
Investigation Performance of Strassen Matrix

Multiplication Algorithm on Distributed Systems

Reza Abri Vaighan

Submitted to the

Institute of Graduate Studies and Research

In partial fulfillment of the requirements for the Degree of

Master of Science

In

Computer Engineering

Eastern Mediterranean University

August 2013

Gazimağusa, North Cyprus

Approval of the Institute of Graduate Studies and Research

 Prof. Dr. Elvan Yılmaz

 Director

I certify that this thesis satisfies the requirements as a thesis for the degree of Master

of Computer Engineering Department.

 Assoc. Prof. Dr. Muhammed Salamah

 Chair, Department of

 Computer Engineering Department

We certify that we have read this thesis and that in our opinion it is fully adequate in

scope and quality as a thesis for the degree of Master of Computer Engineering

Department.

 Asst. Prof. Dr. Gürcü Öz

 Supervisor

 Examining Committee

1. Assoc. Prof. Dr. Alexander Chefranov

2. Asst. Prof. Dr. Ahmet Ünveren

3. Asst. Prof. Dr. Gürcü Öz---

http://cmpe.emu.edu.tr/gurcu/
http://cmpe.emu.edu.tr/gurcu/
http://cmpe.emu.edu.tr/chefranov/
http://cmpe.emu.edu.tr/chefranov/
http://cmpe.emu.edu.tr/unveren/
http://cmpe.emu.edu.tr/unveren/
http://cmpe.emu.edu.tr/gurcu/
http://cmpe.emu.edu.tr/gurcu/

iii

ABSTRACT

Parallel computation is the concurrent performance of a task with multiple processors

in order to obtain rapid results. This method is based on that the process of solving a

problem can usually be divided into smaller problem parts and with some

coordination, these solution parts perform simultaneously.

Simply put, parallel computing is the concurrent use of different computing

resources for solving a computational problem. Parallel computing saves time, solves

large problems efficiently and is cost-effective or non-local sources. There are two

important models in the architecture of parallel computing:

I. Shared memory: In this multiprocessor system, all of the allocated processors

can access to a common memory.

II. Message passing: In this multiprocessor system, each processor has its own

local memory; processors exchange messages and share data through an

internal connection network.

In this thesis Strassen recursive algorithm is implemented for multiplying square

matrices in parallel form for a distributed homogeneous system in order to improve

its execution time. Strassen multiplying algorithm is a divide and conquer problem,

with temporal complexity O ().

iv

Since this algorithm is recursive, total parallelism is impossible thus, matrices must

be divided and distributed according to a special distribution topology in which

affects on the performance time.

This thesis represents an economical distribution topology with distributing matrices,

which minimize the multiplication time of matrices in a parallel environment.

Dividing and distributing matrices according to a basic distribution topology (two-

fold distribution), led to favorable and unfavorable results. To improve the results,

the matrix distribution topology needs to be changed.

Finding a desirable and convenient topology is necessary aiming to achieve suitable

results by considering matrices dimensions and the number of nodes. So, this method

is expected to reduce the execution time in comparison with Strassen-BMR method.

Keywords: Parallel Computation, Message Passing, Strassen Algorithm, Divide and

Conquer, Topology

v

ÖZ

Paralel hesaplama, hızlı sonuç elde etmek amacıyla, bir görevin birden fazla işlemci

tarafından eşzamanlı hesaplanmasıdır. Bu yöntem, genellikle, büyük bir problemi

küçük parçalara ayırıp çözme gerçeğine dayanmaktadır. Ve bu parçaların çözümü,

bazı koordinasyonlarla, aynı anda gerçekleştirilir.

Basitçe söylemek gerekirse, paralel hesaplama sistemi bir hesaplama problemini

çözmek için farklı işlem kaynaklarının eşzamanlı kullanılmasıdır. Paralel hesaplama

sistemi, zaman kazandıran, büyük problemleri verimli bir şekilde çözen, düşük

maliyetli, yerel olmayan kaynaklardır.Paralel hesaplama mimarisi için iki önemli

model kullanılmaktadır:

I. Paylaşılan bellek: Bu çok işlemcili sistemde, tüm tahsis edilen işlemciler

ortak bir belleğe erişebilir.

II. Mesaj geçen: Bu çok işlemcili sistemde, her işlemcinin kendi yerel hafızası

vardır; işlemciler dahili bir bağlantıyla ağ üzerinden mesaj alış verisi yaparak

veri paylaşabilirler.

Bu tezde, Strassen'in özyinelemeli algoritması, kare matrislerin çarpımı için, paralel

şekilde dağıtılmış homojen bir sistemde, yürütme süresini iyileştirilmek amacıyla

mesaj geçişi modeliyle uygulanmıştır. Strassen çarpım algoritması zamansal

karmaşıklığı O () ile, problemi böl ve yönet (divide and conquer) yöntemidir.

vi

Bu algoritma özyinelemeli olduğu için, tamamen eşzamanlı yapılması

imkansızdır.Bu nedenle, yürütme süresini azaltmak için, matrisler özel bir dağıtım

topolojisine göre bölünüp dağıtılmalıdır.

Bu tez, paralel bir ortamda, matrislerin çarpma süresini azaltmak maksadıyle,

ekonomik bir dağıtım topolojisi önermektedir. Matrisleri temel bir dağıtım

topolojisiyle (ikili dağıtım) bölüp ağ üzerinde dağıtmak, olumlu ve olumsuz

sonuçlara yol açar. Sonuçları iyileştirmek için, matris dağıtım topolojisinin

iyileştirilmesi gerekmektedir.

İstenilen bir sonuç elde etmek için, matris boyutları ve bilgisayar sayısı dikkate

alınarak, arzu edilen, uygun bir topoloji bulunması gerekmektedir. Bu tezde, önerilen

bir topoloji üzerinde Strassen algoritması uygulanmıştır. Elde edilen sonuçlara göre,

önerilen yöntem ve topoloji önceki yöntemlerle karşılaştırıldığında yürütme

zamanında azalma olduğu tespit edilmiştir.

Anahtar Kelimeler: Paralel Hesaplama, Mesaj Geçen, Strassen Algoritması, Böl ve

Yönet, Topoloji

vii

Dedicated to my family with love

viii

ACKNOWLEDGMENTS

I have taken great deal of efforts in this thesis. Although, its accomplishment could

not be possible without effective and helpful support of my dear supervisor Asst.

Prof. Dr. Gürcü Öz. In fact she was the tower of strength and knowledge to fulfill

this thesis. Furthermore, I would like to extend my honest thanks to all who

contributed to finalize this academic mission.

Worth mentioning the extremely respect to Assoc. Prof. Dr. Alexander Chefranov

and Asst. Prof. Dr. Ahmet Ünveren who kept track of my progress during my master

degree.

In addition, I should send my great respect to my adored parents and lovely siblings

who were a strong source of love and concern support in all these years.

http://cmpe.emu.edu.tr/gurcu/
http://cmpe.emu.edu.tr/gurcu/
http://cmpe.emu.edu.tr/unveren/
http://cmpe.emu.edu.tr/unveren/

ix

TABLE OF CONTENTS

ABSTRACT .. iii

ÖZ .. v

ACKNOWLEDGMENTS .. viii

LIST OF FIGURES .. xi

LIST OF TABLES .. xiii

LIST OF SYMBOLS/ABBREVIATIONS .. xv

1 INTRODUCTION .. 1

2 PARALLEL AND DISTRIBUTED PROGRAMMING .. 4

2.1 Parallel Processing ... 4

2.2 Parallel Computers Architecture .. 6

2.2.1 Shared Memory Systems ... 8

2.2.2 Distributed Memory Systems .. 8

2.3 Internal Communication Network .. 9

2.4 Parallel Programming Models .. 9

2.4.1 Shared Memory Model .. 10

2.4.2 Message Passing Model ... 11

2.5 Parallel Algorithms ... 12

2.5.1 Parallel Algorithm Design ... 13

2.6 Performance Evaluation in Parallel Systems .. 13

3 MATRIX MULTIPLICATION ALGORITHMS AND RELATED WORKS 16

3.1 Reviews of Matrices Multiplication Using Divide-and-Conquer Method 17

3.2 Considering Matrix Multiplication by Use of Strassen Method 18

3.3 Related Works .. 23

x

4 STRASSEN PARALLEL MATRIX MULTIPLICATION ALGORITHM IN

DISTRIBUTED SYSTEM ... 27

4.1 Two-fold Distribution Method ... 28

4.1.1 Reusing Waiting Node ... 29

4.1.2 Performance ... 30

4.2 Seven-fold Distribution Method ... 31

4.3 Dynamic Distribution Method .. 33

4.3.1 Performance Evaluation of Dynamic Distribution Method 39

4.4 Fair Distribution Method .. 40

5 EXPERIMENTAL RESULTS .. 45

5.1 Comparison of Usual and Reuse of Waiting Clients Methods 45

5.2 Comparison of Two-fold, Seven-fold and Dynamic Distribution Methods 47

5.3 Performance of Dynamic Distribution Method .. 50

5.4 Performance of Two-fold and Seven-fold Distribution Method 53

5.6 Performance of Fair Distribution Method .. 57

6 CONCLUSION ... 63

REFERENCES ... 66

APPENDICES ... 71

APPENDIX A: User Guide .. 72

APPENDIX B: Programming Part ... 78

xi

LIST OF FIGURES

Figure 2.1: Sequential Computing ... 4

Figure 2.2: Parallel Computing .. 5

Figure 2.3: Types of MIMD Architecture .. 8

Figure 2.4: PRAM Model for Parallel Computing .. 11

Figure 4.1: Structure of Two-fold Distribution Method .. 28

Figure 4.2: Structure of Reusing of the Waiting Node in Distribution 30

Figure 4.3: Structure of Seven-fold Distribution Method .. 31

Figure 4.4: Some Samples of Dynamic Distribution Method 35

Figure 4.5: Flowchart of the Client Program in Dynamic Distribution Method 37

Figure 4.6: Flowchart of Server Program in Dynamic Distribution Method 38

Figure 4.7: An Example of Fair Distribution Method ... 41

Figure 4.8: Flowchart of Client Program in Fair Distribution Method 43

Figure 4.9: Flowchart of Server Program in Fair Distribution Method 44

Figure 5.1: Execution Time versus Number of Computers for Usual and Reuse of

Waiting Clients by Two-fold Distribution Method .. 46

Figure 5.2: Execution Time versus Number of Computers for Three Different

Distribution Method ... 49

Figure 5.3: Execution Time versus Number of Computers with Different Threshold

Values for Dynamic Distribution Method ... 51

Figure 5.4: Execution Time versus Number of Computers with Different Matrix Size

for Dynamic Distribution Method .. 53

Figure 5.5: Execution Time versus Number of Computers with Different Threshold

Values for Two-fold Distribution Method ... 54

file:///D:/thesese%20project%20vesion/Document/New%20folder/thesis(09.september).docx%23_Toc366543804
file:///D:/thesese%20project%20vesion/Document/New%20folder/thesis(09.september).docx%23_Toc366543807
file:///D:/thesese%20project%20vesion/Document/New%20folder/thesis(09.september).docx%23_Toc366543808

xii

Figure 5.6: Execution Time versus Number of Computers with Different Matrix Size

for Two-fold Distribution Method ... 55

Figure 5.7: Execution Time versus Number of Computers with Different Threshold

Values for Seven-fold Distribution Method ... 56

Figure 5.8: Execution Time versus Number of Computers with Different Matrix Size

for Seven-fold Distribution Method ... 57

Figure 5.9: Execution Time versus Number of Computers with Different Threshold

Values for Fair Distribution Method .. 59

Figure 5. 10: Execution time versus Number of Computers with Different Matrix

Size for Fair Distribution Method .. 60

xiii

LIST OF TABLES

Table 2.1: Comparison of Standard and Strassen Matrix Multiplication Algorithms 19

Table 5.1: Execution Time for Usual and Reuse of Waiting Clients by Two-fold

Distribution Method ... 46

Table 5.2: Execution Time of Three Different Distribution Method 48

Table 5.3: Speed-Up and Efficiency of Three Different Distribution Methods 50

Table 5.4: Execution Time of Dynamic Distribution Method by Different Threshold

Values and Using Different Number of Computers ... 51

Table 5.5: Execution Time of Dynamic Distribution Method by Different Matrix

Size and Using Different Number of Computers ... 52

Table 5.6: Execution Time of Two-fold Distribution Method by Different Threshold

Values and Using Different Number of Computers ... 54

Table 5.7: Execution Time of Two-fold Distribution Method by Different Matrix

Size and Using Different Number of Computers ... 54

Table 5.8: Execution Time of Seven-fold Distribution Method by Different

Threshold Values and Using Different Number of Computers 55

Table 5.9: Execution Time of Seven-fold Distribution Method by Different Matrix

Size and Using Different Number of Computers ... 56

Table 5.10: Execution Time, Speed-Up and Efficiency of Fair Distribution Method

by Different Number of Computers ... 58

Table 5.11: Execution Time of Fair Distribution Method by Different Threshold

Values and Using Different Number of Computers ... 59

Table 5.12: Execution Time of Fair Distribution Method by Different Matrix Size

Using Different Number of Computers.. 60

xiv

Table 5.13: Comparing Execution Time of Strassen-BMR and Fair Distribution

Methods .. 62

xv

LIST OF SYMBOLS/ABBREVIATIONS

VLSI Very Large-Scale Integration

CPU Central Processing Unit

FLOPS Floating-Point Operation Per Second

ENIAC Electronic Numerical Integrator and Computer

RAM Random-Access Memory

SISD Single Instruction Single Data

SIMD Single Instruction Multiple Data

MISD Multiple Instructions Single Data

MIMD Multiple Instructions Multiple Data

PRAM Parallel Random Access Machine

EREW Exclusive Read, Exclusive Write

ERCW Exclusive Read, Concurrent Write

CREW Concurrent Read, Exclusive Write

CRCW Concurrent Read, Concurrent Write

1

Chapter 1

1 INTRODUCTION

Systems with high processing are needed to create applications that require high

speed processing. Semiconductor and VLSI [1] technology have made improvements

in single processor machine tasks. However, these systems is still not suitable for

science and engineering applications that require high speed computations, such

as aerodynamic affairs, real-time systems, medical signals processing and aerology.

In addition, there are limitations in CPU clock maximum speed. It has led to the

development of parallel computers that can process data at speeds of large numbers

floating points operation per second (FLOPS).

In 1945, ENIAC [2] the first electronic processor performed 1000 instructions per

second. Now a days, the new generation of Risk processors are able to process

hundreds of millions per second. These processors are sequential but fast.

About ten years ago, computer manufacturers achieved another economical way to

reach the equal power of n witch the use of n processors led to the design of multi-

processor systems. They can combine in multi-processor systems, to increase the

power as necessary. Improved VLSI processor's design, causes to faster blocks of

parallel processors [3].

2

In recent years, parallel processor systems have developed based on personal

computers. These systems offer better efficiency in comparison with supercomputers,

and their software and operating systems are readily available.

