set of these points by V. Finally, let

h M h M h —h.n n v =h
DRSS (Uk:mm) U (Ukzmio) U (UngV]”) LG = oy <Uk:1Hk) '

Consider the system of equations

15



Up
up
Up

uh(rjv 9]')

Up

where | <k <M,

Su(xvy) =

= Su, onITY", (2.1.12)

= @, 0onN}NY,, 2.1.14)
= Qj(rj,0;)+

n(j)
+ﬁ ZR rj, 8, ]) (uh(rj%ejl')_Qj(rjz,e;I-)) Ontﬁ’(2.1.15)

= S4(uh,qo) on ™", (2.1.16)

1<m<N,jeE, o= {(pj ", and

1 h V3 h V3
- h — —h - iy
6<u(x+ ,y)+u(x+2,y+ > >+u<x 2,y+ 7 )
h 3
+”(X_haY)+u<X——ay—£h)+
2 2
h 3
+u<x+§,y—§h>> (2.1.17)

(x,y) = %(u<x+ﬁ,y—\/2_ >+u(x+h,y)—l—

u<x+ﬁ, \/_T (2.1.18)
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(@) = 21—1 <2<P,~ <y+@> +80;(y)+2¢; <y— @)) . (2.1.19)

The operator (2.1.18) and the corresponding right-hand side (2.1.19) are constructed in

the right coordinate system with the axis x; directed along ¥, ; and the axis y; directed

along ;.

The solution of the system of equations (2.1.12)-(2.1.16) is an approximation of prob-

lem 2.1.1), (2.1.2) on G,

>0

Theorem 2.1.2 There is a natural number ng such that for all n > ng and h € (0, ],
where 3 is the gluing depth, the system of equations (2.1.12) — (2.1.16) has a unique

solution.

Proof. Let v, be a solution of the system of equations

w, = Su,onII (2.1.20)
w, = StuyonIl" nfny #0o, (2.1.21)
w, = OonniNy,, (2.1.22)
n(j) .
uh(rj,ej) = ﬁjZRj(rj,Qj,Q?)uh(rjz,ejl.) ontj, (2.1.23)
q=1
w, = S, on @"", (2.1.24)

where 1 <k <M, 1 <m<N, jecE. To prove the given theorem, it is necessary
and sufficient to show that mMax |vi| = 0. Since the operators S, S’ and S* have

non-negative coefficients and their sum is less than or equal to one, by the maximum
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principle (see Chapter 4 in [21]) follows that the nonzero maximum value of the func-
tion vy can be at the points on U jeEtﬁl. From the estimation (2.29) in [33] follows the

existence of the positive constants ng and o > 0 such that for n > ny,

n(J)
max B, ZR rj,0;,09) <o <l. (2.1.25)
(r; Q)ET q=

Taking (2.1.25) into account in (2.1.23) follows that the nonzero maximum value can
not be at the points on U jeEt? either. Since the set ij’” is connected, from (2.1.22)

follows that max . [vy| =0. =

Let u;, be the solution of the system of equations (2.1.12)-(2.1.16). The function

Un(r;,0;) = Q;(rj,0,)+B, ZR 705,69 (un(rj2, 69— 0j(r2,69))  (2.1.26)

is the discretization of the integral representation (2.1.11) with the use of the composite
mid-point rule. The solution u of problem (2.1.1), (2.1.2), in the “singular” parts of
the polygon G, is approximated with the use of the function Uj(r;,0 ;) on the closed

blocks 7, j € E.

2.2 Approximation on a rectangular domain using the seven-point

scheme in a hexagonal grid
Let IT= {(x,y) : 0 <x < a,0 <y < b} be an open rectangle, y;,j = 1,2,3,4, be its
sides, including the ends, numbered in the positive direction starting from the left-hand

side, (Vo =V, V1=75) Y= U.A}:l’}/j stands for the boundary of IT and j/j =7i1NY;

18



is the jth vertex. We consider the boundary value problem

Au = Oonll, (2.2.1)

u = @yony,j=1234, 2.2.2)
where A = 9% /9x> + 9% /9y*, ¢ j is a given function of arclength s taken along 7, and
@, eCo*(y;), 0<A <1, j=12734. (2.2.3)

At the vertices s = s, the conjugation conditions
0% (sy) = (-1)19) (s7), g =0,1,2.3, (2.2.4)

are satisfied.

Let h > 0, with a/h > 2, b//3h > 2 integers. We assign IT" a hexagonal grid on IT,

with step size h, defined as the set of nodes

k—1 3(k+1
Hh:{(x,y)EH:x:Th,yzw

h, k=1,2,..;l= 07i1,i2,...} .
(2.2.5)

Let yﬁ’ stand for the set of nodes lying on y; and let y; = 7, N Y4, Y= U(}/ﬁ’ Uy;),

m'=1mu Y. Also let IT*" denote the set of nodes whose distance from the boundary

yof I is % and TI%" = TT\ IT*",
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We consider the system of finite difference equations

w, = SuyonII (2.2.6)
wp = Siup+Ey(@;) on I, (2.2.7)
wp = @jony), j=1234, (2.2.8)

where

AN =

h 3 h 3

Su(x,y) = u(x+hy)+ulx+ ,y+\/_h +u x——,y+£h
2 2 2 2
h

+u(x—h,y)+u <x—§,y— ?h) +u (x—i—}zl,y—\/—§ ))2.2.9)

2

h 3h
u<x+2,y—|—\/_7>>, (2.2.10)

(u (x—kﬁ,y— @) +u(x+h,y)+

7»,(%):%(2% <y+@>+8<pj( )+29; (y—ﬂ>>. (2.2.11)

From formulae (2.2.9) and (2.2.10) follows that the coefficients of the operators Su(x,y)
and S;‘-u(x, y) are non-negative, and their sums do not exceed one. Hence, on the basis

of maximum principle the solution of system (2.2.6)-(2.2.8) exists and is unique (see

[21]).
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We use ¢, cg,c1, .., to stand for constants in the expressions below, which are indepen-

dent of A.

Lemma 2.2.1 Let

vi = Svi+fron HOh,
- * xh

v = Sjvl on IT™,

vi = Oon Yhs

and

v = Swm+f, on T,
vy = S;V2+72 OnH*h,

V2 = ﬁh on vy,

where fy, f1, ?z and M, are arbitrary grid functions. Assume the following inequalities

hold:

7o >0, |fil < firand i), > 0.
Then

’Vl‘ <.

Proof. The proof of this lemma follows by analogy to the proof of the comparison

theorem (see Chapter 4 in [21]). m
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Theorem 2.2.2 Let u be the solution of problem (2.2.1), (2.2.2) and uy, be the solution

of system (2.2.6) — (2.2.8). Then

max | u, —u |< ch*. (2.2.12)
ﬁh

Proof. Let
Ep=up—u, (2.2.13)

where u is the trace of the solution of problem (2.2.1),(2.2.2) on ﬁh, and uy, is the

solution of system (2.2.6) — (2.2.8). Then, the error function €, satisfies the following

system:
e, = Sep+¥,onIl", (2.2.14)
e = Siep+¥jon I, (2.2.15)
en = 0on ¥, (2.2.16)
where
VY, = Su—u, (2.2.17)
¥, = Siu—u+Ej(p)) (2.2.18)

are the truncation errors of equations (2.2.6) and (2.2.7), respectively.

On the basis of conditions (2.2.3) and (2.2.4), and from Theorem 3.1 in [27] follows
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that u € C®* (IT), 0 < A < 1. Then, by Taylor’s formula, we obtain (see [28])

max_|¥,(x,y)| < cih*Mg, (2.2.19)
(xy)e Il
where
d7u(x,y)
My= sup {|=—=22|,p=0,1,..,q . (2.2.20)
(et U 9xP0ye?
We represent the solution of (2.2.14)-(2.2.16) as
_ ol 2
8h _8h+8h7 (2221)
where
e Se} +w, on 1, (2.2.22)
1 * A1 *h
el Sie, on T, (2.2.23)
el 0on ", (2.2.24)
and
£ Se2 on T1, (2.2.25)
€ Sien+ Wy on I, (2.2.26)
& 0on 7y (2.2.27)

To estimate 8}1 we use Gerschgorin’s Majorant method (see [29], Chapter 5) by taking
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the function

Y(x,y) = h*ce Mg (a® + b* —x* —y?). (2.2.28)
For Y (x,y), we have
Y = SY+hO MgonTI”, (2.2.29)
Y = SY+u,onIl (2.2.30)
Y = h4c1M6(a2—|—b2—x2—y2) on ", (2.2.31)

where L1, = M@az +4b? + 3h* + 4hx — 4x> — 4y?) > 0. On the basis of (2.2.22)-

(2.2.24), (2.2.29)-(2.2.31) and Lemma 2.2.1, we obtain

leh] < Y. (2.2.32)
Hence,
max }S,H < max Y| < col* M. (2.2.33)
(x,y)€lh (x,y)ell

Now the estimation of equations (2.2.25)-(2.2.27) is considered. By Taylor’s formula

about each of the points (%,y) € II*" and from (2.2.18), we have

max | W] < c3sMyh*, (2.2.34)
(x,y) el

On the basis of maximum principle, we obtain

7
max_|ep| < - max |¥j| < caMyh®. (2.2.35)
(ey) et A (xy)err

24



From (2.2.16), (2.2.33) and (2.2.35) it follows that

max || < ch®. (2.2.36)
(x,y) €Il

2.3 Construction of the fourth order matching operator in a

hexagonal grid
Let z = x + iy be a complex variable and let Q = {z: |z| < 1} be a unit circle. Using
Taylor’s formula, any harmonic function u on Q with u € C*°(Q) can be expressed in

the form:

3 3
u(x,y) = Z axRe ZF + Z b Im X+ 0(r*), (2.3.1)
k=0 k=1

where (x,y) € Q and r = \/x% +)?2,

du(0,0 1 9%u(0,0 1 9%u(0,0
d = ”<070>7“1=%’“2:§%’“3=5%’ 232)
2 3
b du(0,0) . 19%(0,0) , 1 3%u(0,0) 233)

dy '’ ) dxdy ’ 373 0x2dy

In accordance with the solutions obtained in [15], the fourth order matching operator

is constructed in a hexagonal grid, by assuming that the expression:

Stu=Y &, (2.3.4)
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where u; = u(P), P, is a node of the hexagonal grid I1%, gives the exact value of any

harmonic polynomial of the form

3 3
F(x,y) = Y ayRe"+ Y b Im7,
k=0 k=1

at each point P € I1, and

£, >0, Y & <1 (2.3.5)

We use I1j to denote the set of points P € IT such that all the nodes P, to evaluate S*u
by using the expression (2.3.4) lie in ﬁh, and Iy contains the points P, where some of
the nodes P emerge through the side y;, j = 1,2,3,4. Furthermore, “grid line” is used

to mean the line connecting two neighbouring grid nodes.

Position 1. The point P € Il lies on a grid line. We place the origin of the rectangular
system of coordinates on the node Fy and direct the positive axis of x along the grid

line, so that P = P(8h,0), 0 < & < 1/2, and take the nodes (see Figure 2.2):

PO(Ovo)v Pl(hvo)a PZ(;:@% P3( 27@)7
h /3h h  /3h
g7 ) B (‘57‘7) -

First, the coefficients ),;-, Jj=0,1,2,3, satisfying the equation

26



* X

Figure 2.2. Nodes used on the hexagon

up = Agu -+ Ajuy + Ahuy + Asus

(2.3.6)

are obtained for the harmonic polynomials Rez", n = 0,1,2,3, where u = u (P), u;, =

u(Py), k=0,1,2,3, z=x+iy. Hence we attain the system

Ao+ AL+ AL+ AS

1 1
SAy+ A+ 51’2 — Ezg
S+ A lz' I)L’
0+ 175427543

Ao+ A=A+ A4

Solving system (2.3.7) we get
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A,/ _ _"LO

0o — _1+57
(25+53)u0
A ~
! 3(=1+6)
A'IZ = =M,
r l i 2
A, = 3( 6+25)u0,

where 1y = 1/(1 — 8 + 8?). We rearrange (2.3.6) for u, thus obtaining

w A A A

U= — — —U| — —Uy — —U3. (2.3.8)
Ao Ao Ao Ag
Next we consider the nodes P4(%, —@) and Ps <—§, —@) which are symmetric to

the points P, and P, respectively, with respect to the x-axis. Since Imz¥ =0,k =1,2,3
for y = 0, and odd with respect to y, and Rez¥, k = 0,1,2,3, is even with respect to y,

from (2.3.8) we have

w A AL A AL A
_ Mo A _ _ _ 239
T A T T a B  aM  ag 2.3.9)

Hence the fourth order matching operator $* can be expressed as:

5
Stu="Y A, (2.3.10)
k=0

which gives the exact value of the harmonic polynomial F3(x,y) at the point P, with
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the coefficients

Ao = —(—1+5)<1—5+62>,
26 +86°
ll - 3 )
Ny — 14:—(—1;5)67
(—1+6) <—6+252)
Ay = As= :

It can be easily verified that
Ao>0,1;>0, j=1,2,3, for0 <6 <1/2,

and

5
Y Ar=1.
k=0

(2.3.11)

(2.3.12)

(2.3.13)

(2.3.14)

(2.3.15)

(2.3.16)

Remark 2.3.1 When 1/2 < 8 < 1, the node Py, which is the nearest node to P, is taken

as the origin.

