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ABSRACT 

The Bacterial Foraging Optimization Algorithm (BFOA) is one of the metaheuristics 

algorithms which is widely used in Optimization processes. It is also related to other 

optimization algorithms such as Ant Colony and Particle Swarm Optimization. So 

far, many of the metaheuristics algorithms such as genetic algorithm, particle swarm 

optimization, and tabu search have been used to hybridize this algorithm. 

The BFOA is imitated by behavior of the foraging bacteria group such as E.coli. 

Basically, the main aim of the algorithm is to eliminate those bacteria which have 

weak foraging methods and following up those bacteria which have strong foraging 

methods. In this extent, each bacterium contacts to other bacteria by sending signals 

such that bacterium change the position to the next step if prior factors have been 

satisfied. In fact, the process of algorithm allows bacteria to follow up the nutrients 

toward the optimal. BFO algorithm has three steps: 1) 'Chemo-tactic', 2) 

'Reproduction', and 3) 'Elimination-dispersal'. 

In this thesis, Bacteria Foraging Optimization Algorithm (BFOA) is used for the 

solution of Quadratic Assignment Problems (QAP), and Multi-objective QAP 

(mQAP). Since, QAP is NP-hard problem and finding a reasonable solution is a non-

polynomially time-consuming process, then one of the combinatorial algorithms 

should be used to find the solution in reasonable time. The BFO is one of the 

combinatorial optimization algorithms which apply to optimize the cost of such 

problems. The BFO algorithm takes a population of permutation (locations), and in 
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several iterations of a generation, it can find a reasonable solution for QAP or 

mQAP. Furthermore, in order to improve the algorithm, some genetic updating 

operators such as crossover and mutation have been used in the second part of 

BFOA algorithm (chemo-tactic) in every generation of this step. Additionally, 

robust tabu search has been used in the third part (elimination-dispersal) to improve 

the best solution found so far. 

 

 

 

 

 

 

 

 

Keywords: BFOA, Tabu Search, Quadratic Assignment Problem, Multiobjective 
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ÖZ 

Bakteriyel besin arama algoritması (BBAA), bakteri eniyleme optimizyasyon ve sürü 

en iyileme algoritmaları alanına ait olup daha geniş alanlar olan hesaplara dayalı 

zeka ve sezgisel Algoritma alanları altında kullanılan noktadır. BBAA algoritması 

parçası sürü eniyileme ve karınca kolonisi en iyileme algoritmaları ilede benzerlik 

göstermektedir. Ayrıca BBAA, diğer en iyileme algoritmaları ile birleştirilerek de 

kullanılmaktadır. Örneğin BBAA ve Genetik algoritma, veya parçacık sürü en 

iyileme algoritması veya Tabu arama algoritmaları. 

BBAA, E.coli bakterisinin beslenme davranışından esinlenerek geliştirilmiş bir 

iyileme yöntemidir. E.coli bakterisi besin maddesine ulaştığında diğer bakterileri 

uyarıcı etkiye sahip kimyasal bir madde salgılamaktadır. Bu madde diğer E.coli 

bakterilerinin besini bulan bakterinin bulunduğu yere doğru hareket etmesini 

sağlamaktadır. BBAA en iyileme algoritması tüm hücrelerin en iyiye doğru grup 

halinde hareketini sağlama stratejisi gütmektedir. 

En iyiye ulaşmak için BBAA sırasıyla üç önemli işlemi sürü halindeki tüm hücrelere 

uygular; 1) “Kemotaktik”, 2) “Üreme”, 3) “Eliminasyon-dağıtım”.  

Bu tezde bakteriyel besin arama algoritması (BBAA) kullanılarak karesel atama 

problemleri(KAP) ve çok amaçlı karesel atama problemleri (MKAP) çözülmüştür. 
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KAP, bir dizi aracı, bir dizi lokasyona, verilen lokasyonlar arası uzaklıklar ve araçlar 

arası akış bilgileri kullanarak atama yapma problemi olarak tanımlıya biliriz. KAP 

problemi bir NP-ZOR problem olduğundan iyi çözümlere ulaşmak uzun zaman 

almaktadır. BBAA algoritması tümleşik algoritmalardan biri olup NP-ZOR 

problemlerini çözmek için kullanılır. 

BBAA algoritması en iyileme döngüsü ile KAP ve MKAP problemlerine çözüm 

bulmaya çalışır. BBAA algoritmasında KAP ve MKAP problemleri çözümü 

esnasında farklı çaprazlama ve mutasyon metodları kullanılarak mevcut problemler 

iyileştirilmeye çalışılmıştır. Ayrıca Tabu arama algoritması bulunan en iyi çözümlere 

uygulanmış ve mevcut en iyi çözümlere ulaşılmıştır.  
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Chapter 1 

INTRODUCTION 

1.1 Quadratic Assignment Problem  

The Quadratic Assignment Problem (QAP) is one of the reputed NP-hard 

combinatorial optimization problems such that there is no known polynomial time 

algorithm for its solution. The QAP has been introduced by Koopmans and 

Beckmann in 1957 [1]. It can be defined as a problem to allocate a facility set to a 

location set with mutual distances among the locations and mutual flow among the 

facilities. Specially, given two     matrices   (   ) and   (   ) as input, in 

which all the elements are real, and let     be flow among facility   and facility  ,     

be the distance among the location   and location  . Also, let   be the number of 

facilities and locations, where     *         +. The formulation of the QAP can 

be defined as follows [1]: 

   
    

 ( )  ∑∑     ( ) ( )

 

   

 

   

                                                                                ( ) 

where,    is the set of all permutations of   locations. Each individual product 

     ( ) ( ) computes the cost of assigning facility   to location  ( ) and facility   to 

location  ( ). An QAP instance with input matrices A and B is denoted by QAP (A, 

B). It is to be noted that the number of facilities (n) is assumed to be the same as the 

number of locations. In other words, one facility could be assigned to only one 
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location, and one location could be assigned to only one facility in a feasible 

assignment solution, otherwise it is infeasible assignment solution [3, 4].  

The QAP problem can be defined as follows 

  (   ) = matrix of the flows (between facility i and facility j); 

  (   ) = matrix of distances (between location k and location l). 

After this construction, a permutation      ( ) can be introduced as a particular 

assignment of facility    ( ) to location   (          ). The cost of 

transferring data between two facilities can be expressed as the product of the 

distances between the locations to which the facilities are assigned by the flow 

between the two facilities,      ( ) ( ). In order to solve the QAP, a permutation   

of the indices 1,2,3,...,n which minimizes the local assignment cost should be found. 

Here is an example of QAP: 

Given the following flow and distance matrices: 

The flow matrix   (   )   between facilities is given as: 

  (   )    [

      

      

      

      

      

      

      

      

]   [

  
  

  
  

  
  

  
  

] 

 and the distance matrix   (   )   between locations is specified as: 

  (   )    [

      

      

      

      

      

      

      

      

]   [

   
   

   
  

    
  

   
   

] 
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 In the list below, 24 solutions for the above QAP has been shown. In fact, each of 

the arrangements is a permutation of four facilities to be assigned to four locations. 