Parallel computers may have 10 to 50,000 processors that work with each other in

parallel form. If a processor can perform more than 10 million instructions in one

second, 10 processors can perform 100 million recipes in one second. Parallel

computer systems allow for sharing data and creating relationships. There are two

important architectures in this field: Shared memory and Message passing [4]. Each

of these architectures has its own advantages and disadvantages.

Many software systems are designed for parallel computer programming at the

operational system levels and also in programming languages. These systems create

a mechanism for dividing the problems into separate tasks.

These mechanisms may be implicitly parallel (system automatically divides the

problem and specializes tasks) or explicitly parallel (programmer describes how to

divide the problem).

The aim of this thesis is to examine parallel and distributed programming in a

homogeneous computer network and optimize performance in this environment. In a

homogeneous network, all available computers have the same characteristics. The

message passing architecture is used in this parallel environment.

The recursive algorithm is chosen for implementation. The parallelize possibility of

recursive algorithms is less than for sequential algorithms. Because the division and

3

distribution of a task needs maximum overlap, it is important to optimize

performance in a parallel environment. The Strassen matrix multiplication algorithm

has been chosen for this thesis. In this algorithm problem is divided to seven sub-

problems (tasks) and these tasks are divided between computers. Any of these seven

multiplication tasks could be divided recursively, to seven more sub-tasks.

Computation is done in each state and result is returned to the previous stage

recursively.

Distribution of a given problem in a network has significant impact on the running

time of the algorithm due to the distribution in different topology, the overlapping

rate of computations on different computers varies.

Different problem situations and inputs must define the optimal particular

distribution topology. Defining all appropriate distribution topologies for these states

is very difficult, so a program should produce a suitable distribution topology

according to different situations and inputs.

This thesis includes five chapters. Second chapter reviews basic concepts of parallel

and distributed programming. Chapter three presents tasks and algorithms in the field

of parallel Strassen matrix multiplication. Chapter four describes the stages of this

project and problem solutions. Chapter 5 provides the results, followed by

conclusions and appendices at the end.

4

Chapter 2

2 PARALLEL AND DISTRIBUTED PROGRAMMING

This chapter presents a brief overview of parallel processing, the importance and its

usage.

2.1 Parallel Processing

Parallel computing refers to the simultaneous execution of a program on multiple

processors in order to achieve faster results. In sequential computing, instructions run

orderly in processors; the running speed is proportional to the processor speed

(Figure 2.1). In parallel processing, instructions run in several processors, but speed

of whole parallel system is not necessarily equal to CPU speed of one processor

multiplied by the number of processors (Figure 2.2). Parallel computation can be

employed in different parts of the computer, such as software and hardware;

therefore, computing generalities should attend to different aspect of software and

hardware [5].

Figure 2.1: Sequential Computing [5]

5

Parallel processing increases a computer's power. Its main use is solving scientific

and engineering problems.

Figure 2.2: Parallel Computing [5]

Commercial software needs to fast computers too. Most programs need to process a

large amount of data in a complex form. These programs include:

 Massive data-base and data mining operation

 Oil explorations

 Web searching engine, commercial services under the web

 Medical imaging and diagnostics

 Drug design and simulation

 Management of national and multinational companies.

 Financial and economic modeling

 Multimedia technology and video network

6

The main reasons for using parallel computing are as follows:

1. Economize in rate and time: Using more sources, reduces the time

needed for a task. Furthermore, using several cheap sources instead of

one expensive source cause reduce costs.

2. Solve larger problems: most large and complex problems that are

impractical or impossible to solve with a limited memory computer.

3. Provide concurrency: Multi-computing sources can perform several

tasks in the time it takes a single computing source to perform just one

task. For example, Access Grid is a global cooperation network in

which people all over the world can meet at the same time.

4. Use non-local sources: When local computing sources are limited for

solving problems, non-local sources can help to solve such problems

through extensive networks and the Internet.

2.2 Parallel Computers Architecture

In 1966, Flynn defined the computer systems architecture classification [2, 6]. Flynn

classification design was based on the data stream. Data dealing with processors can

be divided into two groups of instructions and data. According to Flynn

classification, instructions or data streams can be in one unique form or in multiple

forms. As a result, computer systems architecture can be divided into four groups:

1. SISD (Single Instruction Single Data): This architecture is used for sequential

computers. In this method, only one instruction stream and one data stream

can take action by a processor during each clock [7]. The instructions are

independent of other processors-actions. This type of architecture is used in

7

most computers, including Von Neumann's [8] sequential computers,

mainframe systems, and personal computers.

2. SIMD (Single Instruction Multiple Data): This architecture is used for

parallel computers. Array processers are one example. SIMD machines have

a control unit and execute one instruction, but they have more than one

processor element [7, 9]. The control unit signals to all processor's elements

which perform similar actions on different data during each clock. This

method is suitable for solving special problems that involve data with fixed

patterns such as image processing problems.

3. MISD (Multiple Instruction Single Data): In this parallel design, one data

stream is sent to several data processing units [7]. Each processing unit acts

on the data with independent instruction streams. One example is the

Carnegie-Mellon C.mmp experimental computer. This method can be used

for several frequencies filters on a signal stream and several cryptography

algorithms to decrypt an encrypted message.

4. MIMD (Multiple Instruction Multiple Data): In this architecture, each

processor executes separately several instruction streams; instructions apply

to several different data streams [2, 7, 9, 10]. Modern super-computers,

cluster parallel computers, symmetrical multiprocessors, and modern multi-

core computers use this architecture. Most computers with MIMD

architecture use SIMD sub-components. One MMID machine contains

processors with control units that can concurrently execute different

instructions on different data. This method is the most common design for

parallel computers, and modern computers are moving toward this

architecture. These kinds of architectures involve several processors and

8

memory modules that are related by communication networks. They are

divided into two main groups: shared memory and distributed memory.

Figure 2.3 shows the generic structure of these two groups where P indicates

processors and M indicates memory modules.

Figure 2.3: Types of MIMD Architecture

2.2.1 Shared Memory Systems

In shared memory systems, all processors have a global shared memory.

Communication is established between running operations by reading and writing

global memory [2, 11]. Coordination and synchronization of all central processors

take place through this shared memory. If all processors have the same availability

time to each place of memory, then the shared memory system is called a symmetric

multiprocessor system. Design issues for shared memory include access control and

data dependence, concurrency, protection, and security.

2.2.2 Distributed Memory Systems

Systems based on distributed memory are groups of processors in which each

processor has access to its own local memory. Contrary to shared memory systems,

in these systems, connection takes place by sending and receiving message

instructions that should be written by the programmer in the application software [2,

12].A node in such a system contains one processor and its local memory. Each node

9

usually has the capability of storing a message in the buffer and sending/receiving

concurrently with processing. Message processing and calculation is done

simultaneously by the operating system. Systems with distributed memory have high

extension ability, and their processor units can connect together. Extension capability

refers to the ability to increase the number of processors without significant

deduction in efficiency.

2.3 Internal Communication Network

Multi-processor system communications networks can be classified according to

various criteria, including networks topology. Topology refers to how processors and

memories connect to other processors and memories [13]. For example, in complete

contact topology, each processor connects to all other available processors in the

system. Generally, communication network topology can be divided into static and

dynamic groups. In static networks, messages must pass certain links, regardless it is

necessary or not. Dynamic networks make connections between two or more nodes if

needed for passing messages.

2.4 Parallel Programming Models

Because of their idealism nature, abstract models may not seem appropriate in the

real world. However, abstract machines in distributed parallel algorithms are so

suitable for parallel machines.

If one algorithm's execution in an abstract system is not satisfactory, then its

implementation in a real system is meaningless. Abstract models do not consider

some artificial notices in real parallel and distributed systems. This reduces the

difficulty of finding executing limitations and complexity estimates. Parallel

algorithms designed according to a selection model, and then the model was changed

10

to run the program [14]. For model implementation in the real world, a set of

languages, compilers, libraries, contact systems, and parallel input-output is needed.

In following section describe two common parallel models.

2.4.1 Shared Memory Model

In shared memory models, one parallel program is divided into different tasks. Each

task execution is assigned to a processor, and all processors act on stored data in the

shared memory. For processors, concurrent availability control is used for different

concurrent mechanisms like locks and semaphore. For parallel algorithms in this

model, execution time, the number of processors and the parallel algorithm rate are

considered as criterion.

One model used in shared memory systems is the Parallel Random Access Machine

(PRAM). Presented in 1987 by Fortune and Wylie [15] for modeling ideal parallel

computers, a PRAM consists of one control unit and one global memory that are

shared by a processor. For reduction references to the shared memory by processors,

each processor has its own special memory. Figure 2.4 shows a diagram of PRAM.

In this model, each processor is not connected to each other, and connections take

place only by reading and writing in the shared memory. There are different states

for reading and writing [15] operations which divide PRAM into the following

classes:

 EREW (Exclusive Read, Exclusive Write): Reading and writing availabilities

in a memory location are exclusive.

 ERCW (Exclusive Read, Concurrent Write): Some processors have

concurrent writing permission in a memory location but reading availability

is exclusive.

11

 CREW (Concurrent Read, Exclusive Write): Concurrent reading is allowed

but writing availabilities are exclusive.

 CRCW (Concurrent Read, Concurrent Write): Concurrent reading and

writing availabilities are allowed.

Figure 2.4: PRAM Model for Parallel Computing

2.4.2 Message Passing Model

The message passing model contains a set of processors with their own specific local

memory; processors communicate by sending and receiving messages. Data transfer

among processors requires mutual operations between processors. This model is

widely used in parallel computation due to the many advantages. It offers the

following advantages:

 Compatibility with hardware: This model is appropriate for use in

supercomputers and clusters that include separate processors connected

through networks.

 Functionality structure: The message passing model presents essential virtual

topology, synchronization, and communication functionality between a set of

processes.

http://en.wikipedia.org/wiki/Synchronization

12

 Efficiency: The effective use of modern processors requires strong

management of the memory hierarchy. This model provides location

management of data through explicit control tools.

The main disadvantage of this model is that programmer must explicitly recall

available functions, distribute data among processors, and manage data.

2.5 Parallel Algorithms

Most algorithms for parallel hardware must be redesigned. Programs that work in a

single processor system may not work in a parallel environment. This is because

some copies of a program may interfere with each other (for example, interaction in

concurrent availability to a location of memory).Therefore, the basic necessity of a

parallel system is its own programming. Parallel program design and expansion is

often considered a manual process. The programmer is responsible for the

determination and actual implementation of parallelism. Manual development of

parallel codes is often time-consuming, complex, repetitive, and error-prone. In

recent years, most software systems designed for parallel computers programming

aim to help the programmer change a sequential program into a parallel program.

These systems are at the operation level and at the programming language level.

They must have a mechanism to divide a problem into several functions and allocate

these functions to processors. This kind of mechanism can include implicit or explicit

parallelism.

In implicit parallelism, the system automatically divides the problem into several

functions each to a processor; in explicit parallelism, the programmer separates

problems into tasks and refers to a processor [16].Implicit parallelism is limited to a

subset of codes and has less flexibility than explicit parallelism. It may also produce

13

incorrect results and reduce efficiency. Thus most parallel programming is made

explicit.

2.5.1 Parallel Algorithm Design

The first step in designing parallel algorithms is learning how to think parallel. The

programmer must determine the parts of problem that have parallelism capability;

after model selection, he or she must focus on presented the best parallel algorithm.

Several points should be considered when solving a problem in parallel form. First it

must be determined whether the problem has parallelism capability [17]. For

example, the problem of constructing a Fibonacci sequence is a sequential problem

due to its data dependence. Next, the programmer must recognize the basic points of

computations and the main areas of the problem. Also, the problem's bottleneck

should be recognized; this means that parallel operation is stopped due to attachment

or need to perform data input and output.

Next the problem is divided into different sections that can be assigned as a task to a

processor. There are two basic methods for dividing computational tasks between

processors: domain analysis and functional analysis. In domain analysis, problem

data are divided, and each processor executes the same instructions on related data.

In functionality analysis, computing instructions are divided among processors. After

dividing problems into different functions, if connection between functions is

required, concurrent methods and communication among processors are used.

2.6 Performance Evaluation in Parallel Systems

Coefficient speed up or () is one of parallel system evaluation criterion that is

defined as follow.

14

Speed up [18, 19] is ratio of the required time for solving a problem by a processor

that showed by , to required time for solving the same problem by a

parallel system that formed by P processors. Parallel system time is shown

with .

 ()

⁄

(2.1)

If:

 (

⁄)

(2.2)

If coefficient speed up is equal with P, then the parallel system is optimum. In

practice, increasing liner speed (speed proportional with processor number) is

difficult. This is due to the sequential nature of many algorithms; thus, some parts of

an algorithm are capable of parallelism, while others are not. According to Amdahl’s

law [20], accelerating the rate of a parallel algorithm rather than a sequential

algorithm does not depend on the number of processors used but rather on the part of

the algorithm that is not capable of parallelism. If F is the fraction of the algorithm

that is incapable of parallelism and should execute in sequential form, then the

accelerating rate is defined according to Amdahl’s law:

15

 ()

 (2.3)

Suppose that 10% of an algorithm is incapable of parallelism. This means that

F=10%.

However the rest of the algorithms are run by 20 processors in parallel form. In this

state, the execution speed of a program (when run on only one processor) almost be

seven times according to Amdahl’s law:

 ()

 (2.4)

Another criterion used to evaluate system performance is efficiency, () [21] which

is equal to the ratio of cost of an algorithm in sequential system to cost of the same

algorithm in a parallel system that is formed by p processors. The cost of

implementation is equal to the multiplied execution time in the processor's number:

 ()

 ()

(2.5)

16

Chapter 3

3 MATRIX MULTIPLICATION ALGORITHMS AND

RELATED WORKS

The evaluation of the product of two matrices can be very computationally

expensive. The multiplication of two n n matrices, using the standard algorithm

can take O () operations. Consider matrix multiplication with standard algorithm

as follows:

 for (i=1;i<=n;i++)

 for (j=1;j<=n;j++){

 C[i][j]=0;

 for (k=1;k<=n;k++)

 C[i][j]=C[i][j]+A[i][k]*B[k][j];

 }

This program multiplies two matrices A and B to obtain matrix C. In each matrices, n

(dimension of matrices) is greater than 0.

In the standard algorithm, the number of multiplication equals to () = O ().

The number of additions also equals with () = O () which is explained

below.

 for (i=1;i<=n; i++)

17

 for(j=1;j<=n;j++){

 C[i][j]=A[i][1]*B[1][j];

 for (k=2; k<=n;k++)

 C[i][j]=C[i][j]+A[i][k]*B[k][j];

 }

In the standard state, number of multiplications and additions of a matrix

multiplication is in the following form:

Number of multiplications: = O ()

Number of additions: - = O ()

3.1 Reviews of Matrices Multiplication Using Divide-and-Conquer

Method

Now we consider matrix multiplication in the divide-and-conquer method. If n is a

power of 2, A and B can be divided into four smaller matrices of ⁄ ⁄ each [22].

