

Bacteria Foraging Optimization with Genetic

Operators for QAP and mQAP

Saeid Parvandeh

Submitted to the

Institute of Graduate Studies and Research

in partial fulfillment of the requirements for the Degree of

Master of Science

in

Computer Engineering

Eastern Mediterranean University

July 2013

Gazimağusa, North Cyprus

Approval of the Institute of Graduate Studies and Research

 Prof. Dr. Elvan Yılmaz

 Director

I certify that this thesis satisfies the requirements as a thesis for the degree of Master

of Science in Computer Engineering.

 Assoc. Prof. Dr. Muhammad Salamah

 Chair, Department of Computer Engineering

We certify that we have read this thesis and that in our opinion it is fully adequate in

scope and quality as a thesis for the degree of Master of Science in Computer

Engineering.

 Asst. Prof. Dr. Ahmet Ünveren

 Supervisor

 Examining committee

1. Asst. Prof. Dr. Adnan Acan

2. Asst. Prof. Dr. Önsen Toygar

3. Asst. Prof. Dr. Ahmet Ünveren

iii

ABSRACT

The Bacterial Foraging Optimization Algorithm (BFOA) is one of the metaheuristics

algorithms which is widely used in Optimization processes. It is also related to other

optimization algorithms such as Ant Colony and Particle Swarm Optimization. So

far, many of the metaheuristics algorithms such as genetic algorithm, particle swarm

optimization, and tabu search have been used to hybridize this algorithm.

The BFOA is imitated by behavior of the foraging bacteria group such as E.coli.

Basically, the main aim of the algorithm is to eliminate those bacteria which have

weak foraging methods and following up those bacteria which have strong foraging

methods. In this extent, each bacterium contacts to other bacteria by sending signals

such that bacterium change the position to the next step if prior factors have been

satisfied. In fact, the process of algorithm allows bacteria to follow up the nutrients

toward the optimal. BFO algorithm has three steps: 1) 'Chemo-tactic', 2)

'Reproduction', and 3) 'Elimination-dispersal'.

In this thesis, Bacteria Foraging Optimization Algorithm (BFOA) is used for the

solution of Quadratic Assignment Problems (QAP), and Multi-objective QAP

(mQAP). Since, QAP is NP-hard problem and finding a reasonable solution is a non-

polynomially time-consuming process, then one of the combinatorial algorithms

should be used to find the solution in reasonable time. The BFO is one of the

combinatorial optimization algorithms which apply to optimize the cost of such

problems. The BFO algorithm takes a population of permutation (locations), and in

iv

several iterations of a generation, it can find a reasonable solution for QAP or

mQAP. Furthermore, in order to improve the algorithm, some genetic updating

operators such as crossover and mutation have been used in the second part of

BFOA algorithm (chemo-tactic) in every generation of this step. Additionally,

robust tabu search has been used in the third part (elimination-dispersal) to improve

the best solution found so far.

Keywords: BFOA, Tabu Search, Quadratic Assignment Problem, Multiobjective

Quadratic Assignment Problem

v

ÖZ

Bakteriyel besin arama algoritması (BBAA), bakteri eniyleme optimizyasyon ve sürü

en iyileme algoritmaları alanına ait olup daha geniş alanlar olan hesaplara dayalı

zeka ve sezgisel Algoritma alanları altında kullanılan noktadır. BBAA algoritması

parçası sürü eniyileme ve karınca kolonisi en iyileme algoritmaları ilede benzerlik

göstermektedir. Ayrıca BBAA, diğer en iyileme algoritmaları ile birleştirilerek de

kullanılmaktadır. Örneğin BBAA ve Genetik algoritma, veya parçacık sürü en

iyileme algoritması veya Tabu arama algoritmaları.

BBAA, E.coli bakterisinin beslenme davranışından esinlenerek geliştirilmiş bir

iyileme yöntemidir. E.coli bakterisi besin maddesine ulaştığında diğer bakterileri

uyarıcı etkiye sahip kimyasal bir madde salgılamaktadır. Bu madde diğer E.coli

bakterilerinin besini bulan bakterinin bulunduğu yere doğru hareket etmesini

sağlamaktadır. BBAA en iyileme algoritması tüm hücrelerin en iyiye doğru grup

halinde hareketini sağlama stratejisi gütmektedir.

En iyiye ulaşmak için BBAA sırasıyla üç önemli işlemi sürü halindeki tüm hücrelere

uygular; 1) “Kemotaktik”, 2) “Üreme”, 3) “Eliminasyon-dağıtım”.

Bu tezde bakteriyel besin arama algoritması (BBAA) kullanılarak karesel atama

problemleri(KAP) ve çok amaçlı karesel atama problemleri (MKAP) çözülmüştür.

vi

KAP, bir dizi aracı, bir dizi lokasyona, verilen lokasyonlar arası uzaklıklar ve araçlar

arası akış bilgileri kullanarak atama yapma problemi olarak tanımlıya biliriz. KAP

problemi bir NP-ZOR problem olduğundan iyi çözümlere ulaşmak uzun zaman

almaktadır. BBAA algoritması tümleşik algoritmalardan biri olup NP-ZOR

problemlerini çözmek için kullanılır.

BBAA algoritması en iyileme döngüsü ile KAP ve MKAP problemlerine çözüm

bulmaya çalışır. BBAA algoritmasında KAP ve MKAP problemleri çözümü

esnasında farklı çaprazlama ve mutasyon metodları kullanılarak mevcut problemler

iyileştirilmeye çalışılmıştır. Ayrıca Tabu arama algoritması bulunan en iyi çözümlere

uygulanmış ve mevcut en iyi çözümlere ulaşılmıştır.

Anahtar Kelimeler: BBAA , Tabu Arama, Karesel Atama Problemleri, Çok Amaçlı

Karesel Atama Problemleri

vii

DEDICATION

I wish I could write peace of note to my girlfriend to compensate her spirit of giving

to me in every moment, but this paper and keyboard are not able to keep any note to

countervail her kindly accompaniment during two years. I would like to dedicate this

thesis to her.

viii

ACKNOWLEDGMENTS

I would like to thank Asst. Prof. Dr. Ahmet Ünveren for his continuous support and

guidance in the preparation of this study. He has always been available to answer my

questions so kindly. Without his invaluable supervision, all my efforts could have

been short-sighted.

I am also obliged to Asst. Prof. Dr. Adan Acan for his help during my thesis. He has

helped me to think about problems in deep with his quite comprehension exams and

assignments. Moreover, I really appreciate my friends who have always been around

to support me morally. I would like to thank them also. I owe quit a lot to my family

who allowed me to study abroad. I would like to appreciate them and I wish to

satisfy them in the future life.