 1.(1,2,3,4)        7. (3,4,2,1)     13. (4,3,2,1)      19. (1,2,4,3)  

 2.(4,1,2,3)        8. (1,3,4,2)     14. (3,2,1,4)      20. (2,4,3,1) 

 3.(3,4,1,2)        9. (1,3,2,4)     15. (2,1,4,3)      21. (4,2,3,1) 

 4.(2,3,4,1)      10. (4,1,3,2)     16. (1,4,3,2)      22. (2,3,1,4) 

 5.(2,1,3,4)      11. (2,4,1,3)     17. (4,3,1,2)      23. (3,1,4,2) 

 6.(4,2,1,3)      12. (3,2,4,1)     18. (3,1,2,4)      24. (1,4,2,3) 

 

Let‟s select permutation 15 randomly. In this permutation, four facilities have been 

arranged in this order: (2, 1, 4, 3), in which facility 2 is to be assigned in location 1, 

facility 1 to be assigned in location 2, and so on. Figure 1 shows the graph model of 

this permutation. 
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             Facility  

             Location 

              

 

 

 

 

Figure 1: A Solution of the Example QAP Instance 

Therefore, the cost of this assignment can be computed as follows: 

 (       )  (      ( ) ( )        ( ) ( )        ( ) ( )      

  ( ) ( )        ( ) ( )      ( ) ( )        ( ) ( )        ( ) ( )  

      ( ) ( )        ( ) ( )        ( ) ( )        ( ) ( )      

  ( ) ( )        ( ) ( )        ( ) ( )        ( ) ( ))  

  (                                                    

                                                    

                       )  

Facility 2 

Location 1 

Facility 1 

 

Location 2 

 

Location 3 

 

Facility 4 

 

Location 4 

 

Facility 3 
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                )       

The calculation of the cost of one solution for facility/location assignment has been 

shown above.  

1.2 Multiobjective Quadratic Assignment Problem  

Knowles and Corne introduced the other QAP version as multiobjective QAP 

(mQAP) [2]. In this case, the mQAP has multiple flow matrices and a distance 

matrix. The mQAP is more commonly used where one facility should be assigned to 

one location with respect to the multiple flow matrices and with a distance matrix 

such that flow matrices are different to each other. So, the mQAP can be modeled as 

follows [2]: 

   
    

 ̅( )  *  ( )   ( )     ( )+                                                                      ( )  

where, 

  ( )  ∑∑   
   ( ) ( ) 

 

   

 

 

   

                                                                           ( ) 

In this formula, the    
 
 indicates     flow between facility   and facility  , and   is 

the number of objectives and “min” means to obtain the Pareto front [19]. Here is an 

example of mQAP:   
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Assuming previous example for QAP, here, instead of one flow matrix, there are two 

flow matrices in the following formats: 

   (   )    [

      

      

      

      

      

      

      

      

]   [

  
  

  
  

  
  

  
  

]  

   (   )    [

      

      

      

      

      

      

      

      

]   [

  
  

  
  

  
  

  
  

]  

  (   )    [

      

      

      

      

      

      

      

      

]   [

   
   

   
  

    
  

   
   

]  

Here, the QAP formula should be calculated for two flow matrices with the same 

distance matrix. That means there are two solutions according to flows between 

facilities. So, by choosing one of the feasible permutations as random, the numerical 

calculation of mQAP according to Equations (2) and (3) can be calculated as 

follows:  

  (       )  (      ( ) ( )        ( ) ( )        ( ) ( )      

  ( ) ( )        ( ) ( )        ( ) ( )        ( ) ( )        ( ) ( )  

      ( ) ( )        ( ) ( )        ( ) ( )        ( ) ( )      

  ( ) ( )        ( ) ( )        ( ) ( )        ( ) ( ))  
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  (                                                    

                                                    

                       )  

 (                                      

                                 )       

  (       )  (      ( ) ( )        ( ) ( )        ( ) ( )      

  ( ) ( )        ( ) ( )        ( ) ( )        ( ) ( )        ( ) ( )  

      ( ) ( )        ( ) ( )        ( ) ( )        ( ) ( )      

  ( ) ( )        ( ) ( )        ( ) ( )        ( ) ( ))  

 (                                                  

                                                  

                                                  

         )  

 (                                       

                                )       

Based on the above calculations, since there are two flow matrices, two objectives 

will be obtained accordingly.  
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1.3 Dominance and Pareto Optimality 

An important concept of multiobjective optimization is that of domination. Below, a 

formal definition of domination is given in the context of maximization problems 

[19]. The definition is easily extended to minimization problems. 

A solution    is said to dominate    if: 

                                                  (  )    (  )  and 

                                       (  )    (  ). 

where, M is number objective function. This concept can be explained using a two-

objective optimization problem that has five different solutions, as shown in Figure 

2 (example taken from [19]). Let us assume that the objective function    needs to be 

maximized while    needs to be minimized. 

Five solutions having different values of the objective functions are shown. 

Evidently, solution 1 dominates solution 2 since the former is better than the latter 

on both objectives. Again solution 5 dominates 1, but 5 and 3 do not dominate each 

other. Intuitively, we can say that, if a solution „a‟ dominates another solution „b‟, 

then the solution „a‟ is better than „b‟ in multiobjective optimization. Thus, the 

concept of domination allows us to compare different solutions with multiple 

objectives. It may be noted that the dominance relation is irreflexive, asymmetric, 

and transitive in nature. 

Assume a set of solutions P. The solutions of P that are not dominated by any other 

solution in P, form the non-dominated set. The rank of a solution x in P is defined as 

the number of solutions in P that dominate x. In Figure 2, solutions 3 and 5 are in the 

non-dominated set, and their ranks are 0. The non-dominated set of the entire search 

space S is the globally Pareto-optimal set [19].     



                             

9 

 

 

 
 

Figure 2: Map of a Two-objective Optimization Problem [19] 

1.4 Non-dominated Sort 

The population is sorted using the so called fast-non-dominated-sort [24]. For each 

individual i, an integer value holding the number of solutions that dominate i is 

created (domination count) and a set    with the individuals dominated by the 

individual i is calculated. With those parameters, each individual is assigned a rank 

representing the front to which it belongs. The Pareto front has rank 0. Those 

individuals dominated only by individuals from the Pareto front have rank 1. 

Generalizing, the individuals dominated only by individuals of rank r have rank r+1. 

The best solutions have always rank 0 with this approach [24]. 

 
 

 
    (        ) 

  (        ) 
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1.5 Related Works On Bacteria Foraging Optimization 

So far, several practical applications in different fields such as layout problems, 

network design problem, the blackboard wiring problem in electronics, the 

arrangement of electronic components in printed circuit boards and in microchips, 

machine scheduling in manufacturing, load balancing and task allocation in parallel 

and distributed computing, statistical data analysis, information retrieval, and 

transportation [3] have been introduced. Since, such problems are NP-hard, solutions 

can not be achieved in reasonable time, then there are some combinatorial 

optimization algorithms such as bacteria foraging optimization, genetic algorithm, 

particle swarm optimization, etc. to find the reasonable solutions in less time. 

Bacteria Foraging Optimization Algorithm (BFOA) is a new bio-inspired 

optimization algorithm which has been developed to make a bridge between 

microbiology and engineering. The BFO algorithm mimics some characteristics of 

bacteria foraging such as chemo-taxis, metabolism, reproduction, and quorum 

sensing. The BFO has been introduced by Passino in 2002 [5], and it consists of four 

steps (mechanisms) namely: 1) „chemo-tactic‟, 2) „swarm‟, 3)‟reproduction‟, 

4)‟elimination-dispersal‟ which is a new approach to solve complicated optimization 

problems. The detailed description will be given in chapter 2.  