If the number of multiplies are considered as a main act, each n n matrix required

eight multiply action in any stage of division to ⁄ ⁄ :

 [

] = [

] * [

]

 C11=A11.B11+A12.B21

 C21=A21.B11+A22.B21

 C12=A11.B12+A12.B22

 C22=A21.B12+A22.B22

18

Multiplication of two 1 1 matrices need a scalar multiply action. So, in the divided-

and-conquer algorithm for the matrix multiplications, we have:

 () (⁄)

 ()
} ==>Ө () (3.1)

This method is similar to the standard method of Ө () and has no extra preference.

3.2 Considering Matrix Multiplication by Use of Strassen Method

In 1969, Strassen presented an algorithm that multiplies numbers less than (); it

almost was O () mentioned in down [22, 23]. Strassen proved that multiplying

two matrices A and B, leads to C can be obtained by following relation:

If the matrices A and B have 2 2 dimensions, the necessary number of additions

and multiplications for matrix computation is as follows:

 [

] * [

] = [

]

 C = [

]

 = (+)(+)

 = (+)

 = (-)

 = (-)

 = (+)

 𝐶 =𝑚1+𝑚4 𝑚5+𝑚7

𝐶 = 𝑚3+𝑚5

𝐶 = 𝑚2+𝑚4

𝐶 = 𝑚1+𝑚3 𝑚2+𝑚6

19

 = (-)(+)

 = (-)(+)

Table 3.1 provides the number of multiplications and additions needed for two

standard and Strassen algorithms for two matrices of 2 2.

Table 3.1: Comparison of Standard and Strassen Matrix Multiplication Algorithms

Multiplication type
Multiplication

number

Addition

 number

Standard algorithm 8 4

Strassen algorithm 7 18

For larger matrices, supposing that n (dimensions' of matrices) is a power of 2,

Strassen's method can be extended as below:

[

] * [

]=[

]

 = [

 ⁄

 ⁄

 ⁄

 ⁄

]

Using Strassen method, is calculated as:

 = (+)(+)

 = (+)

 = (-)

20

 = (-)

 = (+)

 = (-)(+)

 = (-)(+)

and is calculated as:

In the M's calculation for doing multiplication, again Strassen method will be used.

Strassen algorithm is explained by an example in the following. In this example A

and B are input matrices and C is the result of multiplication.

A=[

] B=[

]

[

] [

]=[

]

 = (+)(+) => (

[

]+[

]

) * (

[

]+[

]

)

 = [

]*[

]=[

]

2

2

21

 = (+) => (

[

]+[

]

) * (

[

]

)

 =[

]*[

]=[

]

 = (-) => (

[

]

) * (

[

]-[

]

)

 =[

]*[

]=[

]

 = (-) => (

[

]

) * (

[

]-[

]

)

 =[

]*[

]=[

]

 = (+) => (

[

]+[

]

) * (

[

]

)

 =[

]*[

]=[

]

 = (-)(+) => (

[

]-[

]

) * (

[

]+[

]

)

 =[

]*[

]=[

]

 = (-)(+) => (

[

]-[

]

) * (

[

]+[

]

)

22

 =[

]*[

]=[

]

 =[

]+[

]-[

]+[

] = [

]

 =[

]+[

] = [

]

 =[

]+[

] = [

]

 =[

]+[

]-[

]+[

] = [

]

==> C= [

]

23

3.3 Related Works

Strassen matrix multiplication algorithm has been implemented in parallel on some

different methods and we are going to briefly survey them in this section. The

method proposed in [24] discussed sequential and three parallel programs that have

been attempted to implement Strassen’s algorithm. The sequential program was

written by using the well-known Winograd’s method [25]. It stops its recursion on a

certain level where it invokes the subroutine DGEMM provided by ATLAS [26].

Since the design of the program is straightforward, its performance and instability

issues were introduced, as well as how they vary with the recursion level.

The three parallel programs include one workflow program and two MPI programs.

The workflow program is implemented in the client-end on the NetSolve system

[27]. It has a workflow controller to check and start the tasks in a task graph. All

tasks are sent to the NetSolve servers to be computed. When the dependent tasks are

finished, the controller launches a new task immediately. The intensive computation

is actually performed on the NetSolve servers, thus the client machine is available to

run other tasks. Next, two different approaches are adapted for designing the parallel

programs running on distributed memory systems. The first program uses a task-

parallel approach, and the second one uses a data-parallel approach which uses the

ScaLAPACK library to compute the sub matrix multiplications [28].

The approach proposed in [29] uses Strassen algorithm across all processors, instead

of using it only on each processor. This approach leads to have a better potential for

speed up.

24

A parallel algorithm that uses Strassen’s matrix multiplication both between the

processors for global computations and within each processor for local computations

was proposed in [30]. With respect to [30], two-fold is the main conclusions of the

performance study; firstly, controlling the communication path via ad hoc routing

patterns can provide significant performance gains especially for large networks and

even larger matrices. This result is especially crucial for applications that require

petaflop or exaflop processing rates. Secondly, the proposed algorithm is quite

successful in overlapping the communication with computation. It is well-known that

Strassen’s algorithm ceases to provide any benefits when local matrix sizes become

too small. In other words, beyond some point it is better to stop the recursion and to

switch to the conventional algorithm to perform sub-matrix multiplications. In the

proposed algorithm, the need to switch occurs much deeper in the recursion tree. As

an example of the effectiveness of the proposed scheme, also consider the case in

which we have a 64×64 torus at our disposal. The proposed algorithm can only use

49×49 processors and after the fourth recursion each processor performs exactly one

computation. In this case, the proposed algorithm still up to 1.3 times faster than the

other algorithms.

The research in [31] tried to work on parallel Strassen matrix multiplication

algorithm on heterogeneous groups. Suitable data allocation in the heterogeneous

grouping context is the most necessary item to obtain optimal execution time.

Strassen algorithm decreases the number of multiplication operations from eight to

seven in any recursion, therefore the level of the recursion has outcome on the sum

up execution count. In Strassen algorithm, not only the charge parity, but also the

25

extent of recursion should be considered as well. The above mentioned program

gains both charge parity and decreasing the whole multiplication operations count.

Due to enlargement of groups, more recent nodes are persistently attached to existing

group systems. The nodes may have contrastive hardware execution, like network

rapidity and CPU execution which construct the group heterogeneous. The similar

charge can be allocated to every processor if the hardware performance of each node is

homogeneous. Therefore, charge parity is automatically reached and greater swift is

also obtained at ease. Although, in heterogeneous contexts, traditional procedures

that allocate same duties to each processor turn down to less optimal due to they

would not be able to account differences among nodes in computational

performance. For that reason and in order to reach the better speed, data should be

allocated properly and equivalently to the hardware operation of every node in the

group.

It is very critical to reduce the inactive time of processors by considering the effect of

charge parity in a heterogeneous clustering context. However, the level of recursion

in Strassen algorithm influences on the total multiplication operation count, and there

is a possibility that total multiplication operation count is increased by charge parity.

So, both charge parity and the level of recursion should be taken into account in

Strassen algorithm. In this case, the recursive data decomposition is suggested and it

enables charge parity and increasing of the level of the recursion in Strassen

algorithm.

A scalable parallel Strassen's matrix multiplication algorithm for distributed memory

named by Strassen-BMR was presented in [32]. The motivation for this method

26

comes from the observation that the Strassen method is most efficient for large

matrices. Therefore it should be used among processors instead of one processor.

The seven sub-matrix multiplications of the Strassen method at each recursion seem

at first to lead to a task parallelism. The difficulty in implementation results from the

fact that the matrices must be distributed among the processors. Sub-matrices must

be stored in different processors and if tasks are spawned these sub-matrices must be

copied or moved to the appropriate processors. For a distributed memory parallel

algorithm, the storage map of sub-matrices to processors is a primary concern. If the

sub-matrices are stored among processors in the same pattern at each level of

recursion, then they can be added or multiplied together just as if they are stored

within one processor.

 We compare our obtained results with this method in Chapter 5. The implementation

results of our method show some improvement rather than this method. Comparing

has been done only over four processors. Bear in mind that, Fair method is not

applied on 64 processors so the related results are not available in this study.

27

Chapter 4

4 STRASSEN PARALLEL MATRIX MULTIPLICATION

ALGORITHM IN DISTRIBUTED SYSTEM

In the previous chapter, we surveyed some well-known algorithms of parallel

Strassen matrix multiplication. The current research employs the Strassen matrix

multiplication algorithm as a recursive algorithm and it decreases the execution time

by using distribution factor.

The focus of the thesis is on the method of data distribution for multiplication in

order to expand the overlapping operation. First, the proposed method and then its

extensions will be discussed in detail in the following.

Considering recursive nature of the algorithm, the client sends its task to the server(s)

and then it waits for the calculated response. If the data received by the servers are

not small enough or are needed to the division of problems among other servers,

those servers which have received data from the client will change their status and

appear in the role of client. The upper-layer client (parent) must distribute tasks

among servers and wait for the results from lower-layer servers, this process will

continue through the lower-layer servers until the problem is minimized (no further

division is needed) or there is no idle server. Then, the results will be sent back to

upper nodes sequentially. The details of propose method and existing difficulty will

be explained in the following sections.

28

4.1 Two-fold Distribution Method

In the first stage, the parts of algorithm that can be parallelized are identified by

using the Strassen algorithm and the main calculation of this algorithm should be

considered. The main operations are calculation of seven multiplication tasks which

should be computed in each stage of problem division. In this method of division and

distribution, four multiplication tasks are assigned to one server computer, and three

tasks are dedicated to another server. It means that in each stage of division, every

client will divide and distribute multiplication tasks (including seven sub-

multiplication tasks) between two servers. Considering this method of distribution,

each client computer (parent node) for each multiplication task has two server

computers as a child, so the distribution topology will resemble a two-fold tree (see

Figure 4.1).

Figure 4.1: Structure of Two-fold Distribution Method

Note that each node represents a computer in Figure 4.1. Node (1) as a client,

divides its seven multiplication task between two servers (node (2) and (3)) and it

sends four multiplication tasks to node (2) and three remaining multiplication task

will be sent to node (3). Now, node (2) has four multiplication tasks and each task

divided and distributed between two computers. In other words, node (2) divides and

distributes the four multiplication tasks among eight computers. Node (3) receives

three multiplication tasks and each of them is divided and distributed between two

29

nodes. Therefore, its task is distributed among six children. The same procedure is

continuously applied in the succeeding layers.

4.1.1 Reusing Waiting Node

After implementing the two-fold distribution method, we faced some difficulties

related to having a waiting period for clients (parents) when their child nodes

calculate the results.

Servers in each layer which receive tasks, they will change their status from server to

client according to existing circumstances. They also divide and distribute the data

among free servers and wait for the results. During this period, the efficiency of the

computers decreases, because task is dedicated to only some nodes. When this

approach deals with large and huge matrices, dividing the problem should be done

more times and numbers of sub-problems are increased. Thereby, number of clients

and their waiting time will be increased.

In order to increase the processor efficiency, the time spent in waiting status must be

minimized. If some of the free servers have finished, then clients which are in

waiting status can function as free servers.

By using multi-thread method, all servers are first in idle and listening status. When

they receive a task from a client, they change their status to busy and then they

process the task. If the division and distribution stage continues, then it changes its

status to client and waits for a response from child servers. Simultaneously, waiting

clients will be in the listening status (like a server), so that if a task is received for

being calculated, it can perform it during the waiting period. In this way, the CPU

capacity of the nodes is used efficiently. Figure 4.2 provides an example. Suppose

30

that there are nine computers (nodes). Computer (1) is in the role of client and

distributes the tasks among servers.

Figure 4.2: Structure of Reusing of the Waiting Node in Distribution

In Figure 4.2, division and distribution of the problem stops in the third layer,

because free servers have finished, so there is no possibility to fill all of the leaves. In

order to increase the efficiency, upper-layer computers that are waiting for the

results, switch to listening mode (server) and execute task after receiving it. In this

example, nodes 1, 2 and 3 are in listening (for any task) and waiting state (for the

result). Here, node (1) is used again as a server by node (3).

4.1.2 Performance

By implementing the algorithm based on the above-mentioned distribution topology,

we improved the execution time by increasing the number of computers which

performs tasks. For smaller dimensions of matrices three computers are sufficient for

their multiplications and achieved good execution time. But larger matrices which

required more computers for multiplication, did not improve the execution time (i.e.

the improvement is not proportional with the increase in the number of computers).

For the tree topology in Figure 4.1, completion of the last stage of each tree

distribution indicates the percentage of parallelism for that distribution status. For

example, with seventeen computers, we achieved better performance time, because

31

the third layer is completed and fourteen computers are able to do calculations in

parallel. With twenty-five computers, eight of them are in the fourth layer thus, the

percentage of parallel calculations in the last layer decreases and less improvement is

observed. As a result, this distribution topology in a network comprising computers

in the interval of 2 to 6 and 15 to 17 has better proportional performance compared to

the rest of the computers in the network. To further improve performance, we define

other topologies in the following sections.

4.2 Seven-fold Distribution Method

As mentioned in the previous distribution method, computers in the last layer are

filled less than 50%; due to this, less parallelism took place. To resolve this problem,

we choose a method that in a network including say 8 computers, the number of

computers existing in the last layer, could have more computers relatively until we

could increase the percentage of parallelism. For this reason, the client in each level

of the operating division; divides seven multiplication tasks among seven computers

that each multiplication task is dedicated and sent to a computer (see Figure 4.3).

Figure 4.3: Structure of Seven-fold Distribution Method

In the Figure 4.3, client 1 divides seven multiplication tasks among seven servers.

According to the algorithm, the servers (computers 2 through 8) receive the matrices

32

and survey the threshold condition that identifies the limitation of matrix division

and distribution. If division and distribution must continue, then the servers will

divide and distribute tasks in the network among free and listening computers. In this

layer (layer 2), each server has received a multiplication task from the client, each of

which has seven sub-tasks. The servers change its role to client and distribute tasks to

the sub-layer servers. Similarly, the algorithm continues recursively.

This division and distribution method improved the performance in networks

including 7 up to 12 computers. For example, if we had eight computers (two layers)

in Figure 4.3, there was maximum parallelism, since in the second layer; seven of the

eight computers are performing computation in parallel.

In different circumstances (dimension of matrices, threshold of algorithm, and

number of existing computers in the network) increasing the number of computers up

to eight could improve the performance, but increasing the number of computers

more than 8 we did not experience significant improvement in the performance. With

more than eight computers, the third layer is considered the main factor in

parallelism. As long as the majority of the leaf nodes in this layer do not fill up, we

will not see significant improvement.

To overcome the weakness of the two-fold method, a seven-fold distribution method

was introduced. Now if we present a new distribution method in order to improve the

weaknesses of the seven-fold method, definitely we experience other weaknesses.

However, there is no constant distribution method that will yield the best result in all

networks. In the following Section we have presented a method to find optimum

distribution topology.