Position 2. The point P € I1j lies inside a grid cell of the hexagonal grid.

Again, we place the origin of the rectangular system of coordinates at the node F

and direct the positive axis of x along the grid line, so that P has the coordinates

P <5h, \/§2h:<> , where 0 < 6,k < 1/2. A fictitious grid is formed from the arrange-

ment of the following points:
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Kh \/_hic Kh \/_hic (h kh V3R \/3hk
2\2 " 27 2 2 )
3h h  xh h +\/3h
Pé __+_£+\/_K PA{ Y K_a_\/__3+\/_K 9
2 27 2 2 2 2 2 2
h  xh 3h  /3hx
P ——+—,—L+f :
2 2 2 2

Each of the nodes P, k =0, 1,...,5 of the fictitious grid falls on a grid line and for the

approximation of P the expression

5
Stu="Y Au(Py) (2.3.17)
k=0

is used. As P/, k=0,1,...,5, all lie on grid lines, each of these points need to be

approximated using the matching operator as follows:

5
Stu=Y LiS*u(P)). (2.3.18)
k=0

It is demonstrated by Figure 2.4 that only 17 nodes are needed for the evaluation of

(2.3.18).

Hence, we form the matching operator as

Stu="Y Eu(P), (2.3.19)

where &;, k=0, ..., 16, are defined by the coefficients obtained earlier and

16
£,>0, Y & =1 (2.3.20)
k=0
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The structure of the hexagonal grid also plays an important role in the approximation
of the solution using the matching operator. We consider the two types of triangles in

each hexagon, Type A and Type B as shown in Figure. 2.3.

ANV

TypeA Type B

Figure 2.3. Shapes of triangles in a hexagon

It is obvious that when & > %, the point <5h, @K) is in a triangle of Type A and
when 6 < 7 it is in a triangle of Type B. In the case when 6 = 5, P is lying on a grid

line.

We start by examining triangles of TypeA, with 0 < §,k < 1/2. The nodes needed in

the evaluation of S*u are shown in Figure. 2.4.

The case 1/2 < § < 1,0 < k¥ < 1/2 has a similar layout, where the 17 nodes used have
the same layout as the reflection of the nodes in Figure 2.4 about the line x = 0. The

figure for the case 0 < 8 < 1/2,1/2 < k < 1 is also given below (see Figure. 2.5).

The final case 1/2 < §,k < | again has the same distribution as the reflection of the

nodes in Figure 2.5, about the line x = 0.

In the case when P falls into a triangle of T'ype B, we rotate the fictitious grids formed

for Type A with an angle of 180°, for all four cases of 6 and «k specified earlier.
Position 3. P € Ilg, where u = @ ; on the side y;, j =1,2,3,4, and ¢; € cH* (}/j> ,
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-

Figure 2.4. when P falls inside a grid cell and 0 < 6,k < 1/2.

/\
\VAVAVAVAV/

Figure 2.5. when P falls inside a grid celland 0 < 8 < 1/2,1/2 <k < 1

O<A<I.

We position the origin of the rectangular system of coordinates on ¥; so that the point

P lies on the positive y axis, and the x axis is in the direction of the vertex j/j 41 along
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Y;- It is obvious that 22:1 b Imzk = 0 if y = 0, where z = x + iy. Hence, when the
function ¢ ; € c+t <}/j> , 0 < A < 1, is represented using Taylor’s formula about the

point x = 0 in the neighborhood |z| < 4h of the origin, we define a;, k = 0,1,2,3, of

(2.3.2) as
o — lakq)j (0)
KT oxk
We let
N 3 3
u(x,y) =u(x,y)— Y aRe =Y byIm*+0 (h*) (2.321)
k=0 k=1

for y > 0, and keeping in mind that Imz* is odd extendable, we complete the definition
with u(x,y) = —u(x, —y) for y < 0. Clearly, in the given neighborhood, u(x,y) is equal
to the harmonic polynomial 22:1 biImz*, with an accuracy of O (h4) . To form an

expression for the matching operator S*u we use

3
SYu = Y Iy (u— ) akRezk> (Pj),
k=0

0<j<16

or,

S4N = Z Vj (u— i akRezk> (Pj),

k=0
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where

u;>0, Y p;<liv;>0, ) v;<1 (2.3.22)

Hence adding the term

(i ag Rezk) (P),
k=0

to S*u, the approximation at any point P € Iy can be obtained for the solution u of

problem (2.2.1),(2.2.2) as:

3
u=S"u+ (Z ax Rezk> (P) 4 O(h*). (2.3.23)
k=0

Remark 2.3.2 The expression (2.3.23) follows from the expressions (2.3.17) or (2.3.19)

and contains less grid nodes P, for the points on the boundary 7y of I1.

4
Let ¢ = {(p j}jl . The matching operator S is represented as:

. S*u on Iy
S*(u,p) = . (2.3.24)

S*(u— Zi:o axReZ) + (213{:0 ag Rezk) (P), on Il Uy

Theorem 2.3.3 Let the boundary functions @ ;, j =1,2,3,4 in problem (2.2.1),(2.2.2)

satisfy the conditions

¢, € C*(y),0<A<1, (2.3.25)

o) = (~1)79'*(s)), ¢=0,1,2. (2.3.26)
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Then

max_[S*(u, ) —u| < esh®, (2.3.27)
(xy)€ll

where u is the exact solution of problem (2.2.1), (2.2.2).

Proof. According to Theorem 3.1 in [27] from the conditions (2.3.25) and (2.3.26)
follows that u € C** (ﬁ) Then on the basis of (2.3.1), (2.3.10), (2.3.19), (2.3.23) and

Remark 2.3.2, we obtain the inequality (2.3.27). m

We define the function i}, as follows

iy = S*(up,, @) onTI, (2.3.28)

where uy, is the solution of the finite difference problem (2.2.6) — (2.2.8).

Theorem 2.3.4 Let the conditions (2.2.3) and (2.2.4) be satisfied. Then the function

uy, is continuous on I, and

max | @, —u |< ceh?, (2.3.29)
(x,y)ell

where u is the solution of the problem (2.2.1), (2.2.2).

Proof. From the construction of the expression S*(uy, @) it follows that iy, = uy, on T1",
and up = @ ; on yﬁ!, Jj=1,2,3,4. The continuity of u, on I1 follows from the continuity
S*(up,, @) on each closed triangle Type A and Type B, and from the equality iy, = uj, on
I1". By Remark 2.3.2 and from the condition i), = ¢;on }/?, Jj=1,2,3.4, follows the

continuity of the function iy, on the closed rectangle I1. By virtue of (2.2.3) and (2.2.4)
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follows that u € CO* (IT), 0 < A < 1 (see Theorem 3.1 in [27]). Then, on the basis of

(2.3.15), (2.3.16), (2.3.20), (2.3.23) Theorem 2.2.2, Theorem 2.3.3 and (2.3.28), we

obtain
max | dp—ul|< max | S*u, @) —u|+ maxJSA'(uh —u,0)|
(x.y) €I (x,y)ell (x.y)ell
16
< csht+ Z &, max |u,—u| < ceh.
=0  (xy)ell"
]

2.4 Error analysis of the Block-Grid equations

Let
Ep=up—u, 24.1)

where uy, is the solution of the system (2.1.12)-(2.1.16) and u is the trace of the solution
of (2.1.1), (2.1.2) on Gil’n. On the basis of (2.1.1), (2.1.2), (2.1.12)-(2.1.16) and (2.4.1),

g, satisfies the following difference equations:

gy = Sep+r) onIIM (2.4.2)

en = Spentry onIl", niiNy, #, & =00nn{NY,, 243)

n(J)
en(rj,0)) = B; Y Rj(rj,0,,60)e4(rj2,0%) + 1Y, (r;,0;) €1}, (2.4.4)
q=1

g = S‘e,+r} on o™, (2.4.5)
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where | <k<M,1<m<N,jeFE and

rp = Su—uon WL, TIV" ri = Sku+E: (¢,) —uon Uiy I (2.4.6)

X n(j)

P = ngle(rj,ej,eg) (u(rjz,ejf.)—Qj(rjz,ej.)) 2.4.7)
q:

—(u(r,0;) = Qj(rj,6;)) on Ujegt],

rﬁ = S4(u,(p)—u on ™" (2.4.8)

Since all the rectangles I, k = 1,2,...,M are located away from the singular vertices
'j/j, J € E of the polygon G at a distance greater than rj4 > 0 independent of &, by
virtue of the conditions (2.2.3) and (2.2.4), up to sixth order derivatives of the solution
of problem (2.1.1),(2.1.2) are bounded on UQ/[: 1Ig. Then, by the Taylor formula, from

(2.4.6), we obtain

max |r}l| < c1h6, Lnax*h rﬁ| < czh4. (2.4.9)

M 110k
Ue=11T¢ U= g

Furthermore, as @"" C Ui’[: I from (2.4.8) and Theorem 2.3.3, we have

max |rj| < c3h*. (2.4.10)

a)hﬁn

By analogy to the proof of Lemma 6.2 in [20], it is shown that there exists a natu-
ral number ng, such that for all n > max {ng, [In'™*h~1] 4+ 1}, 5 > 0 being a fixed

number,

max ‘r?h‘ < cah®, 2.4.11)

Theorem 2.4.1 There exists a natural number ng such that for all
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n > max {no, [lnH"h’l} } , % > 0 being a fixed number,

max uy, —u| < ch*, (2.4.12)

G

*

Proof. Let HZ* be one of the rectangles covering the domain G, with a hexagonal
. —h . .
grid, and let t,ﬁl* = I N tj.’. Furthermore, assume t,f* i = ( and that v, is a solution
of the system (2.4.2)-(2.4.5) under the condition that r}h, r?h and r?h are defined as in

(2.4.6)-(2.4.8) in ﬁz*, but are zero in Gz’n\ﬁz*. It can be clearly seen that

W = max |v;| = max |vp]. (2.4.13)
Gt I}

. —h
We represent the function v, on G, as
4
v, = Z v (2.4.14)
p=1

. —h .
where the functions vZ, p = 2,3,4, are defined on II;. as a solution of the system of

equations

2 0h
Sv; on Hk*

Vi = Ve =0onn,, (2.4.15)
*. 2 xh
Sjvh on Hk*
2 2 h 2 h,
Vh(rj,ej) = rjh,(rj,9j>€tk*j,vh:00nw o

Svfl on H,?f
v, = v; =0onnk,, (2.4.16)
S4v; on TI;!

via(rj,0;) = 0,(rj,0;) €1;,v) =ry, on 0"
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Svh +r! jnon Hgf
o= vi=0onnk,, (2.4.17)

*. .4 1 *h
Sjvh + rjp on Hk*

vi(r]79‘]> = Oy(rj,9j>Et]il*j,vizoona)h’n
with
v =0,p=2,3,4, on G."\TT}.. (2.4.18)

Moreover, keeping in mind equations (2.4.14)-(2.4.18), the function v}1 satisfies the

system of equations
vio= vi =0onn, (2.4.19)

4
1 h
v, = ﬁ]ZRJ rj,0;, J Z (rj2,0 ] r],Gj)Etj

S“(ng) onnly, 1 <k<M,jcE,
p=1

where we presume that the functions v‘;: ,p=2,3,4, are known.

Taking into account (2.4.11), Remark 2.3.2 and Theorem 2.2.2, on the basis of (2.4.15)-

(2.4.17) and the maximum principle, the following inequalities are obtained:

Wo = max|vi| < ch?, (2.4.20)
—h,n h
G,
Wy = max|vy| <ch, (2.4.21)
Wi = max vi| < ch. (24.22)
6}’1
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Next, the estimation of the function v}i is considered. On the basis of (2.1.25), (2.3.15),
(2.3.16), Remark 4.2.10 and the gluing condition of the rectangles I,k =1,2,....M,
by means of [30], for the estimation of the system (2.4.19), there exists a real number
u*,0 < u* <1, independent of &, such that for all 2 < 3¢y and

n > max {no, [ln””h_l} + 1} we have

Wi = max |v;| < p*W. (2.4.23)
6 ng

*

From (2.4.13), (2.4.14) and estimations (2.4.20)-(2.4.23), we obtain

4
W=uw+Y w. (2.4.24)
i=2
Hence,
W = max || < ch*, (2.4.25)
G

In the case when t,?* = 0, (2.4.25) is proved similarly. As there is only a finite number

of rectangles covering the domain G, inequality (2.4.12) follows. m

Theorem 2.4.2 We consider the approximation of the solution of problem (2.1.1),
(2.1.2) on the sectors Tj, Jj € E, where r; = (rjp+rj3)/rj2. Let up be the solution of
the system of equations (2.1.12)-(2.1.16) and let an approximate solution of problem

(2.1.1), (2.1.2) be found on blocks Tj, JEE,by(2.1.26). There is a natural number ng

such that for all n > max {no, [lnH'” h_l} } , x> 0 being a fixed number, the following
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estimations hold

|U(rj,0,) —u(rj,6,)| < coh*on T, (2.4.26)

0P
dxP~49y4

IN

1o _3 .
(Un(rj 07) —u(r;,0,))| < cph /% on TOy,;, 2.4.27)

where je E,0<q<p,p=1,2,....