Jing Dang et al. [20] have proposed a paper about Bacterial Foraging Optimization 

(BFO) algorithm. This is a biologically inspired computation technique which is 

based on mimicking the foraging behavior of E.Coli bacteria. During the lifetime of 

E.coli bacteria, they undergo different stages such as chemotaxis, reproduction and 

elimination-dispersal. BFO algorithm was implemented various real world problems. 
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Kim suggested that the BFO could be applied to find solutions for difficult 

engineering design problems. 

G.Naresh et al. [21] have proposed a novel approach based on BFO which has been 

successfully employed to solve  Economic Load Dispatch  (ELD) problem including 

valve point effects. The proposed algorithm has been tested for a test system with 3 

and 13 generating units and the results thus obtained are compared with the results of 

earlier methods (PSO and GA) available in the literature. As compared to other two, 

the BFO is easy to implement and there are few parameters to adjust. Therefore, 

BFO has been successfully applied in many areas of power system. From the 

outcome of the results, it is shown that the proposed algorithm is very effective in 

giving quality solutions for ELD problems. Moreover, it also reveals that the fuel 

costs are reduced. 

R. Vijay [22]  has proposed optimal multi-objective design of robust multi-machine 

power system stabilizers (PSSs) using Bacterial Foraging Algorithm. In this paper, 

Eigenvalue analysis under different operating conditions reveals that undamped and 

lightly damped oscillation modes are shifted to a specific stable zone in the s-plane. 

These results show the potential of BFO algorithm for optimal design of PSS 

parameters. The nonlinear time-domain simulation results show that the proposed 

PSSs work effectively over a wide range of loading conditions and system 

configurations. 

In the rest of this thesis, an introduction of bacteria foraging optimization algorithm 

and multi-objective bacteria foraging algorithm will be presented in section 2. In 
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section 3, a new approach in order to solve QAP and mQAP by bacteria foraging 

algorithm will be proposed. In section 4, experimental results of proposed BFOA and 

multiobjective BFOA will be depicted. The results shows that proposed algorithm 

can solve QAP and mQAP, where the results are reasonable and compatible. 

 

 

 

 

 

 

 

 

\ 
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Chapter 2 

BACTERIA FORAGING ALGORITHM 

2.1 Bacteria Foraging Optimization Algorithm (BFOA) 

The Bacterial Foraging Optimization Algorithm (BFOA) is one the nature-inspired 

optimization algorithms, which is inspired from bio mimicry of the E-coli bacteria. 

The BFOA is introduced by Kevin M. Passino in 2002 [5], and the main idea 

behind, is to eliminate those bacteria which have weak foraging methods and 

following up those bacteria which have breakthrough foraging methods to maximize 

energy obtained per unit time. In the execution of BFOA, each bacterium contacts 

with other bacteria by sending signal, in which bacteria move to the next step to 

collect nutrient if previous factors have been satisfied. The basis of BFOA contains 

four principle steps: 1) „chemo-tactic‟, 2) „swarming‟, 3) ‟reproduction‟, and 4) 

„elimination-dispersal‟ [10]. 

2.1.1 Chemo-tactic 

In biological point of view, this process is the movement of bacteria for gathering 

food. The E-coli bacterium is able to move in two diversity ways, swimming and 

tumbling, and it alternates between these two modes of operation. In the swimming 

way, the bacterium swims in the same direction to search for food, and in the 

tumbling way, it changes the direction to another direction. Assume   (     ) shows 

the current position in     bacterium,      chemo-tactic step,     reproduction step, 
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and     elimination-dispersal event, the position of bacterium in the next chemo-

tactic step by tumbling is as follows [10]: 

   (       )    (     )   ( )
 ( )

√  ( ) ( )
                                                              ( ) 

where,  ( ) shows the size of the step taken in the random direction specified by the 

tumble for     bacterium,  ( ) indicates a vector in the random direction in 

population size whose elements lie in [-1, 1], and   ( ) shows transposed randomize 

vector of direction  ( ).  

2.1.2 Swarm 

In the section 2.1.1 discussion was for the case where no cell-released attractants are 

used to signal other cells that they should swarm together. Here, we will also have 

cell-to-cell signaling via an attractant and will represent that with    .    (     )/, 

         , for the     bacterium [5,10]. Let 

             

be the depth of the attractant released by the cell and  

             

be a measure of the width of the attractant signal. The cell also repels a nearby cell 

in the sense that it consumes nearby nutrients and it is not physically possible to 

have two cells at the same location. To model this, let 
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be the height of the repellant effect. And 

             

be a measure of the width of the repellant. The values for these parameters are 

simply chosen to illustrate general bacterial behaviors [5]. Let: 

 

   (   (     ))

 ∑   
 .    (     )/

 

   

 ∑[            (         ∑(     
 )

 
 

   

)]

 

   

 ∑[             (          ∑(     
 )

 
 

   

)]

 

   

       ( )              

denote the combined cell-to-cell attraction and repelling effects, where   

,       -
  is a point on the optimization domain and   

  is     component of the 

    bacterium position   . Note that as each cell moves, so does its    
 .    (     )/ 

function, and this represents that, it will release chemicals as it moves. Due to the 

movements of all the cells, the    (   (     ))  function shows if many cells come 

close together there will be a high amount of attractant and hence an increasing 

likelihood that other cells will move toward the group [5]. 
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2.1.3 Reproduction 

In this part, those bacteria which have enough nutrient will be reproduced and others 

will be eliminated. The healthier bacteria also will be duplicated to the other half of 

the population which are less healthy, so that the population keep constant during 

process. 

2.1.4 Elimination-dispersal 

During the process, the population may eventually change their positions. In fact, 

when density of bacteria become high in a small area, then the temperature of that 

location will be increased. In this case, the process of algorithm may kill bacteria in 

high temperature in high density of bacteria location. As a result, it deals to apply 

elimination-dispersal event to relocate the bacteria in different environments. The 

elimination-dispersal also helps to take away from local optima.    

The pseudo code related to BFOA is as follows [10]: 

Parameters: 

1. Parameters initialization                         
   ( )(         )  

where, 

 : shows dimension of search space.   

 : shows population of bacteria. 

  : shows chemo-tactic steps per bacterium lifetime. 

  : when the length of swim is going up, the amount of this parameter restricts 

it. 

   : shows the reproduction phases. 
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   : shows the elimination-dispersal phases. 

   : shows a probability for eliminated-dispersed. 

 ( )(         ): shows tumbling phase size.     

 

Algorithm:  

2.  Elimination dispersal counter:       

3.  Reproduction counter:       

4. Chemo-tactic counter:       

        a) For             take the chemo-tactic phase as follows. 

        b) Calculate the fitness function,  (       )  

Let,  (       )   (       )     ( 
 (     )  (     )) (add on the cell-to-cell 

attractant effect to the nutrient concentration). 

c) Let        (       ) it will save the value since to find a better cost via a 

run. 

d) Tumble: create the random vector  ( )    with each element   ( )   

        a random number on [-1, 1]. 

e) Move: using Equation (3) 

This results in a step of size   ( ) in the direction of the tumble for 

bacterium  . 

f) Compute  (         ) and let 

      (         )   (       )     ( 
 (       )  (       )). 

g) Swim 

 g (I). Let m=0. 

 g (II). While m<  (if did not decrease too long). 