ix

TABLE OF CONTENTS

ABSRACT .. iii

ÖZ .. v

DEDICATION ... vii

ACKNOWLEDGMENTS .. viii

LIST OF FIGURES .. xi

LIST OF TABLES ... xii

1 INTRODUCTION .. 1

1.1 Quadratic Assignment Problem .. 1

1.2 Multiobjective Quadratic Assignment Problem ... 5

1.3 Dominance and Pareto Optimality ... 8

1.4 Non-dominated Sort ... 9

1.5 Related Works Based on Bacteria Foraging Optimization............................... 10

2 BACTERIA FORAGING ALGORITHM .. 13

2.1 Bacteria Foraging Optimization Algorithm (BFOA) 13

2.1.1 Chemo-tactic .. 13

2.1.2 Swarm .. 14

2.1.3 Reproduction .. 16

2.1.4 Elimination-dispersal ... 16

2.2 Multiobjective Bacteria Foraging Optimization (MOBFO) 21

x

3 PROPOSED SINGLE AND MULTIOBJECTIVE OPTIMIZATION

ALGORITHMS FOR THE SOLUTION OF QAP AND mQAP 24

3.1 Introduction .. 24

3.2 Proposed BFO Algorithm for the Solution of QAP ... 24

3.2.1 Initialization ... 28

3.2.2 Chemo-tactic .. 28

3.2.2.2 Mutation .. 28

3.2.3 Reproduction .. 29

3.2.4 Elimination-dispersal ... 30

3.2.5 Robust Tabu Search ... 30

3.3 Proposed MOBFO Algorithm for the Solution of mQAP 33

3.3.1 Definition ... 37

3.3.2 Crossover ... 37

4 EXPERIMENTAL RESULTS .. 40

5 CONCLUSION ... 45

REFRENCES ... 46

APPENDIX .. 51

xi

LIST OF FIGURES

Figure 1: A Solution of the Example QAP Instance .. 4

Figure 2: Map of Two-objective Optimization Problem ... 9

Figure 3: Flowchart of Bacteria Foraging Algorithm (a) ... 19

Figure 4: Flowchart of Bacteria Foraging Algorithm (b) .. 20

Figure 5: Flowchart of Proposed BFO Algorithm ... 27

Figure 6: The Uniform Like Crossover with Random Permutation 38

Figure 7: Block Crossover with Random Permutation .. 39

Figure 8: Swap Mutation on Random Permutation ... 29

Figure 9: Inversion Mutation on Random Permutation ... 29

Figure 10: Flowchart of Proposed MOBFO Algorithm ... 36

Figure 11: Problem KC10-2fl-1rl with Two Objectives .. 43

Figure 12: Problem KC10-2fl-2rl with Two Objectives .. 52

Figure 13: Problem KC10-2fl-3rl with Two Objectives .. 53

Figure 14: Problem KC10-2fl-4rl with Two Objectives .. 54

Figure 15: Problem KC10-2fl-5rl with Two Objectives .. 55

Figure 16: Problem KC20-2fl-1rl with Two Objectives .. 56

Figure 17: Problem KC50-2fl-1rl with Two Objectives .. 57

Figure 18: Problem KC30-3fl-1rl with Three Objectives .. 58

Figure 19: Problem KC75_3fl_1rl with Three Objectives ... 59

Figure 20: Problem KC10-2fl-1uni with Two Objectives ... 60

Figure 21: Problem KC10-2fl-2uni with Two Objectives ... 61

Figure 22: Problem KC10-2fl-3uni with Two Objectives ... 62

Figure 23: Problem KC20-2fl-1uni with Two Objectives ... 63

xii

LIST OF TABLES

Table 1: Result of Proposed Single Objective BFO... 41

Table 2: ER and HV for Figure 11 ... 44

Table 3: ER and HV for Figure 12 ... 64

Table 4: ER and HV for Figure 13 ... 64

Table 5: ER and HV for Figure 14 ... 64

Table 6: ER and HV for Figure 15 ... 64

Table 7: ER and HV for Figure 16 ... 65

Table 8: ER and HV for Figure 17 ... 65

Table 9: ER and HV for Figure 20 .. 65

Table 10: ER and HV for Figure 21 ... 65

Table 11: ER and HV for Figure 22 ... 66

Table 12: ER and HV for Figure 23 ... 66

iii

1

Chapter 1

INTRODUCTION

1.1 Quadratic Assignment Problem

The Quadratic Assignment Problem (QAP) is one of the reputed NP-hard

combinatorial optimization problems such that there is no known polynomial time

algorithm for its solution. The QAP has been introduced by Koopmans and

Beckmann in 1957 [1]. It can be defined as a problem to allocate a facility set to a

location set with mutual distances among the locations and mutual flow among the

facilities. Specially, given two matrices () and () as input, in

which all the elements are real, and let be flow among facility and facility ,

be the distance among the location and location . Also, let be the number of

facilities and locations, where * +. The formulation of the QAP can

be defined as follows [1]:

 () ∑∑ () ()

 ()

where, is the set of all permutations of locations. Each individual product

 () () computes the cost of assigning facility to location () and facility to

location (). An QAP instance with input matrices A and B is denoted by QAP (A,

B). It is to be noted that the number of facilities (n) is assumed to be the same as the

number of locations. In other words, one facility could be assigned to only one

2

location, and one location could be assigned to only one facility in a feasible

assignment solution, otherwise it is infeasible assignment solution [3, 4].

The QAP problem can be defined as follows

 () = matrix of the flows (between facility i and facility j);

 () = matrix of distances (between location k and location l).

After this construction, a permutation () can be introduced as a particular

assignment of facility () to location (). The cost of

transferring data between two facilities can be expressed as the product of the

distances between the locations to which the facilities are assigned by the flow

between the two facilities, () (). In order to solve the QAP, a permutation

of the indices 1,2,3,...,n which minimizes the local assignment cost should be found.

Here is an example of QAP:

Given the following flow and distance matrices:

The flow matrix () between facilities is given as:

 () [

] [

]

 and the distance matrix () between locations is specified as:

 () [

] [

]

3

 In the list below, 24 solutions for the above QAP has been shown. In fact, each of

the arrangements is a permutation of four facilities to be assigned to four locations.

 1.(1,2,3,4) 7. (3,4,2,1) 13. (4,3,2,1) 19. (1,2,4,3)

 2.(4,1,2,3) 8. (1,3,4,2) 14. (3,2,1,4) 20. (2,4,3,1)

 3.(3,4,1,2) 9. (1,3,2,4) 15. (2,1,4,3) 21. (4,2,3,1)

 4.(2,3,4,1) 10. (4,1,3,2) 16. (1,4,3,2) 22. (2,3,1,4)

 5.(2,1,3,4) 11. (2,4,1,3) 17. (4,3,1,2) 23. (3,1,4,2)

 6.(4,2,1,3) 12. (3,2,4,1) 18. (3,1,2,4) 24. (1,4,2,3)

Let‟s select permutation 15 randomly. In this permutation, four facilities have been

arranged in this order: (2, 1, 4, 3), in which facility 2 is to be assigned in location 1,

facility 1 to be assigned in location 2, and so on. Figure 1 shows the graph model of

this permutation.

4

 Facility

 Location

Figure 1: A Solution of the Example QAP Instance

Therefore, the cost of this assignment can be computed as follows:

 () (() () () () () ()

 () () () () () () () () () ()

 () () () () () () () ()

 () () () () () () () ())

 (

)

Facility 2

Location 1

Facility 1

Location 2

Location 3

Facility 4

Location 4

Facility 3

5

)

The calculation of the cost of one solution for facility/location assignment has been

shown above.

1.2 Multiobjective Quadratic Assignment Problem

Knowles and Corne introduced the other QAP version as multiobjective QAP

(mQAP) [2]. In this case, the mQAP has multiple flow matrices and a distance

matrix. The mQAP is more commonly used where one facility should be assigned to

one location with respect to the multiple flow matrices and with a distance matrix

such that flow matrices are different to each other. So, the mQAP can be modeled as

follows [2]:

 ̅() * () () ()+ ()

where,

 () ∑∑
 () ()

 ()

In this formula, the

 indicates flow between facility and facility , and is

the number of objectives and “min” means to obtain the Pareto front [19]. Here is an

example of mQAP:

6

Assuming previous example for QAP, here, instead of one flow matrix, there are two

flow matrices in the following formats:

 () [

] [

]

 () [

] [

]

 () [

] [

]

Here, the QAP formula should be calculated for two flow matrices with the same

distance matrix. That means there are two solutions according to flows between

facilities. So, by choosing one of the feasible permutations as random, the numerical

calculation of mQAP according to Equations (2) and (3) can be calculated as

follows:

 () (() () () () () ()

 () () () () () () () () () ()

 () () () () () () () ()

 () () () () () () () ())

7

 (

)

 (

)

 () (() () () () () ()

 () () () () () () () () () ()

 () () () () () () () ()

 () () () () () () () ())

 (

)

 (

)

Based on the above calculations, since there are two flow matrices, two objectives

will be obtained accordingly.

8

1.3 Dominance and Pareto Optimality

An important concept of multiobjective optimization is that of domination. Below, a

formal definition of domination is given in the context of maximization problems

[19]. The definition is easily extended to minimization problems.

A solution is said to dominate if:

 () () and

 () ().

where, M is number objective function. This concept can be explained using a two-

objective optimization problem that has five different solutions, as shown in Figure

2 (example taken from [19]). Let us assume that the objective function needs to be

maximized while needs to be minimized.

Five solutions having different values of the objective functions are shown.

