Investigation Performance of Strassen Matrix
Multiplication Algorithm on Distributed Systems

Reza Abri Vaighan

Submitted to the
Institute of Graduate Studies and Research
In partial fulfillment of the requirements for the Degree of

Master of Science
In
Computer Engineering

Eastern Mediterranean University
August 2013
Gazimagusa, North Cyprus

Approval of the Institute of Graduate Studies and Research

Prof. Dr. Elvan Yilmaz
Director

| certify that this thesis satisfies the requirements as a thesis for the degree of Master
of Computer Engineering Department.

Assoc. Prof. Dr. Muhammed Salamah
Chair, Department of
Computer Engineering Department

We certify that we have read this thesis and that in our opinion it is fully adequate in
scope and quality as a thesis for the degree of Master of Computer Engineering
Department.

Asst. Prof. Dr. Giircii Oz
Supervisor

Examining Committee

1. Assoc. Prof. Dr. Alexander Chefranov

2. Asst. Prof. Dr. Ahmet Unveren

3. Asst. Prof. Dr. Giircii Oz

http://cmpe.emu.edu.tr/gurcu/
http://cmpe.emu.edu.tr/gurcu/
http://cmpe.emu.edu.tr/chefranov/
http://cmpe.emu.edu.tr/chefranov/
http://cmpe.emu.edu.tr/unveren/
http://cmpe.emu.edu.tr/unveren/
http://cmpe.emu.edu.tr/gurcu/
http://cmpe.emu.edu.tr/gurcu/

ABSTRACT

Parallel computation is the concurrent performance of a task with multiple processors
in order to obtain rapid results. This method is based on that the process of solving a
problem can usually be divided into smaller problem parts and with some

coordination, these solution parts perform simultaneously.

Simply put, parallel computing is the concurrent use of different computing
resources for solving a computational problem. Parallel computing saves time, solves
large problems efficiently and is cost-effective or non-local sources. There are two

important models in the architecture of parallel computing:

I. Shared memory: In this multiprocessor system, all of the allocated processors
can access to a common memory.

Il. Message passing: In this multiprocessor system, each processor has its own
local memory; processors exchange messages and share data through an

internal connection network.

In this thesis Strassen recursive algorithm is implemented for multiplying square
matrices in parallel form for a distributed homogeneous system in order to improve
its execution time. Strassen multiplying algorithm is a divide and conquer problem,

with temporal complexity O (n?81).

Since this algorithm is recursive, total parallelism is impossible thus, matrices must
be divided and distributed according to a special distribution topology in which

affects on the performance time.

This thesis represents an economical distribution topology with distributing matrices,
which minimize the multiplication time of matrices in a parallel environment.
Dividing and distributing matrices according to a basic distribution topology (two-
fold distribution), led to favorable and unfavorable results. To improve the results,

the matrix distribution topology needs to be changed.

Finding a desirable and convenient topology is necessary aiming to achieve suitable
results by considering matrices dimensions and the number of nodes. So, this method

Is expected to reduce the execution time in comparison with Strassen-BMR method.

Keywords: Parallel Computation, Message Passing, Strassen Algorithm, Divide and

Conquer, Topology

Oz

Paralel hesaplama, hizli sonug elde etmek amaciyla, bir gérevin birden fazla islemci
tarafindan eszamanli hesaplanmasidir. Bu yontem, genellikle, buyuk bir problemi
kiiglik pargalara ayirip ¢ézme gergegine dayanmaktadir. Ve bu parcalarin ¢ézimdi,

bazi koordinasyonlarla, ayn1 anda gergeklestirilir.

Basitce sOylemek gerekirse, paralel hesaplama sistemi bir hesaplama problemini
¢ozmek i¢in farkli islem kaynaklarinin eszamanli kullanilmasidir. Paralel hesaplama
sistemi, zaman kazandiran, blylk problemleri verimli bir sekilde ¢0zen, diisiik
maliyetli, yerel olmayan kaynaklardir.Paralel hesaplama mimarisi i¢in iki onemli

model kullanilmaktadir:

I. Paylasilan bellek: Bu ¢ok islemcili sistemde, tiim tahsis edilen islemciler
ortak bir bellege erisebilir.

Il. Mesaj gecen: Bu ¢ok islemcili sistemde, her igslemcinin kendi yerel hafizasi
vardir; islemciler dahili bir baglantiyla ag tizerinden mesaj alis verisi yaparak

veri paylasabilirler.

Bu tezde, Strassen'in dzyinelemeli algoritmasi, kare matrislerin ¢arpimi igin, paralel
sekilde dagitilmis homojen bir sistemde, yiritme sdresini iyilestirilmek amaciyla
mesaj gegisi modeliyle uygulanmistir. Strassen c¢arpim algoritmasi zamansal

karmasiklig1 O (n?21) ile, problemi bol ve yonet (divide and conquer) yontemidir.

Bu algoritma 0&zyinelemeli oldugu i¢in, tamamen eszamanli yapilmasi
imkansizdir.Bu nedenle, yiritme siresini azaltmak igin, matrisler 6zel bir dagitim

topolojisine gore bolliniip dagitilmalidir.

Bu tez, paralel bir ortamda, matrislerin carpma siresini azaltmak maksadiyle,
ekonomik bir dagitim topolojisi Onermektedir. Matrisleri temel bir dagitim
topolojisiyle (ikili dagitim) boliip ag lizerinde dagitmak, olumlu ve olumsuz
sonuclara yol acar. Sonuglar1 iyilestirmek i¢in, matris dagitim topolojisinin

tyilestirilmesi gerekmektedir.

Istenilen bir sonucg elde etmek icin, matris boyutlar1 ve bilgisayar sayis1 dikkate
alinarak, arzu edilen, uygun bir topoloji bulunmasi gerekmektedir. Bu tezde, 6nerilen
bir topoloji lizerinde Strassen algoritmasi uygulanmistir. Elde edilen sonuclara gore,
Onerilen yontem ve topoloji Onceki yontemlerle Kkarsilastirildiginda yiiriitme

zamaninda azalma oldugu tespit edilmistir.

Anahtar Kelimeler: Paralel Hesaplama, Mesaj Gegen, Strassen Algoritmasi, Bol ve

Yonet, Topoloji

Vi

Dedicated to my family with love

vii

ACKNOWLEDGMENTS

I have taken great deal of efforts in this thesis. Although, its accomplishment could
not be possible without effective and helpful support of my dear supervisor Asst.
Prof. Dr. Gurcii Oz. In fact she was the tower of strength and knowledge to fulfill
this thesis. Furthermore, | would like to extend my honest thanks to all who

contributed to finalize this academic mission.

Worth mentioning the extremely respect to Assoc. Prof. Dr. Alexander Chefranov
and Asst. Prof. Dr. Ahmet Unveren who kept track of my progress during my master

degree.

In addition, I should send my great respect to my adored parents and lovely siblings

who were a strong source of love and concern support in all these years.

viii

http://cmpe.emu.edu.tr/gurcu/
http://cmpe.emu.edu.tr/gurcu/
http://cmpe.emu.edu.tr/unveren/
http://cmpe.emu.edu.tr/unveren/

TABLE OF CONTENTS

ABSTRACT e i
OZ et bbbt v
ACKNOWLEDGMENTS ... Vil
LIST OF FIGURESo XI
LIST OF TABLES ..o Xiii
LIST OF SYMBOLS/ABBREVIATIONSccoiiiiiiiiinieee e XV
L INTRODUCTION ...ttt 1
2 PARALLEL AND DISTRIBUTED PROGRAMMINGcccoiiiiiiiieiie e 4
2.1 Parallel ProCeSSINGccuecveiiciice e 4
2.2 Parallel Computers ArchiteCturecocoovevv i 6
2.2.1 Shared MemOry SYSIEIMSc.ciiieiieiieieeiie et 8
2.2.2 Distributed MemOory SYStEMSccviieiieiiiieieeie e 8

2.3 Internal Communication NetWOIKccceiiiiieiiiiieee e, 9
2.4 Parallel Programming MOdelS..........ccccoeviiiiiiiiiccece e 9
2.4.1 Shared Memory MOdelccooviiieiiiic e 10
2.4.2 Message Passing MOGEL............coveiveiiie e 11

2.5 Parallel AlQOrithms........cc.ooiiiiie e 12
2.5.1 Parallel Algorithm DeSIgNccveiveiiiiieieee e 13

2.6 Performance Evaluation in Parallel Systems...........cccovviviivii v 13

3 MATRIX MULTIPLICATION ALGORITHMS AND RELATED WORKS....... 16
3.1 Reviews of Matrices Multiplication Using Divide-and-Conquer Method........ 17
3.2 Considering Matrix Multiplication by Use of Strassen Method 18
3.3 REIALEA WOTKS ... 23

4 STRASSEN PARALLEL MATRIX MULTIPLICATION ALGORITHM IN

DISTRIBUTED SYSTEM. ...t 27
4.1 Two-fold Distribution Methodcoeiviiiiiiiiiieee e, 28
4.1.1 Reusing Waiting NOGE...........ccccv et 29
4.1.2 PErfOIMANCEc.veiiiiiiiieiee e 30

4.2 Seven-fold Distribution Method............ccoeiiiiiiiiiiecie e, 31
4.3 Dynamic Distribution Method.............ccoeviiiiiiiiii e 33
4.3.1 Performance Evaluation of Dynamic Distribution Method....................... 39

4.4 Fair Distribution Method............ccooiiiiiiiiiieee e 40

S EXPERIMENTAL RESULTS ... 45
5.1 Comparison of Usual and Reuse of Waiting Clients Methods......................... 45
5.2 Comparison of Two-fold, Seven-fold and Dynamic Distribution Methods..... 47
5.3 Performance of Dynamic Distribution Method.............cccccoeviiiiiiciiccece, 50
5.4 Performance of Two-fold and Seven-fold Distribution Method....................... 53
5.6 Performance of Fair Distribution Methodccooeiiiiiiiiiiiee, 57

B CONCLUSION ...t be e 63
REFERENGES...... ..ot 66
APPENDICES ...t 71
APPENDIX A USEI GUITEeeueeeeieeieeie ettt ens 72
APPENDIX B: Programming Partcccocooeiiiiniiinineeiesese s 78

LIST OF FIGURES

Figure 2.1: Sequential COMPULINGc.ocveiiiiieiicce e 4
Figure 2.2: Parallel COMPULINGccooiiiiiiicc e 5
Figure 2.3: Types of MIMD ArChIteCIUIe.........coeiiiieiieie e 8
Figure 2.4: PRAM Model for Parallel Computingcccooevevevieiiieie e, 11
Figure 4.1: Structure of Two-fold Distribution Methodccccooiiiiiiiiiiiicn 28
Figure 4.2: Structure of Reusing of the Waiting Node in Distribution...................... 30
Figure 4.3: Structure of Seven-fold Distribution Method.............ccooceiiiiiiiiiicnn 31
Figure 4.4: Some Samples of Dynamic Distribution Method.............c.ccocvvviiiiennn. 35

Figure 4.5: Flowchart of the Client Program in Dynamic Distribution Method........ 37

Figure 4.6: Flowchart of Server Program in Dynamic Distribution Method............. 38
Figure 4.7: An Example of Fair Distribution Methodccccooeiiiiniiiiiiien 41
Figure 4.8: Flowchart of Client Program in Fair Distribution Method...................... 43
Figure 4.9: Flowchart of Server Program in Fair Distribution Method...................... 44

Figure 5.1: Execution Time versus Number of Computers for Usual and Reuse of
Waiting Clients by Two-fold Distribution Method............c.ccccooveiiiieieeic e 46
Figure 5.2: Execution Time versus Number of Computers for Three Different
Distribution MEthOd..........c.oiiiiiii e 49
Figure 5.3: Execution Time versus Number of Computers with Different Threshold
Values for Dynamic Distribution Methodc.ccooviiiiiiiiiic e 51
Figure 5.4: Execution Time versus Number of Computers with Different Matrix Size
for Dynamic Distribution Method.............ccoiiiiiiiinee e 53
Figure 5.5: Execution Time versus Number of Computers with Different Threshold

Values for Two-fold Distribution Methodooooeeeiiiie 54

Xi

file:///D:/thesese%20project%20vesion/Document/New%20folder/thesis(09.september).docx%23_Toc366543804
file:///D:/thesese%20project%20vesion/Document/New%20folder/thesis(09.september).docx%23_Toc366543807
file:///D:/thesese%20project%20vesion/Document/New%20folder/thesis(09.september).docx%23_Toc366543808

Figure 5.6: Execution Time versus Number of Computers with Different Matrix Size
for Two-fold Distribution Methodccoiieiiiiice e 55
Figure 5.7: Execution Time versus Number of Computers with Different Threshold
Values for Seven-fold Distribution Method..............cccooiiieiiininiic e, 56
Figure 5.8: Execution Time versus Number of Computers with Different Matrix Size
for Seven-fold Distribution Method.............cooeiiiiiiiiic e, 57
Figure 5.9: Execution Time versus Number of Computers with Different Threshold
Values for Fair Distribution Method.............ccoeoiiiiiiiiiece e, 59
Figure 5. 10: Execution time versus Number of Computers with Different Matrix

Size for Fair Distribution MEthOUoo oo 60

Xii

LIST OF TABLES

Table 2.1: Comparison of Standard and Strassen Matrix Multiplication Algorithms19

Table 5.1: Execution Time for Usual and Reuse of Waiting Clients by Two-fold
DisStribution MEthOT..........coiiiiiiiic e 46
Table 5.2: Execution Time of Three Different Distribution Method......................... 48
Table 5.3: Speed-Up and Efficiency of Three Different Distribution Methods 50
Table 5.4: Execution Time of Dynamic Distribution Method by Different Threshold
Values and Using Different Number of Computers..........cccooevveveiieieeie e 51
Table 5.5: Execution Time of Dynamic Distribution Method by Different Matrix
Size and Using Different Number of COMPULErS..........ccccveieeie i 52
Table 5.6: Execution Time of Two-fold Distribution Method by Different Threshold
Values and Using Different Number of COmpuUters..........ccccoevveveiieii e 54
Table 5.7: Execution Time of Two-fold Distribution Method by Different Matrix
Size and Using Different Number of COMPULETS.........ccoviiiiiieneneieeeeeeeeees 54
Table 5.8: Execution Time of Seven-fold Distribution Method by Different
Threshold Values and Using Different Number of COmMpULersc.ccoovvviveiennee, 55
Table 5.9: Execution Time of Seven-fold Distribution Method by Different Matrix
Size and Using Different Number of COMPULETS.........ccoovviiiiienineieseneeeeeees 56
Table 5.10: Execution Time, Speed-Up and Efficiency of Fair Distribution Method
by Different Number 0f COMPULETScceiiiiiiiieie e 58
Table 5.11: Execution Time of Fair Distribution Method by Different Threshold
Values and Using Different Number of COMPULETS..........cooveiiieriieieieneseseeieen 59
Table 5.12: Execution Time of Fair Distribution Method by Different Matrix Size

Using Different Number of COMPULEIS.........cooviiiiiiiiiiirieseeee e 60

Xiii

Table 5.13: Comparing Execution Time of Strassen-BMR and Fair Distribution

Xiv

LIST OF SYMBOLS/ABBREVIATIONS

VLSI Very Large-Scale Integration

CPU Central Processing Unit

FLOPS Floating-Point Operation Per Second
ENIAC Electronic Numerical Integrator and Computer
RAM Random-Access Memory

SISD Single Instruction Single Data
SIMD Single Instruction Multiple Data
MISD Multiple Instructions Single Data
MIMD Multiple Instructions Multiple Data
PRAM Parallel Random Access Machine
EREW Exclusive Read, Exclusive Write
ERCW Exclusive Read, Concurrent Write
CREW Concurrent Read, Exclusive Write
CRCW Concurrent Read, Concurrent Write

XV

Chapter 1

INTRODUCTION

Systems with high processing are needed to create applications that require high
speed processing. Semiconductor and VLSI [1] technology have made improvements
in single processor machine tasks. However, these systems is still not suitable for
science and engineering applications that require high speed computations, such
as aerodynamic affairs, real-time systems, medical signals processing and aerology.
In addition, there are limitations in CPU clock maximum speed. It has led to the
development of parallel computers that can process data at speeds of large numbers

floating points operation per second (FLOPS).

In 1945, ENIAC [2] the first electronic processor performed 1000 instructions per
second. Now a days, the new generation of Risk processors are able to process

hundreds of millions per second. These processors are sequential but fast.

About ten years ago, computer manufacturers achieved another economical way to
reach the equal power of n witch the use of n processors led to the design of multi-
processor systems. They can combine in multi-processor systems, to increase the
power as necessary. Improved VLSI processor's design, causes to faster blocks of

parallel processors [3].

In recent years, parallel processor systems have developed based on personal
computers. These systems offer better efficiency in comparison with supercomputers,

and their software and operating systems are readily available.

Parallel computers may have 10 to 50,000 processors that work with each other in
parallel form. If a processor can perform more than 10 million instructions in one
second, 10 processors can perform 100 million recipes in one second. Parallel
computer systems allow for sharing data and creating relationships. There are two
important architectures in this field: Shared memory and Message passing [4]. Each

of these architectures has its own advantages and disadvantages.

Many software systems are designed for parallel computer programming at the
operational system levels and also in programming languages. These systems create

a mechanism for dividing the problems into separate tasks.

These mechanisms may be implicitly parallel (system automatically divides the
problem and specializes tasks) or explicitly parallel (programmer describes how to

divide the problem).

The aim of this thesis is to examine parallel and distributed programming in a
homogeneous computer network and optimize performance in this environment. In a
homogeneous network, all available computers have the same characteristics. The

message passing architecture is used in this parallel environment.

The recursive algorithm is chosen for implementation. The parallelize possibility of

recursive algorithms is less than for sequential algorithms. Because the division and

distribution of a task needs maximum overlap, it is important to optimize
performance in a parallel environment. The Strassen matrix multiplication algorithm
has been chosen for this thesis. In this algorithm problem is divided to seven sub-
problems (tasks) and these tasks are divided between computers. Any of these seven
multiplication tasks could be divided recursively, to seven more sub-tasks.
Computation is done in each state and result is returned to the previous stage

recursively.