 Let m=m+1(counter for swim length). 
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 If   (         )        , let        (         ) and by using 

Equation (3),  (         ) will be computed as phase [f]. 

 Else, let m=  .  

h) Go to the next bacterium     if        (i.e., go to [b]). 

5. If     , go to phase (4).  

6. Reproduction 

6(I). For the given   and   , and for each              , let 

       
  ∑ (       )

  

   

 

            6(II). The    number of the bacteria will be died which have highest         

values, and the rest of them will be splitted. 

7. If      , go to the step 3.  

8. Elimination-dispersal:  

For               delete and distribute each bacterium with probability   . 

If        then go to the step 2; otherwise end. 

Figure 7 and 8 shows flowcharts of BFO algorithm based on above pseudo code. In 

these figures, Figure 8 is the continued flowchart of Figure 7. 
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Figure 3: Flowchart of Bacteria Foraging Algorithm (a) 
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                                                                 NO 

                                                                                      YES 

 

 

                                                                                             

 

                                                                                                  NO 

                                                                                     YES           

                                                         YES                              

                                                                       NO 

                                  

Figure 4: Flowchart of Bacteria Foraging Algorithm (b) [10] 
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m=m+1 

J(i,j+1,k,l)< Jlast ? 
Set 
m=Ns 

Set the Jlast=J(i,j+1,k,l) swim (let the 
i-thbacterium take a step of height C(i) 

along the direction of the same tumble 

vector ∆(i)) 
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2.2 Multiobjective Bacteria Foraging Optimization (MOBFO) 

In the BFO algorithm bacteria attempt to find vast number of nutrient substance and 

avoid from noxious substrates. In this case, there is just one objective which 

explores the search process. Instead Multi-objective Bacterial Foraging Optimization 

(MOBFO) algorithm is inspired for solution of multiobjective optimization 

problems. The main aim of multiobjective optimization problem is to find all values 

which are possibly satisfied to all fitness functions. Since different decision makers 

have different ideas about fitness functions, it is not easy to choose a single solution 

for multiobjective optimization problems without interaction with the decision 

makers. Thus, all it could do is to show the set of Pareto-optimal solutions to 

decision makers. The main target of multiobjective optimization problems is to 

obtain a non-dominated front which is close to the true Pareto front (Section 1.3). 

Thereafter, the MOBFOA with integration between health sorting approach and 

Pareto dominance mechanism to solve multi-objective problems is proposed [11, 

12].  

The pseudo code related to MOBFOA [11]: 

1. Parameters initialization:                         ( )(         ), set 

rank for all bacteria to 1.  

where, 

 : is defined as dimension of search space,   

 : is defined population of bacteria. 

  : is defined as chemo-tactic phases for each bacterium lifetime 

   : is defined as elimination-dispersal phases, 
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   : is probability for eliminated-dispersed.  

  : guide probability, 

 : number of fitness functions, 

 ( )(         ): is defined as tumbling phase size.     

2. Elimination-dispersal counter: ell       

3. Chemo-tactic counter:                                        

4. Take the chemo-tactic phase for     bacterium,             as follows. 

5. Compute the fitness function   (     ), in which   is fitness function,   

       . 

6. Tumble: generate a random number p. 

If p <   , and rank of its bacterium is greater than 1, generate  ( ), which is a 

unit vector towards another bacterium belonging to a front whose rank is less 

(means quality is better). The index of the new bacterium is chosen randomly. 

Suppose     bacterium is chosen at random and it belongs to a front whose rank 

is less than that of     bacterium. Then, 

 ( )   (         )   (         ). 

Else,  

Generate a random vector  ( )     with each element   ( )          , 

which random number lie [-1, 1].  

7. Move:  

   (       )    (     )   ( )
 ( )

√  ( ) ( )
   

8. Go to the next bacterium (   ) if     (i.e. go to (b) to process the next 

bacterium). 
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9. Store all these results with old ones in the memory, these results will be sorted 

on the basis of non-dominated sorting. 

10. Those which have better rank will continue their life for the next iteration on 

     

11. If j    go to step 3, and start next chemo-tactic steps till number of 

reproduction steps are reached. 

12. Elimination-dispersal: For             with probability   , If        , 

start from phase 2, otherwise end. 
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Chapter 3 

PROPOSED SINGLE AND MULTIOBJECTIVE 

OPTIMIZATION ALGORITHMS FOR THE SOLUTION 

OF QAP AND mQAP  

3.1 Introduction 

Bacteria foraging algorithm is one of the bio inspired algorithms which can be 

solved QAP. Since QAP is one of the nonlinear problems, most probably reasonable 

solutions can be achieved with deterministic algorithms [14]. 

In this thesis, BFO and MOBFO have been used for the solution of QAP and mQAP, 

respectively. In the updating part of the BFO different operators of GA [23] have 

been used such as crossover and mutation. Also, for improving the solutions with a 

local search, tabu search [18] have been applied. As long as there are two concepts 

to optimize (single objective and multi-objective), first of all the definition of each 

will be presented below and then the corresponding algorithm for the solution of 

problems in different concepts will be explained. 

3.2 Proposed BFO Algorithm for the Solution of QAP 

In the case of single objective QAP the aim is to find one compatible solution in 

which the cost between facilities and locations becomes as minimum as possible. In 

fact, by the modified BFO and using GA techniques such as crossover and mutation, 
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as well as Tabu search algorithm in this algorithm, after several iterations a 

compatible solution will be obtained. Basically, the modified BFO algorithm has 

three main steps: 1) Chemo-tactic, 2) Reproduction, and 3) Elimination-dispersal 

(Figure 3.1). 

The pseudo code related to modified BFO is as follows: 

1.  Initialization parameters                      .  

where, 

 : is defined as dimension of search space.   

 : is defined as population bacteria. 

  : is defined as chemo-tactic phases. 

   : is defined as reproduction phases. 

   : is defined as elimination-dispersal phases. 

  = S/2: is defined as bacteria split.  

   : is defined as eliminated-dispersed probability. 

2. Make a random permutation for     bacterium,            , and compute 

the fitness function  (     ). 

3. Get the minimum cost which obtained by fitness function and set it as best so 

far. 

4. Elimination-dispersal counter: ell      . 

5. Reproduction counter:      . 

6. Chemo-tactic counter:      . 

a) Take the chemo-tactic step for     bacterium,            . 

b) Apply crossover to every two bacteria or apply mutation for each bacterium 

   . 
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c) Compute the objective function  (     )  

d) Get minimum cost, if it is better than previous one, then replace it as best so 

far. 

e) Go to next bacterium (   ) if     (i.e. go to (b) to process the next 

bacterium). 

f) Get the minimum cost so far. 

g) If j    go to the step 6, and start next chemo-tactic steps till number of 

chemo-tactic steps are reached. 

7. Eliminate half of the bacteria and copy other half to this part which lead to 

population became stable in same number. If       go to the phase 5, 

8. Elimination-dispersal: For             with probability    , delete and 

distribute the bacteria.  