Evidently, solution 1 dominates solution 2 since the former is better than the latter

on both objectives. Again solution 5 dominates 1, but 5 and 3 do not dominate each

other. Intuitively, we can say that, if a solution „a‟ dominates another solution „b‟,

then the solution „a‟ is better than „b‟ in multiobjective optimization. Thus, the

concept of domination allows us to compare different solutions with multiple

objectives. It may be noted that the dominance relation is irreflexive, asymmetric,

and transitive in nature.

Assume a set of solutions P. The solutions of P that are not dominated by any other

solution in P, form the non-dominated set. The rank of a solution x in P is defined as

the number of solutions in P that dominate x. In Figure 2, solutions 3 and 5 are in the

non-dominated set, and their ranks are 0. The non-dominated set of the entire search

space S is the globally Pareto-optimal set [19].

9

Figure 2: Map of a Two-objective Optimization Problem [19]

1.4 Non-dominated Sort

The population is sorted using the so called fast-non-dominated-sort [24]. For each

individual i, an integer value holding the number of solutions that dominate i is

created (domination count) and a set with the individuals dominated by the

individual i is calculated. With those parameters, each individual is assigned a rank

representing the front to which it belongs. The Pareto front has rank 0. Those

individuals dominated only by individuals from the Pareto front have rank 1.

Generalizing, the individuals dominated only by individuals of rank r have rank r+1.

The best solutions have always rank 0 with this approach [24].

 ()

 ()

10

1.5 Related Works On Bacteria Foraging Optimization

So far, several practical applications in different fields such as layout problems,

network design problem, the blackboard wiring problem in electronics, the

arrangement of electronic components in printed circuit boards and in microchips,

machine scheduling in manufacturing, load balancing and task allocation in parallel

and distributed computing, statistical data analysis, information retrieval, and

transportation [3] have been introduced. Since, such problems are NP-hard, solutions

can not be achieved in reasonable time, then there are some combinatorial

optimization algorithms such as bacteria foraging optimization, genetic algorithm,

particle swarm optimization, etc. to find the reasonable solutions in less time.

Bacteria Foraging Optimization Algorithm (BFOA) is a new bio-inspired

optimization algorithm which has been developed to make a bridge between

microbiology and engineering. The BFO algorithm mimics some characteristics of

bacteria foraging such as chemo-taxis, metabolism, reproduction, and quorum

sensing. The BFO has been introduced by Passino in 2002 [5], and it consists of four

steps (mechanisms) namely: 1) „chemo-tactic‟, 2) „swarm‟, 3)‟reproduction‟,

4)‟elimination-dispersal‟ which is a new approach to solve complicated optimization

problems. The detailed description will be given in chapter 2.

Jing Dang et al. [20] have proposed a paper about Bacterial Foraging Optimization

(BFO) algorithm. This is a biologically inspired computation technique which is

based on mimicking the foraging behavior of E.Coli bacteria. During the lifetime of

E.coli bacteria, they undergo different stages such as chemotaxis, reproduction and

elimination-dispersal. BFO algorithm was implemented various real world problems.

11

Kim suggested that the BFO could be applied to find solutions for difficult

engineering design problems.

G.Naresh et al. [21] have proposed a novel approach based on BFO which has been

successfully employed to solve Economic Load Dispatch (ELD) problem including

valve point effects. The proposed algorithm has been tested for a test system with 3

and 13 generating units and the results thus obtained are compared with the results of

earlier methods (PSO and GA) available in the literature. As compared to other two,

the BFO is easy to implement and there are few parameters to adjust. Therefore,

BFO has been successfully applied in many areas of power system. From the

outcome of the results, it is shown that the proposed algorithm is very effective in

giving quality solutions for ELD problems. Moreover, it also reveals that the fuel

costs are reduced.

R. Vijay [22] has proposed optimal multi-objective design of robust multi-machine

power system stabilizers (PSSs) using Bacterial Foraging Algorithm. In this paper,

Eigenvalue analysis under different operating conditions reveals that undamped and

lightly damped oscillation modes are shifted to a specific stable zone in the s-plane.

These results show the potential of BFO algorithm for optimal design of PSS

parameters. The nonlinear time-domain simulation results show that the proposed

PSSs work effectively over a wide range of loading conditions and system

configurations.

In the rest of this thesis, an introduction of bacteria foraging optimization algorithm

and multi-objective bacteria foraging algorithm will be presented in section 2. In

12

section 3, a new approach in order to solve QAP and mQAP by bacteria foraging

algorithm will be proposed. In section 4, experimental results of proposed BFOA and

multiobjective BFOA will be depicted. The results shows that proposed algorithm

can solve QAP and mQAP, where the results are reasonable and compatible.

\

13

Chapter 2

BACTERIA FORAGING ALGORITHM

2.1 Bacteria Foraging Optimization Algorithm (BFOA)

The Bacterial Foraging Optimization Algorithm (BFOA) is one the nature-inspired

optimization algorithms, which is inspired from bio mimicry of the E-coli bacteria.

The BFOA is introduced by Kevin M. Passino in 2002 [5], and the main idea

behind, is to eliminate those bacteria which have weak foraging methods and

following up those bacteria which have breakthrough foraging methods to maximize

energy obtained per unit time. In the execution of BFOA, each bacterium contacts

with other bacteria by sending signal, in which bacteria move to the next step to

collect nutrient if previous factors have been satisfied. The basis of BFOA contains

four principle steps: 1) „chemo-tactic‟, 2) „swarming‟, 3) ‟reproduction‟, and 4)

„elimination-dispersal‟ [10].

2.1.1 Chemo-tactic

In biological point of view, this process is the movement of bacteria for gathering

food. The E-coli bacterium is able to move in two diversity ways, swimming and

tumbling, and it alternates between these two modes of operation. In the swimming

way, the bacterium swims in the same direction to search for food, and in the

tumbling way, it changes the direction to another direction. Assume () shows

the current position in bacterium, chemo-tactic step, reproduction step,

14

and elimination-dispersal event, the position of bacterium in the next chemo-

tactic step by tumbling is as follows [10]:

 () () ()
 ()

√ () ()
 ()

where, () shows the size of the step taken in the random direction specified by the

tumble for bacterium, () indicates a vector in the random direction in

population size whose elements lie in [-1, 1], and () shows transposed randomize

vector of direction ().

2.1.2 Swarm

In the section 2.1.1 discussion was for the case where no cell-released attractants are

used to signal other cells that they should swarm together. Here, we will also have

cell-to-cell signaling via an attractant and will represent that with . ()/,

 , for the bacterium [5,10]. Let

be the depth of the attractant released by the cell and

be a measure of the width of the attractant signal. The cell also repels a nearby cell

in the sense that it consumes nearby nutrients and it is not physically possible to

have two cells at the same location. To model this, let

15

be the height of the repellant effect. And

be a measure of the width of the repellant. The values for these parameters are

simply chosen to illustrate general bacterial behaviors [5]. Let:

 (())

 ∑
 . ()/

 ∑[(∑(
)

)]

 ∑[(∑(
)

)]

 ()

denote the combined cell-to-cell attraction and repelling effects, where

, -
 is a point on the optimization domain and

 is component of the

 bacterium position . Note that as each cell moves, so does its
 . ()/

function, and this represents that, it will release chemicals as it moves. Due to the

movements of all the cells, the (()) function shows if many cells come

close together there will be a high amount of attractant and hence an increasing

likelihood that other cells will move toward the group [5].

16

2.1.3 Reproduction

In this part, those bacteria which have enough nutrient will be reproduced and others

will be eliminated. The healthier bacteria also will be duplicated to the other half of

the population which are less healthy, so that the population keep constant during

process.

2.1.4 Elimination-dispersal

During the process, the population may eventually change their positions. In fact,

when density of bacteria become high in a small area, then the temperature of that

location will be increased. In this case, the process of algorithm may kill bacteria in

high temperature in high density of bacteria location. As a result, it deals to apply

elimination-dispersal event to relocate the bacteria in different environments. The

elimination-dispersal also helps to take away from local optima.

The pseudo code related to BFOA is as follows [10]:

Parameters:

1. Parameters initialization
 ()()

where,

 : shows dimension of search space.