Distribution of a given problem in a network has significant impact on the running
time of the algorithm due to the distribution in different topology, the overlapping

rate of computations on different computers varies.

Different problem situations and inputs must define the optimal particular
distribution topology. Defining all appropriate distribution topologies for these states
is very difficult, so a program should produce a suitable distribution topology

according to different situations and inputs.

This thesis includes five chapters. Second chapter reviews basic concepts of parallel
and distributed programming. Chapter three presents tasks and algorithms in the field
of parallel Strassen matrix multiplication. Chapter four describes the stages of this
project and problem solutions. Chapter 5 provides the results, followed by

conclusions and appendices at the end.

Chapter 2

2 PARALLEL AND DISTRIBUTED PROGRAMMING

This chapter presents a brief overview of parallel processing, the importance and its
usage.

2.1 Parallel Processing

Parallel computing refers to the simultaneous execution of a program on multiple
processors in order to achieve faster results. In sequential computing, instructions run
orderly in processors; the running speed is proportional to the processor speed
(Figure 2.1). In parallel processing, instructions run in several processors, but speed
of whole parallel system is not necessarily equal to CPU speed of one processor
multiplied by the number of processors (Figure 2.2). Parallel computation can be
employed in different parts of the computer, such as software and hardware;
therefore, computing generalities should attend to different aspect of software and

hardware [5].

l instructions
N 13 2 "

Figure 2.1: Sequential Computing [5]

Parallel processing increases a computer's power. Its main use is solving scientific

and engineering problems.

problem

instru

ctions
[H

!

|

™ f

3

)

Figure 2.2: Parallel Computing [5]

Commercial software needs to fast computers too. Most programs need to process a

large amount of data in a complex form. These programs include:

v' Massive data-base and data mining operation

v Qil explorations

v Web searching engine, commercial services under the web
v" Medical imaging and diagnostics

v" Drug design and simulation

v Management of national and multinational companies.

v" Financial and economic modeling

v Multimedia technology and video network

The main reasons for using parallel computing are as follows:

1. Economize in rate and time: Using more sources, reduces the time
needed for a task. Furthermore, using several cheap sources instead of
one expensive source cause reduce costs.

2. Solve larger problems: most large and complex problems that are
impractical or impossible to solve with a limited memory computer.

3. Provide concurrency: Multi-computing sources can perform several
tasks in the time it takes a single computing source to perform just one
task. For example, Access Grid is a global cooperation network in
which people all over the world can meet at the same time.

4. Use non-local sources: When local computing sources are limited for
solving problems, non-local sources can help to solve such problems
through extensive networks and the Internet.

2.2 Parallel Computers Architecture

In 1966, Flynn defined the computer systems architecture classification [2, 6]. Flynn
classification design was based on the data stream. Data dealing with processors can
be divided into two groups of instructions and data. According to Flynn
classification, instructions or data streams can be in one unique form or in multiple

forms. As a result, computer systems architecture can be divided into four groups:

1. SISD (Single Instruction Single Data): This architecture is used for sequential
computers. In this method, only one instruction stream and one data stream
can take action by a processor during each clock [7]. The instructions are

independent of other processors-actions. This type of architecture is used in

most computers, including Von Neumann's [8] sequential computers,
mainframe systems, and personal computers.

SIMD (Single Instruction Multiple Data): This architecture is used for
parallel computers. Array processers are one example. SIMD machines have
a control unit and execute one instruction, but they have more than one
processor element [7, 9]. The control unit signals to all processor's elements
which perform similar actions on different data during each clock. This
method is suitable for solving special problems that involve data with fixed
patterns such as image processing problems.

MISD (Multiple Instruction Single Data): In this parallel design, one data
stream is sent to several data processing units [7]. Each processing unit acts
on the data with independent instruction streams. One example is the
Carnegie-Mellon C.mmp experimental computer. This method can be used
for several frequencies filters on a signal stream and several cryptography
algorithms to decrypt an encrypted message.

MIMD (Multiple Instruction Multiple Data): In this architecture, each
processor executes separately several instruction streams; instructions apply
to several different data streams [2, 7, 9, 10]. Modern super-computers,
cluster parallel computers, symmetrical multiprocessors, and modern multi-
core computers use this architecture. Most computers with MIMD
architecture use SIMD sub-components. One MMID machine contains
processors with control units that can concurrently execute different
instructions on different data. This method is the most common design for
parallel computers, and modern computers are moving toward this

architecture. These kinds of architectures involve several processors and

memory modules that are related by communication networks. They are
divided into two main groups: shared memory and distributed memory.
Figure 2.3 shows the generic structure of these two groups where P indicates

processors and M indicates memory modules.

m]l][m] =[]
| Pl | M1 | P2] M2 | Al en
ol Metwork -‘-ul
link 1 link 2 link n I\.___ Communication
S ——
vt /] AN
- -, !
(- Metwork Ny - i l -
. Communication [LI .p_] [LI IL]

MIMD architecture distributed memory MIMD architecture shared memory

Figure 2.3: Types of MIMD Architecture

2.2.1 Shared Memory Systems

In shared memory systems, all processors have a global shared memory.
Communication is established between running operations by reading and writing
global memory [2, 11]. Coordination and synchronization of all central processors
take place through this shared memory. If all processors have the same availability
time to each place of memory, then the shared memory system is called a symmetric
multiprocessor system. Design issues for shared memory include access control and
data dependence, concurrency, protection, and security.

2.2.2 Distributed Memory Systems

Systems based on distributed memory are groups of processors in which each
processor has access to its own local memory. Contrary to shared memory systems,
in these systems, connection takes place by sending and receiving message
instructions that should be written by the programmer in the application software [2,

12].A node in such a system contains one processor and its local memory. Each node

usually has the capability of storing a message in the buffer and sending/receiving
concurrently with processing. Message processing and calculation is done
simultaneously by the operating system. Systems with distributed memory have high
extension ability, and their processor units can connect together. Extension capability
refers to the ability to increase the number of processors without significant
deduction in efficiency.

2.3 Internal Communication Network

Multi-processor system communications networks can be classified according to
various criteria, including networks topology. Topology refers to how processors and
memories connect to other processors and memories [13]. For example, in complete
contact topology, each processor connects to all other available processors in the
system. Generally, communication network topology can be divided into static and
dynamic groups. In static networks, messages must pass certain links, regardless it is
necessary or not. Dynamic networks make connections between two or more nodes if
needed for passing messages.

2.4 Parallel Programming Models

Because of their idealism nature, abstract models may not seem appropriate in the
real world. However, abstract machines in distributed parallel algorithms are so

suitable for parallel machines.

If one algorithm's execution in an abstract system is not satisfactory, then its
implementation in a real system is meaningless. Abstract models do not consider
some artificial notices in real parallel and distributed systems. This reduces the
difficulty of finding executing limitations and complexity estimates. Parallel

algorithms designed according to a selection model, and then the model was changed

to run the program [14]. For model implementation in the real world, a set of
languages, compilers, libraries, contact systems, and parallel input-output is needed.
In following section describe two common parallel models.

2.4.1 Shared Memory Model

In shared memory models, one parallel program is divided into different tasks. Each
task execution is assigned to a processor, and all processors act on stored data in the
shared memory. For processors, concurrent availability control is used for different
concurrent mechanisms like locks and semaphore. For parallel algorithms in this
model, execution time, the number of processors and the parallel algorithm rate are

considered as criterion.

One model used in shared memory systems is the Parallel Random Access Machine
(PRAM). Presented in 1987 by Fortune and Wylie [15] for modeling ideal parallel
computers, a PRAM consists of one control unit and one global memory that are
shared by a processor. For reduction references to the shared memory by processors,
each processor has its own special memory. Figure 2.4 shows a diagram of PRAM.
In this model, each processor is not connected to each other, and connections take
place only by reading and writing in the shared memory. There are different states
for reading and writing [15] operations which divide PRAM into the following

classes:

v" EREW (Exclusive Read, Exclusive Write): Reading and writing availabilities
in a memory location are exclusive.

v' ERCW (Exclusive Read, Concurrent Write): Some processors have
concurrent writing permission in a memory location but reading availability

is exclusive.

10

v CREW (Concurrent Read, Exclusive Write): Concurrent reading is allowed
but writing availabilities are exclusive.
v CRCW (Concurrent Read, Concurrent Write): Concurrent reading and

writing availabilities are allowed.

Control unit

Dedicated memory

Dedicated memory

Dedicated memory

&) @
=3 [t \—._.
Shared Memory

Figure 2.4: PRAM Model for Parallel Computing

2.4.2 Message Passing Model

The message passing model contains a set of processors with their own specific local
memory; processors communicate by sending and receiving messages. Data transfer
among processors requires mutual operations between processors. This model is
widely used in parallel computation due to the many advantages. It offers the

following advantages:

v Compatibility with hardware: This model is appropriate for use in
supercomputers and clusters that include separate processors connected
through networks.

v Functionality structure: The message passing model presents essential virtual
topology, synchronization, and communication functionality between a set of

processes.

11

http://en.wikipedia.org/wiki/Synchronization

v’ Efficiency: The effective use of modern processors requires strong
management of the memory hierarchy. This model provides location
management of data through explicit control tools.

The main disadvantage of this model is that programmer must explicitly recall
available functions, distribute data among processors, and manage data.

2.5 Parallel Algorithms

Most algorithms for parallel hardware must be redesigned. Programs that work in a
single processor system may not work in a parallel environment. This is because
some copies of a program may interfere with each other (for example, interaction in
concurrent availability to a location of memory).Therefore, the basic necessity of a
parallel system is its own programming. Parallel program design and expansion is
often considered a manual process. The programmer is responsible for the
determination and actual implementation of parallelism. Manual development of
parallel codes is often time-consuming, complex, repetitive, and error-prone. In
recent years, most software systems designed for parallel computers programming
aim to help the programmer change a sequential program into a parallel program.
These systems are at the operation level and at the programming language level.
They must have a mechanism to divide a problem into several functions and allocate
these functions to processors. This kind of mechanism can include implicit or explicit

parallelism.

In implicit parallelism, the system automatically divides the problem into several
functions each to a processor; in explicit parallelism, the programmer separates
problems into tasks and refers to a processor [16].Implicit parallelism is limited to a

subset of codes and has less flexibility than explicit parallelism. It may also produce

12

incorrect results and reduce efficiency. Thus most parallel programming is made
explicit.

2.5.1 Parallel Algorithm Design

The first step in designing parallel algorithms is learning how to think parallel. The
programmer must determine the parts of problem that have parallelism capability;

after model selection, he or she must focus on presented the best parallel algorithm.

Several points should be considered when solving a problem in parallel form. First it
must be determined whether the problem has parallelism capability [17]. For
example, the problem of constructing a Fibonacci sequence is a sequential problem
due to its data dependence. Next, the programmer must recognize the basic points of
computations and the main areas of the problem. Also, the problem's bottleneck
should be recognized; this means that parallel operation is stopped due to attachment

or need to perform data input and output.

Next the problem is divided into different sections that can be assigned as a task to a
processor. There are two basic methods for dividing computational tasks between
processors: domain analysis and functional analysis. In domain analysis, problem
data are divided, and each processor executes the same instructions on related data.
In functionality analysis, computing instructions are divided among processors. After
dividing problems into different functions, if connection between functions is
required, concurrent methods and communication among processors are used.

2.6 Performance Evaluation in Parallel Systems

Coefficient speed up or S(p) is one of parallel system evaluation criterion that is

defined as follow.

13

Speed up [18, 19] is ratio of the required time for solving a problem by a processor
that showed bY Tsequentiar» 10 required time for solving the same problem by a
parallel system that formed by P processors. Parallel system time is shown

With TParallel-

S(p) (2.1)
— TSequential/
Parallel
If: Tparattet = (2-2)
0 (TSequential/P)

If coefficient speed up is equal with P, then the parallel system is optimum. In
practice, increasing liner speed (speed proportional with processor number) is
difficult. This is due to the sequential nature of many algorithms; thus, some parts of
an algorithm are capable of parallelism, while others are not. According to Amdahl’s
law [20], accelerating the rate of a parallel algorithm rather than a sequential
algorithm does not depend on the number of processors used but rather on the part of
the algorithm that is not capable of parallelism. If F is the fraction of the algorithm
that is incapable of parallelism and should execute in sequential form, then the

accelerating rate is defined according to Amdahl’s law:

14

1
Sp) =——=
() Fyr (2.3)

Suppose that 10% of an algorithm is incapable of parallelism. This means that
F=10%.

However the rest of the algorithms are run by 20 processors in parallel form. In this
state, the execution speed of a program (when run on only one processor) almost be

seven times according to Amdahl’s law:

$(20) =

R
~

(2.4)

1-01 —
0
20

Another criterion used to evaluate system performance is efficiency,E (p) [21] which
is equal to the ratio of cost of an algorithm in sequential system to cost of the same
algorithm in a parallel system that is formed by p processors. The cost of

implementation is equal to the multiplied execution time in the processor's number:

E(p) _ 1+ Tsequential
p * Tparallel

(2.5)

15

Chapter 3

MATRIX MULTIPLICATION ALGORITHMS AND
RELATED WORKS

The evaluation of the product of two matrices can be very computationally
expensive. The multiplication of two n X n matrices, using the standard algorithm
can take O (n3) operations. Consider matrix multiplication with standard algorithm

as follows:

for (i=1;i<=n;i++)
for (j=1;j<=nm;j++)}{
Cl[]=0;
for (k=1;k<=n;k++)
ClIGI=CHILI+ALKI*BIKIL];
}

This program multiplies two matrices A and B to obtain matrix C. In each matrices, n

(dimension of matrices) is greater than 0.

In the standard algorithm, the number of multiplication equals to T(n) = O (n?).
The number of additions also equals withT(n) = O (n® — n?) which is explained

below.

for (i=1;i<=n; i++)

16

for(j=1;j<=n;j++){
CL]LI=ALIA*BILT
for (k=2; k<=n;k++)
Cl]LI=ChIG1+ALNTKI*BIKILI;
}

In the standard state, number of multiplications and additions of a matrix

multiplication is in the following form:

Number of multiplications: n® = O (n3)

Number of additions: n® -n? =0 (n3?)

3.1 Reviews of Matrices Multiplication Using Divide-and-Conquer
Method

Now we consider matrix multiplication in the divide-and-conquer method. If nis a

power of 2, A and B can be divided into four smaller matrices of '/, x ™/,each [22].

If the number of multiplies are considered as a main act, each nxn matrix required

eight multiply action in any stage of divisionto ™/, x ™/,:

[cll c12]:[a11 alz *[bll b12
c21 c22 a2l a22 b21 b22

C11=Al11.B11+Al12.B21
C21=A21.B11+A22.B21
C12=Al11.B12+A12.B22

C22=A21.B12+A22.B22

17

Multiplication of two 1x1 matrices need a scalar multiply action. So, in the divided-

and-conquer algorithm for the matrix multiplications, we have:

T(n) = 8T("/,)

T(1) =1 } =0) G

This method is similar to the standard method of © (n3) and has no extra preference.
3.2 Considering Matrix Multiplication by Use of Strassen Method

In 1969, Strassen presented an algorithm that multiplies numbers less than 0 (n3); it
almost was O (n?81) mentioned in down [22, 23]. Strassen proved that multiplying

two matrices A and B, leads to C can be obtained by following relation:

If the matrices A and B have 2 x 2 dimensions, the necessary number of additions

and multiplications for matrix computation is as follows:

a11 a12 « [P11 blz] [Cll 612
a21 azz by, by, C21 sz

C:[m1+m4—m5+m7 mgz +mg]

m, +m m; +mg—m,+m
2 4 1 3 2 6

m; = (a51+az;)(b11+byy)
m; = (az;+azy)byg

m3 = ap;(by12-byy)

IrCll mi+my—ms+my
4 ClZ m3+m5
my = az,(byi-byy) | Co1= my+m,

kcll mi+msz—my+mg
mg = (a;1+a;2)by,

18

mg = (azg-as1)(b11+by,)

m; = (ajz-az;)(ba1+byy)

Table 3.1 provides the number of multiplications and additions needed for two

standard and Strassen algorithms for two matrices of 2x2.

Table 3.1: Comparison of Standard and Strassen Matrix Multiplication Algorithms

e Multiplication Addition
Multiplication type AUMber Aumber
Standard algorithm 8 4
Strassen algorithm 7 18

For larger matrices, supposing that n (dimensions' of matrices) is a power of 2,

Strassen's method can be extended as below:

All AlZ] * [Bll BlZ]:[Cll C12]
A21 AZZ BZl B22 C21 C22

a1 aln/z

anfpn o annvy,

Using Strassen method, M; is calculated as:
M; = (A11+A22)(B11+B33)
M; = (Az1+A22)B11

M3 =A;1(B12-Bz2)

19

M, = Aj;(B31-B11)
Ms = (A11+A12)By;
Mg = (Az1-A11)(B11+B13)

M7 = (A12-A3;,)(B21+By3)

and Cjjis calculated as:
Ciy=M;+ My, —M;s +M,
Ci2 = M3 + M;

Cpy =M, + M,

C22:M1+ M3_M2+M6

In the M's calculation for doing multiplication, again Strassen method will be used.
Strassen algorithm is explained by an example in the following. In this example A

and B are input matrices and C is the result of multiplication.