Proof. On the basis of (2.1.17) we have, on the closed block T;, jeE

Up(rj,0j) —u(rj,0;) = [3 ZR rj,0;, J)< u(rjo, ]) Q](rjz,97)>

- /0 "l m) = Qi MR (15,0 .M

n(J)
+B; ZR rj, 0, ])<uh(rj2,9;7.)—u(rj2,9;]-)>

(2.4.28)
Since 1} = (rjp+r3)/rj2, by 2.4.11),
n(j)
ﬁ]z (r]a9]’91)< (r]27 J) Q](r]27ej)> (2429)
q=1

(Xjﬂ —% .
—/0 (u(rj2,m) —Qj(rj27n)>Rj<rja9ja77>d77‘ <ch*onT;,j€E

On the basis of (2.1.17), Theorem 2.4.1 and using the boundedness of the kernel R; we

obtain

<ch*onT,,jEE (2.4.30)

B Y Ri(rj,0;,6%) (wi(rj2, 6%) — u(rjo,6%)
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Combining (2.4.29) and (2.4.30), as T} C T'; we obtain the inequality

|U(r;,0;) —u(rj,0)] < coh*on T, j € E (2.4.31)

Let

Eh(l’j, GJ) = Uh(rj, OJ) —u(rj,Gj) on Tj,] ek (2.4.32)

From (2.1.17) and (2.4.31) follows that £,(r;, 0 ;) is continuous on T;, and is a solution
of the boundary value problem (2.1.1), (2.1.2), where 0 < 6; < ot;7. As T; C T;,j €
E, considering (2.4.30)-(2.4.32) and taking into account Lemma 6.12 in [1], inequality

(2.4.27) follows. m

2.5 The use of the Schwarz’s alternating method for the solution of

the system of block-grid equations
It is clear from Section 2.1 that for the approximate solution of problem (2.1.1), (2.1.2),
it 1s first necessary to consider the solution in the domain 6{:’”. Hence, first of all, the
solution of the system of equations (2.1.12)-(2.1.16) is taken into account. Then the
solution itself and its derivatives of order p, p = 1,2, ..., follows for any point of T;
and Ti\j’p with the use of formula (2.1.17). Therefore, it is only necessary to justify
the method of finding a solution of the system of equations (2.1.12)-(2.1.16), as stated

in [15].

In a similar manner to [15], we define classes ®;,7=1,2,..., 7", of rectangles I,k =

1,2,...,M. Class ®; includes all rectangles whose intersection with the boundary y of
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the polygon G contains a certain segment of positive length. Class @, contains all of
the rectangles which are not in the class @, whose intersection with rectangles of @

contains a segment of finite length, and so on.

Let

h h *
¢TO == Uk:erq)THk()’T: 1,2,...,T 5

h T h
G*O - U‘c:lq)rO'

For the solution of the system of equations (2.1.12)-(2.1.16), Schwarz’s alternating

(0)

method is carried out in the following form. We start with a zero approximation u;,
to the exact solution u;, of system (2.1.12)-(2.1.16). Finding u!') for all j € E with
(2.1.15) on tj? and with (2.1.16) on 1, we solve system (2.1.12)-(2.1.16) on the grids

—=h .
[T, constructed on the rectangles belonging to the class ®; and then to the class ®;

and so on. The next iteration follows in a similar manner. Consequently, we have the

sequence uél) , uglz), ... defined as follows:
uﬁlm)(rj, 0,) = 0Q;(r;,0,)+ (2.5.1)
) 4 (m—1) h
+ﬁ]ZR](r]79]76?) [S (uh (rj2793);(p)_QJ(rj2797) Ontj7
g=1
W™ = s on 0" (25.2)
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W = sul™ on 1", (25.3)

ué’ﬂ) _ Sju£M)+ ;fh((Pj) onH}:h, (2.5.4)
”;Sm) ~ 9 on Ny, (2.5.5)

Theorem 2.5.1 Forany h < »\4 and n > max {no, [lnH”h_l} + 1} , system (2.1.12)-
(2.1.16) can be solved by Schwarz’s alternating method with an accuracy of € >0, ina
uniform metric with the number of iterations O(In el ), independent of h and n, where

2 is the gluing depth and s« is a constant independent of h.

Proof. Theorem 2.5.1 is proved by analogy to Theorem 3 in [15], with the system

under consideration being (2.5.1)-(2.5.5). =
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Chapter 3

HEXAGONAL GRID VERSION OF THE BLOCK-GRID
METHOD FOR THE MIXED PROBLEM ON STAIRCASE

POLYGONS

3.1 Approximation on a rectangular domain using a hexagonal

grid with mixed boundary conditions
Let IT= {(x,y) : 0 <x < a, 0 <y < b} be an open rectangle, ¥;,j = 1,2,3,4, be its
sides, numbered in the positive direction starting from the left-hand side, (v, = ¥4, 7; =

Ys)- Also let y; = y; Ny, be the jth vertex, y = U‘}Zl (j/jﬂ}/jH) be the set of all

4

vertices of IT and y = U ;

_17; represent the whole boundary of I1. We consider the

boundary value problem

Au = OonTl, 3.1.1)

viut v = vie,+Vy ony;,j=12.3,4, (3.1.2)

where A = 02/9x?> 4+ 92 /dy?, v; is a parameter taking the values O or 1, and V; =

(1)

1 —v;. Furthermore, uj, * is the derivative along the inner normal, ¢ ; and y; are given

functions and

I < vi+va+vi+vy <4, (3.1.3)

Vioi+viy;, € COMy), 0<A <1, j=1,234. (3.1.4)
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At the vertices s = s (s is defined the same as in Section 2.1 and s; is the beginning of

Y;), the conjugation conditions

(2g+6:-2)

V0 (2+8z) _ (—1)4t8eH0e1( (2g+6:-1) (2q+51))

TV, V19 VY
(3.1.5)
are satisfied, where T=v;_; +2v;, 8y =1for@w=0,8,=0for@#0,9=0,1,...,0,

Q=[(6—06¢-1—0:-2)/2]—6=.
Leth >0, witha/h >2,b/ V3h>2 integers. We let I1" stand for a hexagonal grid on

IT, with step size &, where the set of these nodes are expressed as

k—1 3(k+1
n = {(x,y) ell:x= Th, y:@}h k= 1,2,...;1:0,i1,i2,...}.

. . -h 4
Let }/ﬁ‘ be the set of nodes on the interior of y;, ¥; = ¥;NY;; and Y = szlyﬁ?. In
addition, let IT*" stand for the set of nodes whose distance from the boundary y of IT is

% and TT% = 1" /IT*". Hence o' = U U e

We consider the system of finite difference equations

w, = SuyonII", (3.1.6)
wp = Siup+Ej(@;,w;)on T, (3.1.7)
wp = ViSup+Ejp(@;,y;) ony), (3.1.8)

. : g
up = ViViSjun+Ejpn(@;, 0,0,V q)ony;,j=1234, (3.19)

where
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1 h 3 h 3
Su(x,y) = g(M(X+h,y)+u<X+§,y+\/7—h>+u<x—§,y+\/7—h>+
h 3
+u(x—h,y)+u x——,y—\/——h +
2 2
h 3
+u <x+ E,y—gh» ; (3.1.10)

the operators S}f,E;'fh, Si, Ejn, S jand E jn are constructed in the right coordinate system

with the axis x; directed along 7y, and the axis y; directed along ¥;, and have the

expressions:
Siu(x,y) = 7<M<x+§,y—7>+u(x+h,y)+u<x—|—2,y+7>)+
V; h  /3h h  3h
5 (M(X—z,y— D) >+u<x+27y_ ) +u(x+h,y)+
h  \3h h  \/3h
3 Q5 Y — .11
u<x+2,y+ > >+u<x 2,y+ > >>, 3 )

H @)
m‘Pj <Y)>+

4
v Koo B
5 (hl//,- 2¥ Tsne¥i ) (3.1.12)

@5 ')+

%(u <x+ z,y—ﬂ> +u(x+h,y)+ (X+’%,y+@>) on j=1,3,

Sju(x,y) = %(u(x—h,y)+2u (x—_ y+ fh)

+2u (x4 4 y+58) 4 ulx+h,y)) on j=2,4,
(3.1.13)
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— 5 .

(3.1.14)

_ 5 .
v,-( fhl/lj-l-‘gé’ 1//5 )>+vjq)j0n]:2,4,

and

Sju(x,y):%<u(x+h,y)—l—2u (x%—Z,y%—Q)), (3.1.15)

Ejh(q)jv(pj+lall/jal//j+l) = Vi@ +ViVjii19;
_ 1
—V;iVjii {6 (Zh (211/j+ \/§I/Ij+1> + \/§h2y/§.l+)1
20 230
2 <‘l/ (3) )

+?Wj 4 TVia)t

+2h (Zw, \[Wﬁl))} (3.1.16)

Since the coefficients in the operators (3.1.10), (3.1.11), (3.1.13) and (3.1.15) are non-
negative and their sum do not exceed one, taking the maximum principle into account,

system (3.1.6)-(3.1.9) has a unique solution (see [21]).

Let y=y' Uy?, where y! and y? contain the prescribed values of u and the normal
derivative u,S” respectively. Accordingly, the set of nodes on the interior of y' and
y? are denoted by y'* and y?, }/ih =Ny [, 1<m<4, - U1§j§4j/§h and

"= j/h\j/Zh. In addition, the set of nodes whose distance from the boundary 7' of TT

is /2 is denoted as 13", and IT5" = IT*"\IT}" denotes the set of nodes whose distance

from y? is h/2.

Lemma 3.1.1 Let
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vi = Svi+fron HOh,

vy = S;vl on leh,
_ * * *h
vi = Sjvi+f, onlly’,
1h, - 1h
vi = Oony;"UY;,

h
V) = Sjv1+f[10n}/§,

vio= Syt front)i=1234,

and

vy = sz+7h onHOh,

vy = S+ fyonIly,
—%
vy = S;k-vz—i—fhonH;h,
-~ 1, - 1h
vo = fponyUY;,

= Sjvz—l—fhon}/? ,

Vo = S]V2+fh on ’}/5}17.] = 1727374;

where fh,f;,f}’”fh and 7h,ﬁ,,72,ﬁ1,7;,,fh are arbitrary grid functions. If the condi-

tions

TS > 0,

Gl < T i) < T 1] < Frand 1) < 7
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are satisfied, then

vi| < wvs.

Proof. The proof of this lemma follows by analogy to the proof of the comparison

theorem (see [21]). m

Everywhere below we will denote constants which are independent of & and
of the cofactors on their right by c,cg,cq,..., generally using the same notation for

different constants for simplicity.

Theorem 3.1.2

Let u be the trace of the solution of problem (3.1.1), (3.1.2) on ﬁh, and uy, be the

solution of system (3.1.6)-(3.1.9). Then

max |uy, — u| < ch*. (3.1.17)
ﬁh

Proof. Let €, = u;, — u, where u is the trace of the solution of problem (3.1.1), (3.1.2)
on ﬁh and uy, 1s the solution of system (3.1.6)-(3.1.9). The error function €, satisfies

the following system:
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Ep

Ep

Ep

Ep

where

S£h+‘P2 on HOh,
Siep+¥j, on ",
v;Siep+Y¥j, on ’}/;,

VjVj+1Sj8h+leh on Y?,] =1,2,3,4,

Su—u,
S;”_ “+E}‘kh((Pja V),
Viju—u—i-Ejh((pj, le),

ViViriSj—u+Ejn(@; @1V Wit),

are the truncation errors of equations (3.1.6)-(3.1.9).

(3.1.18)

(3.1.19)

(3.1.20)

(3.1.21)

(3.1.22)

(3.1.23)

(3.1.24)

(3.1.25)

On the basis of conditions (3.1.3)-(3.1.5) and by Theorem 3.1 in [27], it follows

that u € CO* (IT), 0 < A < 1. Hence by Taylor’s formula, we obtain (see [28]),

max7|‘P2(x,y)’ < ¢1h®Ms.
(xy)e Il

By using Taylor’s formula we also obtain

51

(3.1.26)



max “Pjh (x,y) } < coh®Mg,
(ry)ell

and

max ‘Pjh(x,y)’ < c3h%M,

(xy)ell

where

9u(x,y)
axpayCI*P

My, = sup {
(xy)ell

7p:O7]‘7"

(3.1.27)

(3.1.28)

.,q}. (3.1.29)

Finally, using Taylor’s formula about the point (/2,y) € IT*" we obtain

( miaexﬁ “Pjh (x,y) ‘ < c4h*My
Xy

when v; =1, and
max “Pjh(x,y)‘ < csh®Mg

(xy)el

when v; =0.