9. Get minimum best so far. 

10. Apply robust Tabu search, if        , then go to the phase 4. 

11. End. 

Figure 9 shows flowchart of proposed BFO algorithm based on above pseudo code.  
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Initialization  

Find best found so 

far 

      ell<   ? 

        k<   ? 

j    ? 

 

Update each bacterium by 

using mutation and crossover 

Update best found so far 

 
Eliminate half of the bacteria by using ranking mechanism 

Elimination dispersal 

Update best found so far 

 

Apply robust Tabu search 

End 

Start 

Update best found so far 

 



                             

28 

 

3.2.1 Initialization 

In the initialization part, the random permutation in P size for each bacterium will be 

generated. Then, the single objective QAP with one flow matrix and one distance 

matrix will be given. Next, the assignment cost of each facility to the corresponding 

location by using Equation (1) will be computed. This will continue until all the 

bacteria in the population are being computed. At the end of this step, the minimum 

cost through all population will be stored as best found so far. 

3.2.2 Chemo-tactic   

In this step, inversion mutation [24] and swap mutation [25] have been applied on 

permutations. Afterwards, the new population of bacteria (permutations) will be 

generated, and the new assignment cost will be computed for each bacterium. 

Additionally, the minimum assignment cost of new generation will be compared by 

the best found so far. If the new cost is less than that, the new cost will be replaced 

as best found so far. This step will be repeated until the end of the chemo-tactic 

loop.  

The definition regarding to inversion mutation and swap mutation are as follows: 

3.2.2.2 Mutation  

The aim of mutation is making some modification on current permutation. There are 

several techniques for mutation. Here two methods of mutations have been defined 

as follows: 

Swap mutation is one of the simplest mutation methods such that two locations of the 

chromosome will be selected and exchanged (Figure 5). 
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                         Swap point 1                                Swap point 2                                 

Before    

After 

                               Figure 6: Swap Mutation on Random Permutation 

In p/3 mutation [26], given a permutation size (p) is being divided by three, and the 

swap mutation will be applied p/3 times (Figure 5). 

In inversion mutation technique, two random points will be generated namely cut 

point 1 and cut point 2. After that, elements of this range will be reversed and 

replaced into offspring. Figure 6 depicts a simple example of this method:       

                                   Cut point 1                                       Cut point 2 

                                           

Before     

 

After     

                                     Figure 7: Inversion Mutation on Random Permutation 

3.2.3 Reproduction  

In this step, all the costs, which had been obtained in the previous step, will be 

sorted in ascending order and the first half of the population will be copied to the 

second half. Additionally, the second half will be eliminated from population. Note, 

for more convenience the number of bacteria (population) have been set to an even 

3 5 9 7 2 0 8 4 6 1 

3 8 9 7 2 0 5 4 6 1 

3 5 9 7 2 0 8 4 6 1 

3 5 4 8 0 2 7 9 6 1 
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number such that in duplicating time both parts are same, and the population will be 

constant. This step goes until the end of the reproduction iteration. 

3.2.4 Elimination-dispersal  

In this part,     has been set to 0.25. Basically, in each iteration a random number 

will be generated which had lied on (0, 1). Afterwards, a simple comparison implies 

such that if the random number is smaller than    , then initialization part will be 

repeated here, otherwise the algorithm goes on with old population. Essentially, this 

step will be avoided of local optima.  

3.2.5 Robust Tabu Search  

Local search algorithms are widely applied to numerous hard computational 

problems. Examples of local search algorithms are WalkSAT and the tabu search 

(TS) algorithm for the Traveling Salesman Problem (TSP). Since, QAP is defined as 

TSP, so essentially, TS can work with QAP. Consequently, the best found so far 

permutation will be given to Tabu search algorithm, and obtained result 

(permutation) by Tabu search will be replaced instead of worse permutation, 

regarding to its cost, in the population. This will be continued until the end of the 

elimination dispersal loop. 

Tabu search is a metaheuristic local search algorithm that can be used for 

solving combinatorial optimization problems. Tabu search uses a local or 

neighborhood search procedure to iteratively move from one potential solution    to 

an improved solution     in the neighborhood of  , until some stopping criterion has 

been satisfied (generally, an attempt limit or a score threshold). Tabu search carefully 

explores the neighborhood of each solution as the search progresses. The solutions 

http://en.wikipedia.org/wiki/WalkSAT
http://en.wikipedia.org/wiki/2-opt
http://en.wikipedia.org/wiki/2-opt
http://en.wikipedia.org/wiki/Metaheuristic
http://en.wikipedia.org/wiki/Combinatorial_optimization
http://en.wikipedia.org/wiki/Local_search_(optimization)
http://en.wikipedia.org/wiki/Local_search_(optimization)
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admitted to the new neighborhood,   ( ), are determined through the use of 

memory structures. Using these memory structures, the search progresses by 

iteratively moving from the current solution   to an improved solution    in    ( ) 

[14, 18]. 

The memory structures used in tabu search can be divided into three categories: 

 Short-term: The list of solutions recently considered. If a potential solution 

appears on this list, it cannot be revisited until it reaches an expiration point. 

 Intermediate-term: A list of rules intended to bias the search towards 

promising areas of the search space. 

 Long-term: Rules that promote diversity in the search process. 

Pseudo code of tabu search algorithm for minimizing problems has been defined as 

follows [17]: 

Algorithm: 

1. Input:                

2. Output: best solution       

3.        Construct initial solution () 

4. tabu list = 0 

5. While (Not Stop condition) 

6.     Candidate list = 0 

7.     For (                              )  

8.           If (Not contains any features (          , tabu list)) 

9.             Candidate list =           +           

10.           End  
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11.      End  

12.                = local best candidate (candidate list) 

13.      If (cost (          ) ≤ cost (     )) 

14.        tabu list = feature differences (                ) 

15.                =            

16.                          While (tabu list >              ) 

17.                     Delete feature (tabu list) 

18.            End 

19.       End 

20. End 

21. Return       

Lines 1-4 represent some initial setup, respectively creating an initial solution 

(possibly chosen at random), setting that initial solution as the best seen to date, and 

initializing an empty tabu list. In this example, the tabu list is simply a short term 

memory structure that will contain a record of the elements of the states visited. 

The proper algorithm starts in line 5. This loop will continue searching for an optimal 

solution until a user-specified stopping condition is met. In line 6, an empty 

candidate list is initialized. The neighboring solutions are checked for tabu elements 

in line 8. If the solution does not contain elements on the tabu list, it is added to the 

candidate list (line 9). 

The best candidate on the candidate list is chosen in line 12 (generally, solutions are 

evaluated according to a provided mathematical function, which returns a fitness 

score). If that candidate has a higher fitness value than the current best (line 13), its 
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features are added to the tabu list (line 14) and it is set as the new best (line 15). At 

this point, if the tabu list is full (line 16), some elements will be allowed to expire 

(line 17). Generally, elements expire from the list in the same order they are added. 

This process continues until the user specified stopping criterion is met, at which 

point, the best solution seen during the search process is returned (line 21). 

3.3 Proposed MOBFO Algorithm for the Solution of mQAP 

In the case of multiobjectives QAP (mQAP) the aim is to find a set of non-

dominated solutions in which the cost between facilities and locations became 

minimized. In fact, the modified BFO by using p/3 mutation, inversion mutation, 

swap mutation, and ULX and to improve the non-dominated set, tabu search 

algorithm in elimination-dispersal part, will achieve good solutions after several 

iterations. Basically, the modified multiobjectives BFO (MOBFO) algorithm has 

three main steps as BFO: 1) Chemo-tactic, 2) Reproduction, and 3. Elimination-

dispersal (Figure 10).   