 : shows population of bacteria.

 : shows chemo-tactic steps per bacterium lifetime.

 : when the length of swim is going up, the amount of this parameter restricts

it.

 : shows the reproduction phases.

17

 : shows the elimination-dispersal phases.

 : shows a probability for eliminated-dispersed.

 ()(): shows tumbling phase size.

Algorithm:

2. Elimination dispersal counter:

3. Reproduction counter:

4. Chemo-tactic counter:

 a) For take the chemo-tactic phase as follows.

 b) Calculate the fitness function, ()

Let, () () (
 () ()) (add on the cell-to-cell

attractant effect to the nutrient concentration).

c) Let () it will save the value since to find a better cost via a

run.

d) Tumble: create the random vector () with each element ()

 a random number on [-1, 1].

e) Move: using Equation (3)

This results in a step of size () in the direction of the tumble for

bacterium .

f) Compute () and let

 () () (
 () ()).

g) Swim

 g (I). Let m=0.

 g (II). While m< (if did not decrease too long).

 Let m=m+1(counter for swim length).

18

 If () , let () and by using

Equation (3), () will be computed as phase [f].

 Else, let m= .

h) Go to the next bacterium if (i.e., go to [b]).

5. If , go to phase (4).

6. Reproduction

6(I). For the given and , and for each , let

 ∑ ()

 6(II). The number of the bacteria will be died which have highest

values, and the rest of them will be splitted.

7. If , go to the step 3.

8. Elimination-dispersal:

For delete and distribute each bacterium with probability .

If then go to the step 2; otherwise end.

Figure 7 and 8 shows flowcharts of BFO algorithm based on above pseudo code. In

these figures, Figure 8 is the continued flowchart of Figure 7.

19

 NO

 YES

 NO

 YES

 NO

 YES

Figure 3: Flowchart of Bacteria Foraging Algorithm (a)

 Start

Initialize all variables. Set all

loop counters and bacterium

index i equal to 0.

Increase elimination-

dispersal loop counter l=l+1

 Stop
l < Ned ?

Increase reproduction loop
counter k=k+1

Perform elimination-

dispersal (for i=1,2,.., S,
with probability Ped,

eliminate and disperse to a

random location)

K < Nre ?

 x Increase chemo-taxis
loop counter j=j+1

Perform reproduction

(by killing the worse

half of the population
with higher cumulative

health and splitting the

better half into two)

J < Nc ?

 Y

20

 NO

 YES

 NO

 YES

 YES

 NO

Figure 4: Flowchart of Bacteria Foraging Algorithm (b) [10]

 Y

Increase bacterium index

i=i+1

i < S ? x

Compute the objective function value for the i-

th bacterium is J(i,j,k,l), adding the cell to cell
attractant effect to nutrient concentration and set

Jlast=J(i,j,k,l)

Tumble (let the i-th bacterium take a

step of height C(i) along a randomly
generated tumble vector ∆(i))

Compute the objective function value J(i,j+1,k,l)
taking into account the cell to cell attractant effect

Set swim counter m=0

M < Ns ?

m=m+1

J(i,j+1,k,l)< Jlast ?
Set
m=Ns

Set the Jlast=J(i,j+1,k,l) swim (let the
i-thbacterium take a step of height C(i)

along the direction of the same tumble

vector ∆(i))

21

2.2 Multiobjective Bacteria Foraging Optimization (MOBFO)

In the BFO algorithm bacteria attempt to find vast number of nutrient substance and

avoid from noxious substrates. In this case, there is just one objective which

explores the search process. Instead Multi-objective Bacterial Foraging Optimization

(MOBFO) algorithm is inspired for solution of multiobjective optimization

problems. The main aim of multiobjective optimization problem is to find all values

which are possibly satisfied to all fitness functions. Since different decision makers

have different ideas about fitness functions, it is not easy to choose a single solution

for multiobjective optimization problems without interaction with the decision

makers. Thus, all it could do is to show the set of Pareto-optimal solutions to

decision makers. The main target of multiobjective optimization problems is to

obtain a non-dominated front which is close to the true Pareto front (Section 1.3).

Thereafter, the MOBFOA with integration between health sorting approach and

Pareto dominance mechanism to solve multi-objective problems is proposed [11,

12].

The pseudo code related to MOBFOA [11]:

1. Parameters initialization: ()(), set

rank for all bacteria to 1.

where,

 : is defined as dimension of search space,

 : is defined population of bacteria.

 : is defined as chemo-tactic phases for each bacterium lifetime

 : is defined as elimination-dispersal phases,

22

 : is probability for eliminated-dispersed.

 : guide probability,

 : number of fitness functions,

 ()(): is defined as tumbling phase size.

2. Elimination-dispersal counter: ell

3. Chemo-tactic counter:

4. Take the chemo-tactic phase for bacterium, as follows.

5. Compute the fitness function (), in which is fitness function,

 .

6. Tumble: generate a random number p.

If p < , and rank of its bacterium is greater than 1, generate (), which is a

unit vector towards another bacterium belonging to a front whose rank is less

(means quality is better). The index of the new bacterium is chosen randomly.

Suppose bacterium is chosen at random and it belongs to a front whose rank

is less than that of bacterium. Then,

 () () ().

Else,

Generate a random vector () with each element () ,

which random number lie [-1, 1].

7. Move:

 () () ()
 ()

√ () ()

8. Go to the next bacterium () if (i.e. go to (b) to process the next

bacterium).

23

9. Store all these results with old ones in the memory, these results will be sorted

on the basis of non-dominated sorting.

10. Those which have better rank will continue their life for the next iteration on

11. If j go to step 3, and start next chemo-tactic steps till number of

reproduction steps are reached.

12. Elimination-dispersal: For with probability , If ,

start from phase 2, otherwise end.

24

Chapter 3

PROPOSED SINGLE AND MULTIOBJECTIVE

OPTIMIZATION ALGORITHMS FOR THE SOLUTION

OF QAP AND mQAP

3.1 Introduction

Bacteria foraging algorithm is one of the bio inspired algorithms which can be

solved QAP. Since QAP is one of the nonlinear problems, most probably reasonable

solutions can be achieved with deterministic algorithms [14].

In this thesis, BFO and MOBFO have been used for the solution of QAP and mQAP,

respectively. In the updating part of the BFO different operators of GA [23] have

been used such as crossover and mutation. Also, for improving the solutions with a

local search, tabu search [18] have been applied. As long as there are two concepts

to optimize (single objective and multi-objective), first of all the definition of each

will be presented below and then the corresponding algorithm for the solution of

problems in different concepts will be explained.

3.2 Proposed BFO Algorithm for the Solution of QAP

In the case of single objective QAP the aim is to find one compatible solution in

which the cost between facilities and locations becomes as minimum as possible. In

fact, by the modified BFO and using GA techniques such as crossover and mutation,

25

as well as Tabu search algorithm in this algorithm, after several iterations a

compatible solution will be obtained. Basically, the modified BFO algorithm has

three main steps: 1) Chemo-tactic, 2) Reproduction, and 3) Elimination-dispersal

(Figure 3.1).

The pseudo code related to modified BFO is as follows:

1. Initialization parameters .

where,

 : is defined as dimension of search space.

 : is defined as population bacteria.

 : is defined as chemo-tactic phases.

 : is defined as reproduction phases.

 : is defined as elimination-dispersal phases.

 = S/2: is defined as bacteria split.

 : is defined as eliminated-dispersed probability.

2. Make a random permutation for bacterium, , and compute

the fitness function ().

3. Get the minimum cost which obtained by fitness function and set it as best so

far.

4. Elimination-dispersal counter: ell .

5. Reproduction counter: .

6. Chemo-tactic counter: .

a) Take the chemo-tactic step for bacterium, .

b) Apply crossover to every two bacteria or apply mutation for each bacterium

 .

26

c) Compute the objective function ()

d) Get minimum cost, if it is better than previous one, then replace it as best so

far.

e) Go to next bacterium () if (i.e. go to (b) to process the next

bacterium).

f) Get the minimum cost so far.

g) If j go to the step 6, and start next chemo-tactic steps till number of

chemo-tactic steps are reached.