We represent the solution of (3.1.18)-(3.1.21) as

&g, = 8;114—8%1,
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(3.1.31)

(3.1.32)



where

and

g, = Sep+¥)on I
e, = Sig,onll}",

g = S;e}l + %%, on ",
g, = Oon }/}-h U }/;h,

1 1 h
g, = Sj8h+‘1’jhony§,

el = Sieh+¥uonyj=12734,

g7 = SezonI”

g = Sj-eﬁ—l—‘l’j-h on IT",

g = Sje,% on IT",

8% = VijS% on }’?,

& = ViViuSeion,j=1.234

To estimate e}l, we take the function v, in Lemma 3.1.1 as

va(x,y) = h4c6M6(a2 + b — ¥ — yz).
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(3.1.34)

(3.1.35)

(3.1.36)

(3.1.37)

(3.1.38)

(3.1.39)

(3.1.40)

(3.1.41)

(3.1.42)

(3.1.43)

(3.1.44)



Hence,

max‘s}” < max |np| < c7h* M. (3.1.45)
hd (x.y)ell

Now taking (3.1.30) and (3.1.39)-(3.1.43) into account, on the basis of maximum

principle, we obtain

o 7
max‘eh‘ < —max
—h 4 1y
IT Hl

\Pj.h( < cgh*M. (3.1.46)
From (3.1.18)-(3.1.21), (3.1.32), (3.1.45) and (3.1.46) it follows that

max |€;,| < ch*. (3.1.47)
ﬁh

3.2 Construction of the matching operator for the mixed boundary

value problem
The construction of the fourth order matching operator S*u on a hexagonal grid, for
approximating the solution of Laplace’s equation with Dirichlet boundary conditions,
is given in detail in [31] and Section 2.3. A summary of these results is provided here

before extending the method to the construction with Neumann boundary conditions.

4
Let ¢; and y; be the given functions defined in (3.1.2), and ¢ = {(Pj}j—l’ Y =

4 —

{l// j} . The estimation P € TI by S*(uy,, @, y) is given linearly by the values of the
]:

function uy, at the nodes of the hexagonal grid constructed in the rectangle ﬁz and the

assigned boundary values (p(P), p=0,1,2,3, l//(‘f), g =1,2,3. The pattern of $* lies in
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a neighbourhood O(h) of the point P, where

16

S*(up, 0, 9) = Y Ay (P, (3.2.1)
k=0

16
Ae >0, Y Ae=1,
k=0

and

u— S4(l/t, o, W) =0 (h4) ’
uniformly on IT.

Let IT denote the set of points P € IT such that all the nodes P, to determine expression
(3.2.1) belong to ﬁh and I1;, IT; contain the points P € IT where some of the nodes P,
emerge through the side }/11 > }/g m» 1 < m < 4, respectively. The cases when the point

P belongs to one of the sets I, I1; is given in detail in [31] and Section 2.3. Hence, we

(o)
consider the case when P lies inside the set IT5.

Assume P € II, where u = y,, on the side v, ,, and y,, € C4”1(}/27m), 0< A<,

1<m<4.

Let z = x+ iy be a complex variable and let Q = {z: |z| < 1} be a unit circle. For a
harmonic function « on Q with u € C*°(Q), by Taylor’s formula, any point (x,y) € Q

can be represented as

3 3
u(x,y) =Y aRe 4+ Y bIm 2 +0(r*), (3.2.2)
k=0 k=1
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where r = \/x2 42,

du(0,0) 19%u(0,0) 1 9%u(0,0)
aw = w00).a =5 T m = e BT g
~du(0,0)  10%u(0,0) 1 9%u(0,0)

The origin of the rectangular system of coordinates is placed on 7, ,, so that the point
P lies on the positive y — axis, and the x — axis is in the direction of the vertex ¥,

along v, ,,- Since y,, € C4”l(}/2’m), the solution u of problem (3.1.1), (3.1.2) is

u e CA(I).

Hence, in the neighbourhood |z| < 44 of the origin, by Taylor’s formula, we obtain

du(x,y) _ 9u(0,0) +x82u(0,0)
dy -0 dy dxdy
x? 33u(0,0)  x* 9*u(0,0)

x~oru(U,V)  x o ulL,V) 4
T o2y 3l avay O (n*). (3.2.4)
Keeping in mind that u,(f) =y, , we have
LIGS)| NS 2v,(0)
ay =0 - ll/m(x) - ll/m(o) +x I

(P PY,0) Py, 0)

4
T TR +0(h*). (3.2.5)

Based on (3.2.4) and (3.2.5), we have the expressions

u(0,0) 9%u(0,0)  dy,,(0)
8—y = Vul0); oxdy  dx '
9%u(0,0) 9%y, (0) 2%u(0,0) 9%y, (0) (3.26)
ox2dy ox2 7 9x3dy  Ix3 o
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By (3.2.3) and (3.2.6), we can write the coefficients by, k = 1,2,3, as

1 0% 1y, (0)
bk - EW, k: 1,2,3.
Let
3 3
u(x,y) =u(x,y) — Z beIlmz* = Z arReZ + 0(h4), (3.2.7)
k=1 k=0

for y > 0, and for y < 0 we have u(x,y) = u(x,—y). By (3.2.7), in the neighbourhood
|z| < 4h, u(x,y) corresponds to ):,3{:0 a;Rez* with an accuracy of O(h*), as this poly-
nomial is even relative to the x — axis. Hence, using the expression for $*, u(P) can
be approximated by the equation

3
u(x,y) = S*i+ (Z by Imzk> (P). (3.2.8)

k=1

Combining the result obtained above with the expressions in [31], the matching oper-

ator can be expressed as:

o

S*uon 11,

\ (u,0,9) =1 s+ (u— Z,%:OakRezk) + (Z,%:OakRezk) (P) on IoIl, (3.2.9)

§* (u— Y3, beImz¥) + (£3_, b Imz) (P) on II,.
\

Theorem 3.2.1 Let the boundary functions ¢ v, j=12,3,4, in problem (3.1.1),

57



(3.1.2) satisfy the conditions

vigi+viy, € CHAy), 0<A <1, (3.2.10)
5c2) 4 v 3 . 5
v @O oy PO et (v g0y
— 2g+5+
+V )>, (3.2.11)
with g =0,1,2. Then

maX7|S4u — u| < coh?, (3.2.12)

(x.y)ell

where u is the exact solution of problem (3.1.1), (3.1.2).

Proof. According to Theorem 3.1 in [27], from the conditions (3.2.10) and (3.2.11)
follows that u € C**(II). Then, the inequality (3.2.12) follows from Theorem 3.4 in

[31]. m

3.3 Block-Grid equations with mixed boundary conditions
The BGM is applied for the approximation of Laplace’s equation with mixed boundary
conditions, with the employment of the following changes in the method described in

Section 2.1.

We consider the approximation of the following problem, in the staircase polygon G

defined in Section 2.1:
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Au = OongG, (3.3.1)

viut v = vie,+Viy,ony;, j=12,..N, (3.3.2)

where A = 9%/9x? + 9%/dy?, v; is a parameter taking the values 0 or 1 and V; =
(1)

1 —v;. Furthermore, uj, * is the derivative along the inner normal, ¢ ; and y; are given

functions and

N
1 < Y v <N, (3.3.3)
k=1

Vio,+Viy; € C%M(y), 0<A <1, j=12,.,N. (3.3.4)

We presume that conjugation conditions (3.1.5) are satisfied at the vertices j/j whose
interior angles are /2. It is not required that the boundary functions at the vertices
with an interior angle of o ;7 # 7/2 are compatible, however, it is requested that the
boundary functions on the adjacent sides of these vertices are algebraic polynomials of

the form (2.1.5).

Let E = {j caj#£1/2, j=1,2, ...,N} . Two fixed block sectors are constructed in the
same form as in Section 2.1, in the neighbourhood of j/j, Jj € E, denoted by T; =
Ti(rji) C G,i=1,2. The function Q;(r;, 0 ;) will have one of the forms (3.2) —(3.9),
defined in [1], depending on the nature of the boundary conditions specified on ¥;_;

and ;.
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We set, (see [1])

R(m,m,r,0,m) = R(r,0,n)+(—1)"R(r,0,—1m),

R(l —m7m7r,9;77) = R(m7m7r;9;77) - (_l)mR(m7m7r767ﬂ_n);

where

1—r2

R(r,0,m) = 27(1—2rcos(6 —1n)+r?)

is the kernel of the Poisson integral for a unit circle. The kernel is specified as

A
7 J '
Rj(Fj,@j,ﬂ)leR(Vj1,Vj,(r—.j) ,lj@j,kj?’]),]EE,

Jj2

where

1
Aj= S (33.5)
T Q== Viav)a;

We outline the procedure for obtaining the algebraic system of equations, for the nu-

merical solution of problem (3.3.1), (3.3.2).

Let IT; C Gr, k=1,2,...,M, be certain fixed open rectangles with sides aj; and ay;
parallel to the x and y axes, and G C (UQ’[ZIH/{) U (UjeETﬁ> C G. We use 1 to rep-
resent the sides of the rectangle I, V; denotes the curvilinear part of the boundary of
the sector sz and 7; = (UkM: n k) ﬂT?. The overlapping condition is defined the same

as in Section 2.1, and the gluing depth is denoted by .

Let IT} be the set of nodes on Iy, N’ is the set of nodes on 1, and ﬁz =Irnnh
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Also let nZO stand for the set of nodes on 1, N Gr, tj.‘ be the set of nodes on #; and
7721 be the remaining nodes on nZ. Furthermore, we let ﬁZ denote the set of nodes

whose distance from the boundary r[Zl of Iy is %, &)Z stands for the set of nodes whose

distance from 1%, or tj.’ is % and 1! = 7\ (ﬁﬁ U cNoZ> . The expressions n, n(j), B

and V]” are defined the same as in Section 2.1.

Hence, we have

~h —h,n h, —h
o = (uﬁf’zlnzo) U (UjeeV]) U <u£41 ) G, " =o""U (uff’zlnk)

Let

ri ,9 i, 0
R (/,0,) = Ri(r}> 0 /) (3.3.6)

max{l B Zp 1 (rJ,GJ,Gp)}

By (3.3.6), it is easy to demonstrate that
0 §R§~q) (rj,ej) SR]'(I’J',GJ',G?), 0< 9]', 9;1 <Q;m, 1<g< n(]), jeE. (3.3.7)

Furthermore, as it was stated in [33], there exists positive constants ny and o > 0, such

thatforn >npand v; 1 +v; > 1,

n(j)
maxf; ) R;(r;,0,,09) <o <1, (3.3.8)
Tj g=1

and on the basis of (3.3.6) and (3.3.7),

n(j)
Z '(rj,0,) <1, j €E, (3.3.9)
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when Vi1 =Vj=0.

Consider the system of difference equations

u, = SuyonIIl, (3.3.10)
w, = Stup+ES (@, w,)onIll (3.3.11)
up = VuSmity+ Ep(@,,,v,) onnt Ny, (3.3.12)

wh = VoV 1Smtth + Ei (@ Ponc 12 W Wiy 1) O0 M1 N7y 1 ,4163.3.13)

uh(rﬁej) = Qj(rjaej)+

(J) \
Rj(rj,Gj,G?) [Mh(rjz,G(f)—Qj(rjz,G;f-)] ontjg3.3.14)
1

n
+B;

q:

up = S*(up, @, ) on ™", (3.3.15)

where | <m <N, 1 <k<M, jecE and Suy, Syupn, E (@, V,),

Smtths Enp(@0,,, W), Smuh and Emh((pm, Oits Vo> ‘l’m+1) are defined as equations (3.1.10)-

(3.1.16) in Section 3.1, respectively.

Theorem 3.3.1 There is a natural number nq such that for all n > ny and h € (0, 5,

where s is the gluing depth, system of equations (3.3.10)-(3.3.15) has a unique solu-
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tion.

Proof. Let v, be a solution of the system of equations

vy = SvyonII, (3.3.16)
v = Sty onlll, (3.3.17)
Vi = VaSpvponniiny,, (3.3.18)
Vi = ViVt 1SmVh 00 N1 0 Y 0 Yo (3.3.19)
n(J) .
vi(rj,0,) = B; Y Ri(rj,0;,0%)vi(r)2,09) ontj, (3.3.20)
qg=1
vi = S*vy, on 0", (3.3.21)

where 1 <m <N, 1 <k <M and j € E. For the proof of this theorem, it is necessary
and sufficient to show that max |vi| = 0. Since the sum of the coefficients in the
operators Svy,, Sy Vi, Smvn, Sth and S*v;, are not more than one, and they are all non-
negative, on the basis of the maximum priciple (see Chapter 4 in [21]), v, will not take
its nonzero maximum value in IATZ, fIZ, ™", or in nZl N Yoms T]Zl N Yy N ¥pme1 When
V.. = 1. Hence we consider the nodes in UjeEtj.’. Taking (3.3.7), (3.3.8) and (3.3.9)
into account, again by the maximum principle, it is not possible to obtain the nonzero

maximum value of v, in Uje Etj.’ either.