12 3 4 8§ 9 1 2
s 6 7 8 3 4 5 6
Alg 1 2 3 B17 8 9 1
45 6 7 2 3 45
2
1 2 3 48 9 1 2
C C 2
5 6 7 8|3 4 5 6| 121
9 1 2 3|77 8 9 17, c
45 6 71 l2 3 4 sllt2 22

M; = (A11+A3;)(B11+B33)

(L5 ells 21) (5 303 o)

= [131 153]*[177 190]:[28768 27257]

20

wosnana = ([9)° (8)

o~

:13 142] [3 ZHigg gg

M; =A;11(B12-Byp) =

|

Vv
—
Ul =

o) (s e sl

:[é 2]* _18 1]:[—_364 131

M, = Ay(Byi-Byy) => (2 ?])* ([; g]-[g Z)
£ TS
Ms = (A11+A12)By; = ([[> (1)

:[12 14”][164 82

Mg = (A21-A11)(B11+B12) => (Z ;]-[; é >*(2 Z]-'_[é 2]>

_[8 —1*[9 11=[64 78]
—1 -1llg 10l7l=17 -21

> (B alle a1)(G sk sl

M; = (A12-A22)(B21+B32)

21

{8
Ci1=M;+ My —Ms +M,

[278 227] [13 —13 [164 82] ;% 1; [123 13429]

C12 = M3+M5

[—34 11] [164 82] [130 93

C21 - M2+ M4_

J[L00 11S),1-5 51195 110
116 138l'1-13 —131 7103 125

C22=M1+ M3—M2+M6

[278 227] [—34 11] [1(1)2 1?1&53] [67 —21] [111 101

43 32 54 37
_> (c=|123 149 130 93
95 110 44 41

103 125 111 101

22

3.3 Related Works

Strassen matrix multiplication algorithm has been implemented in parallel on some
different methods and we are going to briefly survey them in this section. The
method proposed in [24] discussed sequential and three parallel programs that have
been attempted to implement Strassen’s algorithm. The sequential program was
written by using the well-known Winograd’s method [25]. It stops its recursion on a
certain level where it invokes the subroutine DGEMM provided by ATLAS [26].
Since the design of the program is straightforward, its performance and instability

issues were introduced, as well as how they vary with the recursion level.

The three parallel programs include one workflow program and two MPI programs.
The workflow program is implemented in the client-end on the NetSolve system
[27]. 1t has a workflow controller to check and start the tasks in a task graph. All
tasks are sent to the NetSolve servers to be computed. When the dependent tasks are
finished, the controller launches a new task immediately. The intensive computation
is actually performed on the NetSolve servers, thus the client machine is available to
run other tasks. Next, two different approaches are adapted for designing the parallel
programs running on distributed memory systems. The first program uses a task-
parallel approach, and the second one uses a data-parallel approach which uses the

ScaLAPACK library to compute the sub matrix multiplications [28].

The approach proposed in [29] uses Strassen algorithm across all processors, instead
of using it only on each processor. This approach leads to have a better potential for

speed up.

23

A parallel algorithm that uses Strassen’s matrix multiplication both between the
processors for global computations and within each processor for local computations
was proposed in [30]. With respect to [30], two-fold is the main conclusions of the
performance study; firstly, controlling the communication path via ad hoc routing
patterns can provide significant performance gains especially for large networks and
even larger matrices. This result is especially crucial for applications that require
petaflop or exaflop processing rates. Secondly, the proposed algorithm is quite
successful in overlapping the communication with computation. It is well-known that
Strassen’s algorithm ceases to provide any benefits when local matrix sizes become
too small. In other words, beyond some point it is better to stop the recursion and to
switch to the conventional algorithm to perform sub-matrix multiplications. In the
proposed algorithm, the need to switch occurs much deeper in the recursion tree. As
an example of the effectiveness of the proposed scheme, also consider the case in

which we have a 64 X 64 torus at our disposal. The proposed algorithm can only use
49X 49 processors and after the fourth recursion each processor performs exactly one

computation. In this case, the proposed algorithm still up to 1.3 times faster than the

other algorithms.

The research in [31] tried to work on parallel Strassen matrix multiplication
algorithm on heterogeneous groups. Suitable data allocation in the heterogeneous
grouping context is the most necessary item to obtain optimal execution time.
Strassen algorithm decreases the number of multiplication operations from eight to
seven in any recursion, therefore the level of the recursion has outcome on the sum

up execution count. In Strassen algorithm, not only the charge parity, but also the

24

extent of recursion should be considered as well. The above mentioned program

gains both charge parity and decreasing the whole multiplication operations count.

Due to enlargement of groups, more recent nodes are persistently attached to existing
group systems. The nodes may have contrastive hardware execution, like network
rapidity and CPU execution which construct the group heterogeneous. The similar
charge can be allocated to every processor if the hardware performance of each node is
homogeneous. Therefore, charge parity is automatically reached and greater swift is
also obtained at ease. Although, in heterogeneous contexts, traditional procedures
that allocate same duties to each processor turn down to less optimal due to they
would not be able to account differences among nodes in computational
performance. For that reason and in order to reach the better speed, data should be

allocated properly and equivalently to the hardware operation of every node in the

group.

It is very critical to reduce the inactive time of processors by considering the effect of
charge parity in a heterogeneous clustering context. However, the level of recursion
in Strassen algorithm influences on the total multiplication operation count, and there
is a possibility that total multiplication operation count is increased by charge parity.
So, both charge parity and the level of recursion should be taken into account in
Strassen algorithm. In this case, the recursive data decomposition is suggested and it
enables charge parity and increasing of the level of the recursion in Strassen

algorithm.

A scalable parallel Strassen's matrix multiplication algorithm for distributed memory

named by Strassen-BMR was presented in [32]. The motivation for this method

25

comes from the observation that the Strassen method is most efficient for large
matrices. Therefore it should be used among processors instead of one processor.
The seven sub-matrix multiplications of the Strassen method at each recursion seem
at first to lead to a task parallelism. The difficulty in implementation results from the
fact that the matrices must be distributed among the processors. Sub-matrices must
be stored in different processors and if tasks are spawned these sub-matrices must be
copied or moved to the appropriate processors. For a distributed memory parallel
algorithm, the storage map of sub-matrices to processors is a primary concern. If the
sub-matrices are stored among processors in the same pattern at each level of
recursion, then they can be added or multiplied together just as if they are stored

within one processor.

We compare our obtained results with this method in Chapter 5. The implementation
results of our method show some improvement rather than this method. Comparing
has been done only over four processors. Bear in mind that, Fair method is not

applied on 64 processors so the related results are not available in this study.

26

Chapter 4

STRASSEN PARALLEL MATRIX MULTIPLICATION
ALGORITHM IN DISTRIBUTED SYSTEM

In the previous chapter, we surveyed some well-known algorithms of parallel
Strassen matrix multiplication. The current research employs the Strassen matrix
multiplication algorithm as a recursive algorithm and it decreases the execution time

by using distribution factor.

The focus of the thesis is on the method of data distribution for multiplication in
order to expand the overlapping operation. First, the proposed method and then its

extensions will be discussed in detail in the following.

Considering recursive nature of the algorithm, the client sends its task to the server(s)
and then it waits for the calculated response. If the data received by the servers are
not small enough or are needed to the division of problems among other servers,
those servers which have received data from the client will change their status and
appear in the role of client. The upper-layer client (parent) must distribute tasks
among servers and wait for the results from lower-layer servers, this process will
continue through the lower-layer servers until the problem is minimized (no further
division is needed) or there is no idle server. Then, the results will be sent back to
upper nodes sequentially. The details of propose method and existing difficulty will

be explained in the following sections.

27

4.1 Two-fold Distribution Method

In the first stage, the parts of algorithm that can be parallelized are identified by
using the Strassen algorithm and the main calculation of this algorithm should be
considered. The main operations are calculation of seven multiplication tasks which
should be computed in each stage of problem division. In this method of division and
distribution, four multiplication tasks are assigned to one server computer, and three
tasks are dedicated to another server. It means that in each stage of division, every
client will divide and distribute multiplication tasks (including seven sub-
multiplication tasks) between two servers. Considering this method of distribution,
each client computer (parent node) for each multiplication task has two server
computers as a child, so the distribution topology will resemble a two-fold tree (see

Figure 4.1).

Figure 4.1: Structure of Two-fold Distribution Method

Note that each node represents a computer in Figure 4.1. Node (1) as a client,
divides its seven multiplication task between two servers (node (2) and (3)) and it
sends four multiplication tasks to node (2) and three remaining multiplication task
will be sent to node (3). Now, node (2) has four multiplication tasks and each task
divided and distributed between two computers. In other words, node (2) divides and
distributes the four multiplication tasks among eight computers. Node (3) receives

three multiplication tasks and each of them is divided and distributed between two

28

nodes. Therefore, its task is distributed among six children. The same procedure is
continuously applied in the succeeding layers.

4.1.1 Reusing Waiting Node

After implementing the two-fold distribution method, we faced some difficulties
related to having a waiting period for clients (parents) when their child nodes
calculate the results.

Servers in each layer which receive tasks, they will change their status from server to
client according to existing circumstances. They also divide and distribute the data
among free servers and wait for the results. During this period, the efficiency of the
computers decreases, because task is dedicated to only some nodes. When this
approach deals with large and huge matrices, dividing the problem should be done
more times and numbers of sub-problems are increased. Thereby, number of clients

and their waiting time will be increased.

In order to increase the processor efficiency, the time spent in waiting status must be
minimized. If some of the free servers have finished, then clients which are in

waiting status can function as free servers.

By using multi-thread method, all servers are first in idle and listening status. When
they receive a task from a client, they change their status to busy and then they
process the task. If the division and distribution stage continues, then it changes its
status to client and waits for a response from child servers. Simultaneously, waiting
clients will be in the listening status (like a server), so that if a task is received for
being calculated, it can perform it during the waiting period. In this way, the CPU

capacity of the nodes is used efficiently. Figure 4.2 provides an example. Suppose

29

that there are nine computers (nodes). Computer (1) is in the role of client and

distributes the tasks among servers.

OO @ GOHGHE

Figure 4.2: Structure of Reusing of the Waiting Node in Distribution

In Figure 4.2, division and distribution of the problem stops in the third layer,
because free servers have finished, so there is no possibility to fill all of the leaves. In
order to increase the efficiency, upper-layer computers that are waiting for the
results, switch to listening mode (server) and execute task after receiving it. In this
example, nodes 1, 2 and 3 are in listening (for any task) and waiting state (for the
result). Here, node (1) is used again as a server by node (3).

4.1.2 Performance

By implementing the algorithm based on the above-mentioned distribution topology,
we improved the execution time by increasing the number of computers which
performs tasks. For smaller dimensions of matrices three computers are sufficient for
their multiplications and achieved good execution time. But larger matrices which
required more computers for multiplication, did not improve the execution time (i.e.

the improvement is not proportional with the increase in the number of computers).

For the tree topology in Figure 4.1, completion of the last stage of each tree
distribution indicates the percentage of parallelism for that distribution status. For

example, with seventeen computers, we achieved better performance time, because

30

the third layer is completed and fourteen computers are able to do calculations in
parallel. With twenty-five computers, eight of them are in the fourth layer thus, the
percentage of parallel calculations in the last layer decreases and less improvement is
observed. As a result, this distribution topology in a network comprising computers
in the interval of 2 to 6 and 15 to 17 has better proportional performance compared to
the rest of the computers in the network. To further improve performance, we define
other topologies in the following sections.

4.2 Seven-fold Distribution Method

As mentioned in the previous distribution method, computers in the last layer are
filled less than 50%; due to this, less parallelism took place. To resolve this problem,
we choose a method that in a network including say 8 computers, the number of
computers existing in the last layer, could have more computers relatively until we
could increase the percentage of parallelism. For this reason, the client in each level
of the operating division; divides seven multiplication tasks among seven computers

that each multiplication task is dedicated and sent to a computer (see Figure 4.3).

Figure 4.3: Structure of Seven-fold Distribution Method

In the Figure 4.3, client 1 divides seven multiplication tasks among seven servers.

According to the algorithm, the servers (computers 2 through 8) receive the matrices

31

and survey the threshold condition that identifies the limitation of matrix division
and distribution. If division and distribution must continue, then the servers will
divide and distribute tasks in the network among free and listening computers. In this
layer (layer 2), each server has received a multiplication task from the client, each of
which has seven sub-tasks. The servers change its role to client and distribute tasks to

the sub-layer servers. Similarly, the algorithm continues recursively.

This division and distribution method improved the performance in networks
including 7 up to 12 computers. For example, if we had eight computers (two layers)
in Figure 4.3, there was maximum parallelism, since in the second layer; seven of the

eight computers are performing computation in parallel.

In different circumstances (dimension of matrices, threshold of algorithm, and
number of existing computers in the network) increasing the number of computers up
to eight could improve the performance, but increasing the number of computers
more than 8 we did not experience significant improvement in the performance. With
more than eight computers, the third layer is considered the main factor in
parallelism. As long as the majority of the leaf nodes in this layer do not fill up, we

will not see significant improvement.

To overcome the weakness of the two-fold method, a seven-fold distribution method
was introduced. Now if we present a new distribution method in order to improve the
weaknesses of the seven-fold method, definitely we experience other weaknesses.
However, there is no constant distribution method that will yield the best result in all
networks. In the following Section we have presented a method to find optimum

distribution topology.

32

4.3 Dynamic Distribution Method

As previously explained, any of the constant distribution method cannot always
respond positively. To achieve an optimum response, we need a special distribution
topology for different circumstances. However, it is very difficult to define all
optimum topologies for all different circumstances. Therefore, in this section, the
program defines optimum distribution topology itself. According to circumstances
which are distinguished from user entries, the optimum distribution topology is

found, and the division and distribution operation of matrices is performed.

Before explaining how optimum topology is found; first, we clarify the possible
levels of task division among computers from the client. The main operation is the
seven multiplication tasks of Strassen algorithm. Different methods can be used to
divide the seven tasks in a way that maintains the potential for parallelism. We define

the following four division methods in the program:

1. The client divides seven multiplication tasks between two computers: four
tasks to the first computer and three tasks to the second computer.
2. The client divides seven multiplication tasks among three computers: three
tasks to the first and two tasks each to second and third.
3. The client divides seven multiplication tasks among four computers: two
tasks each to the first three computers and one task to the fourth.
4. The client divides seven multiplication tasks equally among seven computers.
To find the optimum distribution topology, we need a criterion for optimization.
Based on the previous constant distribution methods, if there are more computers in
the last (leaf) layer and the layer is complete, then the scope of parallelism increases

and thus improves performance. Therefore, the criterion for finding the ideal

33

topology is the choice of a level that allows for the most number of computers in the
leaf layer of the distribution tree according to existing entry circumstances
(dimension of matrix, threshold of division, number of existing computers in the
network). For this reason, we calculate the number of layers that the distribution tree

should have.

In fact, the number of layers in the distribution tree is the number of divisions before
the threshold is reached, which means one operation in each layer. The number of
layers in the topology tree or the number of divisions equals"log, matrix size —

log, threshold", which are entries of the program.

Next, we design a distribution tree with the desired number of layers and consider the
numbers of computers in the network, and also we should have the most possible
numbers of computers in the last layer. There will be circumstances when the
number of existing computers in network is not enough to build a tree with the
number of desired layers. In this case, we choose a distribution tree with the most
possible layers and the most number of computers in the last layer. Conversely, there
may be too many existing computers in a network for the stated program entries, in

which case we also use the required number of computers.

For instance, suppose we have 10 existing computers in a network; the dimension of
entry matrix is 1024x1024, and the threshold for dividing of the matrix is 128. This
means that until the dimension of matrices reaches 128, division and distribution
continues. Using this entry information, the number of layers for the distribution tree

is calculated as follows:

34

(log, 1024 —log,128) =10—-7 =3 (4.1)

The program finds a tree among those that can be built with 10 computers and three

layers, with most computers in the last layer.

(c)
Figure 4.4: Some Samples of Dynamic Distribution Method

As illustrated in Figure 4.4, the three distribution trees can all be defined with 10
computers and three layers but with different numbers of computers in the last layer.
In Figure 4.4(a), there are five computers in last layer; in Figure 4.4(b), there are six;
and in Figure 4.4(c), there are seven. When the problem is divided equally among
seven computers and is processed simultaneously, fewer computers are in the waiting
position compared to other trees. This means that the tree in Figure4.4(c) is most

efficient.

35

As previously explained the Dynamic Distribution Method first finds the optimum
distribution topology and then attempts to divide and distribute tasks among servers
accordingly. As soon as servers receive tasks according to the distribution tree,
which is received along with task itself, they will attempt to perform the task. During
the execution, we have reused the clients only when a small number of computers in

last layer is needed to make the layer completed.

For all propose methods, programs which are executed on computers are comprised
of client and server. We have created separate program (modified) for each method
in C# to run on server and client nodes. In this program, being either client or server
is specified via configuration file. To complete the mentioned explanations about the
program, we have provided it flowchart for server and client computers. Figure 4.5
presents flowchart of the program on the client computer located at the root of tree
topology. Figure 4.6 presents flowchart of the program which is performed on all

server computers.

36

Read Input Matrices
and other input values

"Enter" to execute
on local pc or any
other key to
distribute

Execute on local PC —

A 4

Other key l

Yes
Matrix size <=
Threshold

o]

Find best distribution topology
according to the number of PC

v

Distribute according to topology

Write results to
output file

v

State = Waiting & Listening

l

Received any
data?

Switch to
server mode

Figure 4.5: Flowchart of the ClientrPngram in Dynamic Distribution

37

Start

— > State = Idle & listening

Received any data?

Matrix dimension
<=Threshold or
According to topology
is this leaf PC?

State = Busy
Distribute according to topology

A 4

State = Waiting & Listening

l

Received any
data?

State = Busy
Execute task on local
machine

State = Previous state &
Listening

Calculate and send to
client

+7

Figure 4.6: Flowchart of Server Program in Dynamic Distribution Method

38

4.3.1 Performance Evaluation of Dynamic Distribution Method

Section 2.6 described to what extent the function of algorithm in a parallel system is
improved compared to a sequential system. Two criteria's were presented for
surveying the degree of improvement. Now, using this criteria's, we consider the
efficiency of the algorithm in parallel status comparing to sequential status. We
calculated the speed-up S (p) according to related formula in Section 2.6, for p=10
and p=20, which present the number of computers (processors) in parallel system:

S(10) =22 =394

T .
S — sequential == 7.7 4.2
(p) Tparallel 5(20) = % = 4.65 ()

Obtained results show the speed-up values in case of having 10 and 20 nodes over

parallel model rather than using sequential model respectively.

Using the efficiency related formula in Section 2.6, we have calculate efficiency E(p)

for the parallel algorithm with 10 and 20 computers (p=10, 20).

E(p) _ 1+Tsequential — m

p*Tparallel p
E(10) =352 =22 = .39 (43)
= 10 10)
E(20) =329 _ 285 _ 93
20 20

These calculated results show the efficiency of the algorithm in case of having 10
and 20 nodes over parallel model instead of applying sequential model. It is
obviously seen that using 10 nodes instead of 20 nodes leads to more efficiency

value and better performance.