7. Eliminate half of the bacteria and copy other half to this part which lead to

population became stable in same number. If go to the phase 5,

8. Elimination-dispersal: For with probability , delete and

distribute the bacteria.

9. Get minimum best so far.

10. Apply robust Tabu search, if , then go to the phase 4.

11. End.

Figure 9 shows flowchart of proposed BFO algorithm based on above pseudo code.

27

 YES

 NO

 YES

 NO

 YES

 NO

Figure 5: Flowchart of Proposed BFO Algorithm

Initialization

Find best found so

far

 ell< ?

 k< ?

j ?

Update each bacterium by

using mutation and crossover

Update best found so far

Eliminate half of the bacteria by using ranking mechanism

Elimination dispersal

Update best found so far

Apply robust Tabu search

End

Start

Update best found so far

28

3.2.1 Initialization

In the initialization part, the random permutation in P size for each bacterium will be

generated. Then, the single objective QAP with one flow matrix and one distance

matrix will be given. Next, the assignment cost of each facility to the corresponding

location by using Equation (1) will be computed. This will continue until all the

bacteria in the population are being computed. At the end of this step, the minimum

cost through all population will be stored as best found so far.

3.2.2 Chemo-tactic

In this step, inversion mutation [24] and swap mutation [25] have been applied on

permutations. Afterwards, the new population of bacteria (permutations) will be

generated, and the new assignment cost will be computed for each bacterium.

Additionally, the minimum assignment cost of new generation will be compared by

the best found so far. If the new cost is less than that, the new cost will be replaced

as best found so far. This step will be repeated until the end of the chemo-tactic

loop.

The definition regarding to inversion mutation and swap mutation are as follows:

3.2.2.2 Mutation

The aim of mutation is making some modification on current permutation. There are

several techniques for mutation. Here two methods of mutations have been defined

as follows:

Swap mutation is one of the simplest mutation methods such that two locations of the

chromosome will be selected and exchanged (Figure 5).

29

 Swap point 1 Swap point 2

Before

After

 Figure 6: Swap Mutation on Random Permutation

In p/3 mutation [26], given a permutation size (p) is being divided by three, and the

swap mutation will be applied p/3 times (Figure 5).

In inversion mutation technique, two random points will be generated namely cut

point 1 and cut point 2. After that, elements of this range will be reversed and

replaced into offspring. Figure 6 depicts a simple example of this method:

 Cut point 1 Cut point 2

Before

After

 Figure 7: Inversion Mutation on Random Permutation

3.2.3 Reproduction

In this step, all the costs, which had been obtained in the previous step, will be

sorted in ascending order and the first half of the population will be copied to the

second half. Additionally, the second half will be eliminated from population. Note,

for more convenience the number of bacteria (population) have been set to an even

3 5 9 7 2 0 8 4 6 1

3 8 9 7 2 0 5 4 6 1

3 5 9 7 2 0 8 4 6 1

3 5 4 8 0 2 7 9 6 1

30

number such that in duplicating time both parts are same, and the population will be

constant. This step goes until the end of the reproduction iteration.

3.2.4 Elimination-dispersal

In this part, has been set to 0.25. Basically, in each iteration a random number

will be generated which had lied on (0, 1). Afterwards, a simple comparison implies

such that if the random number is smaller than , then initialization part will be

repeated here, otherwise the algorithm goes on with old population. Essentially, this

step will be avoided of local optima.

3.2.5 Robust Tabu Search

Local search algorithms are widely applied to numerous hard computational

problems. Examples of local search algorithms are WalkSAT and the tabu search

(TS) algorithm for the Traveling Salesman Problem (TSP). Since, QAP is defined as

TSP, so essentially, TS can work with QAP. Consequently, the best found so far

permutation will be given to Tabu search algorithm, and obtained result

(permutation) by Tabu search will be replaced instead of worse permutation,

regarding to its cost, in the population. This will be continued until the end of the

elimination dispersal loop.

Tabu search is a metaheuristic local search algorithm that can be used for

solving combinatorial optimization problems. Tabu search uses a local or

neighborhood search procedure to iteratively move from one potential solution to

an improved solution in the neighborhood of , until some stopping criterion has

been satisfied (generally, an attempt limit or a score threshold). Tabu search carefully

explores the neighborhood of each solution as the search progresses. The solutions

http://en.wikipedia.org/wiki/WalkSAT
http://en.wikipedia.org/wiki/2-opt
http://en.wikipedia.org/wiki/2-opt
http://en.wikipedia.org/wiki/Metaheuristic
http://en.wikipedia.org/wiki/Combinatorial_optimization
http://en.wikipedia.org/wiki/Local_search_(optimization)
http://en.wikipedia.org/wiki/Local_search_(optimization)

31

admitted to the new neighborhood, (), are determined through the use of

memory structures. Using these memory structures, the search progresses by

iteratively moving from the current solution to an improved solution in ()

[14, 18].

The memory structures used in tabu search can be divided into three categories:

 Short-term: The list of solutions recently considered. If a potential solution

appears on this list, it cannot be revisited until it reaches an expiration point.

 Intermediate-term: A list of rules intended to bias the search towards

promising areas of the search space.

 Long-term: Rules that promote diversity in the search process.

Pseudo code of tabu search algorithm for minimizing problems has been defined as

follows [17]:

Algorithm:

1. Input:

2. Output: best solution

3. Construct initial solution ()

4. tabu list = 0

5. While (Not Stop condition)

6. Candidate list = 0

7. For ()

8. If (Not contains any features (, tabu list))

9. Candidate list = +

10. End

32

11. End

12. = local best candidate (candidate list)

13. If (cost () ≤ cost ())

14. tabu list = feature differences ()

15. =

16. While (tabu list >)

17. Delete feature (tabu list)

18. End

19. End

20. End

21. Return

Lines 1-4 represent some initial setup, respectively creating an initial solution

(possibly chosen at random), setting that initial solution as the best seen to date, and

initializing an empty tabu list. In this example, the tabu list is simply a short term

memory structure that will contain a record of the elements of the states visited.

The proper algorithm starts in line 5. This loop will continue searching for an optimal

solution until a user-specified stopping condition is met. In line 6, an empty

candidate list is initialized. The neighboring solutions are checked for tabu elements

in line 8. If the solution does not contain elements on the tabu list, it is added to the

candidate list (line 9).

The best candidate on the candidate list is chosen in line 12 (generally, solutions are

evaluated according to a provided mathematical function, which returns a fitness

score). If that candidate has a higher fitness value than the current best (line 13), its

33

features are added to the tabu list (line 14) and it is set as the new best (line 15). At

this point, if the tabu list is full (line 16), some elements will be allowed to expire

(line 17). Generally, elements expire from the list in the same order they are added.

This process continues until the user specified stopping criterion is met, at which

point, the best solution seen during the search process is returned (line 21).

3.3 Proposed MOBFO Algorithm for the Solution of mQAP

In the case of multiobjectives QAP (mQAP) the aim is to find a set of non-

dominated solutions in which the cost between facilities and locations became

minimized. In fact, the modified BFO by using p/3 mutation, inversion mutation,

swap mutation, and ULX and to improve the non-dominated set, tabu search

algorithm in elimination-dispersal part, will achieve good solutions after several

iterations. Basically, the modified multiobjectives BFO (MOBFO) algorithm has

three main steps as BFO: 1) Chemo-tactic, 2) Reproduction, and 3. Elimination-

dispersal (Figure 10).

The pseudo code related to MOBFO is as follows:

1. Initialize parameters set rank for all bacteria to 1.

where,

 : is defined as dimension of search space,

 : is defined as population of bacteria.

 : is defined as chemo-tactic phases.

 : is defined as reproduction phases.

 : is defined as elimination-dispersal phases.

34

 = S/2: is defined as bacteria split.

 : is defined as eliminated-dispersed probability.

 : is number of fitness functions.

2. Make a random permutation for bacterium, , and compute

the fitness functions (), in which is objective functions, .

3. Get the non-dominated set which obtained by fitness functions and set it as non-

dominated set.