33

4.3 Dynamic Distribution Method

As previously explained, any of the constant distribution method cannot always

respond positively. To achieve an optimum response, we need a special distribution

topology for different circumstances. However, it is very difficult to define all

optimum topologies for all different circumstances. Therefore, in this section, the

program defines optimum distribution topology itself. According to circumstances

which are distinguished from user entries, the optimum distribution topology is

found, and the division and distribution operation of matrices is performed.

Before explaining how optimum topology is found; first, we clarify the possible

levels of task division among computers from the client. The main operation is the

seven multiplication tasks of Strassen algorithm. Different methods can be used to

divide the seven tasks in a way that maintains the potential for parallelism. We define

the following four division methods in the program:

1. The client divides seven multiplication tasks between two computers: four

tasks to the first computer and three tasks to the second computer.

2. The client divides seven multiplication tasks among three computers: three

tasks to the first and two tasks each to second and third.

3. The client divides seven multiplication tasks among four computers: two

tasks each to the first three computers and one task to the fourth.

4. The client divides seven multiplication tasks equally among seven computers.

To find the optimum distribution topology, we need a criterion for optimization.

Based on the previous constant distribution methods, if there are more computers in

the last (leaf) layer and the layer is complete, then the scope of parallelism increases

and thus improves performance. Therefore, the criterion for finding the ideal

34

topology is the choice of a level that allows for the most number of computers in the

leaf layer of the distribution tree according to existing entry circumstances

(dimension of matrix, threshold of division, number of existing computers in the

network). For this reason, we calculate the number of layers that the distribution tree

should have.

 In fact, the number of layers in the distribution tree is the number of divisions before

the threshold is reached, which means one operation in each layer. The number of

layers in the topology tree or the number of divisions equals

 , which are entries of the program.

Next, we design a distribution tree with the desired number of layers and consider the

numbers of computers in the network, and also we should have the most possible

numbers of computers in the last layer. There will be circumstances when the

number of existing computers in network is not enough to build a tree with the

number of desired layers. In this case, we choose a distribution tree with the most

possible layers and the most number of computers in the last layer. Conversely, there

may be too many existing computers in a network for the stated program entries, in

which case we also use the required number of computers.

For instance, suppose we have 10 existing computers in a network; the dimension of

entry matrix is 1024 1024, and the threshold for dividing of the matrix is 128. This

means that until the dimension of matrices reaches 128, division and distribution

continues. Using this entry information, the number of layers for the distribution tree

is calculated as follows:

35

 () (4.1)

The program finds a tree among those that can be built with 10 computers and three

layers, with most computers in the last layer.

Figure 4.4: Some Samples of Dynamic Distribution Method

As illustrated in Figure 4.4, the three distribution trees can all be defined with 10

computers and three layers but with different numbers of computers in the last layer.

In Figure 4.4(a), there are five computers in last layer; in Figure 4.4(b), there are six;

and in Figure 4.4(c), there are seven. When the problem is divided equally among

seven computers and is processed simultaneously, fewer computers are in the waiting

position compared to other trees. This means that the tree in Figure4.4(c) is most

efficient.

36

As previously explained the Dynamic Distribution Method first finds the optimum

distribution topology and then attempts to divide and distribute tasks among servers

accordingly. As soon as servers receive tasks according to the distribution tree,

which is received along with task itself, they will attempt to perform the task. During

the execution, we have reused the clients only when a small number of computers in

last layer is needed to make the layer completed.

For all propose methods, programs which are executed on computers are comprised

of client and server. We have created separate program (modified) for each method

in C# to run on server and client nodes. In this program, being either client or server

is specified via configuration file. To complete the mentioned explanations about the

program, we have provided it flowchart for server and client computers. Figure 4.5

presents flowchart of the program on the client computer located at the root of tree

topology. Figure 4.6 presents flowchart of the program which is performed on all

server computers.

37

Star

t

Read Input Matrices

and other input values

"Enter" to execute

on local pc or any

other key to

distribute

Find best distribution topology

according to the number of PC

Matrix size <=

Threshold

Distribute according to topology

State = Waiting & Listening

Received any

data? Is it

result?

Write results to

output file

End

Switch to

server mode

Execute on local PC

Enter

Other key

Yes

No

Yes
No

No

Yes

Figure 4.5: Flowchart of the Client Program in Dynamic Distribution

Method

38

Figure 4.6: Flowchart of Server Program in Dynamic Distribution Method

State = Idle & listening

Start

State = Busy

Execute task on local

machine

Received any data?

State = Busy

 Distribute according to topology

Received any

data?

State = Waiting & Listening

Calculate and send to

client

Matrix dimension

<=Threshold or

According to topology

is this leaf PC?

Is it result?

State = Previous state &

Listening

No

No

No

Yes

Yes

No

Yes

Yes

39

4.3.1 Performance Evaluation of Dynamic Distribution Method

Section 2.6 described to what extent the function of algorithm in a parallel system is

improved compared to a sequential system. Two criteria's were presented for

surveying the degree of improvement. Now, using this criteria's, we consider the

efficiency of the algorithm in parallel status comparing to sequential status. We

calculated the speed-up S (p) according to related formula in Section 2.6, for p=10

and p=20, which present the number of computers (processors) in parallel system:

 ()

 ==>{

 ()

 ()

 (4.2)

Obtained results show the speed-up values in case of having 10 and 20 nodes over

parallel model rather than using sequential model respectively.

Using the efficiency related formula in Section 2.6, we have calculate efficiency E(p)

for the parallel algorithm with 10 and 20 computers (p=10, 20).

 ()

 ()

==>{
 ()

 ()

 ()
 ()

(4.3)

These calculated results show the efficiency of the algorithm in case of having 10

and 20 nodes over parallel model instead of applying sequential model. It is

obviously seen that using 10 nodes instead of 20 nodes leads to more efficiency

value and better performance.

40

4.4 Fair Distribution Method

Dynamic Distribution method was implemented for the improvement of the fixed

distribution methods. But, these distribution methods were unfair in task division.

For the mentioned distribution methods, in the beginning of the program no task was

indicated to the client itself and in the continuation of task distribution procedure, the

task was indicated for the client if free servers were finished in the network.

In the new distribution method, this problem has been revised. In this method,

according to the number of existing server in the network, at least one of the seven

multiplication tasks is considered for the client itself and the rest are distributed

among servers. The procedure of task division among computers takes place in the

following manner. For one client and one server case, three multiplication tasks for

the client and the other four are allocated to the server. In one client and two server

status, two multiplication tasks belong to the client and two to three multiplication

tasks are allocated to servers respectively. In the status of more than three computers,

always one task is considered for the client and the rest of them are distributed

among servers. For four to seven computers in network, the numbers of allocated

tasks for computers are as follows:

4 PCs: 1 task for client and 2 tasks for any other 3 servers.

5 PCs: 1 task for client and 1, 1, 2, 2 for servers respectively.

6 PCs: 1 task for client and 1, 1, 1, 1, 2 for servers respectively.

7 PCs: 1 task for client and 1, 1, 1, 1, 1, 1 for servers respectively.

Now when the numbers of existing computers are more than seven, with respect to

the any PC more than seven, the same number of computers from one to seven would

41

share and send their tasks to them. For instance, for the status of eight PCs (one PC is

more than seven), only computer number one (client) will share its task with that and

it will send for PC number 8. For the status of nine PCs (two PCs are more than

seven), computers number 1 and 2 (client and a server), will share their tasks with

eight and nine PCs. Here the ratio of task division is the same with status of less than

seven PCs. It means that in task division between client and a server, three tasks for

the client and four others belong to server.

Note that, where the numbers of existing PCs are fourteen, all PCs share their tasks

with another server. If the numbers of PCs in the network are more than fourteen for

each PC more than fourteen, PCs one to seven would divide their tasks with another

two servers instead of one. For example, in the status of eighteen PCs (four PCs are

more than fourteen), PCs one to four will share their tasks to another two servers

instead of one and PCs five to seven will also share their tasks to one server. Figure

4.7 shows more details in the continuation of this example. This procedure of

algorithm carries out the mentioned approach on the expansion of computers in

network.

Figure 4.7: An Example of Fair Distribution Method

42

In this example, there are eighteen PCs (4 PCs more than 14) which PCs one to four

distribute its tasks to another two servers while PCs five to seven distribute its tasks

to only one server.

Flowchart of the Fair distribution method is proposed in two figures (for client

program and server program) in the continuation. Figure 4.8 presents flowchart of

the program on the client computer located at the root of tree topology. Figure 4.9

presents flowchart of the program which is performed on all server computers.

43

Figure 4.8: Flowchart of Client Program in Fair Distribution Method

Start

Read Input Matrices

and other input

values

"Enter" to execute

on local pc or any

other key to

distribute

Allocate appropriate of tasks to

any PCs and distribute them

Matrix size <=

Threshold

Calculate results and listening

to receiving servers result

Received all

results?
Write results

to output file

End

Execute on local PC

Enter

Other key

Yes

No

Yes

No

44

State = Idle & listening

Start

State = Busy

Execute task on local

machine

Received any

task?

Allocate appropriate of tasks to

servers and distribute them

Received all

results?

Calculate results and listening to

receiving servers result

Calculate and send to

client

Matrix dimension

<=Threshold or

there is no free

server?

No

No

Yes

No

Yes

Yes

Figure 4.10: Flowchart of Server Program in Fair Distribution Method

45

Chapter 5

 EXPERIMENTAL RESULTS

This chapter presents the experimental results of proposed methods. Results are

presented by using different matrix dimensions, thresholds and number of computers.

The network properties and parameter values which we have used in our test system

are set as following. The network includes 20 nodes which have been connected

through Ethernet switch with 100 Mb/s data rate. The network has employed with

32-bit computers includes Windows 7 Professional-operating system, Intel Core 2

Dou CPU, 4 GB RAM, and 150 GB hard disk. The model of network adapters is

Realtek RTL8168D/8111D family PCI-E Gigabit Ethernet NIC.

The related program has been written in C# environment by applying socket

programming techniques. The input of our program is two squared matrices of

integer numbers. The integer numbers applied in the input matrices have been

generated randomly in range [0, 100]. Matrix dimensions have been varied in

between 128 and 2048 in the form of .

5.1 Comparison of Usual and Reuse of Waiting Clients Methods

In Section 4.1, we explained the Two-fold distribution method. It is known as a usual

distribution topology. In section 4.1.1, we introduced the proposed reusing method.

Table 5.1 compares experimental results of these two methods with five different

numbers of computers (PCs). It should be mentioned that, all matrix dimensions are

46

2048 2048 and the threshold value is 128 for each number of PCs (4, 8, 12, 16 and

20).

Table 5.1: Execution Time for Usual and Reuse of Waiting Clients by Two-fold

Distribution Method

PC Numbers
Execution time, minutes

Usual Reuse of waiting clients

4 14.1 16.15

8 11.08 12.01

12 9.33 8.32

16 9.26 8.1

20 8.57 7.32

The table results are also presented in a form of graph in Figure 5.1.

Figure 5.1: Execution Time versus Number of Computers for Usual and Reuse of

Waiting Clients by Two-fold Distribution Method

In usual method, a client which is in waiting state after distribution tasks, it does not

perform any execution like a server. In reuse method after distribution tasks, clients

will also be in listening state like server for any execution. It is observed that for less

number of PCs (up to eight) usual method execution time is less than reuse method,

due to there are fewer levels, so the number of waiting clients after distribution will

0

2

4

6

8

10

12

14

16

18

4 8 12 16 20

Ex
e

cu
ti

o
n

 t
im

e
, m

in
u

te
s

PC Numbers

Usual

Reuse

47

be low. In networks with more than eight computers, there are more clients in the

waiting state. Thus, the algorithm efficiency is improved by reusing waiting clients

in the network.

As a result execution time of reusing method is less than usual method when more

than eight numbers of PCs exist.

5.2 Comparison of Two-fold, Seven-fold and Dynamic Distribution

Methods

In Sections 4.1 and 4.2, we explained two-fold and seven-fold distribution topologies

that are fixed for all entries.

Dynamic distribution topology has been presented in order to improve two previous

topologies. Now, we compare the results of these three distribution methods in Table

5.2. All experiment results have been performed by using of three distribution

topologies with 2048 2048 matrix dimension and threshold value equal to 128 from

one to twenty computers.

48

Table 5.2: Execution Time of Three Different Distribution Methods

PC Numbers

 Execution time, minutes

Two-fold

Distribution

Topology

Seven-fold

Distribution Topology

Dynamic

Distribution

Topology

1 30.2 38.41 30.6

2 27 31.70 16.42

3 16.5 27.50 18.4

4 15.9 25.10 13

5 17 18.45 13.4

6 14.3 13.90 13.35

7 13.9 10 10

8 15 6.28 9.8

9 13.5 6.29 7.7

10 10.8 6.32 7.7

11 9.9 6.25 7.6

12 11.7 6.2 7.55

13 11.6 7.06 6.5

14 10.4 6.50 6.2

15 9 6 6.5

16 9.2 6.60 6.5

17 8.95 6.30 6.52

18 10 6.50 6.53

19 11 6.60 6.51

20 8.9 6.20 6.52

According to Table 5.2, the execution time in all three type of topologies decreases

with increasing number of computers. From the experimental results it is observed

that seven-fold distribution topology showed better performance than two-fold

distribution for large number of PCs (seven and more).The results are presented in a

form of graph in Figure 5.2.

49

Figure 5.2: Execution Time versus Number of Computers for Three Different

Distribution Method

Figure 5.2 shows execution time for Two-fold, Seven-fold and Dynamic distribution

methods. In a network with less than seven computers the Two-fold Distribution is

better than the Seven-fold Distribution. On the other hand the program execution

time for Dynamic Distribution Topology is better than Two-fold and Seven-fold

Distribution almost in all number of PCs.

In Table 5.3, values of speed up and efficiency for all the statuses of 2 to 20 PCs,

printed in Table 5.2 have been calculated. Process of alteration of speed up and

efficiency for all three methods of two-fold, seven-fold and dynamic has been shown

in table 5.3.

0

10

20

30

40

50

60

70

80

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Ex
e

cu
ti

o
n

 t
im

e
, m

in
u

te

PC Numbers

Two-fold

Seven-fold

Dynamic

50

Table 5.3: Speed-Up and Efficiency of Three Different Distribution Methods

PC

Numbers

Two-fold Distribution

Topology

Seven-fold

Distribution

Topology

Dynamic

Distribution

Topology

Speed-

up

Efficiency Speed-

up

Efficiency Speed-

up

Efficiency

2 1.11 0.55 1.21 0.60 1.84 0.92

3 1.83 0.61 1.38 0.46 1.65 0.55

4 1.89 0.47 1.53 0.38 2.33 0.58

5 1.77 0.35 2.08 0.41 2.26 0.45

6 2.11 0.35 2.76 0.46 2.27 0.37

7 2.17 0.31 3.84 0.54 3.03 0.43

8 2.01 0.25 6.11 0.76 3.09 0.38

9 2.23 0.24 6.10 0.67 3.94 0.43

10 2.79 0.27 6.07 0.60 3.94 0.39

11 3.05 0.27 6.14 0.55 3.99 0.36

12 2.58 0.21 6.19 0.51 4.02 0.33

13 2.60 0.20 5.44 0.41 4.67 0.35

14 2.90 0.20 5.90 0.42 4.89 0.34

15 3.35 0.22 6.40 0.42 4.67 0.31

16 3.28 0.20 5.81 0.36 4.67 0.29

17 3.37 0.19 6.09 0.35 4.65 0.27

18 3.02 0.16 5.90 0.32 4.65 0.25

19 2.74 0.14 5.81 0.30 4.66 0.24

20 3.39 0.16 6.19 0.30 4.65 0.23

5.3 Performance of Dynamic Distribution Method

Next, we consider our program performance with dynamic distribution topology in

different situations. First, we execute the program with fixed matrix dimensions

2048 2048 by changing threshold as 64, 128, 256, and 512; and number of

computers as 1, 5, 10, 15 and 20. Here our aim is to see the effect of threshold values

to the execution time. The experimental results are presented in Table 5.3 an in the

form of graph in Figure 5.3. The execution time is compared in Table 5.3.