39

4.4 Fair Distribution Method

Dynamic Distribution method was implemented for the improvement of the fixed
distribution methods. But, these distribution methods were unfair in task division.
For the mentioned distribution methods, in the beginning of the program no task was
indicated to the client itself and in the continuation of task distribution procedure, the

task was indicated for the client if free servers were finished in the network.

In the new distribution method, this problem has been revised. In this method,
according to the number of existing server in the network, at least one of the seven
multiplication tasks is considered for the client itself and the rest are distributed
among servers. The procedure of task division among computers takes place in the
following manner. For one client and one server case, three multiplication tasks for
the client and the other four are allocated to the server. In one client and two server
status, two multiplication tasks belong to the client and two to three multiplication
tasks are allocated to servers respectively. In the status of more than three computers,
always one task is considered for the client and the rest of them are distributed
among servers. For four to seven computers in network, the numbers of allocated

tasks for computers are as follows:

4 PCs: 1 task for client and 2 tasks for any other 3 servers.
5 PCs: 1 task for clientand 1, 1, 2, 2 for servers respectively.
6 PCs: 1 task for clientand 1, 1, 1, 1, 2 for servers respectively.

7 PCs: 1task forclientand 1, 1, 1, 1, 1, 1 for servers respectively.

Now when the numbers of existing computers are more than seven, with respect to

the any PC more than seven, the same number of computers from one to seven would

40

share and send their tasks to them. For instance, for the status of eight PCs (one PC is
more than seven), only computer number one (client) will share its task with that and
it will send for PC number 8. For the status of nine PCs (two PCs are more than
seven), computers number 1 and 2 (client and a server), will share their tasks with
eight and nine PCs. Here the ratio of task division is the same with status of less than
seven PCs. It means that in task division between client and a server, three tasks for

the client and four others belong to server.

Note that, where the numbers of existing PCs are fourteen, all PCs share their tasks
with another server. If the numbers of PCs in the network are more than fourteen for
each PC more than fourteen, PCs one to seven would divide their tasks with another
two servers instead of one. For example, in the status of eighteen PCs (four PCs are
more than fourteen), PCs one to four will share their tasks to another two servers
instead of one and PCs five to seven will also share their tasks to one server. Figure
4.7 shows more details in the continuation of this example. This procedure of
algorithm carries out the mentioned approach on the expansion of computers in

network.

Figure 4.7: An Example of Fair Distribution Method

41

In this example, there are eighteen PCs (4 PCs more than 14) which PCs one to four
distribute its tasks to another two servers while PCs five to seven distribute its tasks
to only one server.

Flowchart of the Fair distribution method is proposed in two figures (for client
program and server program) in the continuation. Figure 4.8 presents flowchart of
the program on the client computer located at the root of tree topology. Figure 4.9

presents flowchart of the program which is performed on all server computers.

42

Read Input Matrices
and other input
values

"Enter" to execute
on local pc or any
other key to
distribute

Enter

Execute on local PC

\ 4

Other key

Yes
Matrix size <=

Threshold

No |

Allocate appropriate of tasks to
any PCs and distribute them

A 4
Calculate results and listening e

to receiving servers result

l

Received all
results?

Write results
to output file

Figure 4.8: Flowchart of Client Program in Fair Distribution Method

43

Start

A 4

State = Idle & listening

Received any
task?

Matrix dimension
<=Threshold or
there is no free

server?

State = Busy
Execute task on local |—
machine

Allocate appropriate of tasks to
servers and distribute them

A 4

Calculate results and listening to
receiving servers result

Received all
results?

Yes l

Calculate and send to
client

A

Figure 4.10: Flowchart of Server Program in Fair Distribution Method

44

Chapter 5

EXPERIMENTAL RESULTS

This chapter presents the experimental results of proposed methods. Results are

presented by using different matrix dimensions, thresholds and number of computers.

The network properties and parameter values which we have used in our test system
are set as following. The network includes 20 nodes which have been connected
through Ethernet switch with 100 Mb/s data rate. The network has employed with
32-bit computers includes Windows 7 Professional-operating system, Intel Core 2
Dou CPU, 4 GB RAM, and 150 GB hard disk. The model of network adapters is
Realtek RTL8168D/8111D family PCI-E Gigabit Ethernet NIC.

The related program has been written in C# environment by applying socket
programming techniques. The input of our program is two squared matrices of
integer numbers. The integer numbers applied in the input matrices have been
generated randomly in range [0, 100]. Matrix dimensions have been varied in
between 128 and 2048 in the form of 2".

5.1 Comparison of Usual and Reuse of Waiting Clients Methods

In Section 4.1, we explained the Two-fold distribution method. It is known as a usual

distribution topology. In section 4.1.1, we introduced the proposed reusing method.

Table 5.1 compares experimental results of these two methods with five different

numbers of computers (PCs). It should be mentioned that, all matrix dimensions are

45

2048x2048 and the threshold value is 128 for each number of PCs (4, 8, 12, 16 and

20).

Table 5.1: Execution Time for Usual and Reuse of Waiting Clients by Two-fold

Distribution Method

Execution time, minutes

PC Numbers Usual Reuse of waiting clients
4 14.1 16.15
8 11.08 12.01
12 9.33 8.32
16 9.26 8.1
20 8.57 7.32

The table results are also presented in a form of graph in Figure 5.1.

18

16 .\ == Usual
o 14 \ == Reuse
L~
>
£ 12
€
o 10
£
e 8 .ﬁ
.0
5 6
(8]
[J)
5 4
2
0 T T T 1

12 16
PC Numbers

20

Figure 5.1: Execution Time versus Number of Computers for Usual and Reuse of
Waiting Clients by Two-fold Distribution Method

In usual method, a client which is in waiting state after distribution tasks, it does not

perform any execution like a server. In reuse method after distribution tasks, clients

will also be in listening state like server for any execution. It is observed that for less

number of PCs (up to eight) usual method execution time is less than reuse method,

due to there are fewer levels, so the number of waiting clients after distribution will

46

be low. In networks with more than eight computers, there are more clients in the
waiting state. Thus, the algorithm efficiency is improved by reusing waiting clients

in the network.

As a result execution time of reusing method is less than usual method when more

than eight numbers of PCs exist.

5.2 Comparison of Two-fold, Seven-fold and Dynamic Distribution
Methods

In Sections 4.1 and 4.2, we explained two-fold and seven-fold distribution topologies

that are fixed for all entries.

Dynamic distribution topology has been presented in order to improve two previous
topologies. Now, we compare the results of these three distribution methods in Table
5.2. All experiment results have been performed by using of three distribution
topologies with 2048x2048 matrix dimension and threshold value equal to 128 from

one to twenty computers.

47

Table 5.2: Execution Time of Three Different Distribution Methods

Execution time, minutes
PC Numbers TW(_)-fOI_d _ _Sev_en-fold _Dyr_lami_c
Distribution | Distribution Topology Distribution
Topology Topology
1 30.2 38.41 30.6
2 27 31.70 16.42
3 16.5 27.50 18.4
4 15.9 25.10 13
5 17 18.45 13.4
6 14.3 13.90 13.35
7 13.9 10 10
8 15 6.28 9.8
9 13.5 6.29 7.7
10 10.8 6.32 7.7
11 9.9 6.25 7.6
12 11.7 6.2 7.55
13 11.6 7.06 6.5
14 10.4 6.50 6.2
15 9 6 6.5
16 9.2 6.60 6.5
17 8.95 6.30 6.52
18 10 6.50 6.53
19 11 6.60 6.51
20 8.9 6.20 6.52

According to Table 5.2, the execution time in all three type of topologies decreases
with increasing number of computers. From the experimental results it is observed
that seven-fold distribution topology showed better performance than two-fold
distribution for large number of PCs (seven and more).The results are presented in a

form of graph in Figure 5.2.

48

==@=Two-fold
70 -y
‘\ ={ll=Seven-fold
60 '_\
Dynamic
50 y

Execution time, minute

o
I — — -y
. L

0 T T T T T T T T T T T T T T T T T T T 1

1 2 3 45 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
PC Numbers

Figure 5.2: Execution Time versus Number of Computers for Three Different
Distribution Method
Figure 5.2 shows execution time for Two-fold, Seven-fold and Dynamic distribution
methods. In a network with less than seven computers the Two-fold Distribution is
better than the Seven-fold Distribution. On the other hand the program execution
time for Dynamic Distribution Topology is better than Two-fold and Seven-fold

Distribution almost in all number of PCs.

In Table 5.3, values of speed up and efficiency for all the statuses of 2 to 20 PCs,
printed in Table 5.2 have been calculated. Process of alteration of speed up and
efficiency for all three methods of two-fold, seven-fold and dynamic has been shown

in table 5.3.

49

Table 5.3: Speed-Up and Efficiency of Three Different Distribution Methods

Two-fold Distribution Seven-fold Dynamic
Topology Distribution Distribution
PC Topology Topology
Numbers | Speed- | Efficiency | Speed- | Efficiency | Speed- | Efficiency
up up up

2 1.11 0.55 1.21 0.60 1.84 0.92
3 1.83 0.61 1.38 0.46 1.65 0.55
4 1.89 0.47 1.53 0.38 2.33 0.58
5 1.77 0.35 2.08 0.41 2.26 0.45
6 2.11 0.35 2.76 0.46 2.27 0.37
7 2.17 0.31 3.84 0.54 3.03 0.43
8 2.01 0.25 6.11 0.76 3.09 0.38
9 2.23 0.24 6.10 0.67 3.94 0.43
10 2.79 0.27 6.07 0.60 3.94 0.39
11 3.05 0.27 6.14 0.55 3.99 0.36
12 2.58 0.21 6.19 0.51 4.02 0.33
13 2.60 0.20 5.44 0.41 4.67 0.35
14 2.90 0.20 5.90 0.42 4.89 0.34
15 3.35 0.22 6.40 0.42 4.67 0.31
16 3.28 0.20 5.81 0.36 4.67 0.29
17 3.37 0.19 6.09 0.35 4.65 0.27
18 3.02 0.16 5.90 0.32 4.65 0.25
19 2.74 0.14 5.81 0.30 4.66 0.24
20 3.39 0.16 6.19 0.30 4.65 0.23

5.3 Performance of Dynamic Distribution Method

Next, we consider our program performance with dynamic distribution topology in

different situations. First, we execute the program with fixed matrix dimensions

2048x2048 by changing threshold as 64, 128, 256, and 512; and number of

computers as 1, 5, 10, 15 and 20. Here our aim is to see the effect of threshold values

to the execution time. The experimental results are presented in Table 5.3 an in the

form of graph in Figure 5.3. The execution time is compared in Table 5.3.

50

Table 5.4: Execution Time of Dynamic Distribution Method by Different Threshold

Values and Using Different Number of Computers

Execution time, minutes

PC Numbers 64 128 256 512
1 32.25 30.61 31.63 31.88
5 131 13.32 13.3 9.9
10 74 7.42 552 455
15 6.17 6.36 5.26 455
20 544 6.31 4.07 455

As shown in Table 5.3, the execution time decreases as the number of available

computers in the network increases. Also increasing the threshold value presents

little improvement in the execution time, which indicates that the smaller matrix

dimension execution is not optimum in parallel form. This signifies that when the

matrix dimensions are small enough, it is better to solve the problem on a single

machine.
80
20 < —— 64
4 \ =128
2 60
£ \ 256
€ 50
g \ =512
= 40
5 \
'S 30
=}
o
ﬁ 20 \
0 T T T T

10
PC Numbers

15

20

Figure 5.3: Execution Time versus Number of Computers with Different Threshold
Values for Dynamic Distribution Method

51

Figure 5.3 shows the program execution time with different thresholds for two
2048x2048 matrices. According to the results for large matrix dimensions having

large threshold values improves the execution time.

To determine the effect of matrix size, we executed the program with various
dimensions (128x128, 256x256, 512x512, 1024x1024 and2048x2048) using fixed
threshold 128 in a network with 1, 5, 10, 15 and 20 computers. The results in minutes

are compared in Table 5.4.

Table 5.5: Execution Time of Dynamic Distribution Method by Different Matrix
Size and Using Different Number of Computers

PC NUMmbers Execution Time, minutes
128 256 512 1024 2048
1 0.029 0.2 1.02 6.25 30.61
5 0.035 0.09 0.215 1.56 13.32
10 0.032 0.05 0.125 1.23 7.42
15 0.035 0.031 0.124 0.916 6.36
20 0.03 0.031 0.12 0.666 6.31

The execution time decreases as the number of available computers increases.
However, the reduction procedure of execution time in columns with bigger matrix
dimensions is more rather than columns with smaller matrix dimensions. We

clarified these results in Figure 5.4.

52

80

——128
70
8 ’\ —-256
S 60
£ \ 512
g
& >0 \ —>=1024
£
5 40 \ —¥—2048
c
S 30
)
: \
L
10 \ 72 |
0 - - A : 7S . o " 53)
1 5 10 15 20

PC Numbers

Figure 5.4: Execution Time versus Number of Computers with Different Matrix Size
for Dynamic Distribution Method

Figure 5.4 shows program execution time for different matrix dimensions using of
fixed threshold. The percentage of execution time improvement in parallel form for
larger matrix dimensions (1024, 2048) is more than matrices with smaller
dimensions (128, 256, 512).This indicates necessity and importance of parallelism
for large matrix dimensions. Increasing the number of available computers (15, 20)
also has significant impact on the program execution time.

5.4 Performance of Two-fold and Seven-fold Distribution Method

In continuing, the operations of Two-fold and Seven-fold distribution methods have
been indicated in the following tables and their related figures. Note that in Table 5.6
and Table 5.8 input matrices dimensions have been considered as constant while the
threshold values have been assumed as variable for figuring out the effect of them
whereas, in Table 5.7 and Table 5.9 the input matrices dimensions have been
considered as variable for figuring out the effect of them. But the threshold values

have been assumed as constant.

53

Table 5.6: Execution Time of Two-fold Distribution Method by Different Threshold
Values and Using Different Number of Computers

PC Numbers Execution time, minutes
64 128 256 512
1 31.28 31.31 30.35 29.23
5 16.98 15.38 14.45 12.31
10 19.21 12.88 7.98 5.63
15 19.00 10.8 7.46 5.63
20 18.45 8.95 6.28 5.63
35 ——64
30 N ——128
o 256
% 25 \ 512
£ 0 AN
£
§ i '\.\.&*
& NG
5
0 T T T T 1
1 5 10 15 20
PC Numbers

Figure 5.5: Execution Time versus Number of Computers with Different Threshold
Values for Two-fold Distribution Method

Table 5.7: Execution Time of Two-fold Distribution Method by Different Matrix
Size and Using Different Number of Computers

PC Numbers Execution Time, minutes
128 256 512 1024 2048
1 0.02 0.10 0.58 4.11 31.31
5 0.03 0.06 0.30 2.36 15.38
10 0.03 0.06 0.20 2.05 12.88
15 0.03 0.05 0.15 2.00 10.8
20 0.03 0.05 0.18 1.7 8.50

54

35

——128
X ——256

30
" 512
= 1024
3 25
£ \ —=2048
o 20
£ \
=)
e 15
5 \
=)
3 10
g I—%
5
——
0 L — e
1 5 10 15 20

PC Numbers

Figure 5.6: Execution Time versus Number of Computers with Different Matrix Size

for Two-fold Distribution Method

Table 5.8: Execution Time of Seven-fold Distribution Method by Different

Threshold Values and Using Different Number of Computers

Execution time, minutes

PC Numbers 64 128 256 512
1 39.31 38.68 39.61 39.28
5 19.23 18.23 18.85 17.53
10 6.50 6.81 6.55 5.03
15 6.51 6.26 6.25 4.95
20 6.53 6.68 6.50 488

55

45
40
35
30
25
20
15
10

Execution time, minutes

—o—64

N\ —m—128
\ 256
\ =—=512

10 15 20
PC Numbers

Figure 5.7: Execution Time versus Number of Computers with Different Threshold
Values for Seven-fold Distribution Method

Table 5.9: Execution Time of Seven-fold Distribution Method by Different Matrix
Size and Using Different Number of Computers

PC Numbers

Execution Time, minutes

128 256 512 1024 2048
1 0.02 0.15 0.75 5.33 39.31
5 0.03 0.06 0.38 3.0.1 18.23
10 0.03 0.01 0.11 1.46 6.81
15 0.03 0.01 0.13 1.38 6.26
20 0.03 0.03 0.21 0.98 6.68

56

45
40
35
30
25
20
15
10

Execution time, minutes

Figure 5.8: Execution Time versus Number of Computers with Different Matrix Size

——128
256
)\ 512
\ —4=1024
—#=2048

- SHe—

~e——
'—: T : T |-
1 5 10

PC Numbers

Ldad
Ly ——

15 20

for Seven-fold Distribution Method

5.6 Performance of Fair Distribution Method

Execution time achieved from the experimental results of Fair distribution method
has been included in this section. First, in Table 5.10, execution time of program on a
network including one to twenty computers has been entered. To do these tests, input
matrices with dimension of 2048x2048 has been used. Also, the threshold value

used for these tests is 128. In Table 5.10, execution time, speed up and efficiency of

program in different situation have been calculated.

57

Table 5.10: Execution Time, Speed-Up and Efficiency of Fair Distribution Method
by Different Number of Computers

PC Execution time of Fair Performance
Numbers distribution method Speed-Up Efficiency
1 24.5 --- ---
2 21.11 1.16 0.58
3 18.43 1.32 0.44
4 11.15 2.19 0.73
5 10.5 2.33 0.46
6 10.01 2.44 0.40
7 8.18 2.99 0.42
8 7.25 3.37 0.42
9 6.46 3.79 0.42
10 6.18 3.96 0.39
11 6.18 3.96 0.36
12 6.23 3.93 0.32
13 6.26 3.91 0.30
14 6.2 3.95 0.28
15 5.9 4.15 0.27
16 5.68 4.31 0.26
17 5.66 4.32 0.25
18 5.46 4.48 0.24
19 5.53 4.43 0.23
20 5.55 4.41 0.22

As it is seen in Table 5.10 by the increase of the number of computers we see the
decrease in the execution time. As a result of this reduction execution time, we
always had improvement in speed up. But, the altering process of efficiency in some
points is rising and the rest descending. In applications which we intend to use the
parallel program, noticing to the importance of speed up or efficiency, we can choose

the ideal situation from the modes of table.