4. Elimination-dispersal counter: ell

5. Reproduction counter:

6. Chemo-tactic counter:

a) Take the chemo-tactic step for bacterium, as follows.

b) Apply crossover and mutation

c) Calculate the fitness functions (),

d) Get non-dominated set,

e) Go to next bacterium () if (i.e. go to (b) to process the next

bacterium),

f) Store all these results with old ones in the memory, these results will be

sorted as basis non-dominated sorting,

g) Those which have better rank will continue their life for the next iteration on

 if j go to the step 6,

7. Eliminate half of the bacteria and copy other half to this part which leads to

population to become stable with the same number. If go to the step 5,

8. Elimination-dispersal: For with probability , delete and

distribute the bacteria.

9. Get non-dominated set.

35

10. Get best permutation and apply robust tabu search. If , then go to step

4.

11. Update non-dominated set.

12. End.

Figure 10 shows flowchart of proposed MOBFO algorithm based on above pseudo

code.

36

 YES

 NO

 YES

 NO

 YES

 NO

Figure 8: Flowchart of Proposed MOBFO Algorithm

Initialization

Non-dominated set

 ell< ?

 k< ?

j ?

Update each bacterium by

using mutation and crossover

Update non-dominated set

Eliminate half of the bacteria by using ranking mechanism

Elimination dispersal

Update non-dominated set

Apply robust Tabu search

End

Start

Update non-dominated set

37

3.3.1 Definition

In the MOBFO algorithm, additional update mechanisms such as p/3 mutation,

inversion mutation, swap mutation, and ULX [17] have been applied. In order to

apply ULX, every two bacteria have been selected, and new population based on

ULX will be generated. The definition of ULX is given in next section.

Since, in mQAP, the aim is to find a set of non-dominated solutions, the ranking

mechanism has been used in the reproduction part. In this respect, first of all the

population of bacteria with rank 0 will be sorted and then rank 1, and so on.

Afterwards, the second half of population of the bacteria will be eliminated and first

part will be copied to the second part.

3.3.2 Crossover

Crossover is one of the main operators of genetic search. In this operator a different

solution (child) by exchanging some elements in two parents will be generated.

Specifically, crossover is a random operator in which with inspire of both parents

generates new features. So far, many methods of crossover have been introduced.

Here are two methods of crossover which are used in the proposed algorithm.

Uniform Like crossover operator had introduced by Tate and Smith in 1995 [17], and

mostly applies permutation based solution which is called uniform like crossover

(ULX). Uniform crossover allows some flexibility, and different variations of the

basic procedure are possible. The ULX works as follows:

38

First of all, those elements which are same in both parents (Figure 3) will be chosen

and will be copied to child (offspring). After that, one of the parents will be chosen

and the first element of it will be copied to the first element of child (it goes forward

from left to right). Specifically, after moving one of the elements, the pointer jumps

to another parent and selects next element. But, it should be taken to account that

previous elements must not be the same, if so, then pointer will change the position

to another parent. If again encountered with repetition then a new number in the

permutation range will be generated, randomly. This will be continued till all the

locations are being filled.

Parent 1:

Parent 2:

Offspring:

 Figure 9: The Uniform Like Crossover with Random Permutation

Block crossover operator is achieved by some modification in the previous crossover

operator (ULX) which is called randomized uniform like crossover (RULX) or block

crossover (BX). The only difference between ULX and BX, is how to scan the

position. Based on the previous description, in the ULX the order of scanning is

fixed from left to right. On the other hand, in the BX the consideration of the position

is done completely as a random process. Actually, the main aim in BX is adding

more randomness and diversity to the offspring. The BX crossover works as follows:

3 6 7 4 1 5 2 9 8

7 3 6 4 2 9 5 1 8

7 6 9 4 2 5 3 1 8

39

Initially, parents will be divided to some elements or segments instead of single

element which is called block. The block size is in the range of [1, n/2] (Figure 4).

Clearly, if the number of elements become even, then the block size would be 2,

otherwise one of the block size will be 3. Initially, one of the parents will be selected

randomly, and the block will be copied to the offspring. After that, pointer switches

to another parent and copies the second block. Similarly, if there existed any

repetition element in the prior elements of offspring, it should switches to another

parent and copies only one element from opposite block, otherwise will be continued

forward. Yet, it might not be solved by switching the block for avoiding repetition.

In this case, the new random number in the range of permutation size will be

generated and copied to the offspring location. Finally, this process goes till all the

blocks are being copied to the offspring.

Parent 1:

Parent 2:

Offspring:

 Figure 10: Block Crossover with Random Permutation

3 6 7 4 1 5 2 9 8

7 3 6 4 2 9 5 1 8

3 6 7 4 1 5 2 9 8

40

Chapter 4

EXPERIMENTAL RESULTS

Problems from the well-known QAPLIB [16] are used here to evaluate the

performance of the algorithms. The following parameter settings were used for each

algorithm tested: 5. Basically,

different methods and techniques have been used to show how they affect the

performance of results. In the Table 1 the results of single objective optimization

have been shown. In this table, the first column shows the problems, the second

column shows the best results which have been obtained by using proposed

algorithm, the third column shows the worst results, and the fourth column shows

the optimal solutions for corresponding problems that have been obtained so far. The

given results are collected by running each algorithm 10 times.

In Table 1, the standard deviation shows the difference between the results of 10

runs. The low standard deviation means the gathered solutions are very close to each

other, and the high standard deviation means the gathered solutions are very far from

each other. For example, in the problem Scr20 the standard deviation shows that the

optimal results are very far from each other. The reason of high standard deviation is

because of the hardness of the problem, or in other words, it is because of the fact

that the distances between facilities and locations are very large.

41

Table 1: Result of Proposed Single Objective BFO

Problems

Swap mutation& Shift mutation & Robust Tabu search

Optimal Best Worst Standard deviation

bur26f.dat 3782068 3835254 25192.3966865
3782044

esc16a.dat 68 68 0.0 68

esc16h.dat 996 996 0.0 996

esc32e.dat 2 2 0.0 2

esc32f.dat 2 2 0.0 2

esc128.dat 64 64 0.0 64

had12.dat 1652 1676 7.2 1652

had14.dat 2724 2724 0.0 2724

had16.dat 3720 3720 0.0 3720

had20.dat 6922 6992 21.0 6922

lipa20a.dat 3683 3683 0.0 3683

lipa20b.dat 27076 27076 0.0 27076

lipa50b.dat 1210244 1210244 0.0 1210244

scr12.dat 31410 32236 247.8 31410

scr20.dat 110030 139124 8572.74425141 110030

The results for 13 multiobjective QAP problems have been given by using the

proposed MOBFOA. One of the multiobjective plots has been shown below, and the

rest of them are in the Appendix.

Figure 11 (a) shows optimal and non-dominated solution (NDS) found by using swap

mutation with tabu search, and Figure 11 (b) performance of proposed algorithm

without using tabu search depicted. Part (c) shows the performance of proposed

algorithm by using p/3 swap mutation with tabu search, and part (d) shows the results

with only p/3 swap mutation. For the part (e) the performance of proposed algorithm

42

by using inversion mutation with tabu search have been given, and part (f) shows the

results with only inversion mutation. Finally, part (g) shows performance of

proposed algorithm by using ULX with tabu search together, and part (h) without

using tabu search have been depicted.

Results with blue color shows achievements of the proposed algorithm (NDS), and

the optimal results according to the QAPLIB with red color are given. Moreover, in

the case of three objective plots which are depicted in last four plots, only the non-

dominated set solutions have been shown.

The gathered results by using proposed algorithm with swap mutation, p/3 swap

mutation, inversion mutation, and ULX, have been shown in the Figures. According

to Pareto front shape which is appear in the figures, when the tabu search have been

applied with each of the genetic operators, the Pareto front of NDS is very close to

the Pareto front of optimal solutions (Figure 11 (a), (c), (e), (g)). On the other hand,

the Pareto front shape which have been achieved by only using the swap mutation,

p/3 swap mutation, inversion mutation, and ULX, is not good as optimal solutions

Pareto front (Figure 11 (b), (d), (f), (h)). The p/3 operator that applied to the mQAP

problems shows the best performance than all the others operators. For example, in

problem KC10-2fl-1rl, the performance of NDS Pareto front in part (c) is almost

same as optimal Pareto front (the error ratio and hyper volume in table 2 verifies this

claim). Nevertheless, the performance of NDS Pareto front in part (h) shows

gathered solutions by using ULX without tabu search is the worst one.