Therefore, the maximum value is attained at 7721 Ny, orn Zl Y Yy When vy, =0
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and, by system (3.3.16)-(3.3.21), it follows that

max |v,| = 0.
—h.n

*

Let uy, be the solution of the system of equations (3.3.10)-(3.3.15). The function

(J)
Rj(r;,8,,6%) (Mh(”jz,f)?) — Qj(rjz,6§)> (3.3.22)
1

Un(rj,0;) = Qj(rj,0;) +B;
q

is called an approximate solution of the problem (3.3.1),(3.3.2) on the closed block T?,

jEE.

3.4 Error analysis of the new system of Block-Grid Equations

Let
£ =u,—u, (3.4.1)

where uy, is the solution of the system (3.3.10)-(3.3.15) and u is the trace of the solution
of (3.3.1), (3.3.2) on d:n On the basis of (3.3.1), (3.3.2), (3.3.10)-(3.3.15) and (3.4.1),

g, satisfies the system of equations:
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Ep

Ep

Ep

Ep

= Seh—i—r}, on HQ,

= S;gh+r}zl on HQ,
V.S 3 hA

= VmOmEp+ 15, 0N N MY,

— ‘ 4 h
= ViuVitr1Sm€n +rponng MY, mme—Q—l?

n(j)

en(r,0,) =B, ) Rj(rj,0;,69)S en(rj2,6%) +r3, on ],

g=1

e, =S, + rg on o™,

where | <m<N,1<k<M,jeFE and

r}l = Su—uon UQ’IZIH}‘,

I’% - S;knu_u-i_E;h(gDm?Wm) on U]/!/[:lﬁh’

rZ — VmSm—M—f—Emh((pmvll/m) on (UI{I:an]> m'}’m,

r2 = vam+1smu - u+Emh((Pm7 (Pm+17 ll”m’ Wm+1)

on

5

(Uz/lzln%) Y VYt 15

n(j)
Y Rj(rj205,0%) (wi(rj2,0%) — 0j(r2,6%)) -
q=1

— (u(rj,0;)—Qj(rj,6;)) on Ujegt},

S*u—uon o,

s (u — 22:0 akRezk) + (Zizo ax Rezk) (P) on w’g,

S* (u—Y3_ b Imz¥) + (L3_, e ImzF) (P) on .
\
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(3.4.9)
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. . . . —=h

where P € a)}{ if all nodes of evaluation P, of the matching operator $* are in G, ",
P e a)g if the side where the nodes of evaluation P, emerge through has Dirichlet
boundary conditions, and P € a)é’ if the side where the nodes of evaluation P, emerge

through has Neumann boundary conditions, and thus " = w}f U a)g U a)él.

Analogous to the proof of Lemma 6.2 in [20], there exists a natural number ng, such

that for all n > max {ng, [In'**h~1] + 1}, 3¢ > 0 being a fixed number,

max r?h‘ < b (3.4.14)

jEE

Furthermore, as the set @ C UQ”Z {11k, by Theorem 3.2.1, we have

o < eoh®. (3.4.15)

max
a)hﬁn
Theorem 3.4.1 Assume that conditions (3.3.3), (3.3.4) are satisfied, and the conju-
gation conditions (3.1.5) hold at the vertices with interior angles of w/2. Then there
exists a natural number nq such that for all n > max {no, [lnH%h_l} } , x>0 being a
fixed number,
max |uy, — u| < ch*. (3.4.16)
G
Proof. Consider an arbitrary rectangle I'IQ*, which is one of the overlapping rectangles
covering the "nonsingular" part of the domain G with a hexagonal grid, and let t,i’*j =
ﬁz* ﬂtj?. Let t]i‘* j # () and assume vy, is a solution of system (3.4.2)-(3.4.7) in the case

. . —h
whenr}, 7, 13, r}, r?h and ¥ are expressed the same as in (3.4.8)-(3.4.13) in ITj., but
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. =hnl =hoo, .
are zero in G,"\IT,.. It is clear that

W = max |v;| = max |vp].
—h,n —h

—hn .
We represent v, on G, " in the form

4
4
x=1

(3.4.17)

(3.4.18)

. —=h .
where the functions vg, X = 2,3,4, are defined on II;« as a solution of the system of

equations

with

= Svf+r%(h) on .,
= SivE+rf(h) on 1.,
= VuSuVE +r%(h) on N}y N Yy

= vam—i-lsmvif +r%(h) on nZ*l VYV Yims1

X

= 15 (h)on t,i’*j,

X

= r5(h)on o"".

vg =0, x =2,3,40n Ei’n\ﬁz*,
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r¥(h) = 0 when x = 3,4 and

when ¥ =2,

and

1 h
r, on I,
2 o TR
rj, on IT.,

3 h
T, ON 14y VY s

4 h
[ 7h O Ty VY Yt

Hence considering the systems of equations (3.4.18)-(3.4.20), we define a function v}l

satisfying

where the functions vg , X = 2,3,4 are presumed to be known.

Sv;ll on Hz,

S*vi on IT7,

VinuSmvy on ity 0
VmdmVp, O0 My 1Y

= = o .1 h
ViV 1SmVy, 00 Ny N Y, OV Y1

U

=1

4
s“<2v2‘> ono", 1<m<N, 1<k<M, jeE,

x=1
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n(j) 4
B; ZRj(rj,ej,ej.) Zlvg(rjz,ej.) on zj?,
q xX=

(3.4.21)



Taking into account Theorem 2.1.2, (3.4.14), (3.4.15), (3.4.20) and since the rectangles
Iy, k=1,2,...,M, are located away from the singular vertices at a distance more than

r4j, on the basis of the maximum principle,

Wy = max vi| < i, (3.4.22)
(et

Wy = max|v| <ch, (3.4.23)

Wi = max vi| < ch®. (3.4.24)
6*1”

The rest of the proof follows analogously to the proof of Theorem 6.3 in [20], by taking

into account systems (3.4.19), (3.4.21) and inequalities (3.4.22)-(3.4.24). m

Theorem 3.4.2 There exists a natural number ng such that for all n > max {no, [ln”” h~ '} } ,
2 > 0 being a fixed number, the approximation of problem (3.3.1), (3.3.2) on the blocks

=3

T;,j € E, by the function (3.3.22) satisfies the following inequalities:

U (r},60;) —u(rj,0,)| < coh* on T3, j €E, (3.4.25)

We also have, for the case when A is an integer, Vj_i and Vjare O or 1, and p > A,
or the case V1 = V=0 when p =0 and A takes any value, the inequality

oP

P— =3
Swr-agye (Un(ri>6,) —u(rj.6;))| < cph* on T, (3.4.26)

Furthermore, forany A, if vi_1+v; > 1,0<p<Ajorvi.1=v;=0,1<p<Aj,

we have

oP
axp*quq

3

(Uh(l”j, /) —u(rj,Gj)) < cph4/rfflj on Tj. (3.4.27)
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Finally, for noninteger A j, any v_1, Vj, and p > A ;, we have

oP

—A; —3 .
W(Uh(rj,ej)—u(rj,ej)) <cpht/r T on TNy, (3.4.28)

where 0 < q < p, A is defined the same as (3.3.5) and u is the solution of the problem

(3.3.1), (3.3.2).

Proof. The proof is obtained on the basis of (3.3.22), Lemma 2.1.1, (3.3.8), (3.3.9) and

Theorem 3.4.1, and follows by analogy to Theorem 6.4 in [20]. m

3.5 The use of Schwarz’s alternating method
As stated in Section 2.5 and [15], it is first required to justify the method of finding a
solution of the system of equations (3.3.10)-(3.3.15). The classes ®;,7=1,2,...,T%,

of rectangles I,k = 1,2,...,M, are defined the same as in [15].

For the solution of the system of equations (3.3.10)-(3.3.15), Schwarz’s alternating

method is carried out in the same form as in Section 2.5. Again, we start with a zero

approximation uéo) to the exact solution u;, of the system (3.3.10)-(3.3.15), and we

(n (2

obtain the sequence u, ", u; ", ... as follows:
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W (r,0;) = 0j(rj,0,)+

n(Jj)
+B; Y Ri(r;,8,,6%) 54(142”1 1)(rj279;1'>7¢)_Qj(rj279;1')
q=1

on ¢/ (3.5.1)
W™ = s on 0" (35.2)
W™ = sul™ on T, (35.3)
W = S +E5(9,,v,) on I, (3.5.4)
W = VSl + Epn(@,,¥,) on 0y N7, (3.5.5)
“ém) = VprJrlSp“;zm) FEpn(9p, @it Vs Wpi1)

on nZl NYpyNYpir- (3.5.6)

where | <k<M, 1<p<N,jeE,m=1,2,....

Remark 3.5.1 Theorem 2.5.1 remains valid and is proved by analogy to Theorem 7.1

in [20], with the system under consideration being (3.5.1)-(3.5.6).
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Chapter 4

A FOURTH ORDER APPROXIMATION ON A SPECIAL TYPE
OF POLYGON WHEN THE BOUNDARY FUNCTIONS ARE

FROM C**

4.1 Boundary value problem on a special type of polygon
Let D be an open simply-connected polygon with interior angles a;7, & € {%, %, I, 2} ,
let the sides of this polygon be denoted by ¥;, j = 1,2, ..., N ,enumerated counterclock-

wise, and j/j = ¥;MNY;_; be the vertices of D.

The following boundary value problem is taken into consideration in the domain D:

Au = OonD, 4.1.1)

u = @;ony;, j=12,..,N, 4.1.2)
where A = 9%/9x* + 9% /9y?, ®;, j=1,2,...,N, are given functions, and
¢, € CH (yj>,0<7L<1, 1< j<N. 4.1.3)

In addition, at the vertices ¥ i foraj=1 /3, the following conjugation conditions are

satisfied:

0\ (s)) = o8 (5;), p=0,1. (4.1.4)
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It is not required that the boundary functions at the vertices with an interior angle of
o # m/3 are compatible, however, same as before, it is requested that the boundary
functions on the adjacent sides of these vertices are algebraic polynomials of the form

(2.1.5).

We apply the BGM given in detail in [15] and Section 2.1 in the domain D. The fol-

lowing is required for this application:

Let £ = {j taj#1/3, j= 1,2,...,N}. Two fixed block sectors are constructed in
the same form as in Section 2.1, in the neighbourhood of j/j, Jj € E, denoted by
Tj" =T;(rji) C G,i=1,2, and we assume the function Q(r;, 8 ;) has the form (2.1.6),
(2.1.7). Furthermore, we let R;(r;,0;,m) be defined as (2.1.8). The application of

this method requires the construction of two more sectors Tj3 and Tj4, where 0 <rjs <

ri3 <rjp.Let Dy = D\ (U jeETj) . The following steps are taken for the realization:

1) We blockade the singular corners ¥;, j € E, by the double sectors Tj(rj,-),
i = 2,3, with Tk2 N Tl3 =0,k #1, k,l € E, and cover the polygon D by overlapping
parallelograms denoted by D), [ = 1,2,...,M, and sectors Tj3, j € E, such that the

distance from ITQ to j/j is not less that rj4 forall [ = 1,2,...,M.

2) On the parallelograms 5;, [ =1,2,....M, we use the 7-point scheme for the
hexagonal grid with the step size h; < h, h a parameter, for the approximation of
Laplace’s equation, and the singular parts T;, J € E, are approximated by using the

harmonic function defined in Lemma 2.1.1.

The rest of the description follows by analogy to the description given in [15] and

Section 2.1.
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In order to obtain a numerical solution of problem (4.1.1), (4.1.2), an algebraic system

of equations is formed using the following notation:

Let D) C Dy,l1=1,2,...,M, be open fixed parallelograms and D C (U2, D) U (UjeET]-3> C
D. We denote by 7, the boundary of D}, [ = 1,2,...M, by V; the curvilinear part of
the boundary of the sector sz, and let t; = (U?/i N l) ﬂT?. For the arrangement of
the parallelograms D}, [ = 1,2,...,M, it is required that any point P lying on n,N Dr,
1 <I<M,orlyingonV;ND, j€ E, falls inside at least on of the parallelograms D; (P)’
1 <I(P) < M, depending on P, where the distance from P to DrNn J(p) 18 not less than
some constant kK independent of P. K is called the gluing depth of the parallelograms

D), 1=1,2,...M.

Let i € (0,k0/4] be a parameter, and define a hexagonal grid on D}, 1 <[ <M, with
maximal positive step h; < h, such that the boundary 7, lies entirely on the grid lines.
Let D), be the set of grid nodes on D/, n;’ be the set of nodes on 7n;, and let D_gh =
D), Un’. Furthermore, N denotes the set of nodes on (1, D7) \ t;, N, = n"\n

and tj’ denotes the set of nodes on 7;. Finally we have

h h = h, Y
0] = (Ué‘ilnlo) U (UJGEV]’Z> 5 l)>|< " = M U (U?i]D/l/’l) .