For this version of distribution, too, the results of effects of threshold value changes
and different sizes of input matrices have been gathered. To see the effects of

threshold changes, size of entering matrices are 2048x2048. Also, these tests on the

58

networks including 1, 5, 10, 15 and 20 PCs have been done. Results of these tests are

in the table 5.11.

Table 5.11: Execution Time of Fair Distribution Method by Different Threshold
Values and Using Different Number of Computers

Execution time, minutes
PC Numbers 64 128 256 512
1 23.83 24.3 23.95 24.01
5 11.06 11.50 11.20 10.83
10 6.18 6.18 6.16 6.23
15 5.63 5.90 5.63 5.63
20 7.10 7.08 6.90 6.21

In following Figure 5.9 shows the program execution time with different threshold

values for two 2048x2048 input matrices.

30 ——64
== 128
" 25
% \ 256
£ 20 512
£
o
£ 15
=]
[
.0
‘é‘ 10
()
&
5
O T T T T 1
1 5 10 15 20
PC Numbers

Figure 5.9: Execution Time versus Number of Computers with Different Threshold
Values for Fair Distribution Method

For figuring out the effect of changes in size of input matrices, threshold value has

been considered as constant while input matrices dimensions have been assumed as

59

variable. These tests have been done on the networks including 1, 5, 10, 15 and 20

computers. Results of these tests are shown in Table 5.12.

Table 5.12: Execution Time of Fair Distribution Method by Different Matrix Size
Using Different Number of Computers

Execution Time, minutes
PC Numbers 128 256 512 1024 2048
1 0.02 0.06 0.50 3.45 24.30
5 0.03 0.03 0.16 1.58 11.50
10 0.03 0.03 0.13 0.80 6.18
15 0.03 0.03 0.19 0.61 5.90
20 0.03 0.03 0.18 0.71 6.50

Figure 5.10 shows program execution time for different matrix dimensions using

fixed threshold value by Fair distribution method.

30

=128
=li—256

25
\ 512
20 1024
\ —#—2048
15 \\
10

Execution time, minutes

- LA (A
5 10 15 20
PC Numbers

[3

Figure 5.10: Execution time versus Number of Computers with Different Matrix Size
for Fair Distribution Method

The method we have used for comparing to our Fair distribution method is Strassen-
BMR. The results for Strassen-BMR method in [32] have been already reported over

the system defined by following properties. All the applied processors are Intel

60

IPSC/860. This processor is a high performance parallel computer system. The
processing power of the iPSC/860 comes from its processing nodes. Each node in the
iIPSC/860 is either a CX or an RX processor. Every iPSC/860 system contains at least
one RX node. The CX node is based on the Intel386 microprocessor. An RX node
consists of an Intel i860 microprocessor capable of a peak performance of 80
MFLOPS. The i860 has multiple arithmetic units: an integer unit, a floating point
adder and a floating point multiplier. The processing nodes of the iPSC/860 are
interconnected in hypercube architecture having 2GB memory over each node. Peak
data transfer rate for inter-processor communication is 176 Mb/s. In a hypercube of

dimension n, each node has n neighbors and the total number of nodes in the

hypercube is 2™.

Regarding to what we have just mentioned, the connection type between processors
in Strassen-BMR is internal, whereas in our test system, connections is established
via cables. Hence, the transfer rate of the Strassen-BMR system is faster. Therefore,
the comparison can be done as follows. When the number of applied processors is
pretty less and inter-processor communications are not so significant, our method
will be working better than Strasssen-BMR. In contrast, when the number of used
processors is more, inter-processor communications will be considerable. Hence,

Strassen-BMR will work better due to fast communication between processors.

Results of STRASSEN.BMR method in the related reference are on four computers
by input matrices with the size of 500x500. The results of our implementation on

four computers and entering matrices with the size of 512x512 are achieved, too. In

61

this comparison, the execution time of program is calculated by second. Results of

these comparing are showed in Table 5.13.

Table 5.13: Comparing Execution Time of Strassen-BMR and Fair Distribution

Methods
Method Number of Matrix Size E_xecut|on
Computers time, sec
4 500%x500 10
Strassen-BMR 16 1000x1000 20
Fair distribution 4 512x512 8.58
method 16 1024x1024 34.6

Fair distribution method for parallel Strassen matrix multiplication algorithm has
been presented and compared with Strassen-BMR method. When the communication
is not very costly compared to computation, Fair distribution method may offer a fast

approach for large matrix dimensions.

62

Chapter 6

CONCLUSION

The aim of this thesis is to study necessities in parallel programming. Due to the
development of applying computers in all scientific aspects and need faster
processes, it is considerably important to study parallel programming methods of
applying hardware and software to solve scientific problems. In order to improve the
functionality of parallel algorithms, this thesis proposed data division and
distribution methods for implementing parallel calculations in homogeneous
networks with different number of nodes. This thesis uses Strassen matrix
multiplication algorithm. Strassen method is a recursive algorithm and has been

designed based on divide and conquer technique.

During the thesis initially, two types of distribution methods of tasks among
computers are designed. Then, by comparing two-fold and seven-fold methods, we
figured out constant distribution methods which are not satisfied all circumstances of
the program. Thereby, we select dynamic distribution method for division and
distribution of tasks belongs to Strassen algorithm. We apply P processors and
distribute input matrices of size nxn over an optimum network topology to perform

parallel computation.

63

The dynamic distribution method is applied as a tree distribution in such a way that
most computers are taken into account for the last layer. Hence, the maximum

possibility of parallel processing in recursive algorithms is provided.

Speed-up and efficiency as two measurement criterion are calculated using related
formulas. When the numbers of computers are ten or twenty, the speed-up values
have been calculated as 3.94 and 4.65 respectively. As well as, values of efficiency
for the same numbers of computers using related formula are 0.39 and 0.23

respectively.

We compared the execution time in usual and reusing of client methods in two-fold
distribution method. In the further, results of three distribution methods named by
two-fold, seven-fold and dynamic achieved by experimental results, were compared
to each other. It was observed that fixed distribution methods are not optimal, but
dynamic distribution method covers each optimum point in the fixed distribution

methods.

We are trying to occupy the clients at the begging of execution for improving the
performance of the previous methods. This method has been named by Fair

distribution.

After that, comparing of the achieved results in Fair distribution (10, 8.58 Sec for
Strassen-BMR and Fair distribution respectively) shows better improvement in
execution time rather than Strassen-BMR method (where the numbers of computers

are four, 500*500 and 512*512 are matrices dimension for Strassen-BMR and Fair

64

distribution method respectively). Finally, some efficiency improvements are

observed in case of having larger matrices in parallel environment.

65

REFERENCES

[1] J. D. Plummer, "Material and Process Limits in Silicon VLSI Technology",

Stanford University, Stanford, IEEE, Volume. 89, NO. 3, PP. 240-258, March 2001.

[2] C. D. Martin, "ENIAC: The Press Conference That Shook the World", IEEE

Technology and Society Magazine, Volume 14, PP. 3-10, December, 1995.

[3] W. Gehrke, K. Gaedke, "Associative Controlling of MonolithicParallel Processor
Architectures”, IEEE, Transactions on Circuits and Systems for Video Technology,

Volume 5, NO. 5, PP. 453-464, October 1995.

[4] H. EI-Rewini, M. Abd-El-Barr, "Advanced Computer Architecture and Parallel

Processing”, John Wiley & Sons, Canada, 2005.

[5] B. Barney, L. Livermore, "Introduction to Parallel Computing”, Mar 2010,

https://computing.linl.gov/tutorials/parallel_comp/, Ebook.

[6] M. J. Flynn, “Very high-speed computing systems”, IEEE, volume. 54, no. 12,

pp. 19011909, 1966.

[7] M. J. Flynn, K. W. Rudd, "Parallel Architectures”, ACM Computing Surveys,

Vol. 28, No. 1, PP. 1479-1496, March 1996.

66

[8] R. Eigenmann, D. J. Lilja, "Von Neumann Computers”, Wiley Encyclopedia of

Electrical and Electronics Engineering, Volume 23, PP. 387-400, January 30, 1998.

[9] R. Duncan, "A Survey of Parallel Computer Architectures”, IEEE, PP. 5-16,

February 1990.

[10] P. S. Pacheco, "An Introduction toParallel Programming”, Burlington, USA,

Elsevier Inc, 2011.

[11] J. Protic, M. Tomagevic, V. Milutinovic, "A Survey of Distributed Shared
Memory Systems", Proceedings of the 28th Annual Hawaii International Conference

on System Sciences, PP. 61-66, IEEE, 1995.

[12] W. Gropp, E. Lusk, R. Thakur, "Using MPI-2 Advanced Features of the

Message-Passing Interface”, Massachusetts Institute of Technology, Wilson, 1999.

[13] B.Wah, "Interconnection Networks for Parallel Computers”, John Wiley &

Sons, Inc, PP. 1613- 1623, 2008.

[14] M.Wimmer, "Programming Models for Parallel Computing”, MSC Thesis,

Wien university, Wien, 2010.

[15] F.E. Fich, P.Ragde, A.Wigderson, "Relations Between Concurrent-Write
Models of Parallel Computation”, SIAM J. Comput, Volume 17, No 3, PP. 606-626,

June 1988.

67

[16] U. Vishkin, "Thinking in Parallel:Some Basic Data-Parallel Algorithms and

Techniques™, University of Meryland, October 12, 2010.

[17] A. Grama, A. Gupta, G. Karypis, V. Kumar, “Introduction to Parallel
Computing" Second Edition, Addison Wesley, ISBN: 0-201-64865-2, January 16,

2003.

[18] L. Hu, I. Gorton, "Performance Evaluation for Parallel Systems: A

Survey",MSC Thesis, University of NSW, Australia, October 1997.

[19] M. A. Oliveira, "Parallel Computing and Parallel Programming”, LNEC, April

2010.

[20] D.L. Eager, J. Zahorjan, E.D. Lazowska, "Speedup Versus Efficiency in Parallel
Systems", IEEE, Transactions on Computers, Volume 38, NO. 3, PP. 408-423,

MARCH 1989.

[21] A. Gupta, V. Kumar, "Performance Properties of Large ScaleParallel Systems",

Journal of Parallel and Distributed Computing, Volume 19, No.3, pp. 234-244, 1993.

[22] S. Dasgupta, C. H. Papadimitriou, U. V. Vazirani, "Algorithms", MC Graw-Hill,

July 18, 2006.

[23] N. Hyodo, H. Murao, T. Saito, "Matrix Multiplication Made Fast-Practical View
of Fast Matrix Operation for Computer Algebra System", Japan Society for Symbolic

and Algebraic Computation, Volume 11, No 3,4, PP. 3-19, 2005.

68

[24] F. Song, J. Dongarra, S. Moore, "Experiments With Strassen’'s Algorithm: From
Sequential to Parallel”, Parallel and Distributed Computing and Systems, IASTED
18th International Conference Parallel and Distributed Computing and Systems, PP

415-421, 2006.

[25] S. Huss-Lederman, E. Jacobson, " Implementation of Strassen’s Algorithm for
Matrix Multiplication”, Supercomputing '96 proceeding of the 1996 ACM/IEEE
Conference on Supercomputing (CDROM), Pittsburgh, PA, USA — November 17 -

22, 1996.

[26] Automatically Tuned Linear Algebra Software (ATLAS),

http://www.netlib.org/atlas.

[27] NetSolve/GridSolve, http://icl.cs.utk.edu/netsolve.

[28] F. Desprez, F. Suter, " Mixed Parallel Implementation of the Top Level Step of
Strassen andWinograd Matrix Multiplication Algorithms", Proceedings of the 15th
International Parallel and Distributed Processing Symposium (IPDPS’01), San

Francisco, 14 March 2001.

[29] B. Grayson, A. P. shah, R. A. Geijn, " A High Performance Parallel Strassen

Implementation” Parallel Process, University of Texas at Austin, TX, USA,1995.

[30] C. Baransel, K. M. Imre, "A parallel implementation of Strassen’s matrix
multiplication algorithm for wormhole-routed all-port 2D torus networks"”, The

Journal of Supercomputing, Volume 62, Issue 1, PP 486-509, October 2012.

69

[31] Y. Ohntaki, " Parallel Implementation of Strassen’s Matrix Multiplication
Algorithm for Heterogeneous Clusters”, Proceedings of the 18th International

Parallel and Distributed Processing Symposium, PP. 220-228, IEEE, 2004

[32] Q. Luo, J. B. Drake, "A Scalable Parallel Strassen's Matrix Multiply Algorithm
for Distributed Memory Computers”, in proceedings of the Symposium on Applied

Computing, SAC'95, Nashville, TN. Feb 26-28, ACM Press, 1995.

70

APPENDICES

71

APPENDIX A: User Guide

At the starting point of perform, program can have 2 different positions, whether to
perform in the role of client or to start work in the role of server. If it starts to work
as client, directly finds the topology of distribution and will process the division and
distribution of the work, but if it is in the role of server, it will be waiting in to
receive work from client. In the program there is a configuration file which includes
the settings of program implementation which are actually entries of program too.
The figure of this file is shown below. We explain the existing information in the file

and the information which will be entered sequentially.

File Edit Format View Help

TYPE = CLIENT -
SOCKET_BUFFER_SIZE = 1024
THRESHOLD_COLUMN = 128
THRESHOLD_ROW = 128
SERVERS_COUNT = 20
SERVER_INDEX = 1

SERVERL 192.168.181.181
SERVER2 192.168.181.182
SERVER3 192.168.181.183|
SERVER4 192.168.181.184
SERVERS 192.168.181.185
SERVERG 192.168.181.186
SERVER7 192.168.181.187
SERVERS 192.168.181.188
SERVER9 192.168.181.189
SERVER1O 192.168.181.190
SERVER11 192.168.181.191
SERVER12 192.168.181.192
SERVER13 192.168.181.193
SERVER14 192.168.181.194
SERVERLS 192.168.181.195
192.168.181.196
192.168.181.197
192.168.181.198 -

m

SERVERLG
SERVERLY
SERVERLE

Configuration File

Type: It implies the kind of computer at which program performs on and has 2 kinds

of client or server.

SOCKET_BUFFER_SIZE: is the buffer size of receiving and sending data. For
instance when SOCKET_BUFFER_SIZE is 1024, the data that should be sent is

divided to 1024 byte packages. And, these packages are sent sequentially and one

72

after another. It should be mentioned that amount of SOCKET_BUFFER_SIZE must

be equal in both sender and receiver.

THRESHOLD _ROW, THRESHOLD_COLUMN: It is threshold for rows and
columns of matrices, here a user defines that to what optimum limit matrices should
be divided and distributed. Whatever is the threshold, division anddistribution of the
matrices are stopped and continuation of the calculation is performed by local

computer.

SERVER_COUNT: It displays number of all computers in network. For instance if

we have 30 computers in network, it equals to 30.

SERVER_INDEX: It equals with an index which IP of local computer has come to

this index in the configuration file.

SERVER1, SERVER2, etc: IP of existing computers in network are entered
sequentially these variables. Computers which should work on division and
distribution in the role of client will identify existing computers in authorized

network and with having their IP attempt to distribute the work.

Configuration file is in the follow path in program file:

StrassenMatrixMultiplication/ bin / Debug / Configuration

Two files of entering matrix which multiplication task should be performed on, too,

are copied in the above path. It should be mentioned here that after copying the

73

program file to the computers, settings of configuration file should conducted on
every single computer. After doing the settings, program will be performed on all
server computers and while server computers are in listening status, programs of

client computer are performed.

Performing the client program, after finding the distribution topology via client, steps
of sending process to server computers according to mentioned procedure are started
and eventually after receiving results of distributed calculations, these results are

stored in an output file which has created in the path of entering files via client.

To make sure of correctness, obtained results of multiplying 16x16 matrices are
illustrated in the following. Figures 6.2 and 6.3 show the input matrices and Figure

6.4 presents the output of multiplication calculated by the program.