43

(a) (b)

(c) (d)

 (e) (f)

(g) (h)

Figure 11: Problem KC10-2fl-1rl with Two Objectives: a) MOBFO & swap mutation

& tabu search, b) MOBFO & swap mutation, c) MOBFO & P/3 mutation & tabu

search, d) MOBFO & P/3 mutation, e) MOBFO & inversion mutation & tabu search,

f) MOBFO & inversion mutation, g) MOBFO & ULX & tabu search, h) MOBFO &

ULX

44

Table 2: ER and HV for Figure 11
KC10-2fl-1rl

Error Ratio Hyper volume

Swap mutation 0 0.34025

Shift mutation 0 0.34295

p/3 swap 0 0.33900

ULX 0 0.33460

In Table 2, quality indicators error ratio and hyper volume have been given for

problem KC10-2fl-1rl. The error ratio and hyper volume values indicate that how

different the optimal and NDS solutions from each other. Specifically, the error ratio

shows that NDS is exactly the same as the optimal ones, and the hyper volume value

shows that the area covered by NDS is bigger than optimal ones. Furthermore, the

low value of hyper volume means less difference between NDS and optimal Pareto

fronts.

45

Chapter 5

CONCLUSION

Since, QAP is a NP-hard problem, solution to it can not be achieved in reasonable

time, and a combinatorial optimization algorithm should be used to manage such

obstacle. The bacteria foraging algorithm is one of the well-known combinatorial

optimization algorithms which can find compatible solutions in reasonable time. In

this thesis, a novel algorithm has been proposed for the solution of QAP and mQAP.

Basically, this algorithm is based on bacteria foraging optimization which have been

developed in two extents: single objective optimization and multiobjective

optimization. For this purpose, Genetic Algorithm updating mechanisms such as

uniform like crossover and shift mutation, and a kind of local search method as

robust tabu search have been used to improve the solutions. Moreover, in the single

objective optimization, the proposed algorithm attempts to find best solution. On the

other hand, multiobjective optimization, algorithm tries to find a set of non-

dominated solutions in reasonable time. Therefore, in the multiobjective concern,

other techniques such as dominance have been applied to find a set of non-

dominated solutions.

The proposed algorithm results showed that BFOA and MBFOA can give good

results for the QAP and mQAP problems. Also, results showed that different GA

operators help BFOA and MOBFOA to update the solutions and move towards the

best ones. Specifically, in Table 1 results of single objective problems by using

46

BFOA have been shown that are exactly same as optimal solutions. The

performance of Pareto fronts that have been achieved for the mQAP problems

(Figure 11, 12, …) by using MOBFO showed that proposed method can give good

results.

47

REFRENCES

[1] T. C. Koopmans and M. J. Beckmann, (1957). Assignment problems and the

location of economic activities, Econometrica 25, 53–76.

[2] J. Knowles and D. Corne. (2002). Towards Landscape Analyses To Inform The

Design of A Hybrid Local Search for The Multiobjective Quadratic Assignment

Problem. Soft Computing Systems: Design, Management and Applications, pp.

271-279. IOS Press, Amsterdam.

[3] M. Zhao, A. Abraham, C. Grosan and H. Liu. (2008). A Fuzzy Particle Swarm

Approach to Multiobjective Quadratic Assignment Problems: School of

Software, Dalian University of Technology, 116620 Dalian, China., DOI

10.1109/AMS.169

[4] Rainer E. Burkard, Eranda C¸ ela Panos M. Pardalos. (1998)The Quadratic

Assignment Problem, Spezialforschungsbereich F 003 “Optimierung und

Kontrolle”, Projektbereich Diskrete Optimierung.

[5] K. M. Passino. (2002). Biomimicry of bacterial foraging for distributed

optimization and control. IEEE Control Syst. Mag., vol. 22, no. 3, pp.52– 67.

[10] S. Das, A. Biswas, S. Dasgupta, and A. Abraham. (2009). Bacterial Foraging

optimization Algorithm: Theoretical Foundations, Analysis, and

48

Applications,Dept. of Electronics and Telecommunication Engg, Jadavpur

University, Kolkata, India.

[11] B.K. Panigrahi, V. R. Pandi, R. Sharma, Das, S. Das (2011). Multiobjective

bacteria foraging algorithm for electrical load dispatch problem, Department of

Electrical Engineering, IIT, Delhi, India, B.K. Panigrahi et al. / Energy

Conversion and Management 52 1334–1342.

[12] B. Niu, et al., Multi-objective. (2012). Bacterial Foraging Optimization,

Neurocomputing, neucom. 2012.01.044.

[13] David M. Tate and Alice E. Smith. (1992). A Genetic Approach to the

Quadratic Assignment Problem, Accepted for publication in Computers &

Operations Research.

[14] P. Ji Yongzhong Wu Haozhao Liu. (2006). A Solution Method for the Quadratic

Assignment Problem (QAP), The Sixth International Symposium on Operations

Research and Its Applications (ISORA‟06) Xinjiang, China, August 8–12,

ORSC & APORC§pp. 106–117.

[15] Rainer E. Burkhard, Stefan E. Karisch, and Franz Rendli. (1997). Qaplib a

quadratic assignment problem library. Journal of Global Optimization, 10.

[16] Alfonsas Misevičius, Bronislovas Kilda. (2005). COMPARISON OF

CROSSOVER OPERATORS FOR THE QUADRATIC ASSIGNMENT

49

PROBLEM, ISSN 1392 – 124X INFORMATION TECHNOLOGY AND

CONTROL, Vol.34, No.2.

[17] Tabitha James, Cesar Rego, Fred Glover. (2009). A cooperative parallel tabu

search algorithm for the quadratic assignment problem, European Journal of

Operational Research 195, 810–826.

[18] Fred Glover (1990). "Tabu Search: A Tutorial". Interfaces.

[19] S.Saha. (2013. Unsupervised classification, similarity measure, classical and

metaheuristic approaches, and applications. ISBN: 978-3-642-32450-5.

[20] Jing Dang, Anthony Brabazon, Michael O‟Neill, and David Edition. (2008).

“Option Model Calibration using a Bacterial Foraging Optimization Algorithm”.

[21] G.Naresh, M.Ramalinga Raju and S.V.L.Narasimham. (2011). Bacterial

Foraging Algorithm for the Robust Design of Multimachine Power System

Stabilizer, International Conference on Signal, Image Processing and

Applications With workshop of ICEEA.

[22] R. Vijay. (2012). Intelligent Bacterial Foraging Optimization Technique to

Economic Load Dispatch Problem, International Journal of Soft Computing and

Engineering (IJSCE) ISSN: 2231-2307, Volume-2, Issue-2.

50

[23] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. (2002). A fast and elitist

multiobjective genetic algorithm: Nsga-ii. Evolutionary Computation, IEEE

Transactions on, 6(2):182 -197, apr.

[24] Fogel, D. B. (1990).AParallel Processing Approach to aMultiple Traveling

Salesman Problem Using Evolutionary Programming. In Canter, L. (ed.)

Proceedings on the Fourth Annual Parallel Processing Symposium, 318–326.

Fullterton, CA.

[25] Banzhaf, W. (1990). The “Molecular” Traveling Salesman. Biological

Cybernetics 64: 7–14.

[26] P. LARRAN˜ AGA, C.M.H. KUIJPERS, R.H. MURGA, I. INZA and S.

DIZDAREVIC. (1999). Genetic Algorithms for the Travelling Salesman

Problem: A Review of Representations and Operators, Artificial Intelligence

Review 13: 129–170.