Consider the system of difference equations

up, = Suh onD;h, (4.1.5)

u, = @onnh, (4.1.6)
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up(rj,0;) = Q;(r;,0;)+ (4.1.7)
()

n
+B; Y R)(rj,6,,6%) [“h(rjza 05) = 0j(rp,07)| ontj,
k=1

up = S* (up,, @) on 0", (4.1.8)

where 1 </ <M, j € E, and the operator S is defined as

1 h 3 h 3
Su(x,y) = g(u(x+h,y)+u<x+§,y+\/7_h)+u<x—§,y+\/7—h>

The solution of system (4.1.5)-(4.1.8) is the approximation of the solution of problem

(4.1.1), (4.1.2) on D",

Theorem 4.1.1 There is a natural number ng such that for all n > ny and h < Ko /4,
where K is the gluing depth, the system of equations (4.1.5)-(4.1.8) has a unique

solution.

Proof. Let wy, be a solution of the system of equations

wp = Swpon D;h, 4.1.9)
w, = Oonnl, (4.1.10)
n(j) \
wh(rj, Gj) = ﬁj Z Rj(rj, Qj, Qi)wh(rjz, 9;1) on tj, 4.1.11)
q=1
wp, = S*(wp,,0) on ™", (4.1.12)
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where 1 </ <M and j € E. For the proof of this theorem, it is necessary and sufficient
to show that maxﬁl,n lwi| = 0. Since the sum of the coefficients in the operators Swy,
and S*w), do not exceed one, and they are all positive, by the maximum principle (see
Chapter 4 in [21]), wj, will not take its nonzero maximum value on D/, or o"". Hence
we consider the nodes in U jeEt;‘. Taking (2.1.10) and (2.1.25) into account, again by
the maximum principle, for all n > ng (ng is the given integer defined in Section 2.1),

it is not possible to obtain the nonzero maximum value of wy, in U j¢ Etj’ either.

Therefore, the maximum value is attained at nf’l. As D.”" is connected, by system

(4.1.9)-(4.1.12) it follows that

max |wy| = 0.
—h,n

*

Next, the numerical solution in the “singular” parts of the domain is considered. For the
approximation of problem (4.1.1), (4.1.2) on the closed block T;, J € E, the function

Uy(rj,0), which is defined as (2.1.26), is applied.

4.2 Error analysis of the 7-point approximation on the

parallelogram D’
Let D' be one of the parallelograms covering the “nonsingular” part of the polygon
D defined in Section 4.1. The boundaries of the parallelogram D’ are denoted by '}/j,
enumerated counterclockwise starting from left, including the ends, y; =Y, NV
j=1,2,3,4, denotes the vertices of D', y = U‘}zlj/j and D' = D' UY. Furthermore

YNy # 0, but the vertices }/:n with an interior angle of o, # /3 are located either
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inside of D, or on the interior of a side y,, of D, 1 <m < N. We define the open
parallelogram D’ as
D'={(x,y):0<y<a,d—y/v3 <x<e—y/V3},and the boundary value problem

(4.1.1)-(4.1.4) is considered on D’ :

Av = OonD/, 4.2.1)

V. = ll’]? on 'y;'a Jj= 1a273747 4.2.2)

where ¥ jare the values of the solution of problem (4.1.1)-(4.1.4) on ¥'.

Let & > 0, where (e —d)/h > 2, a/+/3h > 2 are integers. We assign to D’ a hexagonal
grid of the form
D, = {(x,y) eD ix="L(1—1)+kh y=13" k1 :O,il,iZ,iS,...}. Let 7, be

the set of nodes on the interior of y;-, and

’j/jh = ’}/jflm/}/ja ’)/h:U‘]"-zl’)/jh7j:172>3747

D, = D,UY,.

We consider the system of finite difference equations:

vi = Sv,onD), (4.2.3)

vi = wyonvy, j=12734, (4.2.4)

where
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1 h 3 h 3
SV(.X',y) = 6 (v(x—i—h,y)—l—v <X+ an—f— §h> +v (x_57y+ gh)
h 3 h 3
+v(x—h,y)+v <x—§,y——\£_h) +v (x—i— i,y——\g_h> >(4.2.5)

Since expression (4.2.5) has nonnegative coefficients and their sum is equal to 1, the

solution of system (4.2.3), (4.2.4) exists and is unique (see [21]).

Lemma 4.2.1 Let

vi(s) eCHM(Y)), 0< A <1, (4.2.6)
and
v (s5) = wi(s), p=0,1, 4.2.7)

be satisfied on the vertices whose interior angles are o.;t = /3, where j=1,2,3,4.

Then the solution of problem (4.2.1), (4.2.2)

ve (D) (4.2.8)

Proof. The closed parallelogram D’ lies inside the polygon D defined in Section 4.1
and the vertices 7’;1 with an interior angle of «,,m # m/3 are located either inside

of D or on the interior of a side y,, of D, 1 < m < N. Since the boundary func-
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tions @;, j =1,2,3,4, in problem (4.1.1), (4.1.2) satisfy conditions (4.1.3) and (4.1.4),

(4.2.8) follows from the results in [34]. =

Let D) , be the set of nodes whose distance from the point P € D) to ¥ is \/T§kh,

1 < k < a*, where a* = { ( \/§d;§ /2)1, [c] denotes the integer part of ¢, and d; is the

minimum of the half-lengths of the sides of the parallelogram.

Lemma 4.2.2 Let wZ = const. be the solution of the system of equations

wlfl = Swlfl +f;]f on D;,vk,
k k / /

wy, = Swj onDy\Dj4,
k

wy, = Oonv,

and z’ﬁ # const. be the solution of the system of equations

2 = Szy+g) on Dy,
Zécz = SZl;l on D;’l\D;l,]O
X = 0ony,,

where 1 < k < a*. If|f/l“ gg’,;, then

‘wﬁ‘ <k 1<k<a’, (4.2.9)

Proof. The proof follows analogously to the proof of the comparison theorem given in

[21]. =
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Lemma 4.2.3 Let v be the trace of the solution of problem (4.2.1), (4.2.2) on D', and

vy, be the solution of system (4.2.3), (4.2.4). If
vi(s) eCPM(Y), 0<A <1, j=1234,
and
v (s)) = v (s)), p=0,1,
on the vertices with an interior angle of o.jt = 1/3, j =1,2,3,4, then

max v — v, | < ch*. (4.2.10)
D,

Proof. Let £, =v;, —von D_;l Clearly

e, = Sep+(Sv—v)onD), 4.2.11)

g, = Oonvy,. (4.2.12)

V3h

Let D}, contain the set of nodes whose distance from the boundary ¥’ is ¥5*, and
hence for (x,y) € D}, (x+sH,y+sK) €D for0<s<1,H = j:%, +h, K =0, i@,

H?>+K? >0, and D}, = D,\D/,,.

Moreover, let

g, =¢€ + &5 (4.2.13)
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We rewrite problem (4.2.11), (4.2.12) as

g, = Se,+(Sv—v)onDj,

g, = Se,onDby,

g = Oonvy), (4.2.14)
and

g2 = SeronD,,

gf = Sep+(Sv—v)on Dy,

g = Oonvy,. (4.2.15)

In order to obtain an estimation for Sv —v on D},, we use Taylor’s formula. On the

basis of Lemma 4.2.1, we have

1Sv—v| < esMyh* on DY, (4.2.16)
where
9u(x,y)
M, = 2 p=0,1,...,qp.
q (xi)l;SD’ { axpayq_p P s, q

Since at least two values of 8}1 in SS}Z are lying on the boundary ¥, , on which 8}11 =0,

from (4.2.14), (4.2.16) and the maximum principle (see [21]), we obtain
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m7ax|8,11‘ < %r@x‘s},} + c3Myh®.
D, 3 D,

Hence

max |, | < cah®, (4.2.17)
h

where c4 = 3c3My.

Next, we consider the estimation of 8%. Let D/2h . be the set of nodes whose distance

from the point P € D), to ' is ‘/Tgkh, 2 <k<a*, where a* = {(\@d—é/z)} , [c] denotes

the integer part of ¢, and d; is the minimum of the half-lengths of the sides of the paral-
lelogram. Furthermore, D’2h’1 =D}, and D/Zh,O = ¥,,- Since the vertices with o/; = % of
the parallelogram D’ are never used as a node of the hexagonal grid for the estimation
of [Sv—v| on D’Mk7 2 <k < a*, we use the inequalities

2% (x,y)

max |——="—*
dxPdy4

max < cop™* > on D'\,

for the sixth order derivatives, where p is the distance from (x,y) € D’ to 7,,. Hence,

we obtain

|Sv—v| < esh®/(kh)*™* on Dby, 2 <k < a". (4.2.18)
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Consider a majorant function of the form

3mifPeD,, . 0<m<k,
Y, = 2hm (4.2.19)

3kif P € Dy, ., m> k.

Hence Y}, is a solution of the finite difference problem

Yk = SYk on D;l \D/2h,k7

Yo = Oony),. (4.2.20)

where 1 <, <3,1<k<a".

We represent the solution of system (4.2.15) as the sum of the solution of the following

subsystems:

2 2 / /
€k = SEp T HonDyy .,
2 2 / /
€k = S€p0onDy\Dyy,
€ = Oonvy, (4.2.21)

where 1 <k <a*, u;, =0 when k=1 and |/.L;€| < 062‘3—31 when k= 2,3,...,a".

By (4.2.20), (4.2.21) and Lemma 4.2.2, follows that

h4—0—l
2
B C6H_—1Yk' (4.2.22)
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Hence, by taking (4.2.21) and (4.2.22) into consideration, we have

5 a* 5 a* h4+/1
ma/.X|8h‘ S 8h7k§ ZC6WYk
Dy, k=1 =1
aa e 4
_l’_
< 3cgh kz:lkl_l < c7h (4.2.23)

On the basis of (4.2.13), (4.2.17), and (4.2.23), we have estimation (4.2.10). m

4.3 Error estimation of the Block-Grid equations on D

Let
£ =up—u, 4.3.1)

where uy, is the solution of the system (4.1.5)-(4.1.8), and u is the trace of the solution
of problem (4.1.1), (4.1.2) on l_)i“n. It is easy to show that (4.3.1) satisfies the system

of equations

g, = Sey+r)onDj,

&n = 0onmn,NYyy,

() ) o )
Rj(rj,0;,05)€n(rj2,07) +rj ontj,
1

n
en(rj,0j) = B;
k

en = S*&,0)4r; on @™, (4.3.2)
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where | <m<N,1<I<M, jeE, and

ry = Su—wuon UL, Dj, (4.3.3)
2 ) k k k
rin = ﬁj ZRj(rj,Gj,Gj) uh(rjz,ej) —Qj(rjz,ej)]

k=1
—(u(rj,0,) = Qj(rj,6,)) on Uje 11, (4.3.4)
i = S*u,@)—uon o™ (4.3.5)

Lemma 4.3.1 Let the boundary functions @ ;, j = 1,2,3,4, in problem (4.1.1), (4.1.2)

satisfy conditions (4.1.3), (4.1.4). Then

max |r; | < esh®, (4.3.6)

whﬁn

where ¢ = U]Jy:l(pj.

Proof. The function S*(u, @) is defined as equation (3.14) in [31]. Keeping in mind
the gluing depth s« for the positioning of the points in ", conditions (4.1.3), (4.1.4)

and estimation (4.64) in [34], estimation (4.3.6) follows. m

Lemma 4.3.2 There exists a natural number ngy such that for all

n > max {no, [ln”"h*l} + 1} , % > 0 being a fixed number,

max < ceh®.

jJEE

2
”jh

Proof. The proof follows by analogy to the proof of Lemma 6.2 in [20]. =

Theorem 4.3.3 Assume that conditions (4.1.3), (4.1.4) hold. Then there exists a nat-
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ural number ngy such that for all n > max {no, [ln””h’l] + 1} , % > 0 being a fixed

number,

max |uy, — u| < cgh*.
—h.n

*

(4.3.7)

Proof. Consider an arbitrary parallelogram D). and let tlh* = 52* N tj-l. Assume that

tl/i i = 0, z;, is the solution of system (4.3.2), and r}l, r?h, rfl are defined the same as

(4.3.3)-(4.3.5) on D)., but are zero on BZ’n\D’*. Hence,

V = max |z;,| = max |z .
—<h,n Y

* *

We represent the function z;, as

4
_ q
qg=1
where
z% = Sz%—l—r}, on D,
2 h
Zh = Oon nl*lﬂyl’l’w
Z;zl - 0 on tl’i],
77 = Oona™",
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(4.3.10)



and

Sz; on D).,

ZZ 0Oon nf’*lﬂ’}/m,
3 2 h

Zh I”Jh on tl*j’

5 = Oono", 43.11)

zi 512 on D).,

Z2 0O on 77?*1 N Y

zﬁ 0 on t;ij,

g = ryono” 43.12)
2=0,g=2,3,4, on D/"\Dj.. 4.3.13)

Hence by (4.3.9)-(4.3.13), z}, satisfies the system of equations

Sz}l on D),

n(j)
k=1

0 on nfll N Y

4
k k h
0,,6%) Z Zi(rj2,6%) on 10
q=1

4
st (Z zZ) on &™", (4.3.14)
qg=1
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where | <m <N, 1 <[ <M, jeE, and the functions zZ, q =2,3,4, are assumed to

be known.