The pseudo code related to MOBFO is as follows: 

1. Initialize parameters                          set rank for all bacteria to 1.  

where, 

 : is defined as dimension of search space,   

 : is defined as population of bacteria. 

  : is defined as chemo-tactic phases. 

   : is defined as reproduction phases. 

   : is defined as elimination-dispersal phases. 
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  = S/2: is defined as bacteria split. 

   : is defined as eliminated-dispersed probability. 

 : is number of fitness functions.  

2. Make a random permutation for     bacterium,            , and compute 

the fitness functions   (     ), in which   is objective functions,          . 

3. Get the non-dominated set which obtained by fitness functions and set it as non-

dominated set. 

4. Elimination-dispersal counter: ell       

5. Reproduction counter:       

6. Chemo-tactic counter:       

a) Take the chemo-tactic step for     bacterium,             as follows. 

b) Apply crossover and mutation  

c) Calculate the fitness functions   (     ), 

d) Get non-dominated set, 

e) Go to next bacterium (   ) if     (i.e. go to (b) to process the next 

bacterium), 

f) Store all these results with old ones in the memory, these results will be 

sorted as basis non-dominated sorting, 

g) Those which have better rank will continue their life for the next iteration on 

     if j    go to the step 6, 

7. Eliminate half of the bacteria and copy other half to this part which leads to 

population to become stable with the same number. If       go to the step 5,  

8. Elimination-dispersal: For             with probability   , delete and 

distribute the bacteria.  

9. Get non-dominated set. 
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10. Get best permutation and apply robust tabu search. If        , then go to step 

4. 

11. Update non-dominated set. 

12. End. 

Figure 10 shows flowchart of proposed MOBFO algorithm based on above pseudo 

code.  
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Figure 8: Flowchart of Proposed MOBFO Algorithm 
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3.3.1 Definition 

In the MOBFO algorithm, additional update mechanisms such as p/3 mutation, 

inversion mutation, swap mutation, and ULX [17] have been applied. In order to 

apply ULX, every two bacteria have been selected, and new population based on 

ULX will be generated. The definition of ULX is given in next section. 

Since, in mQAP, the aim is to find a set of non-dominated solutions, the ranking 

mechanism has been used in the reproduction part. In this respect, first of all the 

population of bacteria with rank 0 will be sorted and then rank 1, and so on. 

Afterwards, the second half of population of the bacteria will be eliminated and first 

part will be copied to the second part.  

3.3.2 Crossover 

Crossover is one of the main operators of genetic search. In this operator a different 

solution (child) by exchanging some elements in two parents will be generated. 

Specifically, crossover is a random operator in which with inspire of both parents 

generates new features. So far, many methods of crossover have been introduced. 

Here are two methods of crossover which are used in the proposed algorithm.  

Uniform Like crossover operator had introduced by Tate and Smith in 1995 [17], and 

mostly applies permutation based solution which is called uniform like crossover 

(ULX). Uniform crossover allows some flexibility, and different variations of the 

basic procedure are possible. The ULX works as follows:  
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First of all, those elements which are same in both parents (Figure 3) will be chosen 

and will be copied to child (offspring). After that, one of the parents will be chosen 

and the first element of it will be copied to the first element of child (it goes forward 

from left to right). Specifically, after moving one of the elements, the pointer jumps 

to another parent and selects next element. But, it should be taken to account that 

previous elements must not be the same, if so, then pointer will change the position 

to another parent. If again encountered with repetition then a new number in the 

permutation range will be generated, randomly. This will be continued till all the 

locations are being filled. 

 

Parent 1:  

Parent 2:  

Offspring:  

                          Figure 9: The Uniform Like Crossover with Random Permutation 

Block crossover operator is achieved by some modification in the previous crossover 

operator (ULX) which is called randomized uniform like crossover (RULX) or block 

crossover (BX). The only difference between ULX and BX, is how to scan the 

position. Based on the previous description, in the ULX the order of scanning is 

fixed from left to right. On the other hand, in the BX the consideration of the position 

is done completely as a random process. Actually, the main aim in BX is adding 

more randomness and diversity to the offspring. The BX crossover works as follows: 

3 6 7 4 1 5 2 9 8 

7 3 6 4 2 9 5 1 8 

7 6 9 4 2 5 3 1 8 
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Initially, parents will be divided to some elements or segments instead of single 

element which is called block. The block size is in the range of [1, n/2] (Figure 4). 

Clearly, if the number of elements become even, then the block size would be 2, 

otherwise one of the block size will be 3. Initially, one of the parents will be selected 

randomly, and the block will be copied to the offspring. After that, pointer switches 

to another parent and copies the second block. Similarly, if there existed any 

repetition element in the prior elements of offspring, it should switches to another 

parent and copies only one element from opposite block, otherwise will be continued 

forward. Yet, it might not be solved by switching the block for avoiding repetition. 

In this case, the new random number in the range of permutation size will be 

generated and copied to the offspring location. Finally, this process goes till all the 

blocks are being copied to the offspring. 

 

Parent 1:  

Parent 2:  

Offspring:  

                                    Figure 10: Block Crossover with Random Permutation 

 

 

 

3 6 7 4 1 5 2 9 8 

7 3 6 4 2 9 5 1 8 

3 6 7 4 1 5 2 9 8 
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Chapter 4 

EXPERIMENTAL RESULTS 

Problems from the well-known QAPLIB [16] are used here to evaluate the 

performance of the algorithms. The following parameter settings were used for each 

algorithm tested:                                   5. Basically, 

different methods and techniques have been used to show how they affect the 

performance of results. In the Table 1 the results of single objective optimization 

have been shown. In this table, the first column shows the problems, the second 

column shows the best results which have been obtained by using proposed 

algorithm, the third column shows the worst results, and the fourth column shows 

the optimal solutions for corresponding problems that have been obtained so far. The 

given results are collected by running each algorithm 10 times. 

 

In Table 1, the standard deviation shows the difference between the results of 10 

runs. The low standard deviation means the gathered solutions are very close to each 

other, and the high standard deviation means the gathered solutions are very far from 

each other. For example, in the problem Scr20 the standard deviation shows that the 

optimal results are very far from each other. The reason of high standard deviation is 

because of the hardness of the problem, or in other words, it is because of the fact 

that the distances between facilities and locations are very large.     
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Table 1: Result of Proposed Single Objective BFO 

Problems 

 

Swap mutation& Shift mutation & Robust Tabu search 

Optimal Best Worst Standard deviation 

bur26f.dat 3782068 3835254 25192.3966865 
3782044 

esc16a.dat 68 68 0.0 68 

esc16h.dat 996 996 0.0 996 

esc32e.dat 2 2 0.0 2 

esc32f.dat 2 2 0.0 2 

esc128.dat 64 64 0.0 64 

had12.dat 1652 1676 7.2 1652 

had14.dat 2724 2724 0.0 2724 

had16.dat 3720 3720 0.0 3720 

had20.dat 6922 6992 21.0 6922 

lipa20a.dat 3683 3683 0.0 3683 

lipa20b.dat 27076 27076 0.0 27076 

lipa50b.dat 1210244 1210244 0.0 1210244 

scr12.dat 31410 32236 247.8 31410 

scr20.dat 110030 139124 8572.74425141 110030 

 

The results for 13 multiobjective QAP problems have been given by using the 

proposed MOBFOA. One of the multiobjective plots has been shown below, and the 

rest of them are in the Appendix.  