_ | Matrice - Notepad [ERRE
File Edit Format Wiew Help

16 16

66 23 60 26 18 59 88 45 39 99 10 95 7 13 55 36
72 66 60 48 82 7l 45 51 30 63 16 53 19 25 20 29
14 23 85 34 73 15 66 78 58 16 83 48 34 22 37 67
73 35 7 69 5 3 31 95 78 8 96 54 42 34 26 13
79 82 80 84 29 20 63 56 0 &3 90 65 88 98 17

27 50 81 85 18 51 24 11 93 90 57 64 19 12 35 24
o1 70 69 53 42 54 37 52 72 51 69 22 13 66 81
92 89 26 92 53 41 96 28 58 68 91 40 64 99 37 88
47 66 74 18 28 64 66 74 12 29 12 67 82 1 99 27
82 76 73 31 86 44 71 49 74 41 96 75 63 98 88 73
14 &1 76 47 93 g0 52 27 23 53 79 23 29 28 46 56
70 64 58 88 26 5 2 3 95 24 44 88 69 91 10 15
41 40 53 1 26 51 34 93 24 45 8 33 L] 47 20 45
95 39 4 100 40 100 47 8 79 73 53 68 45 64 59 32
42 64 83 89 76 45 30 18 29 66 64 81 98 70 38 47
4 100 93 29 86 11 76 41 94 45 22 54 99 67 48 60

Input Matrix A

74

ﬂ MatriceB - Notepad |

File Edit Format View Help
L6 16
4 7 2 & 4 42 45 7 66 91 64 94 18 7. 34 94
93 54 7 29 51 46 66 7 96 20 7 7 49 46 7 81
54 61 43 55 53 3 7 13 7 7 82 80 53 58 62 52
26 7 52 25 &6 22 19 58 31 86 13 &5 7. 18 58 20
63 84 39 7 7 7 40 90 84 59 60 43 a5 86 64 7
58 19 4] 7 a4 2 a5 32 42 86 24 68 a0 7 43 52
49 61 7 69 19 5 25 7 38 63 42 26 [E] 7 a4 45
21 7 26 51 7 7 7 61 90 7 14 42 54 7 100 7
16 7 Qa5 3 69 95 18 53 95 53 33 30 a0 68 69 66
92 80 7 14 60 az 34 62 34 56 80 12 a1 B4 a4 66
63 45 10 55 82 a0 77 26 58 7 7 64 53 7 0 21
38 49 50 7 25 &6 36 24 7 32 7 12 14] 63 11
60 68 68 15 58 13 85 2 3 20 56 88 35 7 8 38
55 59 7 42 33 18 40 7 8 86 83 48 20 64 12 51
10 46 4 -1 28 B G4 25 G4 7 7 29 49 an 2
24 31 7 56 33 21 7 42 7 a1 6 72 31 36 83 39
/| b
Input Matrix B
_| Result - Notepad =NACE X

File Edit Format View Help

32653 42940 26029 35361 30711 38171 34683 28190 42157 39617 40034 31057 38220 44129 50686 36572 -
36367 46123 28917 33016 33623 36432 37342 31082 45123 40759 20697 37521 40376 47156 44543 40249
32691 41970 30526 37008 33532 39569 38001 31375 45253 37527 36649 37677 37550 47483 45617 34552
24768 38981 27445 25892 30802 40133 29848 25351 40686 35984 31257 35103 30536 40840 34425 34567
48480 61078 39364 3BOB3I 43804 42539 47516 35071 47112 49327 54010 50448 45305 58284 44858 47020
35358 39577 33526 2977 41545 39874 35977 28457 43357 39790 39263 35370 41481 43539 43268 34284
38112 48091 3607 33845 39983 39844 43406 34268 48465 50588 42434 46790 42632 53914 45421 46785
49654 62231 45468 43431 40245 48285 53214 43220 53378 653489 54546 55554 51604 65811 54706 51832
33829 44512 26726 38767 31987 35551 42905 23846 44416 33611 41141 36014 36545 45836 46754 36597
5027 63214 46014 51536 48453 56917 58615 43883 63002 61926 61873 54627 51228 70181 5947 52544
43288 45339 30902 40146 42237 37874 46588 33385 46490 45096 42581 41027 45822 53636 44885 37583
33190 43140 40322 26137 37030 36800 35207 28108 41089 41183 42744 40735 32584 40926 33319 35757
29034 36996 26011 27477 26025 28494 3347 24205 34024 29510 31786 32166 30633 40405 36755 35782
39095 50752 35698 37245 45007 44609 44614 36301 4677 584319 45002 46030 46628 55246 48100 42101
47046 56303 42117 40458 46486 43067 50087 36228 47698 50247 52282 50103 46123 55571 47136 41184
46360 51555 47794 39760 41653 44023 47133 37568 52740 42898 51306 43096 45256 56340 52519 44888

Result of Multiplying A and B

Next example is presented over 8*8 input matrices. Matrices are in the form of upper
triangular contains simple elements. Figure 6.5 and Figure 6.6 illustrate the input

matrices and output matrix respectively.

75

|=\

=G

ol

Format View Help

Edit

File

| MatriceA - Notepad

ArdddAAAAD

ArdddAAdAACS O

ArdddAHdSCoo

Ao oo

AEAACCOoOo0

Ao o0

MHOOOOOO00O

MO0 O0oO000

Edit Format View Help

File

| MatriceB - Notepad

[W Wt W WAVl ot Wt]

[W Wt Wt WVl ot o o

[W Wt Wt W ¥ e R R

[t W Wt Wt e R R R

[t Wt W e o e e

NNOOQOoOOoO

MNOoOOO000

MO0 00O000

Input Matrices

Edit Format View Help

| Result - Notepad

File

e

L = o Y N R

DO =D DOO

[F=1s o o R N e

SFNOOOOoOo O

NOOODDDOO

oo oo

CoOoOoooo

-

Result Matrix
76

Meanwhile, the execution time of program performed over 4 processors, matrices by

size 512 and 128 as threshold value is shown in figure 6.7.

r

B CA\Users\cmpesource\Desktop\New version of distribution03.09.2013\StrassenMatriceMultiplicatio... =21 =l Q_L_‘

rying to connect to IP: 192.168.181.184, Port: 1086882
Connection was establicshed.

Data was sent...

Trving to connect to [P: 192.1608.181.184, Port: 10008
Connection was established.

Data was sent...

Listening to IP: 192.168.181.181, Port: 1387
Connection was established.

Data was sent...

Jdstening to IP 92.168.181.181,. Port: 1389
Data wa: ent...

Jdstening to TP: 192.168.181.181. Port: 1391
Connection wa stablished.
Connection was established.

Data was received...
Data w received. ..
Connec mn was ablished.
Data w received. ..
Data w received...
Connection was established.
Data was received...
Connection was established.
Data was received...
ready

lcut ion time: BB:00:08.5831438

An Example of a Test Execution Time

77

APPENDIX B: Programming Part

The program below has been implemented to divide the matrices and distribute them

over the network nodes. The following information illustrates the mentioned

program.
Property Explanation
Author Reza Abri Vaighan
Name of the
Matrix Multiplication Distributer
program
Language C#
Program type Object-Oriented

Release date

05.06.2013

Purpose

Investigating Strassen matrices multiplication algorithm to

be executed over distributed systems

Usage

Finding a better solution for matrix multiplication by

distributed execution

Headers of the

program

We have applied only C# system files and no extra library
have been used.

using System;

using System.Collections.Generic;
using System.Collections;

using System.Text;

namespace StrassenMatriceMultiplication

{

classProgram

{

staticConfigurationHandler Config =
newConfigurationHandler("configuration.cfg");

staticbool IsClient;
staticstring Status

"Idle";

staticDateTime ReservedTime = newDateTime();

78

staticstring Command = "";
staticstring Tree = "";
staticstring LocalIP =
static System.IO.StreamWriter file = new System.IO.StreamWriter("log.txt");

static System.Threading.Mutex Mtx = new System.Threading.Mutex();

[RTI
B

staticvoid Main(string[] args)
{
string TypeValue =
if (Config.GetValue("TYPE", out TypeValue))
IsClient = (TypeValue.ToUpper() == "CLIENT") ? true :false;

else

{
Console.WriteLine("Error: Could not read TYPE value from configuration file");
return;

}

In the beginning of the program running, a question is asked from user, then user, for
running of the program on local computer, should press "Enter" key and for

distributing of the program in order to parallel execution should press any other key.

if (IsClient)
{

Console.WriteLine("Press \"Enter\" key to execute in local machine, \r\nor
other key to send to servers...");
ConsoleKeyInfo key = Console.ReadKey(true);
Console.Clear();
if (key.Key == ConsoleKey.Enter)

{
ExecuteClient(false);
return;

}

}

string ServerIndex = 5
Config.GetValue("SERVER_INDEX", out ServerIndex);
Config.GetValue("SERVER" + ServerIndex, out LocallP);

System.Threading.Thread StatusResponder =
newSystem.Threading.Thread(() => ResponseToStatus());
StatusResponder.Start();

System.Threading.Thread CommandResponder =
newSystem.Threading.Thread(() => ResponseToCommand());
CommandResponder.Start();

This section is related to starting point of client activity in the role of server which is

again related to renewed usage.

if (IsClient)
{
System.Threading.Thread Server =
newSystem.Threading.Thread(() => ExecuteServer());
Server.Start();

79

ExecuteClient(true);

if (Server.IsAlive)
Server.Join();

}

else

ExecuteServer();

if (StatusResponder.IsAlive)
StatusResponder.Join();

if (CommandResponder.IsAlive)
CommandResponder.Join();

}

This function finds optimum distribution topology regarding to inputs automatically.

staticstring FindBestTopology(int Count, int Level)

{
string Topology = GetBestTopologyFromFile(Count, Level);
if (Topology != "")

return Topology;

ArraylList Tree = newArraylList();
ArrayList LevelArray = newArraylList();

if (Count == 2)

{
Tree.Add(-1);
LevelArray.Add(1);
Tree.Add(0);
LevelArray.Add(2);
elseif (Count == 8)

{
Tree.Add(-1);
LevelArray.Add(1);

Tree.Add(0);
LevelArray.Add(2);
Tree.Add(0);
LevelArray.Add(2);
Tree.Add(0);
LevelArray.Add(2);
Tree.Add(0);
LevelArray.Add(2);
Tree.Add(9);
LevelArray.Add(2);
Tree.Add(0);
LevelArray.Add(2);
Tree.Add(0);

LevelArray.Add(2);
}
else
{

GetBestTopology(ref Tree, ref LevelArray, -1,
Count, 1, Level);

80

string Printable = 5
for (int i = Tree.Count - 1; i >= 0@; i--)
{
Printable = "\n" + Printable;
Printable = "Server" + i + Printable;
for (int j = @; j < (int)LevelArray[i] - 1; j++)
Printable = "\t" + Printable;

}
Console.WriteLine("Topology : ");
Console .Wr‘iteLine("===========================") ;
Console.WriteLine(Printable);
Console .Wr‘iteLine("===========================") ;

Console.Out.Flush();

string Output =
for (int i = @; i < Tree.Count - 1; i++)
Output += (i + "," + (Tree[i].ToString() + ";"));
Output += ((Tree.Count - 1) + "," + Tree[Tree.Count -
1].ToString());

nu,
)

return Output;

}

staticint GetLeavesCount(ArraylList Level, int MaximumLevel)
{

int Count = 0;

int LastNumber = -2;

for (int i = @; i < Level.Count; i++)
if ((int)Level[i] == MaximumLevel)

{
Count++;
if (LastNumber != (int)Level[i])

Count += 2;
LastNumber = (int)Level[i];

}

return Count;

}

staticstring GetBestTopologyFromFile(int Count, int Level)

string[] Topologies = System.IO.File.ReadAllLines("topology.txt");
for (int i = @; i < Topologies.Length; i++)
{
string[] Parts = Topologies[i].Split('|");
int tmpCount = -1;
int tmpLevel = -1;
char CountOperand = Parts[0][0];
Parts[@] = Parts[@].Substring(1);

if (Parts[@].IndexOf('=") >= 9)
{

tmpCount = Convert.ToInt32(Parts[@].Substring(@, Parts[@].IndexOf('=")));
tmpLevel = Convert.ToInt32(Parts[@].Substring(Parts[@].Index0f('=") + 1));
if (CountOperand == '=")

81

{
if (Count == tmpCount && Level == tmplLevel)

return Parts[1];

}
elseif (CountOperand == '>")

{
if (Count >= tmpCount && Level == tmplLevel)
return Parts[1];

}

elseif (CountOperand == '<')

{
if (Count <= tmpCount && Level == tmplLevel)
return Parts[1];

}
}
elseif (Parts[@].IndexOf('<"') >= @)
{
tmpCount = Convert.ToInt32(Parts[@].Substring(@, Parts[@].IndexOf('<"')));
tmpLevel = Convert.ToInt32(Parts[@].Substring(Parts[@].Index0f('<"') + 1));
if (CountOperand == '=")
{

if (Count == tmpCount && Level <= tmpLevel)
return Parts[1];

}

elseif (CountOperand == '>")

if (Count >= tmpCount && Level <= tmpLevel)
return Parts[1];

}
elseif (CountOperand == '<")

{
if (Count <= tmpCount && Level <= tmpLevel)
return Parts[1];

}
elseif (Parts[@].IndexOf('>') >= 0)
tmpCount = Conveit.ToInt32(Parts[0].Substring(e, Parts[@].Index0f('>")));
tmpLevel = Convert.ToInt32(Parts[@].Substring(Parts[@].Index0Of('>") + 1));
if (CountOperand == '=")

{
if (Count == tmpCount && Level >= tmpLevel)

return Parts[1];
}

elseif (CountOperand == '>")

{
if (Count >= tmpCount && Level >= tmpLevel)
return Parts[1];

}

elseif (CountOperand == '<')

{
if (Count <= tmpCount && Level >= tmpLevel)

return Parts[1];

}

return™”;

}

82

staticint GetBestTopology(refArrayList Tree, refArraylList Level,
int Count, int ChildrenCount, int MaximumLevel)

if (ChildrenCount > Count - Tree.Count)
return -1;

for (int i = @; i < ChildrenCount; i++)
{

Tree.Add(index);//index of parent

if (index -1)

Level.Add(1);

else

Level.Add((int)Level[index] + 1);

if (Tree.Count Count)
return GetlLeavesCount(Level, MaximumLevel);

}

T2 =
T3 =
T4 =
17 =

Arraylist
Arraylist
Arraylist
Arraylist

(ArrayList)Tree.Clone();
(ArrayList)Tree.Clone();
(ArrayList)Tree.Clone();
(ArrayList)Tree.Clone();

L2 =
L3 =
L4 =
L7 =

Arraylist
Arraylist
Arraylist
Arraylist

(ArrayList)Level.Clone();
(ArrayList)Level.Clone();
(ArrayList)Level.Clone();
(ArrayList)Level.Clone();

int[] Res =
Res[0] =
Res[1]
Res[2]
Res[3]

newint[4];

GetBestTopology(ref T2,
GetBestTopology(ref T3,
GetBestTopology(ref T4,
GetBestTopology(ref T7,

index
index
index
index

ref L2,
ref L3,
ref L4,
ref L7,

int max = Res[©@];

int ind = 0;

for (int i = 1; i < Res.Length; i++)
if (Res[i] > max)

{
max = Res[i];
ind = i;
}
if (ind == 0)
{
Tree = (ArraylList)T2.Clone();
Level = (ArrayList)L2.Clone();
}
elseif (ind == 1)
{
Tree = (ArraylList)T3.Clone();
Level = (ArrayList)L3.Clone();
}
elseif (ind == 2)
{
Tree = (ArraylList)T4.Clone();
Level = (ArrayList)L4.Clone();
}
elseif (ind == 3)
{
Tree = (ArraylList)T7.Clone();

83

+ + + +

R R RpR

)

)

J

)

Count, 2,
Count, 3,
Count, 4,
Count, 2,

int index,

MaximumLevel);
MaximumLevel);
MaximumLevel);
MaximumLevel);

Level = (ArraylList)L7.Clone();

return max;

}

staticvoid ResponseToStatus()

{
int ReceivePort = 10001;

while (true)

{
Mtx.WaitOne();

TCPIPSocket socket = newTCPIPSocket("", LocalIP, ReceivePort, 0);
byte[] Message = socket.ReceiveMessage();

if (Encoding.ASCII.GetString(Message) == "Status")
{
if (Status == "Idle")
{

Status = "IdleReserved";
socket.SendMessage(Encoding.ASCII.GetBytes("Idle"));
file.WriteLine(DateTime.Now.ToLongTimeString() + "\t" + "Idle" +
to" + socket.RemoteIP);
file.Flush();

Console.WriteLine(DateTime.Now.ToLongTimeString() + "\t" + "Idle" + "\t" +
socket.RemoteIP);

was sent

}
elseif (Status == "Waiting")

{

Status = "WaitingReserved";
socket.SendMessage(Encoding.ASCII.GetBytes("Waiting"));
file.WriteLine(DateTime.Now.ToLongTimeString() + "\t" + "Waiting" +
to" + socket.RemoteIP);
file.Flush();

Console.WriteLine(DateTime.Now.ToLongTimeString() + "\t" + "Waiting" + "\t" +
socket.RemoteIP + "\t");

ReservedTime = DateTime.Now;

}

elseif (Status == "WaitingReserved")

{

"

was sent

Console.WriteLine("==>" + DateTime.Now + "\t\t" + ReservedTime);
if (ReservedTime.AddSeconds(60) >DateTime.Now)

{
socket.SendMessage(Encoding.ASCII.GetBytes(Status));

else

{
Status = "Waiting";
socket.SendMessage(Encoding.ASCII.GetBytes(Status));

file.WriteLine(DateTime.Now.ToLongTimeString() + "\t" + Status + " was sent
to" + socket.RemoteIP);

file.Flush();

Console.WriteLine(DateTime.Now.ToLongTimeString() + "\t" + Status + "\t" +

socket.RemoteIP);
}

{
socket.SendMessage(Encoding.ASCII.GetBytes(Status));

else

84

file.WriteLine(DateTime.Now.ToLongTimeString() + "\t" + Status + " was sent
to" + socket.RemoteIP);

file.Flush();

Console.WritelLine(DateTime.Now.ToLongTimeString() + "\t" + Status + "\t" +

socket.RemoteIP);
}

}
{

socket.SendMessage(Encoding .ASCII.GetBytes("UNKNOWN"));
file.WriteLine(DateTime.Now.ToLongTimeString() + "\t" + "UNKNOWN" + " was sent
to" + socket.RemoteIP);

file.Flush();

else

}

Mtx.ReleaseMutex();

}
}

staticvoid ResponseToCommand()

{

int ReceivePort = 10002;

while (true)

{
TCPIPSocket socket = newTCPIPSocket("", LocalIP, ReceivePort, 90);
byte[] Message = socket.ReceiveMessage();

Status = "WaitingWaiting";

Tree = Encoding.ASCII.GetString(Message);
file.WriteLine(DateTime.Now.ToLongTimeString() + "\t" + Command + " was
received from" + socket.RemoteIP);
file.Flush();

}
}

staticvoid ExecuteClient(bool IsStrassen)
{
Console.WriteLine("Start : + DateTime.Now);
System.Diagnostics.Stopwatch stopWatch =
newSystem.Diagnostics.Stopwatch();
stopWatch.Start();
TimeSpan ExecutionTime = newTimeSpan();

int Port = 10000;

string ThresholdColumn;
string ThresholdRow;
ConfigurationHandler config = newConfigurationHandler("configuration.cfg");
config.GetValue("THRESHOLD_COLUMN", out ThresholdColumn);
config.GetValue("THRESHOLD_ROW", out ThresholdRow);
if (ThresholdRow != ThresholdColumn)

{
Console.WriteLine("Error: THRESHOLD ROW and THRESHOLD_COLUMN must be equal.");
Console.Read();
return;

}

85

int[][,] Matrices = newint[2][,];
Matrices[@] = MatriceUtilities.ReadMatriceFromFile("MatriceA.txt");
Matrices[1] = MatriceUtilities.ReadMatriceFromFile("MatriceB.txt");

if (Matrices[@].GetLength(®) != Matrices[0@].GetLength(1) &&
Matrices[@].GetLength(1) != Matrices[1].GetLength(9) &&
Matrices[1].GetLength(@) != Matrices[1].GetLength(1))