As the solution of system (4.3.10), z%, is the error function of the finite difference
solution with step size h;+ < h, of system (4.2.3), (4.2.4), by (4.3.13), the maximum

principle and Lemma 4.2.3, we have

Va = max |z;] < coh™. (4.3.15)

*

Also, for the solutions of systems (4.3.11) and (4.3.12), as the operator S has coef-
ficients which are nonnegative and their sum do not exceed one, by the maximum

principle, (4.3.13), Lemma 4.3.1 and Lemma 4.3.2, we obtain the inequalities

V3 = rill?x}zz‘gcloh4, (4.3.16)

*

Vi = max|g| <enht. (4.3.17)

*

Now we consider the solution of v}l. Taking into consideration (2.1.25), (4.3.14), the
maximum principle, and the gluing condition of D}, [ = 1,2,...,M, sz, j € E, for all

n>max {ng, [In'**h~1] 41}, 3 > 0 being a fixed number, we have the inequality

4
Vi :max|z}l| SQL*V—kZmaX‘zZ‘, (4.3.18)
Ei”n q=2 bﬁ’n

where 0 < A" < 1. By (4.3.8), (4.3.9), (4.3.15), (4.3.16), (4.3.17) and (4.3.18), we have

V = max |2n| < c12h®.
—=h,n

*
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Hence (4.3.7) follows. m

Remark 4.3.4 Let uy, be the solution of the system of equations (4.1.5)-(4.1.8) and let
an approximate solution of problem (4.1.1),(4.1.2) be found on blocks Ti, jEeE, by
(2.1.26). Then Theorem 2.4.2 holds and the proof of the Theorem follows by analogy

to the proof of Theorem 2 in[15], by taking estimation (4.3.7) into account.

4.4 Schwarz’s alternating method for the solution of block-grid

equations in D
For the approximation of the solution of problem (4.1.1), (4.1.2), we first of all consider
the solution in 52’”. Thus, we need to apply Schwarz’s alternating procedure for the
numerical solution of the system of equations (4.1.5)-(4.1.8). The procedure follows
by analogy to the method described in Section 2.5, with the following system under

consideration:

ontl, (4.4.1)
W™ = st on @' (4.4.2)
W™ = su™ on D}, (4.4.3)
W = @onny, (4.4.4)

where | <I<M,jeE, m=1,2,....

89



Remark 4.4.1 Theorem 2.5.1 remains valid and is proved by analogy to Theorem 3 in

[15] for system (4.4.1)-(4.4.4).
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Chapter 5

NUMERICAL EXPERIMENTS

5.1 Examples solved in a hexagonal grid for the Dirichlet problem

5.1.1 Examples on a rectangular domain

Consider the rectangular domain

3
H:{(x,y)GD:0<x<1,0<y<§},

with the boundary 7. The hexagonal grid (2.2.5), denoted IT", is assigned to IT, and 7"

denotes the set of nodes on the boundary 7.

Example 5.1.1 We consider the problem

Au = O0onll,

u = v(x,y)ony,
where
v(x,y) =€’ sinx (5.1.1)

is the exact solution of the problem in the rectangular domain I1.

This example is solved using Incomplete LU-Decomposition Method (see [29], Chap-

ter 5), and all the calculations are carried out in double precision. As a convergence
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| leallp R

273 [ 1.15727 x 1077

2-4 1733698 x 10~° | 15.7731

273 | 4.58658 x 10710 | 15.9966

2761289896 x 10~11 | 15.4765

27 12.02482 x 10712 | 14.3171

Table 5.1. Approximations in a rectangle with smooth exact solution

(0)

test, we request the maximum residual error to be 10712 and v, =0 is used as the

initial value.

Table 5.1 gives the values obtained in the maximum norm of the difference be-

tween the exact and approximate solutions, for the values of h =27 k =3,4,5,6,7,

mo_ v=vamlgs

= has also
I V_sz(mﬂ) ‘ﬁh

been included, where O(h*) order of accuracy corresponds to 2* of the value R™ .
IT

i.e., [|€n||gn = maxgn [v — vy |. The order of convergence R

Example 5.1.2 We consider the same problem as in Example 5.1.1 with the exact so-

lution

1
v(x,y) = Eln(x2+y2)Rez7—tanfl(z)lmzf (5.1.2)

which is less smooth than (5.1.1). The results obtained are consistent with the theoret-

ical results and are summarized in Table 5.2.
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h | el R

273 11.9285677 x 10~

2741 1.1998304 x 107> | 16.0737

275 | 7.4809403 x 107 | 16.0385

276 | 467808169 x 1078 | 15.9915

27 12.922653 x 107? 16.0063

Table 5.2. Approximations in a rectangle with less smooth exact solution

Stu 1.56912199976621

Exact 1.56912199014188

len(Py)| | 9.624329x10~°

Table 5.3. Results for approximation of inner points with the matching operator

5.1.2 The matching operator
Examples of the matching operator have also been considered in the domain II. The

coordinate P;(0.55,0.4387) is chosen, where P; € I, and

u(x,y) = e*cosy, (5.1.3)

is assumed to be the exact solution. The result in Table 5.3 is obtained using 7 =274

and demonstrates the high accuracy of the above constructed matching operator.

The second coordinate considered demonstrates the accuracy of the approximate solu-
tion at near-boundary points. The point chosen is P»(0.195938,0.02), where P, € Iy
and equation (2.3.23) is used for approximation. Again, the harmonic function (5.1.3)
is used as the exact solution. As a third example, a point near one of the corners of the

domain, P;(0.005,0.005) has been considered, where the nodes of evaluation emerge
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h | |en(P2)] € (P3)]

2-4 1 1.716286x10~8 3.85255412x1078

275 1 5.385032x107 10 | 4.3619541x10°

261 2.2436186x10710 | 3.41679468x10 10

271 2.4942270x10" 11 | 2.8927971x10~12

Table 5.4. Results for approximation of near boundary points with the matching

operator

through both adjacent sides of the corner. The function
u(x,y) = e’ cosx
is used as the exact solution. The results obtained are summarized in Table 5.4.

5.1.3 Solutions in an L-Shaped domain
An example is solved in an L-Shaped domain with an angle singularity at the origin,

where ojr = 37/2. The domain is defined by

where Q| = {(x,y) 0<x< 1,—\/7§ <y< 0} and is covered by four overlapping

rectangles and a sector. The singular part is defined to be the region

—? Syé?}\ﬁf

where Qf = {(x,y) 0<x< %,_\/Ti <y< O}, and the nonsingular part is QV5 =

Q/Q5. The system of Block-Grid equations in the "nonsingular” part of the domain is

94



solved by Schwarz’s alternating method. The solution at the quadrature nodes lying on
the curvilinear part of the boundary of sector T%, whose radius is taken as 0.75, and the
overlapping boundaries of the rectangles are renewed after each Schwarz’s iteration.
The solution at the nodes on the circular arc, the inner boundaries of the overlapping
rectangles and the nodes in the set Uﬁzlnzg are renewed using the matching opera-
tor constructed above. Since the boundary functions are harmonic polynomials on the
sides ¥, and Y, = ¥, the approximation of the solution at the points whose neigh-
bouring nodes emerge through these sides are approximated using the function u — Q.
Finally, the solution on the singular part is approximated using the integral representa-

tion.

The problem considered is
Au = 0OonQ,

u = v(x,y)ony,
where
2
v(x,y) = 0 +r*3sin (59) +Rez’ +Imz,

is the exact solution. Accordingly, the function Q;(r;,601) used in the integral repre-

sentation is constructed as
01(r1,601) = 01 +7r)(cos(501) +sin(561)).

The results in Table 5.5 and 5.6 show the solution for different pairs of (h,N), where

N is the number of quadrature nodes and 4 is the mesh size of the hexagonal grid.
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(7,N) 1€l s RY

QNS

(274,40) |5.2742x10°*  14.7656

(27°,60) |3.57195x 1077

(27°,100) | 8.2649 x 10~7  15.3796

(276,100) | 5.373923 x 1078

3.418192 x 10~°

)
(270,100) | 5.373923 x 103 15.7215
)

(277,125

Table 5.5. Results obtained in "nonsingular" part of the L-shaped domain for the

Dirichlet problem

5.2 Examples solved in a hexagonal grid for Laplace’s equation

with mixed boundary conditions
5.2.1 Examples on a rectangular domain
To demonstrate the accuracy of the approximate solution obtained by the system of

equations (3.1.6)-(3.1.9), three examples have been solved in the domain
3
H:{(x,y):0<x<1,0<y<\/7_}, (5.2.1)

where ¥;, j = 1,2,3,4, denotes the boundary of II, numbered in the positive direction

4

starting from left, and y = U ;

—17;- These examples are solved using block Gauss-
Seidel method, where each block is solved by Gaussian elimination, and all the calcu-

lations are carried out in double precision. As a stopping criteria, it is required that the

successive error is more than £ = 10~!3, and zero is taken as the initial approximation.
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(7,N) 1€l s RY

oS

(274,40) [9.9742x10°*  11.7569

(27°,60) |3.57195x 1077

(272,100) | 8.2649 x 107 14.9731

5.373923 x 108

( )
(270,100) | 5.373923 x 103 16.5665
( )

3.418192 x 10~°

Table 5.6. Results obtained in "singular” part of the L-shaped domain for the Dirichlet

problem

First, we consider the boundary value problem

Au; = OonllI, (5.2.2)
w = vV ony,, (5.2.3)
wp = v(x,y)ony\7v,, (5.2.4)

where we have Neumann boundary conditions on the side y = 0. The second example

considers the numerical solution of the problem

A, = Oonll, (5.2.5)
w = i ony, and 7, (5.2.6)
u = v(x,y)ony,andy,, (5.2.7)

which has Neumann boundary conditions on the parallel sides, x =0 and x = 1, and
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h | lleilly RO | llelly R

2731 1.7922 x 1077 1.8699 x 10~7

2741 1.1238 x 1078 | 15.948 | 1.1721 x 1078 | 15.953

275 17.0395x 10719 | 15.964 | 7.3452 x 10719 | 15.957

276 14.4033x 10711 | 15.987 | 4.5937 x 10~ | 15.989

277127868 x 10712 | 15.801 | 2.9047 x 1012 | 15.814

Table 5.7. Solutions on a rectangular domain with mixed boundary conditions

the final problem is

Aus = Oonll, (5.2.8)
w3 = vy ony, and 7, (5.2.9)
uz = v(x,y)ony;andy,, (5.2.10)

which has Neumann boundary conditions on the adjacent sides, x = 0 and y = 0. For

the solution of problems (5.2.2)-(5.2.10), the function

v(x,y) = €*cosy

is taken as the exact solution. Numerical results are obtained by solving the system of
equations (3.1.6)-(3.1.9) in the hexagonal grid (2.2.5), on the domain (5.2.1). Results

are given in Table 5.7 and Table 5.8, and are presented with the notation HS;-lHﬁh =

||M’.7ug*m||ﬁh l: l 2 3
u—u' [

max_ ‘ui —ul ‘ and R =
nh h Hh )
27(m+1) ﬁh
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h | lleilly R

2731 4.2635x 1077

274 12.6688 x 1078 | 15.975

275 11.6687 x 102 | 15.993

2761 1.0434 x 10719 | 15.991

277 16.5528 x 10712 | 15.923

Table 5.8. Solutions on a rectangular domain with Neumann boundary conditions on

adjacent sides

5.2.2 Solutions in an L-Shaped domain

To demonstrate the accuracy of the block-grid method for the solution of a problem
with mixed boundary conditions, an example has been solved in an L-shaped domain,
with a corner singularity at the origin, where the interior angle is 37” Four overlapping
rectangles I, k = 1,2,3,4, covered the "nonsingular" part of the domain. As a stop-
ping criteria for the Schwarz’s iterations, it is requested that the successive error on the
sides of the overlapping rectangles is 10~!3. The system of finite-difference equations
in the rectangles are solved by using block Gauss-Seidel method, and the blocks are
solved by Gaussian elimination. All the calculations are carried out in double preci-
sion and u,(lo) = 0 1s taken as the initial value. Finally the harmonic function (2.1.26) is

applied for the approximation of the solution in the "singular" part of the domain.