Figure 11 (a) shows optimal and non-dominated solution (NDS) found by using swap 

mutation with tabu search, and Figure 11 (b) performance of proposed algorithm 

without using tabu search depicted. Part (c) shows the performance of proposed 

algorithm by using p/3 swap mutation with tabu search, and part (d) shows the results 

with only p/3 swap mutation. For the part (e) the performance of proposed algorithm 
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by using inversion mutation with tabu search have been given, and part (f) shows the 

results with only inversion mutation. Finally, part (g) shows performance of 

proposed algorithm by using ULX with tabu search together, and part (h) without 

using tabu search have been depicted. 

Results with blue color shows achievements of the proposed algorithm (NDS), and 

the optimal results according to the QAPLIB with red color are given. Moreover, in 

the case of three objective plots which are depicted in last four plots, only the non-

dominated set solutions have been shown. 

The gathered results by using proposed algorithm with swap mutation, p/3 swap 

mutation, inversion mutation, and ULX, have been shown in the Figures. According 

to Pareto front shape which is appear in the figures, when the tabu search have been 

applied with each of the genetic operators, the Pareto front of NDS is very close to 

the Pareto front of optimal solutions (Figure 11 (a), (c), (e), (g)). On the other hand, 

the Pareto front shape which have been achieved by only using the swap mutation, 

p/3 swap mutation, inversion mutation, and ULX, is not good as optimal solutions 

Pareto front (Figure 11 (b), (d), (f), (h)). The p/3 operator that applied to the mQAP 

problems shows the best performance than all the others operators. For example, in 

problem KC10-2fl-1rl, the performance of NDS Pareto front in part (c) is almost 

same as optimal Pareto front (the error ratio and hyper volume in table 2 verifies this 

claim). Nevertheless, the performance of NDS Pareto front in part (h) shows 

gathered solutions by using ULX without tabu search is the worst one.    
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(a)                                                            (b) 

 
(c)                                                       (d)                              

 
                             (e)                                                         (f) 

 

(g)                                                              (h) 

Figure 11: Problem KC10-2fl-1rl with Two Objectives: a) MOBFO & swap mutation 

& tabu search, b) MOBFO & swap mutation, c) MOBFO & P/3 mutation & tabu 

search, d) MOBFO & P/3 mutation, e) MOBFO & inversion mutation & tabu search, 

f) MOBFO & inversion mutation, g) MOBFO & ULX & tabu search, h) MOBFO & 

ULX 
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Table 2: ER and HV for Figure 11 
KC10-2fl-1rl 

 

Error Ratio Hyper volume 

Swap mutation 0 0.34025 

Shift mutation 0 0.34295 

p/3 swap 0 0.33900 

ULX 0 0.33460 

 

In Table 2, quality indicators error ratio and hyper volume have been given for 

problem KC10-2fl-1rl. The error ratio and hyper volume values indicate that how 

different the optimal and NDS solutions from each other. Specifically, the error ratio 

shows that NDS is exactly the same as the optimal ones, and the hyper volume value 

shows that the area covered by NDS is bigger than optimal ones. Furthermore, the 

low value of hyper volume means less difference between NDS and optimal Pareto 

fronts. 
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Chapter 5 

CONCLUSION 

Since, QAP is a NP-hard problem, solution to it can not be achieved in reasonable 

time, and a combinatorial optimization algorithm should be used to manage such 

obstacle. The bacteria foraging algorithm is one of the well-known combinatorial 

optimization algorithms which can find compatible solutions in reasonable time. In 

this thesis, a novel algorithm has been proposed for the solution of QAP and mQAP. 

Basically, this algorithm is based on bacteria foraging optimization which have been 

developed in two extents: single objective optimization and multiobjective 

optimization. For this purpose, Genetic Algorithm updating mechanisms such as 

uniform like crossover and shift mutation, and a kind of local search method as 

robust tabu search have been used to improve the solutions. Moreover, in the single 

objective optimization, the proposed algorithm attempts to find best solution. On the 

other hand, multiobjective optimization, algorithm tries to find a set of non-

dominated solutions in reasonable time. Therefore, in the multiobjective concern, 

other techniques such as dominance have been applied to find a set of non-

dominated solutions. 

 

The proposed algorithm results showed that BFOA and MBFOA can give good 

results for the QAP and mQAP problems. Also, results showed that different GA 

operators help BFOA and MOBFOA to update the solutions and move towards the 

best ones. Specifically, in Table 1 results of single objective problems by using 
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BFOA have been shown that are exactly same as optimal solutions. The 

performance of Pareto fronts that have been achieved for the mQAP problems 

(Figure 11, 12, …) by using MOBFO showed that proposed method can give good 

results. 
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                              (a)                                               (b) 

 

    (c)                                                (d) 

  

                           (e)                                                    (f) 

  

                           (g)                                                    (h) 

Figure 12: Problem KC10-2fl-2rl with Two Objectives: a) MOBFO & swap mutation 

& tabu search, b) MOBFO & swap mutation, c) MOBFO & P/3 mutation & tabu 

search, d) MOBFO & P/3 mutation, e) MOBFO & inversion mutation & tabu search, 

f) MOBFO & inversion mutation, g) MOBFO & ULX & tabu search, h) MOBFO & 

ULX 
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                              (a)                                                    (b) 

 

                            (c)                                                      (d) 

 

                              (e)                                                     (f) 

 

                               (g)                                                    (h) 

Figure 13: Problem KC10-2fl-3rl with Two Objectives: a) MOBFO & swap mutation 

& tabu search, b) MOBFO & swap mutation, c) MOBFO & P/3 mutation & tabu 

search, d) MOBFO & P/3 mutation, e) MOBFO & inversion mutation & tabu search, 

f) MOBFO & inversion mutation, g) MOBFO & ULX & tabu search, h) MOBFO & 

ULX 



                             

54 

 

 

                         (a)                                                  (b) 

 

                          (c)                                                 (d) 

 

                         (e)                                                   (f) 

 

                         (g)                                                    (h) 

Figure 14: Problem KC10-2fl-4rl with Two Objectives: a) MOBFO & swap mutation 

& tabu search, b) MOBFO & swap mutation, c) MOBFO & P/3 mutation & tabu 

search, d) MOBFO & P/3 mutation, e) MOBFO & inversion mutation & tabu search, 

f) MOBFO & inversion mutation, g) MOBFO & ULX & tabu search, h) MOBFO & 

ULX 
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                          (a)                                                   (b) 

 

                         (c)                                                     (d) 

 

                         (e)                                                    (f) 

 

                         (g)                                                    (h) 

Figure 15: Problem KC10-2fl-5rl with Two Objectives: a) MOBFO & swap mutation 

& tabu search, b) MOBFO & swap mutation, c) MOBFO & P/3 mutation & tabu 

search, d) MOBFO & P/3 mutation, e) MOBFO & inversion mutation & tabu search, 

f) MOBFO & inversion mutation, g) MOBFO & ULX & tabu search, h) MOBFO & 

ULX 
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                            (a)                                                     (b) 