51

Table 5.4: Execution Time of Dynamic Distribution Method by Different Threshold

Values and Using Different Number of Computers

PC Numbers
Execution time, minutes

64 128 256 512

1 32.25 30.61 31.63 31.88

5 13.1 13.32 13.3 9.9

10 7.4 7.42 5.52 4.55

15 6.17 6.36 5.26 4.55

20 5.44 6.31 4.07 4.55

As shown in Table 5.3, the execution time decreases as the number of available

computers in the network increases. Also increasing the threshold value presents

little improvement in the execution time, which indicates that the smaller matrix

dimension execution is not optimum in parallel form. This signifies that when the

matrix dimensions are small enough, it is better to solve the problem on a single

machine.

Figure 5.3: Execution Time versus Number of Computers with Different Threshold

Values for Dynamic Distribution Method

0

10

20

30

40

50

60

70

80

1 5 10 15 20

 E
x
ec

u
ti

o
n

 t
im

e,
m

in
u

te
s

PC Numbers

64

128

256

512

52

Figure 5.3 shows the program execution time with different thresholds for two

2048 2048 matrices. According to the results for large matrix dimensions having

large threshold values improves the execution time.

To determine the effect of matrix size, we executed the program with various

dimensions (128 128, 256 256, 512 512, 1024 1024 and2048 2048) using fixed

threshold 128 in a network with 1, 5, 10, 15 and 20 computers. The results in minutes

are compared in Table 5.4.

Table 5.5: Execution Time of Dynamic Distribution Method by Different Matrix

Size and Using Different Number of Computers

PC Numbers
Execution Time, minutes

128 256 512 1024 2048

1 0.029 0.2 1.02 6.25 30.61

5 0.035 0.09 0.215 1.56 13.32

10 0.032 0.05 0.125 1.23 7.42

15 0.035 0.031 0.124 0.916 6.36

20 0.03 0.031 0.12 0.666 6.31

The execution time decreases as the number of available computers increases.

However, the reduction procedure of execution time in columns with bigger matrix

dimensions is more rather than columns with smaller matrix dimensions. We

clarified these results in Figure 5.4.

53

Figure 5.4: Execution Time versus Number of Computers with Different Matrix Size

for Dynamic Distribution Method

Figure 5.4 shows program execution time for different matrix dimensions using of

fixed threshold. The percentage of execution time improvement in parallel form for

larger matrix dimensions (1024, 2048) is more than matrices with smaller

dimensions (128, 256, 512).This indicates necessity and importance of parallelism

for large matrix dimensions. Increasing the number of available computers (15, 20)

also has significant impact on the program execution time.

5.4 Performance of Two-fold and Seven-fold Distribution Method

In continuing, the operations of Two-fold and Seven-fold distribution methods have

been indicated in the following tables and their related figures. Note that in Table 5.6

and Table 5.8 input matrices dimensions have been considered as constant while the

threshold values have been assumed as variable for figuring out the effect of them

whereas, in Table 5.7 and Table 5.9 the input matrices dimensions have been

considered as variable for figuring out the effect of them. But the threshold values

have been assumed as constant.

0

10

20

30

40

50

60

70

80

1 5 10 15 20

E
x
ec

u
ti

o
n

 t
im

e,
 m

in
u

te
s

PC Numbers

128

256

512

1024

2048

54

Table 5.6: Execution Time of Two-fold Distribution Method by Different Threshold

Values and Using Different Number of Computers

PC Numbers Execution time, minutes

64 128 256 512

1 31.28 31.31 30.35 29.23

5 16.98 15.38 14.45 12.31

10 19.21 12.88 7.98 5.63

15 19.00 10.8 7.46 5.63

20 18.45 8.95 6.28 5.63

Figure 5.5: Execution Time versus Number of Computers with Different Threshold

Values for Two-fold Distribution Method

Table 5.7: Execution Time of Two-fold Distribution Method by Different Matrix

Size and Using Different Number of Computers

PC Numbers
Execution Time, minutes

128 256 512 1024 2048

1 0.02 0.10 0.58 4.11 31.31

5 0.03 0.06 0.30 2.36 15.38

10 0.03 0.06 0.20 2.05 12.88

15 0.03 0.05 0.15 2.00 10.8

20 0.03 0.05 0.18 1.7 8.50

0

5

10

15

20

25

30

35

1 5 10 15 20

Ex
e

cu
ti

o
n

 t
im

e
, m

in
u

te
s

PC Numbers

64

128

256

512

55

Figure 5.6: Execution Time versus Number of Computers with Different Matrix Size

for Two-fold Distribution Method

Table 5.8: Execution Time of Seven-fold Distribution Method by Different

Threshold Values and Using Different Number of Computers

PC Numbers
Execution time, minutes

64 128 256 512

1 39.31 38.68 39.61 39.28

5 19.23 18.23 18.85 17.53

10 6.50 6.81 6.55 5.03

15 6.51 6.26 6.25 4.95

20 6.53 6.68 6.50 4.88

0

5

10

15

20

25

30

35

1 5 10 15 20

Ex
e

cu
ti

o
n

 t
im

e
, m

in
u

te
s

PC Numbers

128
256
512
1024
2048

56

Figure 5.7: Execution Time versus Number of Computers with Different Threshold

Values for Seven-fold Distribution Method

Table 5.9: Execution Time of Seven-fold Distribution Method by Different Matrix

Size and Using Different Number of Computers

PC Numbers
Execution Time, minutes

128 256 512 1024 2048

1 0.02 0.15 0.75 5.33 39.31

5 0.03 0.06 0.38 3.0.1 18.23

10 0.03 0.01 0.11 1.46 6.81

15 0.03 0.01 0.13 1.38 6.26

20 0.03 0.03 0.21 0.98 6.68

0

5

10

15

20

25

30

35

40

45

1 5 10 15 20

Ex
e

cu
ti

o
n

 t
im

e
, m

in
u

te
s

PC Numbers

64

128

256

512

57

Figure 5.8: Execution Time versus Number of Computers with Different Matrix Size

for Seven-fold Distribution Method

5.6 Performance of Fair Distribution Method

Execution time achieved from the experimental results of Fair distribution method

has been included in this section. First, in Table 5.10, execution time of program on a

network including one to twenty computers has been entered. To do these tests, input

matrices with dimension of 2048 2048 has been used. Also, the threshold value

used for these tests is 128. In Table 5.10, execution time, speed up and efficiency of

program in different situation have been calculated.

0

5

10

15

20

25

30

35

40

45

1 5 10 15 20

Ex
e

cu
ti

o
n

 t
im

e
, m

in
u

te
s

PC Numbers

128

256

512

1024

2048

58

Table 5.10: Execution Time, Speed-Up and Efficiency of Fair Distribution Method

by Different Number of Computers

PC Execution time of Fair Performance

Numbers distribution method Speed-Up Efficiency

1 24.5 - - - - - -

2 21.11 1.16 0.58

3 18.43 1.32 0.44

4 11.15 2.19 0.73

5 10.5 2.33 0.46

6 10.01 2.44 0.40

7 8.18 2.99 0.42

8 7.25 3.37 0.42

9 6.46 3.79 0.42

10 6.18 3.96 0.39

11 6.18 3.96 0.36

12 6.23 3.93 0.32

13 6.26 3.91 0.30

14 6.2 3.95 0.28

15 5.9 4.15 0.27

16 5.68 4.31 0.26

17 5.66 4.32 0.25

18 5.46 4.48 0.24

19 5.53 4.43 0.23

20 5.55 4.41 0.22

As it is seen in Table 5.10 by the increase of the number of computers we see the

decrease in the execution time. As a result of this reduction execution time, we

always had improvement in speed up. But, the altering process of efficiency in some

points is rising and the rest descending. In applications which we intend to use the

parallel program, noticing to the importance of speed up or efficiency, we can choose

the ideal situation from the modes of table.

For this version of distribution, too, the results of effects of threshold value changes

and different sizes of input matrices have been gathered. To see the effects of

threshold changes, size of entering matrices are 2048 2048. Also, these tests on the

59

networks including 1, 5, 10, 15 and 20 PCs have been done. Results of these tests are

in the table 5.11.

Table 5.11: Execution Time of Fair Distribution Method by Different Threshold

Values and Using Different Number of Computers

PC Numbers
Execution time, minutes

64 128 256 512

1 23.83 24.3 23.95 24.01

5 11.06 11.50 11.20 10.83

10 6.18 6.18 6.16 6.23

15 5.63 5.90 5.63 5.63

20 7.10 7.08 6.90 6.21

In following Figure 5.9 shows the program execution time with different threshold

values for two 2048 2048 input matrices.

Figure 5.9: Execution Time versus Number of Computers with Different Threshold

Values for Fair Distribution Method

For figuring out the effect of changes in size of input matrices, threshold value has

been considered as constant while input matrices dimensions have been assumed as

0

5

10

15

20

25

30

1 5 10 15 20

Ex
e

cu
ti

o
n

 t
im

e
, m

in
u

te
s

PC Numbers

64

128

256

512

60

variable. These tests have been done on the networks including 1, 5, 10, 15 and 20

computers. Results of these tests are shown in Table 5.12.

Table 5.12: Execution Time of Fair Distribution Method by Different Matrix Size

Using Different Number of Computers

PC Numbers
Execution Time, minutes

128 256 512 1024 2048

1 0.02 0.06 0.50 3.45 24.30

5 0.03 0.03 0.16 1.58 11.50

10 0.03 0.03 0.13 0.80 6.18

15 0.03 0.03 0.19 0.61 5.90

20 0.03 0.03 0.18 0.71 6.50

Figure 5.10 shows program execution time for different matrix dimensions using

fixed threshold value by Fair distribution method.

Figure 5.10: Execution time versus Number of Computers with Different Matrix Size

for Fair Distribution Method

The method we have used for comparing to our Fair distribution method is Strassen-

BMR. The results for Strassen-BMR method in [32] have been already reported over

the system defined by following properties. All the applied processors are Intel

0

5

10

15

20

25

30

1 5 10 15 20

Ex
e

cu
ti

o
n

 t
im

e
, m

in
u

te
s

PC Numbers

128

256

512

1024

2048

61

iPSC/860. This processor is a high performance parallel computer system. The

processing power of the iPSC/860 comes from its processing nodes. Each node in the

iPSC/860 is either a CX or an RX processor. Every iPSC/860 system contains at least

one RX node. The CX node is based on the Intel386 microprocessor. An RX node

consists of an Intel i860 microprocessor capable of a peak performance of 80

MFLOPS. The i860 has multiple arithmetic units: an integer unit, a floating point

adder and a floating point multiplier. The processing nodes of the iPSC/860 are

interconnected in hypercube architecture having 2GB memory over each node. Peak

data transfer rate for inter-processor communication is 176 Mb/s. In a hypercube of

dimension n, each node has n neighbors and the total number of nodes in the

hypercube is .

Regarding to what we have just mentioned, the connection type between processors

in Strassen-BMR is internal, whereas in our test system, connections is established

via cables. Hence, the transfer rate of the Strassen-BMR system is faster. Therefore,

the comparison can be done as follows. When the number of applied processors is

pretty less and inter-processor communications are not so significant, our method

will be working better than Strasssen-BMR. In contrast, when the number of used

processors is more, inter-processor communications will be considerable. Hence,

Strassen-BMR will work better due to fast communication between processors.

Results of STRASSEN.BMR method in the related reference are on four computers

by input matrices with the size of 500 500. The results of our implementation on

four computers and entering matrices with the size of 512 512 are achieved, too. In

62

this comparison, the execution time of program is calculated by second. Results of

these comparing are showed in Table 5.13.

Table 5.13: Comparing Execution Time of Strassen-BMR and Fair Distribution

Methods

Method
Number of

Computers
Matrix Size

Execution

time, sec

Strassen-BMR
4 500 500 10

16 1000 1000 20

Fair distribution

method

4 512 512 8.58

16 1024 1024 34.6

Fair distribution method for parallel Strassen matrix multiplication algorithm has

been presented and compared with Strassen-BMR method. When the communication

is not very costly compared to computation, Fair distribution method may offer a fast

approach for large matrix dimensions.

63

Chapter 6

6 CONCLUSION

The aim of this thesis is to study necessities in parallel programming. Due to the

development of applying computers in all scientific aspects and need faster

processes, it is considerably important to study parallel programming methods of

applying hardware and software to solve scientific problems. In order to improve the

functionality of parallel algorithms, this thesis proposed data division and

distribution methods for implementing parallel calculations in homogeneous

networks with different number of nodes. This thesis uses Strassen matrix

multiplication algorithm. Strassen method is a recursive algorithm and has been

designed based on divide and conquer technique.

During the thesis initially, two types of distribution methods of tasks among

computers are designed. Then, by comparing two-fold and seven-fold methods, we

figured out constant distribution methods which are not satisfied all circumstances of

the program. Thereby, we select dynamic distribution method for division and

distribution of tasks belongs to Strassen algorithm. We apply P processors and

distribute input matrices of size nn over an optimum network topology to perform

parallel computation.

64

The dynamic distribution method is applied as a tree distribution in such a way that

most computers are taken into account for the last layer. Hence, the maximum

possibility of parallel processing in recursive algorithms is provided.

Speed-up and efficiency as two measurement criterion are calculated using related

formulas. When the numbers of computers are ten or twenty, the speed-up values

have been calculated as 3.94 and 4.65 respectively. As well as, values of efficiency

for the same numbers of computers using related formula are 0.39 and 0.23

respectively.

We compared the execution time in usual and reusing of client methods in two-fold

distribution method. In the further, results of three distribution methods named by

two-fold, seven-fold and dynamic achieved by experimental results, were compared

to each other. It was observed that fixed distribution methods are not optimal, but

dynamic distribution method covers each optimum point in the fixed distribution

methods.

We are trying to occupy the clients at the begging of execution for improving the

performance of the previous methods. This method has been named by Fair

distribution.

After that, comparing of the achieved results in Fair distribution (10, 8.58 Sec for

Strassen-BMR and Fair distribution respectively) shows better improvement in

execution time rather than Strassen-BMR method (where the numbers of computers

are four, 500*500 and 512*512 are matrices dimension for Strassen-BMR and Fair

65

distribution method respectively). Finally, some efficiency improvements are

observed in case of having larger matrices in parallel environment.