Let

o5

where G| = {(x,y):ngg 1, — §y§0}, and y;, i = 1,2,...,6 be the sides of
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(h,N) 1€n]l Gy RS

Gns

(274,60) | 9.9569476946 x 10~° 17.3095
(

275,75) | 5.7523082852 x 1077

(272,125) | 4.04386071850 x 10~° 16.2625

(276,135) | 2.4866231296272 x 1017

(27°,95) | 1.485055436535x 1078 16.3341

(277,115) | 9.091693509155 x 10~ 1°

Table 5.9. Results obtained in the "nonsingular” part of the L-shaped domain with

mixed boundary conditions

G, enumerated counterclockwise, starting from left. We consider the problem

Au = 0OonG,

(1)

u = vy’ onyy,

u = v(r,0)ony\y,,

where

1
v(r,0) = Zr1/3 cos (g) ,

is the exact solution. Let IT* = G\ (U}_,II;), and Gys = G\ IT*, Gs = GNII* de-

note the “nonsingular” and “singular” parts of G, respectively. We use the notation

=ty g, o

€l Gy = maxgyg [u—up| and R to denote the error approxima-

s Hu—u
—(m+1)
2 Gys

tion and order of convergence in the “nonsingular” part of G, and ||&x||¢, , R, denote
the error approximation and the order of convergence in the “singular” part of G. The

results are presented in Table 5.9 and Table 5.10.
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274,60) | 6.90196081185x 10°°  23.7601

(
(27°,75) | 2.90485160286 x 10~

(273,125) | 1.35236603096 x 10~°  25.2062

276,135) | 5365211053209 x 10!

(
(27°,95) | 5.3680998049 x 10~? 26.7517
(

277,115) | 2.00663609129 x 1071

Table 5.10. Results obtained in the "singular" part of the L-shaped domain with

mixed boundary conditions

(h=',N) | (16,80) (32,100) (64,115) (128,125)

1.32313 x 107% | 1.80245 x 10~7 | 7.43531 x 108 | 1.20714 x 10~

o

hx

Gy

Table 5.11. 821)2 = r2/3 (% — %) in the "singular" part of the L-shaped domain with

mixed boundary conditions

The derivatives of the solution have also been approximated in the “singular” part of the

o ox ) o = T2 ﬁ) in the maximum

domain. The errors 821) = r2/3 <% — @> 822) = /3 (92U" %u
7'x >
norm, are presented in Tables 5.11, 5.12, respectively. Furthermore, Figures 5.1 and

5.2 are given in order to demostrate the exact and approximate solutions obtained for

the derivatives.

(h=',N) | (16,100) (32,125) (64,150) (128,170)
He,(fjx G | 518289 1076 | 5.33195x 1077 | 9.2546 x 10~ | 3.07158 x 10~°
’ s

Table 5.12. £l = ;5/3 (ﬂ — ‘9—2”> in the "singular" part of the L-shaped domain

hxx — dx? ox?

with mixed boundary conditions
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Figure 5.1. The approximate solution (a) and exact solution (b) of a—z, respectively, in
the "singular" part of the L-shaped domain with mixed boundary conditions using

polar coordinates

5.3 Examples solved on a special type of polygon

Two examples have been solved in the polygons defined in Chapter 4 in order to test

the effectiveness of the proposed method. In Example 5.3.1, it is assumed that there

is a slit in the domain D, thus causing a strong singularity at the origin. The vertex 7,

containing the singularity, has an interior angle of a;7 = 27x. In Example 5.3.2, we

consider a problem with two singularities. The vertices which contain the singularities
2

have interior angles of ;7w = 57, j = 2,4. In this example, the exact solution is not

known.

After separating the “singular” part, in Example 5.3.1, the remaining part of the domain

is covered by 5 overlapping parallelograms, whereas in Example 5.3.2, the “nonsin-
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Figure 5.2. The approximate solution (a) and exact solution (b) of 3—1’;, respectively, in

the "singular" part of the L-shaped domain with mixed boundary conditions using

polar coordinates

gular” part of the domain is covered by only two parallelograms. For the solution of
the block-grid equations, Schwarz’s alternating procedure is used. In each Schwarz’s
iteration the system of equations on the parallelograms is solved by the block Gauss-
Seidel method. The function Q;(r;,8;) is constructed for each example, taking into
consideration the boundary conditions given on the adjacent sides of the vertices in
the “singular” parts, and equation (2.1.6) introduced in Section 2.1. Furthermore, the

derivatives are approximated in the “singular” parts for both of the examples.

The results are provided in Table 5.13-Table 5.17, and Figure 5.3-Figure 5.11.

Example 5.3.1 Consider the open parallelogram

103



D= {(x,y) ; —\/T§ <y< ‘/75,—1 — \/Lg <x<1-— \/Lg} We assume that there is a slit
along the straight line y =0, 0 < x < 1. Let Y j=1,2,....7, be the sides of D,
including the ends, enumerated counterclockwise starting from the upper side of the

slit (Yo=77), Y= U;:ﬁ/j, and y; =Y;NY;_, be the vertices of D.

The application of the method in the parallelogram is demonstrated in Figure 5.3

05t .
ot -
D
st -
Dy
_-1 1 1 1 1 1
-1.5 -1 -0.5 1] 0.5 1 15

Figure 5.3. Domain of the slit problem with the applicaiton of BGM

Let (01,r1) = (0,r) be a polar system of coordinates with pole in y,, where the

angle O is taken counterclockwise from the side 7,

We consider the boundary value problem

Au = OonD,

u = q)jon}/j,jzl,27...,7, (5.3.1)

104



where @ ; is the value of the function

v(r,0) =0.5r1/2 sin% +0.87%/2 sin% +2r?c0s20 +2.5r3 cos 360 + 26 on V-

As @y = 2x? +2.5x° +4m and @, = 2x> 4+ 2.5x7, we obtain the carrier function in the

form

01(r,0) = 20+2(5,(r,0)+6,(r271—-6))+

2.5(E4(r,0)+&5(r2m—0)),

where &,(r,0) = r? (2 — 0) cos2(2w — 0) +Inrsin2(27 — 6)) /27 and

E5(r,0) =1 (2w — ) cos3(2m — 0) +Inrsin3(2w — 0)) /27.

The following notation is used in the Table 5.13. Let D;,l =1,2,...,5, be the open
overlapping parallelograms, Dyg = U?:lﬁg be the "nonsingular" part and Ds = D\ Dys
denote the "singular" part of D. In Table 5.13, the values are obtained in the maxi-
mum norm of the difference between the exact and the approximate solutions, for the
values of h =27% k=4,5,6,7, and n, which is the number of quadrature nodes on

V;. The order of convergence, R}, = ‘vaz—mHD
o]

have also been included. Figures
5.4, 5.5 illustrate the approximate solution u;, and the exact solution u in the “sin-

gular” part of the domain, respectively. We also present the error obtained between

the derivatives of the exact and the block-grid solutions 821) = r1/2 <% — %) and

X

822) _ 32 (_u _d*y,

T A ) , in the maximum norm, in Tables 5.14 and 5.15, respectively.

Figures 5.6 and 5.7, 5.8 illustrate the shapes of the derivatives g“ and 2 g‘ of the ob-
tained approximate and exact solutions. These figures demonstrate also the highly

accurate approximation of the derivatives.
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(h=hn) | flu—unllpy [l — un| b Rpys R
(16,70) | 5924280 x 107> | 5.191270 x 10~
(32,70) | 3.910378 x 107° | 4.794595 x 10~8 | 15.1501 | 10.8273
(64,110) | 2.478126 x 1077 | 2.558563 x 10~° | 15.7796 | 18.7394
(128,130) | 1.56560 x 1078 | 1.27915 x 1071 | 15.8286 | 20.0021
Table 5.13. Results obtained for the slit problem
(h=1,n) | (16,70) (32,70) (64,110) (128,130)
et 5. | 7898311077 | 9.78871 x 10 | 429502 x 10 | 2.94108 x 1017

Table 5.14. &) =

A/2

U,

slit

(% — W) in the "singular" part of the parallelogram with a

(h=',n) | (16,70) (32,70) (64,110) (128,130)
||| 37119107 | 9.736 x 107 | 2.03211 x 10°# | 930597 x 10710
S
Table 5.15. 81(12) =32 (‘;—i’z‘ — %) in the "singular" part of the parallelogram with a

slit
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Figure 5.5. Exact solution in the “singular” part of the slit problem

Example 5.3.2 Let P be the open parallelogram
. 3 . .

P= {(x,y) 0<y< %,—\% <x<1-— %}, let v;, j = 1,2,3,4, be the sides of P,
including the ends, numbered in the positive direction, starting from the left-hand side
Yo=Y N1 =75) V= U?Zlyj, and }?j = Y;NYj_ represents the jth vertex of P. We
consider a problem with two corner singularities at the vertices 7y, and Y,, where
o = %77:, j=2,4. The two “singular” corners of P are covered by sectors and
these areas are denoted by 5’;, i = 1,2, and two overlapping parallelograms cover the

“nonsingular” part of the domain, denoted by P]{,S, i =1,2. Application of the method

for this example is demonstrated in Figure 5.9.

We consider the boundary value problem
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Figure 5.6. The approximate solution (a) and exact solution (b) of % in the "singular"

part, respectively, of the slit problem.

‘
*10

0.3

Figure 5.7. The approximate solution of ‘;—iﬁ’ in the "singular" part of the slit problem.
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‘
*10

u

Figure 5.8. The exact solution of g—; in the "singular" part of the slit problem.

I:lg T T

0ar

07t

06}

03t

04}

03}

0zt .

Figure 5.9. Domain of the problem with double singularities

Au = 0QonP,
u = Oonvy;, j=14,

u = lony, j=23 (5.3.2)
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2—m | 273 276
R™ | 16257 | 15.9884
PNS

R™, | 16.2387 | 16.0086
NS

Rm 119.3268 | 127771
S

R™, | 18.2604 | 14.0755
S

Table 5.16. Order of convergence for problem with double singularities

2—m | 273 26
R™ | 13.8404 | 19.6426
PS

R, | 13.7489 | 19.6505
S

Table 5.17. Order of convergence of derivatives in the "singular" parts of the
parallelogram with double singularities
The functions Q;(r;,0;), j = 2,4, constructed for each singularity are Q5 (r2,02) =1—
36,

52 and Q4(r4,04) = %.We have checked the accuracy of the obtained approximate

results uy, by looking at the order of convergence using the formula ﬁ? = M,
2—m—l “Up—m||p

which corresponds to 2%, for the pairs (h,n) = (274,80), (273,100), (27%,100), (277,90).

The results are presented in Table 5.16. Moreover, g—i;‘ has been approximated in the

“singular” part, where u is the unknown exact solution of problem (5.3.2). The results

are presented in Table 5.17 and illustrated further in Figures 5.10, 5.9.
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Aso0d .

zoon ).
04

Figure 5.10. % in the “singular” part PS1 of the parallelogram with double

singularities

000 .-

Figure 5.11. a;gh in the “singular” part PS2 of the parallelogram with double

singularities
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Chapter 6

Conclusion

A matching operator of fourth-order accuracy is constructed on the closed rectangle,
for the numerical solution of Laplace’s equation in hexagonal grids. With the use of
this matching operator the Block-Grid method (BGM) has been applied and analysed
on staircase polygons, with a hexagonal grid, for the approximation of the Dirichlet
and mixed boundary-value problem of Laplace’s equation. The difficulties of having
neighbouring nodes emerge through the side of the domain while approximating the
solution on near-boundary nodes, and nodes lying on sides with Neumann boundary
conditions, are overcome by the construction of fourth-order accurate finite-difference

operators.

It is justified that an accuracy of O(h*) is obtained everywhere in the domain, where &
is the step size, when the boundary functions away from the singular points are from

the Holder classes Co*, 0 < A < 1.

The approximation of the Dirichlet problem of Laplace’s equation has also been con-
sidered on special type of polygons with interior angles of o7, ot € {3, %5 1,2} It
has been justified that in these polygons, with the application of BGM, the smoothness
of the boundary functions away from the singular points can be lowered down to C**,

0 < A < 1, in order to obtain fourth-order accuracy everywhere in the domain.

In order to demonstrate the accuracy of these results, the L-shaped problem has been

considered, where the first example solved had Dirichlet boundary conditions on all
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sides of the domain, and in the second example Neumann boundary conditions were

assumed on one of the adjacent sides of the singular vertex.

For the realization of BGM on polygons with interior angles of o7, a; € {%, %, 1,2},
first of all the slit problem has been considered. As a second example, the computa-
tion of BGM was carried out in a domain with double singularities. All the solutions

obtained are consistent with the theoretical results.

As an extension of the results obtained in this thesis, it will be interesting to investigate
the solution of the biharmonic equation. Eventhough harmonic functions satisfy the bi-
harmonic equation, it does not always follow that biharmonic functions are harmonic.
Hence BGM can not always be applied directly for the approximation of biharmonic
problems, but can be used by reducing them to two problems for the Laplace and Pois-

son equations.

Furthemore, for the generalization of the results in this thesis, it will also be worthwhile
to analyze BGM with nonanalytic boundary conditions, thus removing the restriction
of the boundary functions on the adjacent sides of the singular points to be algebraic
polynomials. Eventhough this restriction has been removed for the application of BGM
on staircase polygons with square grids (see [23]), the extension to hexagonal grids has

not been investigated.

Finally, considering BGM on three-dimansional domains will also be of interest. This
application will require a new construction of the matching operator with the use of
a different method than the one used in this thesis, and also a new definition of the

integral representation of the solution will be needed.
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