 

                           (c)                                                     (d) 

 

                            (e)                                                     (f) 

 

                             (g)                                                   (h) 

Figure 16: Problem KC20-2fl-1rl with Two Objectives: a) MOBFO & swap mutation 

& tabu search, b) MOBFO & swap mutation, c) MOBFO & P/3 mutation & tabu 

search, d) MOBFO & P/3 mutation, e) MOBFO & inversion mutation & tabu search, 

f) MOBFO & inversion mutation, g) MOBFO & ULX & tabu search, h) MOBFO & 

ULX 
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                          (a)                                                    (b) 

  

                          (c)                                                     (d) 

 

                          (e)                                                      (f) 

 

                          (g)                                                      (h) 

Figure 17: Problem KC50-2fl-1rl with Two Objectives: a) MOBFO & swap mutation 

& tabu search, b) MOBFO & swap mutation, c) MOBFO & P/3 mutation & tabu 

search, d) MOBFO & P/3 mutation, e) MOBFO & inversion mutation & tabu search, 

f) MOBFO & inversion mutation, g) MOBFO & ULX & tabu search, h) MOBFO & 

ULX 
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                        (a)                                                (b) 

 
                      (c)                                                  (d) 

 
                       (e)                                                   (f) 

 
                         (g)                                                  (h) 

Figure 18: Problem KC30-3fl-1rl with Three Objectives: a) MOBFO & swap 

mutation & tabu search, b) MOBFO & swap mutation, c) MOBFO & P/3 mutation & 

tabu search, d) MOBFO & P/3 mutation, e) MOBFO & inversion mutation & tabu 

search, f) MOBFO & inversion mutation, g) MOBFO & ULX & tabu search, h) 

MOBFO & ULX 
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                           (a)                                                       (b) 

 
                          (c)                                                       (d) 

 
                        (e)                                                         (f) 

 
                        (g)                                                          (h) 

Figure 19: Problem KC75_3fl_1rl with Three Objectives: a) MOBFO & swap 

mutation & tabu search, b) MOBFO & swap mutation, c) MOBFO & P/3 mutation & 

tabu search, d) MOBFO & P/3 mutation, e) MOBFO & inversion mutation & tabu 

search, f) MOBFO & inversion mutation, g) MOBFO & ULX & tabu search, h) 

MOBFO & ULX 
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(a)                                                         (b) 

 

(c)                                                         (d) 

 

                           (e)                                                         (f) 

 

                            (g)                                                         (h) 

Figure 20: Problem KC10-2fl-1uni with Two Objectives: a) MOBFO & swap 

mutation & tabu search, b) MOBFO & swap mutation, c) MOBFO & P/3 mutation & 

tabu search, d) MOBFO & P/3 mutation, e) MOBFO & inversion mutation & tabu 

search, f) MOBFO & inversion mutation, g) MOBFO & ULX & tabu search, h) 

MOBFO & ULX 
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                          (a)                                                   (b) 

 

                          (c)                                                    (d) 

 

                           (e)                                                     (f) 

 

                           (g)                                                        (h) 

Figure 21: Problem KC10-2fl-2uni with Two Objectives: a) MOBFO & swap 

mutation & tabu search, b) MOBFO & swap mutation, c) MOBFO & P/3 mutation & 

tabu search, d) MOBFO & P/3 mutation, e) MOBFO & inversion mutation & tabu 

search, f) MOBFO & inversion mutation, g) MOBFO & ULX & tabu search, h) 

MOBFO & ULX 



                             

62 

 

 

                          (a)                                                  (b) 

 

                          (c)                                                   (d) 

 

                          (e)                                                     (f) 

 

                           (g)                                                    (h) 

Figure 22: Problem KC10-2fl-3uni with Two Objectives: a) MOBFO & swap 

mutation & tabu search, b) MOBFO & swap mutation, c) MOBFO & P/3 mutation & 

tabu search, d) MOBFO & P/3 mutation, e) MOBFO & inversion mutation & tabu 

search, f) MOBFO & inversion mutation, g) MOBFO & ULX & tabu search, h) 

MOBFO & ULX 
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                           (a)                                                    (b) 

 

                           (c)                                                     (d) 

 

                           (e)                                                       (f) 

 

                            (g)                                                      (h) 

Figure 23: Problem KC20-2fl-1uni with Two Objectives: a) MOBFO & swap 

mutation & tabu search, b) MOBFO & swap mutation, c) MOBFO & P/3 mutation & 

tabu search, d) MOBFO & P/3 mutation, e) MOBFO & inversion mutation & tabu 

search, f) MOBFO & inversion mutation, g) MOBFO & ULX & tabu search, h) 

MOBFO & ULX 
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Table 3: ER and HV for Figure 12 
KC10-2fl-2rl Error Ratio Hyper volume 

Swap mutation 0 0.11355 

Shift mutation 0 0.10800 

p/3 swap 0 0.10830 

ULX 0 0.11110 

Table 4: ER and HV for Figure 13 
KC10-2fl-3rl  Error Ratio Hyper volume 

Swap mutation 0 0.35860 

Shift mutation 0 0.34480 

p/3 swap 0 0.35860 

ULX 0 0.35165 

Table 5: ER and HV for Figure 14 
KC10-2fl-4rl  Error Ratio Hyper volume 

Swap mutation 0 0.24745 

Shift mutation 0 0.24115 

p/3 swap 0 0.25220 

ULX 0 0.24765 

Table 6: ER and HV for Figure 15 
KC10-2fl-5rl  Error Ratio Hyper volume 

Swap mutation 0 0.63800 

Shift mutation 0 0.63650 

p/3 swap 0 0.64565 

ULX 0 0.64135 
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Table 7: ER and HV for Figure 16 
KC20-2fl-1rl  Error Ratio Hyper volume 

Swap mutation 0.0337 0.10805 

Shift mutation 0.0659 0.10595 

p/3 swap 0.0556 0.10505 

ULX 0.0556 0.10065 

Table 8: ER and HV for Figure 17 
KC50-2fl-2rl  Error Ratio Hyper volume 

Swap mutation 0 0.10510 

Shift mutation 0.9924 0.18100 

p/3 swap 1 0.12655 

ULX 1 0.15510 

Table 9:  ER and HV for Figure 20 

KC10-2fl-1uni Error Ratio Hyper volume 

Swap mutation 0 0.03090 

Shift mutation 0 0.02840 

p/3 swap 0 0.03045 

ULX 0 0.03035 

Table 10: ER and HV for Figure 21 
KC10-2fl-2uni  Error Ratio Hyper volume 

Swap mutation 0 0 

Shift mutation 0 0 

p/3 swap 0 0 

ULX 0 0 
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Table 11: ER and HV for Figure 22 
KC10-2fl-3uni  Error Ratio Hyper volume 

Swap mutation 0 0.06760 

Shift mutation 0 0.06775 

p/3 swap 0 0.06940 

ULX 0 0.066605 

Table 12: ER and HV for Figure 23 
KC20-2fl-1uni 

 

Error Ratio Hyper volume 

Swap mutation 0.5926 0.03575 

Shift mutation 0.5862 0.03570 

p/3 swap 0.6271 0.03495 

ULX 0.5522 0.03550 
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