51

APPENDIX

52

 (a) (b)

 (c) (d)

 (e) (f)

 (g) (h)

Figure 12: Problem KC10-2fl-2rl with Two Objectives: a) MOBFO & swap mutation

& tabu search, b) MOBFO & swap mutation, c) MOBFO & P/3 mutation & tabu

search, d) MOBFO & P/3 mutation, e) MOBFO & inversion mutation & tabu search,

f) MOBFO & inversion mutation, g) MOBFO & ULX & tabu search, h) MOBFO &

ULX

53

 (a) (b)

 (c) (d)

 (e) (f)

 (g) (h)

Figure 13: Problem KC10-2fl-3rl with Two Objectives: a) MOBFO & swap mutation

& tabu search, b) MOBFO & swap mutation, c) MOBFO & P/3 mutation & tabu

search, d) MOBFO & P/3 mutation, e) MOBFO & inversion mutation & tabu search,

f) MOBFO & inversion mutation, g) MOBFO & ULX & tabu search, h) MOBFO &

ULX

54

 (a) (b)

 (c) (d)

 (e) (f)

 (g) (h)

Figure 14: Problem KC10-2fl-4rl with Two Objectives: a) MOBFO & swap mutation

& tabu search, b) MOBFO & swap mutation, c) MOBFO & P/3 mutation & tabu

search, d) MOBFO & P/3 mutation, e) MOBFO & inversion mutation & tabu search,

f) MOBFO & inversion mutation, g) MOBFO & ULX & tabu search, h) MOBFO &

ULX

55

 (a) (b)

 (c) (d)

 (e) (f)

 (g) (h)

Figure 15: Problem KC10-2fl-5rl with Two Objectives: a) MOBFO & swap mutation

& tabu search, b) MOBFO & swap mutation, c) MOBFO & P/3 mutation & tabu

search, d) MOBFO & P/3 mutation, e) MOBFO & inversion mutation & tabu search,

f) MOBFO & inversion mutation, g) MOBFO & ULX & tabu search, h) MOBFO &

ULX

56

 (a) (b)

 (c) (d)

 (e) (f)

 (g) (h)

Figure 16: Problem KC20-2fl-1rl with Two Objectives: a) MOBFO & swap mutation

& tabu search, b) MOBFO & swap mutation, c) MOBFO & P/3 mutation & tabu

search, d) MOBFO & P/3 mutation, e) MOBFO & inversion mutation & tabu search,

f) MOBFO & inversion mutation, g) MOBFO & ULX & tabu search, h) MOBFO &

ULX

57

 (a) (b)

 (c) (d)

 (e) (f)

 (g) (h)

Figure 17: Problem KC50-2fl-1rl with Two Objectives: a) MOBFO & swap mutation

& tabu search, b) MOBFO & swap mutation, c) MOBFO & P/3 mutation & tabu

search, d) MOBFO & P/3 mutation, e) MOBFO & inversion mutation & tabu search,

f) MOBFO & inversion mutation, g) MOBFO & ULX & tabu search, h) MOBFO &

ULX

58

 (a) (b)

 (c) (d)

 (e) (f)

 (g) (h)

Figure 18: Problem KC30-3fl-1rl with Three Objectives: a) MOBFO & swap

mutation & tabu search, b) MOBFO & swap mutation, c) MOBFO & P/3 mutation &

tabu search, d) MOBFO & P/3 mutation, e) MOBFO & inversion mutation & tabu

search, f) MOBFO & inversion mutation, g) MOBFO & ULX & tabu search, h)

MOBFO & ULX

59

 (a) (b)

 (c) (d)

 (e) (f)

 (g) (h)

Figure 19: Problem KC75_3fl_1rl with Three Objectives: a) MOBFO & swap

mutation & tabu search, b) MOBFO & swap mutation, c) MOBFO & P/3 mutation &

tabu search, d) MOBFO & P/3 mutation, e) MOBFO & inversion mutation & tabu

search, f) MOBFO & inversion mutation, g) MOBFO & ULX & tabu search, h)

MOBFO & ULX

60

(a) (b)

(c) (d)

 (e) (f)

 (g) (h)

Figure 20: Problem KC10-2fl-1uni with Two Objectives: a) MOBFO & swap

mutation & tabu search, b) MOBFO & swap mutation, c) MOBFO & P/3 mutation &

tabu search, d) MOBFO & P/3 mutation, e) MOBFO & inversion mutation & tabu

search, f) MOBFO & inversion mutation, g) MOBFO & ULX & tabu search, h)

MOBFO & ULX

61

 (a) (b)

 (c) (d)

 (e) (f)

 (g) (h)

Figure 21: Problem KC10-2fl-2uni with Two Objectives: a) MOBFO & swap

mutation & tabu search, b) MOBFO & swap mutation, c) MOBFO & P/3 mutation &

tabu search, d) MOBFO & P/3 mutation, e) MOBFO & inversion mutation & tabu

search, f) MOBFO & inversion mutation, g) MOBFO & ULX & tabu search, h)

MOBFO & ULX

62

 (a) (b)

 (c) (d)

 (e) (f)

 (g) (h)

Figure 22: Problem KC10-2fl-3uni with Two Objectives: a) MOBFO & swap

mutation & tabu search, b) MOBFO & swap mutation, c) MOBFO & P/3 mutation &

tabu search, d) MOBFO & P/3 mutation, e) MOBFO & inversion mutation & tabu

search, f) MOBFO & inversion mutation, g) MOBFO & ULX & tabu search, h)

MOBFO & ULX

63

 (a) (b)

 (c) (d)

 (e) (f)

 (g) (h)

Figure 23: Problem KC20-2fl-1uni with Two Objectives: a) MOBFO & swap

mutation & tabu search, b) MOBFO & swap mutation, c) MOBFO & P/3 mutation &

tabu search, d) MOBFO & P/3 mutation, e) MOBFO & inversion mutation & tabu

search, f) MOBFO & inversion mutation, g) MOBFO & ULX & tabu search, h)

MOBFO & ULX

64

Table 3: ER and HV for Figure 12
KC10-2fl-2rl Error Ratio Hyper volume

Swap mutation 0 0.11355

Shift mutation 0 0.10800

p/3 swap 0 0.10830

ULX 0 0.11110

Table 4: ER and HV for Figure 13
KC10-2fl-3rl Error Ratio Hyper volume

Swap mutation 0 0.35860

Shift mutation 0 0.34480

p/3 swap 0 0.35860

ULX 0 0.35165

Table 5: ER and HV for Figure 14
KC10-2fl-4rl Error Ratio Hyper volume

Swap mutation 0 0.24745

Shift mutation 0 0.24115

p/3 swap 0 0.25220

ULX 0 0.24765

Table 6: ER and HV for Figure 15
KC10-2fl-5rl Error Ratio Hyper volume

Swap mutation 0 0.63800

Shift mutation 0 0.63650

p/3 swap 0 0.64565

ULX 0 0.64135

65

Table 7: ER and HV for Figure 16
KC20-2fl-1rl Error Ratio Hyper volume

Swap mutation 0.0337 0.10805

Shift mutation 0.0659 0.10595

p/3 swap 0.0556 0.10505

ULX 0.0556 0.10065

Table 8: ER and HV for Figure 17
KC50-2fl-2rl Error Ratio Hyper volume

Swap mutation 0 0.10510

Shift mutation 0.9924 0.18100

p/3 swap 1 0.12655

ULX 1 0.15510

Table 9: ER and HV for Figure 20

KC10-2fl-1uni Error Ratio Hyper volume

Swap mutation 0 0.03090

Shift mutation 0 0.02840

p/3 swap 0 0.03045

ULX 0 0.03035

Table 10: ER and HV for Figure 21
KC10-2fl-2uni Error Ratio Hyper volume

Swap mutation 0 0

Shift mutation 0 0

p/3 swap 0 0

ULX 0 0

66

Table 11: ER and HV for Figure 22
KC10-2fl-3uni Error Ratio Hyper volume

Swap mutation 0 0.06760

Shift mutation 0 0.06775

p/3 swap 0 0.06940

ULX 0 0.066605

Table 12: ER and HV for Figure 23
KC20-2fl-1uni

Error Ratio Hyper volume

Swap mutation 0.5926 0.03575

Shift mutation 0.5862 0.03570

p/3 swap 0.6271 0.03495

ULX 0.5522 0.03550

	AA
	BB