66

REFERENCES

[1] J. D. Plummer, "Material and Process Limits in Silicon VLSI Technology",

Stanford University, Stanford, IEEE, Volume. 89, NO. 3, PP. 240-258, March 2001.

[2] C. D. Martin, "ENIAC: The Press Conference That Shook the World", IEEE

Technology and Society Magazine, Volume 14, PP. 3-10, December, 1995.

[3] W. Gehrke, K. Gaedke, "Associative Controlling of MonolithicParallel Processor

Architectures", IEEE, Transactions on Circuits and Systems for Video Technology,

Volume 5, NO. 5, PP. 453-464, October 1995.

[4] H. El-Rewini, M. Abd-El-Barr, "Advanced Computer Architecture and Parallel

Processing", John Wiley & Sons, Canada, 2005.

[5] B. Barney, L. Livermore, "Introduction to Parallel Computing", Mar 2010,

https://computing.llnl.gov/tutorials/parallel_comp/, Ebook.

[6] M. J. Flynn, “Very high-speed computing systems”, IEEE, volume. 54, no. 12,

pp. 1901–1909, 1966.

 [7] M. J. Flynn, K. W. Rudd, "Parallel Architectures", ACM Computing Surveys,

Vol. 28, No. 1, PP. 1479-1496, March 1996.

67

[8] R. Eigenmann, D. J. Lilja, "Von Neumann Computers", Wiley Encyclopedia of

Electrical and Electronics Engineering, Volume 23, PP. 387-400, January 30, 1998.

[9] R. Duncan, "A Survey of Parallel Computer Architectures", IEEE, PP. 5-16,

February 1990.

 [10] P. S. Pacheco, "An Introduction toParallel Programming", Burlington, USA,

Elsevier Inc, 2011.

[11] J. Protic, M. Tomagevic, V. Milutinovic, "A Survey of Distributed Shared

Memory Systems", Proceedings of the 28th Annual Hawaii International Conference

on System Sciences, PP. 61-66, IEEE, 1995.

[12] W. Gropp, E. Lusk, R. Thakur, "Using MPI-2 Advanced Features of the

Message-Passing Interface", Massachusetts Institute of Technology, Wilson, 1999.

[13] B.Wah, "Interconnection Networks for Parallel Computers", John Wiley &

Sons, Inc, PP. 1613- 1623, 2008.

[14] M.Wimmer, "Programming Models for Parallel Computing", MSC Thesis,

Wien university, Wien, 2010.

[15] F.E. Fich, P.Ragde, A.Wigderson, "Relations Between Concurrent-Write

Models of Parallel Computation", SIAM J. Comput, Volume 17, No 3, PP. 606-626,

June 1988.

68

[16] U. Vishkin, "Thinking in Parallel:Some Basic Data-Parallel Algorithms and

Techniques", University of Meryland, October 12, 2010.

[17] A. Grama, A. Gupta, G. Karypis, V. Kumar, "Introduction to Parallel

Computing" Second Edition, Addison Wesley, ISBN: 0-201-64865-2, January 16,

2003.

[18] L. Hu, I. Gorton, "Performance Evaluation for Parallel Systems: A

Survey",MSC Thesis, University of NSW, Australia, October 1997.

[19] M. A. Oliveira, "Parallel Computing and Parallel Programming", LNEC, April

2010.

[20] D.L. Eager, J. Zahorjan, E.D. Lazowska, "Speedup Versus Efficiency in Parallel

Systems", IEEE, Transactions on Computers, Volume 38, NO. 3, PP. 408-423,

MARCH 1989.

 [21] A. Gupta, V. Kumar, "Performance Properties of Large ScaleParallel Systems",

Journal of Parallel and Distributed Computing, Volume 19, No.3, pp. 234-244, 1993.

[22] S. Dasgupta, C. H. Papadimitriou, U. V. Vazirani, "Algorithms", MC Graw-Hill,

July 18, 2006.

[23] N. Hyodo, H. Murao, T. Saito, "Matrix Multiplication Made Fast-Practical View

of Fast Matrix Operation for Computer Algebra System", Japan Society for Symbolic

and Algebraic Computation, Volume 11, No 3,4, PP. 3-19, 2005.

69

 [24] F. Song, J. Dongarra, S. Moore, "Experiments With Strassen's Algorithm: From

Sequential to Parallel", Parallel and Distributed Computing and Systems, IASTED

18th International Conference Parallel and Distributed Computing and Systems, PP

415-421, 2006.

[25] S. Huss-Lederman, E. Jacobson, " Implementation of Strassen’s Algorithm for

Matrix Multiplication", Supercomputing '96 proceeding of the 1996 ACM/IEEE

Conference on Supercomputing (CDROM), Pittsburgh, PA, USA — November 17 -

22, 1996.

[26] Automatically Tuned Linear Algebra Software (ATLAS),

http://www.netlib.org/atlas.

[27] NetSolve/GridSolve, http://icl.cs.utk.edu/netsolve.

[28] F. Desprez, F. Suter, " Mixed Parallel Implementation of the Top Level Step of

Strassen andWinograd Matrix Multiplication Algorithms", Proceedings of the 15th

International Parallel and Distributed Processing Symposium (IPDPS’01), San

Francisco, 14 March 2001.

[29] B. Grayson, A. P. shah, R. A. Geijn, " A High Performance Parallel Strassen

Implementation" Parallel Process, University of Texas at Austin, TX, USA,1995.

[30] C. Baransel, K. M.˙Imre, "A parallel implementation of Strassen’s matrix

multiplication algorithm for wormhole-routed all-port 2D torus networks", The

Journal of Supercomputing, Volume 62, Issue 1, PP 486-509, October 2012.

70

[31] Y. Ohtaki, " Parallel Implementation of Strassen’s Matrix Multiplication

Algorithm for Heterogeneous Clusters", Proceedings of the 18th International

Parallel and Distributed Processing Symposium, PP. 220-228, IEEE, 2004

[32] Q. Luo, J. B. Drake, "A Scalable Parallel Strassen's Matrix Multiply Algorithm

for Distributed Memory Computers", in proceedings of the Symposium on Applied

Computing, SAC'95, Nashville, TN. Feb 26-28, ACM Press, 1995.

71

APPENDICES

72

APPENDIX A: User Guide

At the starting point of perform, program can have 2 different positions, whether to

perform in the role of client or to start work in the role of server. If it starts to work

as client, directly finds the topology of distribution and will process the division and

distribution of the work, but if it is in the role of server, it will be waiting in to

receive work from client. In the program there is a configuration file which includes

the settings of program implementation which are actually entries of program too.

The figure of this file is shown below. We explain the existing information in the file

and the information which will be entered sequentially.

Configuration File

Type: It implies the kind of computer at which program performs on and has 2 kinds

of client or server.

SOCKET_BUFFER_SIZE: is the buffer size of receiving and sending data. For

instance when SOCKET_BUFFER_SIZE is 1024, the data that should be sent is

divided to 1024 byte packages. And, these packages are sent sequentially and one

73

after another. It should be mentioned that amount of SOCKET_BUFFER_SIZE must

be equal in both sender and receiver.

THRESHOLD_ROW, THRESHOLD_COLUMN: It is threshold for rows and

columns of matrices, here a user defines that to what optimum limit matrices should

be divided and distributed. Whatever is the threshold, division anddistribution of the

matrices are stopped and continuation of the calculation is performed by local

computer.

SERVER_COUNT: It displays number of all computers in network. For instance if

we have 30 computers in network, it equals to 30.

SERVER_INDEX: It equals with an index which IP of local computer has come to

this index in the configuration file.

SERVER1, SERVER2, etc: IP of existing computers in network are entered

sequentially these variables. Computers which should work on division and

distribution in the role of client will identify existing computers in authorized

network and with having their IP attempt to distribute the work.

Configuration file is in the follow path in program file:

 StrassenMatrixMultiplication/ bin / Debug / Configuration

Two files of entering matrix which multiplication task should be performed on, too,

are copied in the above path. It should be mentioned here that after copying the

74

program file to the computers, settings of configuration file should conducted on

every single computer. After doing the settings, program will be performed on all

server computers and while server computers are in listening status, programs of

client computer are performed.

Performing the client program, after finding the distribution topology via client, steps

of sending process to server computers according to mentioned procedure are started

and eventually after receiving results of distributed calculations, these results are

stored in an output file which has created in the path of entering files via client.

To make sure of correctness, obtained results of multiplying 16 16 matrices are

illustrated in the following. Figures 6.2 and 6.3 show the input matrices and Figure

6.4 presents the output of multiplication calculated by the program.

Input Matrix A

75

Input Matrix B

Result of Multiplying A and B

Next example is presented over 8*8 input matrices. Matrices are in the form of upper

triangular contains simple elements. Figure 6.5 and Figure 6.6 illustrate the input

matrices and output matrix respectively.

76

Input Matrices

Result Matrix

77

Meanwhile, the execution time of program performed over 4 processors, matrices by

size 512 and 128 as threshold value is shown in figure 6.7.

An Example of a Test Execution Time

78

APPENDIX B: Programming Part

The program below has been implemented to divide the matrices and distribute them

over the network nodes. The following information illustrates the mentioned

program.

Property

Explanation

Author Reza Abri Vaighan

Name of the

program

Matrix Multiplication Distributer

Language

C#

Program type

Object-Oriented

Release date

05.06.2013

Purpose

Investigating Strassen matrices multiplication algorithm to

be executed over distributed systems

Usage

Finding a better solution for matrix multiplication by

distributed execution

Headers of the

program

We have applied only C# system files and no extra library

have been used.

using System;
using System.Collections.Generic;
using System.Collections;
using System.Text;

namespace StrassenMatriceMultiplication
{
classProgram
 {
staticConfigurationHandler Config =
newConfigurationHandler("configuration.cfg");
staticbool IsClient;
staticstring Status = "Idle";
staticDateTime ReservedTime = newDateTime();

79

staticstring Command = "";
staticstring Tree = "";
staticstring LocalIP = "";
static System.IO.StreamWriter file = new System.IO.StreamWriter("log.txt");
static System.Threading.Mutex Mtx = new System.Threading.Mutex();

staticvoid Main(string[] args)
 {
string TypeValue = "";
if (Config.GetValue("TYPE", out TypeValue))
 IsClient = (TypeValue.ToUpper() == "CLIENT") ? true :false;
else
 {
Console.WriteLine("Error: Could not read TYPE value from configuration file");
return;
 }

In the beginning of the program running, a question is asked from user, then user, for

running of the program on local computer, should press "Enter" key and for

distributing of the program in order to parallel execution should press any other key.

if (IsClient)
 {
Console.WriteLine("Press \"Enter\" key to execute in local machine,\r\nor
other key to send to servers...");
ConsoleKeyInfo key = Console.ReadKey(true);
Console.Clear();
if (key.Key == ConsoleKey.Enter)
 {
ExecuteClient(false);
return;
 }
 }

string ServerIndex = "";
Config.GetValue("SERVER_INDEX", out ServerIndex);
Config.GetValue("SERVER" + ServerIndex, out LocalIP);

 System.Threading.Thread StatusResponder =
newSystem.Threading.Thread(() => ResponseToStatus());
StatusResponder.Start();

 System.Threading.Thread CommandResponder =
newSystem.Threading.Thread(() => ResponseToCommand());
CommandResponder.Start();

This section is related to starting point of client activity in the role of server which is

again related to renewed usage.

if (IsClient)
 {
 System.Threading.Thread Server =
newSystem.Threading.Thread(() => ExecuteServer());
Server.Start();

80

ExecuteClient(true);

if (Server.IsAlive)
Server.Join();
 }
else
ExecuteServer();

if (StatusResponder.IsAlive)
StatusResponder.Join();
if (CommandResponder.IsAlive)
CommandResponder.Join();

 }

This function finds optimum distribution topology regarding to inputs automatically.

staticstring FindBestTopology(int Count, int Level)
 {
string Topology = GetBestTopologyFromFile(Count, Level);
if (Topology != "")
return Topology;

ArrayList Tree = newArrayList();
ArrayList LevelArray = newArrayList();

 if (Count == 2)
 {
Tree.Add(-1);
LevelArray.Add(1);

Tree.Add(0);
LevelArray.Add(2);
 }
elseif (Count == 8)
 {
Tree.Add(-1);
LevelArray.Add(1);

Tree.Add(0);
LevelArray.Add(2);
Tree.Add(0);
LevelArray.Add(2);
Tree.Add(0);
LevelArray.Add(2);
Tree.Add(0);
LevelArray.Add(2);
Tree.Add(0);
LevelArray.Add(2);
Tree.Add(0);
LevelArray.Add(2);
Tree.Add(0);
LevelArray.Add(2);
 }
else
 {

 GetBestTopology(ref Tree, ref LevelArray, -1,
Count, 1, Level);
 }

81

 string Printable = "";
for (int i = Tree.Count - 1; i >= 0; i--)
 {
 Printable = "\n" + Printable;
 Printable = "Server" + i + Printable;
for (int j = 0; j < (int)LevelArray[i] - 1; j++)
 Printable = "\t" + Printable;
 }

Console.WriteLine("Topology : ");
Console.WriteLine("===========================");
Console.WriteLine(Printable);
Console.WriteLine("===========================");
Console.Out.Flush();

string Output = "";
for (int i = 0; i < Tree.Count - 1; i++)
 Output += (i + "," + (Tree[i].ToString() + ";"));
 Output += ((Tree.Count - 1) + "," + Tree[Tree.Count -
1].ToString());

return Output;
 }

staticint GetLeavesCount(ArrayList Level, int MaximumLevel)
 {

int Count = 0;
int LastNumber = -2;
for (int i = 0; i < Level.Count; i++)
 {
if ((int)Level[i] == MaximumLevel)
 {
 Count++;
if (LastNumber != (int)Level[i])
 {
 Count += 2;
 LastNumber = (int)Level[i];
 }
 }
 }
return Count;
 }

staticstring GetBestTopologyFromFile(int Count, int Level)
 {
string[] Topologies = System.IO.File.ReadAllLines("topology.txt");
for (int i = 0; i < Topologies.Length; i++)
 {
string[] Parts = Topologies[i].Split('|');
int tmpCount = -1;
int tmpLevel = -1;
char CountOperand = Parts[0][0];
Parts[0] = Parts[0].Substring(1);

if (Parts[0].IndexOf('=') >= 0)
 {
tmpCount = Convert.ToInt32(Parts[0].Substring(0, Parts[0].IndexOf('=')));
tmpLevel = Convert.ToInt32(Parts[0].Substring(Parts[0].IndexOf('=') + 1));

if (CountOperand == '=')