{
Console.WriteLine("Error: Input matrices are invalid. Check rows and columns
count.");
Console.Read();
return;

}

for (int i = @; i < Matrices.GetLength(@); i++)
Matrices[i] = MatriceUtilities.AddZero(Matrices[i]);

int[,] ResultMatrice = null;

This section is for a status which running of the program via user on local machine
has been chosen or division of matrices have reached to their maximum level and

again local computer is responsible for the continuation of performing program.

if (IsStrassen == false ||

(Matrices[@].GetLength(®) <= Convert.ToInt32(ThresholdRow) &&
Matrices[@].GetLength(1) <= Convert.ToInt32(ThresholdColumn) &&
Matrices[1].GetLength(®) <= Convert.ToInt32(ThresholdRow) &&
Matrices[1].GetLength(1) <= Convert.ToInt32(ThresholdColumn)))

{

Status = "Busy";
Console.Write("Multiplication is executing on local machine.");
MatriceUtilities.Multiplication(Matrices[@], Matrices[1], ref ResultMatrice);
MatriceUtilities.WriteToFile("Result.txt", ResultMatrice);
Console.WriteLine("Result is ready");

Status = "Idle";
stopWatch.Stop();

ExecutionTime = stopWatch.Elapsed;
Console.Write("Execution time: " + ExecutionTime.ToString());
Console.Read();

return;

}

Status = "Waiting";
int[,] A1l = null, A12 = null, A21 = null, A22 = null;
int[,] B11 = null, B12 = null, B21 = null, B22 = null;

MatriceUtilities.StrassenDivide(Matrices[@], out Al11l, out A12, out A21, out
A22);
MatriceUtilities.StrassenDivide(Matrices[1], out B11, out B12, out B21, out
B22);

86

int[,] A11A12
null;

int[,] A11A22
null;
MatriceUtilities.Add(A11l, A22, ref A11A22);
MatriceUtilities.Add(B11, B22, ref B11B22);
MatriceUtilities.Add(A21, A22, ref A21A22);
MatriceUtilities.Subtract(B12, B22, ref B12B22);
MatriceUtilities.Subtract(B21, B11l, ref B21B11);
MatriceUtilities.Add(A11l, Al12, ref A11A12);
MatriceUtilities.Subtract(A21, All, ref A21A11);
MatriceUtilities.Add(B11, B12, ref B11B12);
MatriceUtilities.Subtract(A12, A22, ref A12A22);
MatriceUtilities.Add(B21, B22, ref B21B22);

null, A21A11 null, B11B12 null, A12A22 null, B21B22

null, B11B22

null, A21A22

null, B12B22

null, B21B11

int[,] P1 = null, P2 = null, P3 = null, P4 = null, P5 = null, P6 = null, P7 =
null;

int[][,] P1_Parts = null, P2_Parts = null, P3_Parts = null, P4_Parts = null,
P5_Parts = null, P6_Parts = null, P7_Parts = null;

string val = 5
config.GetValue("SERVERS_COUNT", out val);
int ServerCount = Convert.ToInt32(val);
int Level = (int)(Math.Log(Matrices[@].GetLength(0), 2) -
Math.Log(Convert.ToInt32(ThresholdRow), 2));

Tree = FindBestTopology(ServerCount, Level);
string[] Topology = Tree.Split(';');

config.GetValue("SERVER_INDEX", out val);

string ServerIndex = (Convert.ToInt32(val) - 1).ToString();
ArraylList Servers = newArraylList();

int ChildrensCount = 0;

for (int i = @; i < Topology.Length; i++)

{
string[] TopologyParts = Topology[i].Split(';");
if (TopologyParts[1l] == ServerIndex)

ChildrensCount++;
config.GetValue("SERVER" + (Convert.ToInt32(TopologyParts[@]) + 1), out val);
Servers.Add(val);
}
}

System.Threading.Thread MulThreadl = null;
System.Threading.Thread MulThread2 = null;
System.Threading.Thread MulThread3 = null;
System.Threading.Thread MulThread4 = null;
System.Threading.Thread MulThread5 = null;
System.Threading.Thread MulThread6 = null;
System.Threading.Thread MulThread7 = null;

87

In this section of the program, division modes of 7 multiplication operations of

Strassen algorithm among servers have been defined.

if (Servers.Count == 9)

{

MulThreadl = newSystem.Threading.Thread(()
=>MatriceUtilities.Multiplication(A11A22, B11B22, ref P1));
MulThreadl.Start();

MulThread2 = newSystem.Threading.Thread(()
=>MatriceUtilities.Multiplication(A21A22, B11l, ref P2));
MulThread2.Start();

MulThread3 = newSystem.Threading.Thread(()
=>MatriceUtilities.Multiplication(All, B12B22, ref P3));
MulThread3.Start();

MulThread4 = newSystem.Threading.Thread(()
=>MatriceUtilities.Multiplication(A22, B21B11, ref P4));
MulThread4.Start();

MulThread5 = newSystem.Threading.Thread(()
=>MatriceUtilities.Multiplication(A11A12, B22, ref P5));
MulThread5.Start();

MulThread6 = newSystem.Threading.Thread(()
=>MatriceUtilities.Multiplication(A21A11, B11B12, ref P6));
MulThread6.Start();

MulThread7 = newSystem.Threading.Thread(()
=>MatriceUtilities.Multiplication(A12A22, B21B22, ref P7));
MulThread7.Start();

}
{

elseif (Servers.Count == 1)

System.Threading.Mutex mtx® = newSystem.Threading.Mutex();

MulThreadl = newSystem.Threading.Thread(()
=>MatriceUtilities.Multiplication(A11A22, B11B22, ref P1));
MulThreadl.Start();

MulThread2 = newSystem.Threading.Thread(()
=>MatriceUtilities.Multiplication(A21A22, B11, ref P2));
MulThread2.Start();

MulThread3 = newSystem.Threading.Thread(()
=>MatriceUtilities.Multiplication(All, B12B22, ref P3));
MulThread3.Start();

MulThread4 = newSystem.Threading.Thread(()
=>MatriceUtilities.Multiplication(A22, B21B11, ref P4));
MulThread4.Start();

MulThread5 = newSystem.Threading.Thread(() =>
Server_Thread(Servers[@].ToString(), Port, A11A12, B22, out P5_Parts, mtxe,
Tree));

MulThread5.Start();

MulThread6 = newSystem.Threading.Thread(() =>
Server_Thread(Servers[@].ToString(), Port, A21A11, B11B12, out P6_Parts, mtxo,
Tree));

MulThread6.Start();

MulThread7 = newSystem.Threading.Thread(() =>
Server_Thread(Servers[@].ToString(), Port, A12A22, B21B22, out P7_Parts, mtxo,
Tree));

MulThread7.Start();

88

}

elseif (Servers.Count == 2)

{

System.Threading.Mutex mtx@ = newSystem.Threading.Mutex();
System.Threading.Mutex mtxl = newSystem.Threading.Mutex();

MulThreadl = newSystem.Threading.Thread(() =>

Server_Thread(Servers[0].ToString(), Port, A11A22, B11B22, out P1_Parts, mtxeo,

Tree));
MulThreadl.Start();

MulThread2 = newSystem.Threading.Thread(() =>
Server_Thread(Servers[@0].ToString(), Port, A21A22, B11, out P2_Parts,
Tree));

MulThread2.Start();

MulThread3 = newSystem.Threading.Thread(() =>
Server_Thread(Servers[@].ToString(), Port, All, B12B22, out P3_Parts,
Tree));

MulThread3.Start();

MulThread4 = newSystem.Threading.Thread(() =>
Server_Thread(Servers[@0].ToString(), Port, A22, B21B11, out P4_Parts,
Tree));

MulThread4.Start();

MulThread5 = newSystem.Threading.Thread(() =>
Server_Thread(Servers[1].ToString(), Port, A11A12, B22, out P5_Parts,
Tree));

MulThread5.Start();
MulThread6 = newSystem.Threading.Thread(() =>

mtxe,

mtxo,

mtxo,

mtx1,

Server_Thread(Servers[1].ToString(), Port, A21A11, B11B12, out P6_Parts, mtx1,

Tree));
MulThread6.Start();
MulThread7 = newSystem.Threading.Thread(() =>

Server_Thread(Servers[1].ToString(), Port, A12A22, B21B22, out P7_Parts, mtx1,

Tree));
MulThread7.Start();

}

elseif (Servers.Count == 3)

{

System.Threading.Mutex mtxe

newSystem.Threading.Mutex();

System.Threading.Mutex mtxl = newSystem.Threading.Mutex();
System.Threading.Mutex mtx2 = newSystem.Threading.Mutex();

MulThreadl = newSystem.Threading.Thread(() =>

Server_Thread(Servers[@].ToString(), Port, A11A22, B11B22, out P1_Parts, mtxo,

Tree));
MulThreadl.Start();

MulThread2 = newSystem.Threading.Thread(() =>
Server_Thread(Servers[@0].ToString(), Port, A21A22, B11l, out P2_Parts,
Tree));

MulThread2.Start();

MulThread3 = newSystem.Threading.Thread(() =>
Server_Thread(Servers[@].ToString(), Port, Al1l, B12B22, out P3_Parts,
Tree));

MulThread3.Start();

MulThread4 = newSystem.Threading.Thread(() =>
Server_Thread(Servers[1].ToString(), Port, A22, B21B11, out P4_Parts,
Tree));

MulThread4.Start();

MulThread5 = newSystem.Threading.Thread(() =>
Server_Thread(Servers[1].ToString(), Port, A11A12, B22, out P5_Parts,
Tree));

MulThread5.Start();

89

mtxo,

mtxe,

mtx1,

mtx1,

MulThread6 = newSystem.Threading.Thread(() =>
Server_Thread(Servers[2].ToString(), Port, A21A11, B11B12, out P6_Parts, mtx2,
Tree));

MulThread6.Start();

MulThread7 = newSystem.Threading.Thread(() =>
Server_Thread(Servers[2].ToString(), Port, A12A22, B21B22, out P7_Parts, mtx2,
Tree));

MulThread7.Start();
}

elseif (Servers.Count == 4)
{

System.Threading.Mutex mtx@ = newSystem.Threading.Mutex();

System.Threading.Mutex mtxl = newSystem.Threading.Mutex();

System.Threading.Mutex mtx2 = newSystem.Threading.Mutex();

System.Threading.Mutex mtx3 = newSystem.Threading.Mutex();

MulThreadl = newSystem.Threading.Thread(() =>
Server_Thread(Servers[0].ToString(), Port, A11A22, B11B22, out P1_Parts, mtxo,
Tree));

MulThreadl.Start();

MulThread2 = newSystem.Threading.Thread(() =>
Server_Thread(Servers[@].ToString(), Port, A21A22, B11l, out P2_Parts, mtxe,
Tree));

MulThread2.Start();

MulThread3 = newSystem.Threading.Thread(() =>
Server_Thread(Servers[1].ToString(), Port, All, B12B22, out P3_Parts, mtx1,
Tree));

MulThread3.Start();

MulThread4 = newSystem.Threading.Thread(() =>
Server_Thread(Servers[1].ToString(), Port, A22, B21B11, out P4_Parts, mtx1,
Tree));

MulThread4.Start();

MulThread5 = newSystem.Threading.Thread(() =>
Server_Thread(Servers[2].ToString(), Port, A11A12, B22, out P5_Parts, mtx2,
Tree));

MulThread5.Start();

MulThread6 = newSystem.Threading.Thread(() =>
Server_Thread(Servers[2].ToString(), Port, A21A11, B11B12, out P6_Parts, mtx2,
Tree));

MulThread6.Start();

MulThread7 = newSystem.Threading.Thread(() =>

Server_Thread(Servers[3].ToString(), Port, A12A22, B21B22, out P7_Parts, mtx3,

Tree));
MulThread7.Start();
}
elseif (Servers.Count == 7)
{

System.Threading.Mutex mtx® = newSystem.Threading.Mutex();

System.Threading.Mutex mtxl = newSystem.Threading.Mutex();

System.Threading.Mutex mtx2 = newSystem.Threading.Mutex();

System.Threading.Mutex mtx3 = newSystem.Threading.Mutex();

System.Threading.Mutex mtx4 = newSystem.Threading.Mutex();

System.Threading.Mutex mtx5 = newSystem.Threading.Mutex();

System.Threading.Mutex mtx6 = newSystem.Threading.Mutex();

MulThreadl = newSystem.Threading.Thread(() =>
Server_Thread(Servers[@0].ToString(), Port, A11A22, B11B22, out P1_Parts, mtxo,
Tree));

MulThreadl.Start();

MulThread2 = newSystem.Threading.Thread(() =>
Server_Thread(Servers[1].ToString(), Port, A21A22, B11l, out P2_Parts, mtx1,
Tree));

MulThread2.Start();

90

MulThread3 = newSystem.Threading.Thread(() =>
Server_Thread(Servers[2].ToString(), Port, All, B12B22, out P3_Parts, mtx2,
Tree));

MulThread3.Start();

MulThread4 = newSystem.Threading.Thread(() =>
Server_Thread(Servers[3].ToString(), Port, A22, B21B11, out P4_Parts, mtx3,
Tree));

MulThread4.Start();

MulThread5 = newSystem.Threading.Thread(() =>
Server_Thread(Servers[4].ToString(), Port, A11A12, B22, out P5_Parts, mtx4,
Tree));

MulThread5.Start();

MulThread6 = newSystem.Threading.Thread(() =>
Server_Thread(Servers[5].ToString(), Port, A21A11, B11B12, out P6_Parts, mtx5,
Tree));

MulThread6.Start();

MulThread7 = newSystem.Threading.Thread(() =>
Server_Thread(Servers[6].ToString(), Port, A12A22, B21B22, out P7_Parts, mtx6,
Tree));

MulThread7.Start();

}

if (MulThreadl.IsAlive)
MulThreadl.Join();
if (MulThread2.IsAlive)
MulThread2.Join();
if (MulThread3.IsAlive)
MulThread3.Join();
if (MulThread4.IsAlive)
MulThread4.Join();
if (MulThread5.IsAlive)
MulThread5.Join();
if (MulThread6.IsAlive)
MulThread6.Join();
if (MulThread7.IsAlive)
MulThread7.Join();

if (Servers.Count != @)
{

if (Servers.Count != 1)
{

P1 = MatriceUtilities.StrassenConquer(P1_Parts[@],
P1_Parts[1], P1_Parts[2], P1_Parts[3], P1_Parts[4], P1_Parts[5], P1_Parts[6]);
P2 = MatriceUtilities.StrassenConquer(P2_Parts[0],
P2_Parts[1], P2_Parts[2], P2_Parts[3], P2_Parts[4], P2_Parts[5], P2_Parts[6]);
P3 = MatriceUtilities.StrassenConquer(P3_Parts[0],
P3_Parts[1], P3_Parts[2], P3_Parts[3], P3_Parts[4], P3_Parts[5], P3_Parts[6]);
P4 = MatriceUtilities.StrassenConquer(P4_Parts[0],
P4_Parts[1], P4_Parts[2], P4_Parts[3], P4_Parts[4], P4_Parts[5], P4_Parts[6]);

}
P5 = MatriceUtilities.StrassenConquer(P5_Parts[©@],
P5_Parts[1], P5_Parts[2], P5_Parts[3], P5_Parts[4], P5_Parts[5], P5_Parts[6]);
P6 = MatriceUtilities.StrassenConquer(P6_Parts[0],
P6_Parts[1], P6_Parts[2], P6_Parts[3], P6_Parts[4], P6_Parts[5], P6_Parts[6]);
P7 = MatriceUtilities.StrassenConquer(P7_Parts[©@],
P7_Parts[1], P7_Parts[2], P7_Parts[3], P7_Parts[4], P7_Parts[5], P7_Parts[6]);

}

Status = "Busy";

91

ResultMatrice = MatriceUtilities.StrassenConquer(P1, P2, P3, P4,
P5, P6, P7);
MatriceUtilities.WriteToFile("Result.txt", ResultMatrice);
Console.WriteLine("Result is ready");

Status = "Idle";
stopWatch.Stop();

ExecutionTime = stopWatch.Elapsed;
Console.Write("Execution time: " + ExecutionTime.ToString());

}

staticvoid ExecuteServer()

while (true)
{
int Port = 10000;
TCPIPSocket socket = newTCPIPSocket("", LocalIP, Port, 9);
byte[] Message = socket.ReceiveMessage();

System.Threading.Thread Responder =
newSystem.Threading.Thread(() => ResponseToMessage(Message, socket, Command));
Responder.Start();

}
}

This function is performed for server computers. Servers from port 10000 are
listening until they receive sent matrices of clients. Calculating the multiplication of

these matrices, it presents the results.

staticvoid ResponseToMessage(byte[] Message, TCPIPSocket socket, string com)

{

int Port = 10000;
string IP = socket.RemoteIP;

string ThresholdColumn;

string ThresholdRow;

ConfigurationHandler config = newConfigurationHandler("configuration.cfg");
config.GetValue("THRESHOLD_COLUMN", out ThresholdColumn);
config.GetValue("THRESHOLD ROW", out ThresholdRow);

int[][,] Matrices = MatriceUtilities.FromByteArray(Message);

file.WriteLine(DateTime.Now.ToLongTimeString() + "\t" +
Matrices[@].GetLength(®) + "," + Matrices[0@].GetLength(1) + "\t" +
Matrices[1].GetLength(®) + "," + Matrices[1].GetLength(1) + " were received");
file.Flush();

0; i < Matrices.GetLength(0); i++)
Matrices[i] = MatriceUtilities.AddZero(Matrices[i]);

for (int i

int[,] A1l = null, A12
int[,] B11 = null, B12

null, A21
null, B21

null, A22
null, B22

null;
null;

Status = "Busy";

92

MatriceUtilities.StrassenDivide(Matrices[@], out A11l, out Al1l2, out A21, out
A22);
MatriceUtilities.StrassenDivide(Matrices[1], out B11, out B12, out B21, out
B22);