82

 {
if (Count == tmpCount && Level == tmpLevel)
return Parts[1];
 }
elseif (CountOperand == '>')
 {
if (Count >= tmpCount && Level == tmpLevel)
return Parts[1];
 }
elseif (CountOperand == '<')
 {
if (Count <= tmpCount && Level == tmpLevel)
return Parts[1];
 }
 }
elseif (Parts[0].IndexOf('<') >= 0)
 {
tmpCount = Convert.ToInt32(Parts[0].Substring(0, Parts[0].IndexOf('<')));
tmpLevel = Convert.ToInt32(Parts[0].Substring(Parts[0].IndexOf('<') + 1));

if (CountOperand == '=')
 {
if (Count == tmpCount && Level <= tmpLevel)
return Parts[1];
 }
elseif (CountOperand == '>')
 {
if (Count >= tmpCount && Level <= tmpLevel)
return Parts[1];
 }
elseif (CountOperand == '<')
 {
if (Count <= tmpCount && Level <= tmpLevel)
return Parts[1];
 }
 }
elseif (Parts[0].IndexOf('>') >= 0)
 {
tmpCount = Convert.ToInt32(Parts[0].Substring(0, Parts[0].IndexOf('>')));
tmpLevel = Convert.ToInt32(Parts[0].Substring(Parts[0].IndexOf('>') + 1));

if (CountOperand == '=')
 {
if (Count == tmpCount && Level >= tmpLevel)
return Parts[1];
 }
elseif (CountOperand == '>')
 {
if (Count >= tmpCount && Level >= tmpLevel)
return Parts[1];
 }
elseif (CountOperand == '<')
 {
if (Count <= tmpCount && Level >= tmpLevel)
return Parts[1];
 }
 }
 }

return"";
 }

83

staticint GetBestTopology(refArrayList Tree, refArrayList Level, int index,
int Count, int ChildrenCount, int MaximumLevel)
 {
if (ChildrenCount > Count - Tree.Count)

return -1;

for (int i = 0; i < ChildrenCount; i++)
 {
Tree.Add(index);//index of parent
if (index == -1)
Level.Add(1);
else
Level.Add((int)Level[index] + 1);

if (Tree.Count == Count)
return GetLeavesCount(Level, MaximumLevel);
 }

ArrayList T2 = (ArrayList)Tree.Clone();
ArrayList T3 = (ArrayList)Tree.Clone();
ArrayList T4 = (ArrayList)Tree.Clone();
ArrayList T7 = (ArrayList)Tree.Clone();

ArrayList L2 = (ArrayList)Level.Clone();
ArrayList L3 = (ArrayList)Level.Clone();
ArrayList L4 = (ArrayList)Level.Clone();
ArrayList L7 = (ArrayList)Level.Clone();

int[] Res = newint[4];
Res[0] = GetBestTopology(ref T2, ref L2, index + 1, Count, 2, MaximumLevel);
Res[1] = GetBestTopology(ref T3, ref L3, index + 1, Count, 3, MaximumLevel);
Res[2] = GetBestTopology(ref T4, ref L4, index + 1, Count, 4, MaximumLevel);
Res[3] = GetBestTopology(ref T7, ref L7, index + 1, Count, 2, MaximumLevel);

int max = Res[0];
int ind = 0;
for (int i = 1; i < Res.Length; i++)
if (Res[i] > max)
 {
max = Res[i];
ind = i;
 }

if (ind == 0)
 {
 Tree = (ArrayList)T2.Clone();
 Level = (ArrayList)L2.Clone();
 }
elseif (ind == 1)
 {
 Tree = (ArrayList)T3.Clone();
 Level = (ArrayList)L3.Clone();
 }
elseif (ind == 2)
 {
 Tree = (ArrayList)T4.Clone();
 Level = (ArrayList)L4.Clone();
 }
elseif (ind == 3)
 {
 Tree = (ArrayList)T7.Clone();

84

 Level = (ArrayList)L7.Clone();
 }

return max;
 }

staticvoid ResponseToStatus()
 {
int ReceivePort = 10001;

while (true)
 {
Mtx.WaitOne();

TCPIPSocket socket = newTCPIPSocket("", LocalIP, ReceivePort, 0);
byte[] Message = socket.ReceiveMessage();
if (Encoding.ASCII.GetString(Message) == "Status")
 {
if (Status == "Idle")
 {
 Status = "IdleReserved";
socket.SendMessage(Encoding.ASCII.GetBytes("Idle"));
file.WriteLine(DateTime.Now.ToLongTimeString() + "\t" + "Idle" + " was sent
to" + socket.RemoteIP);
file.Flush();
Console.WriteLine(DateTime.Now.ToLongTimeString() + "\t" + "Idle" + "\t" +
socket.RemoteIP);
 }
elseif (Status == "Waiting")
 {

 Status = "WaitingReserved";
socket.SendMessage(Encoding.ASCII.GetBytes("Waiting"));
file.WriteLine(DateTime.Now.ToLongTimeString() + "\t" + "Waiting" + " was sent
to" + socket.RemoteIP);
file.Flush();
Console.WriteLine(DateTime.Now.ToLongTimeString() + "\t" + "Waiting" + "\t" +
socket.RemoteIP + "\t");
 ReservedTime = DateTime.Now;
 }
elseif (Status == "WaitingReserved")
 {

Console.WriteLine("==>" + DateTime.Now + "\t\t" + ReservedTime);
if (ReservedTime.AddSeconds(60) >DateTime.Now)
 {
socket.SendMessage(Encoding.ASCII.GetBytes(Status));
 }
else
 {
 Status = "Waiting";
socket.SendMessage(Encoding.ASCII.GetBytes(Status));
 }
file.WriteLine(DateTime.Now.ToLongTimeString() + "\t" + Status + " was sent
to" + socket.RemoteIP);
file.Flush();
Console.WriteLine(DateTime.Now.ToLongTimeString() + "\t" + Status + "\t" +
socket.RemoteIP);
 }
else
 {
socket.SendMessage(Encoding.ASCII.GetBytes(Status));

85

file.WriteLine(DateTime.Now.ToLongTimeString() + "\t" + Status + " was sent
to" + socket.RemoteIP);
file.Flush();
Console.WriteLine(DateTime.Now.ToLongTimeString() + "\t" + Status + "\t" +
socket.RemoteIP);
 }
 }
else
 {

socket.SendMessage(Encoding.ASCII.GetBytes("UNKNOWN"));
file.WriteLine(DateTime.Now.ToLongTimeString() + "\t" + "UNKNOWN" + " was sent
to" + socket.RemoteIP);
file.Flush();
 }

Mtx.ReleaseMutex();
 }
 }

staticvoid ResponseToCommand()
 {

int ReceivePort = 10002;

while (true)
 {
TCPIPSocket socket = newTCPIPSocket("", LocalIP, ReceivePort, 0);
byte[] Message = socket.ReceiveMessage();

 Status = "WaitingWaiting";
 Tree = Encoding.ASCII.GetString(Message);
file.WriteLine(DateTime.Now.ToLongTimeString() + "\t" + Command + " was
received from" + socket.RemoteIP);
file.Flush();

 }
 }

staticvoid ExecuteClient(bool IsStrassen)
 {
Console.WriteLine("Start : " + DateTime.Now);
 System.Diagnostics.Stopwatch stopWatch =
newSystem.Diagnostics.Stopwatch();
stopWatch.Start();
TimeSpan ExecutionTime = newTimeSpan();

int Port = 10000;

string ThresholdColumn;
string ThresholdRow;
ConfigurationHandler config = newConfigurationHandler("configuration.cfg");
config.GetValue("THRESHOLD_COLUMN", out ThresholdColumn);
config.GetValue("THRESHOLD_ROW", out ThresholdRow);
if (ThresholdRow != ThresholdColumn)
 {
Console.WriteLine("Error: THRESHOLD_ROW and THRESHOLD_COLUMN must be equal.");
Console.Read();
return;
 }

86

int[][,] Matrices = newint[2][,];
Matrices[0] = MatriceUtilities.ReadMatriceFromFile("MatriceA.txt");
Matrices[1] = MatriceUtilities.ReadMatriceFromFile("MatriceB.txt");

if (Matrices[0].GetLength(0) != Matrices[0].GetLength(1) &&
Matrices[0].GetLength(1) != Matrices[1].GetLength(0) &&
Matrices[1].GetLength(0) != Matrices[1].GetLength(1))
 {
Console.WriteLine("Error: Input matrices are invalid. Check rows and columns
count.");
Console.Read();
return;
 }

for (int i = 0; i < Matrices.GetLength(0); i++)
 Matrices[i] = MatriceUtilities.AddZero(Matrices[i]);

int[,] ResultMatrice = null;

This section is for a status which running of the program via user on local machine

has been chosen or division of matrices have reached to their maximum level and

again local computer is responsible for the continuation of performing program.

if (IsStrassen == false ||
 (Matrices[0].GetLength(0) <= Convert.ToInt32(ThresholdRow) &&
Matrices[0].GetLength(1) <= Convert.ToInt32(ThresholdColumn) &&
Matrices[1].GetLength(0) <= Convert.ToInt32(ThresholdRow) &&
Matrices[1].GetLength(1) <= Convert.ToInt32(ThresholdColumn)))
 {
 Status = "Busy";
Console.Write("Multiplication is executing on local machine.");
MatriceUtilities.Multiplication(Matrices[0], Matrices[1], ref ResultMatrice);
MatriceUtilities.WriteToFile("Result.txt", ResultMatrice);
Console.WriteLine("Result is ready");
 Status = "Idle";
stopWatch.Stop();
 ExecutionTime = stopWatch.Elapsed;
Console.Write("Execution time: " + ExecutionTime.ToString());
Console.Read();
return;
 }

 Status = "Waiting";

int[,] A11 = null, A12 = null, A21 = null, A22 = null;
int[,] B11 = null, B12 = null, B21 = null, B22 = null;

MatriceUtilities.StrassenDivide(Matrices[0], out A11, out A12, out A21, out
A22);
MatriceUtilities.StrassenDivide(Matrices[1], out B11, out B12, out B21, out
B22);

87

int[,] A11A12 = null, A21A11 = null, B11B12 = null, A12A22 = null, B21B22 =
null;
int[,] A11A22 = null, B11B22 = null, A21A22 = null, B12B22 = null, B21B11 =
null;
MatriceUtilities.Add(A11, A22, ref A11A22);
MatriceUtilities.Add(B11, B22, ref B11B22);
MatriceUtilities.Add(A21, A22, ref A21A22);
MatriceUtilities.Subtract(B12, B22, ref B12B22);
MatriceUtilities.Subtract(B21, B11, ref B21B11);
MatriceUtilities.Add(A11, A12, ref A11A12);
MatriceUtilities.Subtract(A21, A11, ref A21A11);
MatriceUtilities.Add(B11, B12, ref B11B12);
MatriceUtilities.Subtract(A12, A22, ref A12A22);
MatriceUtilities.Add(B21, B22, ref B21B22);

int[,] P1 = null, P2 = null, P3 = null, P4 = null, P5 = null, P6 = null, P7 =
null;

int[][,] P1_Parts = null, P2_Parts = null, P3_Parts = null, P4_Parts = null,
P5_Parts = null, P6_Parts = null, P7_Parts = null;

string val = "";
config.GetValue("SERVERS_COUNT", out val);
int ServerCount = Convert.ToInt32(val);
int Level = (int)(Math.Log(Matrices[0].GetLength(0), 2) -
Math.Log(Convert.ToInt32(ThresholdRow), 2));
 Tree = FindBestTopology(ServerCount, Level);
string[] Topology = Tree.Split(';');

config.GetValue("SERVER_INDEX", out val);
string ServerIndex = (Convert.ToInt32(val) - 1).ToString();
ArrayList Servers = newArrayList();
int ChildrensCount = 0;
for (int i = 0; i < Topology.Length; i++)
 {
string[] TopologyParts = Topology[i].Split(';');
if (TopologyParts[1] == ServerIndex)
 {
 ChildrensCount++;
config.GetValue("SERVER" + (Convert.ToInt32(TopologyParts[0]) + 1), out val);
Servers.Add(val);
 }
 }

 System.Threading.Thread MulThread1 = null;
 System.Threading.Thread MulThread2 = null;
 System.Threading.Thread MulThread3 = null;
 System.Threading.Thread MulThread4 = null;
 System.Threading.Thread MulThread5 = null;
 System.Threading.Thread MulThread6 = null;
 System.Threading.Thread MulThread7 = null;

88

In this section of the program, division modes of 7 multiplication operations of

Strassen algorithm among servers have been defined.

if (Servers.Count == 0)
 {

 MulThread1 = newSystem.Threading.Thread(()
=>MatriceUtilities.Multiplication(A11A22, B11B22, ref P1));
MulThread1.Start();
 MulThread2 = newSystem.Threading.Thread(()
=>MatriceUtilities.Multiplication(A21A22, B11, ref P2));
MulThread2.Start();
 MulThread3 = newSystem.Threading.Thread(()
=>MatriceUtilities.Multiplication(A11, B12B22, ref P3));
MulThread3.Start();
 MulThread4 = newSystem.Threading.Thread(()
=>MatriceUtilities.Multiplication(A22, B21B11, ref P4));
MulThread4.Start();
 MulThread5 = newSystem.Threading.Thread(()
=>MatriceUtilities.Multiplication(A11A12, B22, ref P5));
MulThread5.Start();
 MulThread6 = newSystem.Threading.Thread(()
=>MatriceUtilities.Multiplication(A21A11, B11B12, ref P6));
MulThread6.Start();
 MulThread7 = newSystem.Threading.Thread(()
=>MatriceUtilities.Multiplication(A12A22, B21B22, ref P7));
MulThread7.Start();
 }
 elseif (Servers.Count == 1)
 {

 System.Threading.Mutex mtx0 = newSystem.Threading.Mutex();
 MulThread1 = newSystem.Threading.Thread(()
=>MatriceUtilities.Multiplication(A11A22, B11B22, ref P1));
MulThread1.Start();
 MulThread2 = newSystem.Threading.Thread(()
=>MatriceUtilities.Multiplication(A21A22, B11, ref P2));
MulThread2.Start();
 MulThread3 = newSystem.Threading.Thread(()
=>MatriceUtilities.Multiplication(A11, B12B22, ref P3));
MulThread3.Start();
 MulThread4 = newSystem.Threading.Thread(()
=>MatriceUtilities.Multiplication(A22, B21B11, ref P4));
MulThread4.Start();
 MulThread5 = newSystem.Threading.Thread(() =>
Server_Thread(Servers[0].ToString(), Port, A11A12, B22, out P5_Parts, mtx0,
Tree));
MulThread5.Start();
 MulThread6 = newSystem.Threading.Thread(() =>
Server_Thread(Servers[0].ToString(), Port, A21A11, B11B12, out P6_Parts, mtx0,
Tree));
MulThread6.Start();
 MulThread7 = newSystem.Threading.Thread(() =>
Server_Thread(Servers[0].ToString(), Port, A12A22, B21B22, out P7_Parts, mtx0,
Tree));
MulThread7.Start();