//Calculate P1, P2, P3, P4, P5, P6 and P7
int[,] A11A12 = null, A21A11 = null, B11B12
null;

int[,] A11A22
null;
MatriceUtilities.Add(A11l, A22, ref A11A22);
MatriceUtilities.Add(B11, B22, ref B11B22);
MatriceUtilities.Add(A21, A22, ref A21A22);
MatriceUtilities.Subtract(B12, B22, ref B12B22);
MatriceUtilities.Subtract(B21, B1l, ref B21B11);
MatriceUtilities.Add(A1l1l, Al12, ref A11A12);
MatriceUtilities.Subtract(A21, All, ref A21A11);
MatriceUtilities.Add(B11l, B12, ref B11B12);
MatriceUtilities.Subtract(A12, A22, ref A12A22);
MatriceUtilities.Add(B21, B22, ref B21B22);

null, A12A22 null, B21B22

null, B11B22 = null, A21A22 = null, B12B22 = null, B21B1l

int[,] P1 = null, P2 = null, P3 = null, P4 = null, P5 = null, P6 = null, P7 =
null;

if (Matrices[0@].GetLength(®) <= Convert.ToInt32(ThresholdRow) &&
Matrices[0@].GetLength(1l) <= Convert.ToInt32(ThresholdColumn))

file.WriteLine(DateTime.Now.ToLongTimeString() + "\t" + "on local machine");
file.Flush();

Status = "Busy";

System.Threading.Thread MulThreadl =
newSystem.Threading.Thread(() =>MatriceUtilities.Multiplication(A11A22,
B11B22, ref P1));

MulThreadl.Start();

System.Threading.Thread MulThread2 =
newSystem.Threading.Thread(() =>MatriceUtilities.Multiplication(A21A22, B11,
ref P2));

MulThread2.Start();

System.Threading.Thread MulThread3 =
newSystem.Threading.Thread(() =>MatriceUtilities.Multiplication(All, B12B22,
ref P3));

MulThread3.Start();

System.Threading.Thread MulThread4 =
newSystem.Threading.Thread(() =>MatriceUtilities.Multiplication(A22, B21B11,
ref P4));

MulThread4.Start();

System.Threading.Thread MulThread5 =
newSystem.Threading.Thread(() =>MatriceUtilities.Multiplication(A11A12, B22,
ref P5));

MulThread5.Start();

System.Threading.Thread MulThread6 =
newSystem.Threading.Thread(() =>MatriceUtilities.Multiplication(A21A11,
B11B12, ref P6));

MulThread6.Start();

System.Threading.Thread MulThread7 =
newSystem.Threading.Thread(() =>MatriceUtilities.Multiplication(A12A22,
B21B22, ref P7));

MulThread7.Start();

if (MulThreadl.IsAlive)
MulThreadl.Join();
if (MulThread2.IsAlive)
MulThread2.Join();

93

if (MulThread3.IsAlive)
MulThread3.Join();
if (MulThread4.IsAlive)
MulThread4.Join();
if (MulThread5.IsAlive)
MulThread5.Join();
if (MulThread6.IsAlive)
MulThread6.Join();
if (MulThread7.IsAlive)

MulThread7.Join();
}
else
{

int[][,] P1_Parts = null, P2_Parts = null, P3_Parts = null, P4_Parts = null,
P5_Parts = null, P6_Parts = null, P7_Parts = null;

string val = "";

config.GetValue("SERVERS_COUNT", out val);

int ServerCount = Convert.ToInt32(val);

int Level = (int)(Math.Log(Matrices[@].GetLength(0), 2) -
Math.Log(Convert.ToInt32(ThresholdRow), 2));

string[] Topology = Tree.Split(';');

config.GetValue("SERVER_INDEX", out val);
string ServerIndex = (Convert.ToInt32(val) - 1).ToString();
ArrayList Servers = newArraylList();
int ChildrensCount = 0;
for (int i = @; i < Topology.Length; i++)
{
string[] TopologyParts = Topology[i].Split(';");
if (TopologyParts[1] == ServerIndex)

ChildrensCount++;
config.GetValue("SERVER" + (Convert.ToInt32(TopologyParts[0]) + 1), out val);
Servers.Add(val);

}
}

System.Threading.Thread MulThreadl = null;
System.Threading.Thread MulThread2 = null;
System.Threading.Thread MulThread3 = null;
System.Threading.Thread MulThread4 = null;
System.Threading.Thread MulThread5 = null;
System.Threading.Thread MulThread6 = null;
System.Threading.Thread MulThread7 = null;

if (Servers.Count == 9)

{

MulThreadl = newSystem.Threading.Thread(()
=>MatriceUtilities.Multiplication(A11A22, B11B22, ref P1));
MulThreadl.Start();

MulThread2 = newSystem.Threading.Thread(()
=>MatriceUtilities.Multiplication(A21A22, B11, ref P2));
MulThread2.Start();

MulThread3 = newSystem.Threading.Thread(()
=>MatriceUtilities.Multiplication(Al1l, B12B22, ref P3));
MulThread3.Start();

MulThread4 = newSystem.Threading.Thread(()
=>MatriceUtilities.Multiplication(A22, B21B11, ref P4));
MulThread4.Start();

94

MulThread5 = newSystem.Threading.Thread(()
=>MatriceUtilities.Multiplication(A11A12, B22, ref P5));
MulThread5.Start();

MulThread6 = newSystem.Threading.Thread(()
=>MatriceUtilities.Multiplication(A21A11, B11B12, ref P6));
MulThread6.Start();

MulThread7 = newSystem.Threading.Thread(()
=>MatriceUtilities.Multiplication(A12A22, B21B22, ref P7));
MulThread7.Start();

}

elseif (Servers.Count == 1)

{

System.Threading.Mutex mtx@ = newSystem.Threading.Mutex();

MulThreadl = newSystem.Threading.Thread(()
=>MatriceUtilities.Multiplication(A11A22, B11B22, ref P1));
MulThreadl.Start();

MulThread2 = newSystem.Threading.Thread(()
=>MatriceUtilities.Multiplication(A21A22, B11, ref P2));

MulThread2.Start();

MulThread3 = newSystem.Threading.Thread(()
=>MatriceUtilities.Multiplication(Al1l, B12B22, ref P3));
MulThread3.Start();

MulThread4 = newSystem.Threading.Thread(()
=>MatriceUtilities.Multiplication(A22, B21B11, ref P4));
MulThread4.Start();

MulThread5 = newSystem.Threading.Thread(() =>
Server_Thread(Servers[0].ToString(), Port, A11A12, B22, out P5_Parts, mtxo,
Tree));

MulThread5.Start();

MulThread6 = newSystem.Threading.Thread(() =>
Server_Thread(Servers[0].ToString(), Port, A21A11, B11B12, out P6_Parts, mtxo,
Tree));

MulThread6.Start();

MulThread7 = newSystem.Threading.Thread(() =>
Server_Thread(Servers[@].ToString(), Port, A12A22, B21B22, out P7_Parts, mtxo,
Tree));

MulThread7.Start();
}

elseif (Servers.Count == 2)
{

System.Threading.Mutex mtx® = newSystem.Threading.Mutex();

System.Threading.Mutex mtxl = newSystem.Threading.Mutex();

MulThreadl = newSystem.Threading.Thread(() =>
Server_Thread(Servers[@].ToString(), Port, A11A22, B11B22, out P1_Parts, mtxo,
Tree));

MulThreadl.Start();

MulThread2 = newSystem.Threading.Thread(() =>
Server_Thread(Servers[@].ToString(), Port, A21A22, B11l, out P2_Parts, mtxe,
Tree));

MulThread2.Start();

MulThread3 = newSystem.Threading.Thread(() =>
Server_Thread(Servers[@].ToString(), Port, All, B12B22, out P3_Parts, mtxe,
Tree));

MulThread3.Start();

MulThread4 = newSystem.Threading.Thread(() =>
Server_Thread(Servers[@].ToString(), Port, A22, B21B11, out P4_Parts, mtxe,
Tree));

MulThread4.Start();

MulThread5 = newSystem.Threading.Thread(() =>
Server_Thread(Servers[1].ToString(), Port, A11A12, B22, out P5_Parts, mtx1,
Tree));

95

MulThread5.Start();

MulThread6 = newSystem.Threading.Thread(() =>
Server_Thread(Servers[1].ToString(), Port, A21A11, B11B12, out P6_Parts, mtx1,
Tree));

MulThread6.Start();

MulThread7 = newSystem.Threading.Thread(() =>
Server_Thread(Servers[1].ToString(), Port, A12A22, B21B22, out P7_Parts, mtx1,
Tree));

MulThread7.Start();
}

elseif (Servers.Count == 3)
{

System.Threading.Mutex mtx® = newSystem.Threading.Mutex();

System.Threading.Mutex mtxl = newSystem.Threading.Mutex();

System.Threading.Mutex mtx2 = newSystem.Threading.Mutex();

MulThreadl = newSystem.Threading.Thread(() =>
Server_Thread(Servers[0].ToString(), Port, A11A22, B11B22, out P1_Parts, mtxe,
Tree));

MulThreadl.Start();

MulThread2 = newSystem.Threading.Thread(() =>
Server_Thread(Servers[@].ToString(), Port, A21A22, B11l, out P2_Parts, mtxe,
Tree));

MulThread2.Start();

MulThread3 = newSystem.Threading.Thread(() =>
Server_Thread(Servers[0].ToString(), Port, All, B12B22, out P3_Parts, mtxo,
Tree));

MulThread3.Start();

MulThread4 = newSystem.Threading.Thread(() =>
Server_Thread(Servers[1].ToString(), Port, A22, B21B11, out P4_Parts, mtx1,
Tree));

MulThread4.Start();

MulThread5 = newSystem.Threading.Thread(() =>
Server_Thread(Servers[1].ToString(), Port, A11A12, B22, out P5_Parts, mtx1,
Tree));

MulThread5.Start();

MulThread6 = newSystem.Threading.Thread(() =>
Server_Thread(Servers[2].ToString(), Port, A21A11, B11B12, out P6_Parts, mtx2,
Tree));

MulThread6.Start();

MulThread7 = newSystem.Threading.Thread(() =>
Server_Thread(Servers[2].ToString(), Port, A12A22, B21B22, out P7_Parts, mtx2,
Tree));

MulThread7.Start();
}

elseif (Servers.Count == 4)

{

System.Threading.Mutex mtx® = newSystem.Threading.Mutex();

System.Threading.Mutex mtxl = newSystem.Threading.Mutex();

System.Threading.Mutex mtx2 = newSystem.Threading.Mutex();

System.Threading.Mutex mtx3 = newSystem.Threading.Mutex();

MulThreadl = newSystem.Threading.Thread(() =>
Server_Thread(Servers[@0].ToString(), Port, A11A22, B11B22, out P1_Parts, mtxo,
Tree));

MulThreadl.Start();

MulThread2 = newSystem.Threading.Thread(() =>
Server_Thread(Servers[@].ToString(), Port, A21A22, B11l, out P2_Parts, mtxe,
Tree));

MulThread2.Start();

MulThread3 = newSystem.Threading.Thread(() =>
Server_Thread(Servers[1].ToString(), Port, All, B12B22, out P3_Parts, mtx1,
Tree));

MulThread3.Start();

96

MulThread4 = newSystem.Threading.Thread(() =>
Server_Thread(Servers[1].ToString(), Port, A22, B21B11, out P4_Parts, mtx1,
Tree));

MulThread4.Start();

MulThread5 = newSystem.Threading.Thread(() =>
Server_Thread(Servers[2].ToString(), Port, A11A12, B22, out P5_Parts, mtx2,
Tree));

MulThread5.Start();

MulThread6 = newSystem.Threading.Thread(() =>
Server_Thread(Servers[2].ToString(), Port, A21A11, B11B12, out P6_Parts, mtx2,
Tree));

MulThread6.Start();

MulThread7 = newSystem.Threading.Thread(() =>
Server_Thread(Servers[3].ToString(), Port, A12A22, B21B22, out P7_Parts, mtx3,
Tree));

MulThread7.Start();

}
Status = "Waiting";

if (MulThreadl.IsAlive)
MulThreadl.Join();
if (MulThread2.IsAlive)
MulThread2.Join();
if (MulThread3.IsAlive)
MulThread3.Join();
if (MulThread4.IsAlive)
MulThread4.Join();
if (MulThread5.IsAlive)
MulThread5.Join();
if (MulThread6.IsAlive)

MulThread6.Join();
if (MulThread7.IsAlive)
MulThread7.Join();

Status = "Busy";
if (Servers.Count != @)

{
if (Servers.Count != 1)

{

P1 = MatriceUtilities.StrassenConquer(P1_Parts[0],
P1_Parts[1], P1_Parts[2], P1_Parts[3], P1_Parts[4], P1_Parts[5], P1_Parts[6]);
P2 = MatriceUtilities.StrassenConquer(P2_Parts[Q],
P2_Parts[1], P2_Parts[2], P2_Parts[3], P2_Parts[4], P2_Parts[5], P2_Parts[6]);
P3 = MatriceUtilities.StrassenConquer(P3_Parts[0],
P3_Parts[1], P3_Parts[2], P3_Parts[3], P3_Parts[4], P3_Parts[5], P3_Parts[6]);
P4 = MatriceUtilities.StrassenConquer(P4_Parts[0],
P4_Parts[1], P4_Parts[2], P4_Parts[3], P4_Parts[4], P4_Parts[5], P4_Parts[6]);

P5 = MatriceUtilities.StrassenConquer(P5_Parts[0],
P5_Parts[1], P5_Parts[2], P5_Parts[3], P5_Parts[4], P5_Parts[5], P5_Parts[6]);

P6 = MatriceUtilities.StrassenConquer(P6_Parts[0],
P6_Parts[1], P6_Parts[2], P6_Parts[3], P6_Parts[4], P6_Parts[5], P6_Parts[6]);

P7 = MatriceUtilities.StrassenConquer(P7_Parts[@],
P7_Parts[1], P7_Parts[2], P7_Parts[3], P7_Parts[4], P7_Parts[5], P7_Parts[6]);

}
}

byte[] Result = MatriceUtilities.ToByteArray(P1, P2, P3, P4, P5, P6, P7);
socket.SendMessage(Result);
Status = "Idle";

}

97

staticvoid Server_Thread(string IP, int Port, int[,] Inputl, int[,] Input2,
outint[][,] Ouptuts, System.Threading.Mutex mtx, string Topology)

if (IP != null)
{

TCPIPSocket TopologySocket = newTCPIPSocket(IP, LocalIP, @, 10002);
byte[] Message = Encoding.ASCII.GetBytes(Topology);

mtx.WaitOne();

TopologySocket.SendMessage(Message);

mtx.ReleaseMutex();

TCPIPSocket socket = newTCPIPSocket(IP, LocalIP, @, Port);
byte[] BytesSend = MatriceUtilities.ToByteArray(Inputl, Input2);
mtx.WaitOne();

socket.SendMessage(BytesSend);

mtx.ReleaseMutex();

byte[] BytesReceived = socket.ReceiveMessage();
Ouptuts = MatriceUtilities.FromByteArray(BytesReceived);

}
else

{
int[,] A11 = null, A12 = null, A21 = null, A22 = null;
int[,] B11 = null, B12 = null, B21 = null, B22 = null;

Status = "Busy";

MatriceUtilities.StrassenDivide(Inputl, out Al11l, out Al2, out A21, out A22);
MatriceUtilities.StrassenDivide(Input2, out B11l, out B12, out B21, out B22);

int[,] A11A12
null;

int[,] A11A22
null;
MatriceUtilities.Add(A11l, A22, ref A11A22);
MatriceUtilities.Add(B11l, B22, ref B11B22);
MatriceUtilities.Add(A21, A22, ref A21A22);
MatriceUtilities.Subtract(B12, B22, ref B12B22);
MatriceUtilities.Subtract(B21, B1l, ref B21B11);
MatriceUtilities.Add(A1l, Al12, ref A11A12);
MatriceUtilities.Subtract(A21, All, ref A21A11);
MatriceUtilities.Add(B11l, B12, ref B11B12);
MatriceUtilities.Subtract(Al12, A22, ref A12A22);
MatriceUtilities.Add(B21, B22, ref B21B22);

null, A21A11 null, B11B12 null, A12A22 null, B21B22

null, B12B22

null, B21B11

null, B11B22

null, A21A22

int[,] P1 = null, P2 = null, P3 = null, P4 = null, P5 = null, P6 = null, P7 =
null;

file.WriteLine(DateTime.Now.ToLongTimeString() + "\t" + "on local machine");
file.Flush();

System.Threading.Thread MulThreadl =
newSystem.Threading.Thread(() =>MatriceUtilities.Multiplication(A11A22,
B11B22, ref P1));

MulThreadl.Start();

System.Threading.Thread MulThread2 =
newSystem.Threading.Thread(() =>MatriceUtilities.Multiplication(A21A22, B11,
ref P2));

98

MulThread2.Start();

System.Threading.Thread MulThread3 =
newSystem.Threading.Thread(() =>MatriceUtilities.Multiplication(Al11, B12B22,
ref P3));

MulThread3.Start();

System.Threading.Thread MulThread4 =
newSystem.Threading.Thread(() =>MatriceUtilities.Multiplication(A22, B21B11,
ref P4));

MulThread4.Start();

System.Threading.Thread MulThread5 =
newSystem.Threading.Thread(() =>MatriceUtilities.Multiplication(A11A12, B22,
ref P5));

MulThread5.Start();

System.Threading.Thread MulThread6 =
newSystem.Threading.Thread(() =>MatriceUtilities.Multiplication(A21A11,
B11B12, ref P6));

MulThread6.Start();

System.Threading.Thread MulThread7 =
newSystem.Threading.Thread(() =>MatriceUtilities.Multiplication(A12A22,
B21B22, ref P7));

MulThread7.Start();

if (MulThreadl.IsAlive)
MulThreadl.Join();
if (MulThread2.IsAlive)
MulThread2.Join();
if (MulThread3.IsAlive)
MulThread3.Join();
if (MulThread4.IsAlive)
MulThread4.Join();
if (MulThread5.IsAlive)
MulThread5.Join();
if (MulThread6.IsAlive)
MulThread6.Join();
if (MulThread7.IsAlive)
MulThread7.Join();

Ouptuts = newint[7][,];
Ouptuts[@] = P1;
Ouptuts[1] = P2;
Ouptuts[2] = P3;
Ouptuts[3] = P4;
Ouptuts[4] = P5;
Ouptuts[5] = P6;
Ouptuts[6] = P7;

}

99