89

 }
elseif (Servers.Count == 2)
 {

 System.Threading.Mutex mtx0 = newSystem.Threading.Mutex();
 System.Threading.Mutex mtx1 = newSystem.Threading.Mutex();
 MulThread1 = newSystem.Threading.Thread(() =>
Server_Thread(Servers[0].ToString(), Port, A11A22, B11B22, out P1_Parts, mtx0,
Tree));
MulThread1.Start();
 MulThread2 = newSystem.Threading.Thread(() =>
Server_Thread(Servers[0].ToString(), Port, A21A22, B11, out P2_Parts, mtx0,
Tree));
MulThread2.Start();
 MulThread3 = newSystem.Threading.Thread(() =>
Server_Thread(Servers[0].ToString(), Port, A11, B12B22, out P3_Parts, mtx0,
Tree));
MulThread3.Start();
 MulThread4 = newSystem.Threading.Thread(() =>
Server_Thread(Servers[0].ToString(), Port, A22, B21B11, out P4_Parts, mtx0,
Tree));
MulThread4.Start();
 MulThread5 = newSystem.Threading.Thread(() =>
Server_Thread(Servers[1].ToString(), Port, A11A12, B22, out P5_Parts, mtx1,
Tree));
MulThread5.Start();
 MulThread6 = newSystem.Threading.Thread(() =>
Server_Thread(Servers[1].ToString(), Port, A21A11, B11B12, out P6_Parts, mtx1,
Tree));
MulThread6.Start();
 MulThread7 = newSystem.Threading.Thread(() =>
Server_Thread(Servers[1].ToString(), Port, A12A22, B21B22, out P7_Parts, mtx1,
Tree));
MulThread7.Start();
 }
elseif (Servers.Count == 3)
 {
 System.Threading.Mutex mtx0 = newSystem.Threading.Mutex();
 System.Threading.Mutex mtx1 = newSystem.Threading.Mutex();
 System.Threading.Mutex mtx2 = newSystem.Threading.Mutex();
 MulThread1 = newSystem.Threading.Thread(() =>
Server_Thread(Servers[0].ToString(), Port, A11A22, B11B22, out P1_Parts, mtx0,
Tree));
MulThread1.Start();
 MulThread2 = newSystem.Threading.Thread(() =>
Server_Thread(Servers[0].ToString(), Port, A21A22, B11, out P2_Parts, mtx0,
Tree));
MulThread2.Start();
 MulThread3 = newSystem.Threading.Thread(() =>
Server_Thread(Servers[0].ToString(), Port, A11, B12B22, out P3_Parts, mtx0,
Tree));
MulThread3.Start();
 MulThread4 = newSystem.Threading.Thread(() =>
Server_Thread(Servers[1].ToString(), Port, A22, B21B11, out P4_Parts, mtx1,
Tree));
MulThread4.Start();
 MulThread5 = newSystem.Threading.Thread(() =>
Server_Thread(Servers[1].ToString(), Port, A11A12, B22, out P5_Parts, mtx1,
Tree));
MulThread5.Start();

90

 MulThread6 = newSystem.Threading.Thread(() =>
Server_Thread(Servers[2].ToString(), Port, A21A11, B11B12, out P6_Parts, mtx2,
Tree));
MulThread6.Start();
 MulThread7 = newSystem.Threading.Thread(() =>
Server_Thread(Servers[2].ToString(), Port, A12A22, B21B22, out P7_Parts, mtx2,
Tree));
MulThread7.Start();
 }
elseif (Servers.Count == 4)
 {
 System.Threading.Mutex mtx0 = newSystem.Threading.Mutex();
 System.Threading.Mutex mtx1 = newSystem.Threading.Mutex();
 System.Threading.Mutex mtx2 = newSystem.Threading.Mutex();
 System.Threading.Mutex mtx3 = newSystem.Threading.Mutex();
 MulThread1 = newSystem.Threading.Thread(() =>
Server_Thread(Servers[0].ToString(), Port, A11A22, B11B22, out P1_Parts, mtx0,
Tree));
MulThread1.Start();
 MulThread2 = newSystem.Threading.Thread(() =>
Server_Thread(Servers[0].ToString(), Port, A21A22, B11, out P2_Parts, mtx0,
Tree));
MulThread2.Start();
 MulThread3 = newSystem.Threading.Thread(() =>
Server_Thread(Servers[1].ToString(), Port, A11, B12B22, out P3_Parts, mtx1,
Tree));
MulThread3.Start();
 MulThread4 = newSystem.Threading.Thread(() =>
Server_Thread(Servers[1].ToString(), Port, A22, B21B11, out P4_Parts, mtx1,
Tree));
MulThread4.Start();
 MulThread5 = newSystem.Threading.Thread(() =>
Server_Thread(Servers[2].ToString(), Port, A11A12, B22, out P5_Parts, mtx2,
Tree));
MulThread5.Start();
 MulThread6 = newSystem.Threading.Thread(() =>
Server_Thread(Servers[2].ToString(), Port, A21A11, B11B12, out P6_Parts, mtx2,
Tree));
MulThread6.Start();
 MulThread7 = newSystem.Threading.Thread(() =>
Server_Thread(Servers[3].ToString(), Port, A12A22, B21B22, out P7_Parts, mtx3,
Tree));
MulThread7.Start();
 }
 elseif (Servers.Count == 7)
 {
 System.Threading.Mutex mtx0 = newSystem.Threading.Mutex();
 System.Threading.Mutex mtx1 = newSystem.Threading.Mutex();
 System.Threading.Mutex mtx2 = newSystem.Threading.Mutex();
 System.Threading.Mutex mtx3 = newSystem.Threading.Mutex();
 System.Threading.Mutex mtx4 = newSystem.Threading.Mutex();
 System.Threading.Mutex mtx5 = newSystem.Threading.Mutex();
 System.Threading.Mutex mtx6 = newSystem.Threading.Mutex();
 MulThread1 = newSystem.Threading.Thread(() =>
Server_Thread(Servers[0].ToString(), Port, A11A22, B11B22, out P1_Parts, mtx0,
Tree));
MulThread1.Start();
 MulThread2 = newSystem.Threading.Thread(() =>
Server_Thread(Servers[1].ToString(), Port, A21A22, B11, out P2_Parts, mtx1,
Tree));
MulThread2.Start();

91

 MulThread3 = newSystem.Threading.Thread(() =>
Server_Thread(Servers[2].ToString(), Port, A11, B12B22, out P3_Parts, mtx2,
Tree));
MulThread3.Start();
 MulThread4 = newSystem.Threading.Thread(() =>
Server_Thread(Servers[3].ToString(), Port, A22, B21B11, out P4_Parts, mtx3,
Tree));
MulThread4.Start();
 MulThread5 = newSystem.Threading.Thread(() =>
Server_Thread(Servers[4].ToString(), Port, A11A12, B22, out P5_Parts, mtx4,
Tree));
MulThread5.Start();
 MulThread6 = newSystem.Threading.Thread(() =>
Server_Thread(Servers[5].ToString(), Port, A21A11, B11B12, out P6_Parts, mtx5,
Tree));
MulThread6.Start();
 MulThread7 = newSystem.Threading.Thread(() =>
Server_Thread(Servers[6].ToString(), Port, A12A22, B21B22, out P7_Parts, mtx6,
Tree));
MulThread7.Start();
 }

if (MulThread1.IsAlive)
MulThread1.Join();
if (MulThread2.IsAlive)
MulThread2.Join();
if (MulThread3.IsAlive)
MulThread3.Join();
if (MulThread4.IsAlive)
MulThread4.Join();
if (MulThread5.IsAlive)
MulThread5.Join();
if (MulThread6.IsAlive)
MulThread6.Join();
if (MulThread7.IsAlive)
MulThread7.Join();

if (Servers.Count != 0)
 {

if (Servers.Count != 1)
 {
 P1 = MatriceUtilities.StrassenConquer(P1_Parts[0],
P1_Parts[1], P1_Parts[2], P1_Parts[3], P1_Parts[4], P1_Parts[5], P1_Parts[6]);
 P2 = MatriceUtilities.StrassenConquer(P2_Parts[0],
P2_Parts[1], P2_Parts[2], P2_Parts[3], P2_Parts[4], P2_Parts[5], P2_Parts[6]);
 P3 = MatriceUtilities.StrassenConquer(P3_Parts[0],
P3_Parts[1], P3_Parts[2], P3_Parts[3], P3_Parts[4], P3_Parts[5], P3_Parts[6]);
 P4 = MatriceUtilities.StrassenConquer(P4_Parts[0],
P4_Parts[1], P4_Parts[2], P4_Parts[3], P4_Parts[4], P4_Parts[5], P4_Parts[6]);
 }
 P5 = MatriceUtilities.StrassenConquer(P5_Parts[0],
P5_Parts[1], P5_Parts[2], P5_Parts[3], P5_Parts[4], P5_Parts[5], P5_Parts[6]);
 P6 = MatriceUtilities.StrassenConquer(P6_Parts[0],
P6_Parts[1], P6_Parts[2], P6_Parts[3], P6_Parts[4], P6_Parts[5], P6_Parts[6]);
 P7 = MatriceUtilities.StrassenConquer(P7_Parts[0],
P7_Parts[1], P7_Parts[2], P7_Parts[3], P7_Parts[4], P7_Parts[5], P7_Parts[6]);
 }

 Status = "Busy";

92

 ResultMatrice = MatriceUtilities.StrassenConquer(P1, P2, P3, P4,
P5, P6, P7);
MatriceUtilities.WriteToFile("Result.txt", ResultMatrice);
Console.WriteLine("Result is ready");
 Status = "Idle";
stopWatch.Stop();
 ExecutionTime = stopWatch.Elapsed;
Console.Write("Execution time: " + ExecutionTime.ToString());
 }

staticvoid ExecuteServer()
 {
while (true)
 {
int Port = 10000;
TCPIPSocket socket = newTCPIPSocket("", LocalIP, Port, 0);
byte[] Message = socket.ReceiveMessage();
 System.Threading.Thread Responder =
newSystem.Threading.Thread(() => ResponseToMessage(Message, socket, Command));
Responder.Start();
 }
 }

This function is performed for server computers. Servers from port 10000 are

listening until they receive sent matrices of clients. Calculating the multiplication of

these matrices, it presents the results.

staticvoid ResponseToMessage(byte[] Message, TCPIPSocket socket, string com)
 {

int Port = 10000;
string IP = socket.RemoteIP;

string ThresholdColumn;
string ThresholdRow;
ConfigurationHandler config = newConfigurationHandler("configuration.cfg");
config.GetValue("THRESHOLD_COLUMN", out ThresholdColumn);
config.GetValue("THRESHOLD_ROW", out ThresholdRow);
int[][,] Matrices = MatriceUtilities.FromByteArray(Message);

 file.WriteLine(DateTime.Now.ToLongTimeString() + "\t" +
Matrices[0].GetLength(0) + "," + Matrices[0].GetLength(1) + "\t" +
Matrices[1].GetLength(0) + "," + Matrices[1].GetLength(1) + " were received");
file.Flush();

for (int i = 0; i < Matrices.GetLength(0); i++)
 Matrices[i] = MatriceUtilities.AddZero(Matrices[i]);

int[,] A11 = null, A12 = null, A21 = null, A22 = null;
int[,] B11 = null, B12 = null, B21 = null, B22 = null;

 Status = "Busy";

93

MatriceUtilities.StrassenDivide(Matrices[0], out A11, out A12, out A21, out
A22);
MatriceUtilities.StrassenDivide(Matrices[1], out B11, out B12, out B21, out
B22);

//Calculate P1, P2, P3, P4, P5, P6 and P7
int[,] A11A12 = null, A21A11 = null, B11B12 = null, A12A22 = null, B21B22 =
null;
int[,] A11A22 = null, B11B22 = null, A21A22 = null, B12B22 = null, B21B11 =
null;
MatriceUtilities.Add(A11, A22, ref A11A22);
MatriceUtilities.Add(B11, B22, ref B11B22);
MatriceUtilities.Add(A21, A22, ref A21A22);
MatriceUtilities.Subtract(B12, B22, ref B12B22);
MatriceUtilities.Subtract(B21, B11, ref B21B11);
MatriceUtilities.Add(A11, A12, ref A11A12);
MatriceUtilities.Subtract(A21, A11, ref A21A11);
MatriceUtilities.Add(B11, B12, ref B11B12);
MatriceUtilities.Subtract(A12, A22, ref A12A22);
MatriceUtilities.Add(B21, B22, ref B21B22);

int[,] P1 = null, P2 = null, P3 = null, P4 = null, P5 = null, P6 = null, P7 =
null;
if (Matrices[0].GetLength(0) <= Convert.ToInt32(ThresholdRow) &&
Matrices[0].GetLength(1) <= Convert.ToInt32(ThresholdColumn))
 {
file.WriteLine(DateTime.Now.ToLongTimeString() + "\t" + "on local machine");
file.Flush();
 Status = "Busy";
 System.Threading.Thread MulThread1 =
newSystem.Threading.Thread(() =>MatriceUtilities.Multiplication(A11A22,
B11B22, ref P1));
MulThread1.Start();
 System.Threading.Thread MulThread2 =
newSystem.Threading.Thread(() =>MatriceUtilities.Multiplication(A21A22, B11,
ref P2));
MulThread2.Start();
 System.Threading.Thread MulThread3 =
newSystem.Threading.Thread(() =>MatriceUtilities.Multiplication(A11, B12B22,
ref P3));
MulThread3.Start();
 System.Threading.Thread MulThread4 =
newSystem.Threading.Thread(() =>MatriceUtilities.Multiplication(A22, B21B11,
ref P4));
MulThread4.Start();
 System.Threading.Thread MulThread5 =
newSystem.Threading.Thread(() =>MatriceUtilities.Multiplication(A11A12, B22,
ref P5));
MulThread5.Start();
 System.Threading.Thread MulThread6 =
newSystem.Threading.Thread(() =>MatriceUtilities.Multiplication(A21A11,
B11B12, ref P6));
MulThread6.Start();
 System.Threading.Thread MulThread7 =
newSystem.Threading.Thread(() =>MatriceUtilities.Multiplication(A12A22,
B21B22, ref P7));
MulThread7.Start();

if (MulThread1.IsAlive)
MulThread1.Join();
if (MulThread2.IsAlive)
MulThread2.Join();

94

if (MulThread3.IsAlive)
MulThread3.Join();
if (MulThread4.IsAlive)
MulThread4.Join();
if (MulThread5.IsAlive)
MulThread5.Join();
if (MulThread6.IsAlive)
MulThread6.Join();
if (MulThread7.IsAlive)
MulThread7.Join();
 }
else
 {
int[][,] P1_Parts = null, P2_Parts = null, P3_Parts = null, P4_Parts = null,
P5_Parts = null, P6_Parts = null, P7_Parts = null;

string val = "";
config.GetValue("SERVERS_COUNT", out val);
int ServerCount = Convert.ToInt32(val);
int Level = (int)(Math.Log(Matrices[0].GetLength(0), 2) -
Math.Log(Convert.ToInt32(ThresholdRow), 2));
string[] Topology = Tree.Split(';');

config.GetValue("SERVER_INDEX", out val);
string ServerIndex = (Convert.ToInt32(val) - 1).ToString();
ArrayList Servers = newArrayList();
int ChildrensCount = 0;
for (int i = 0; i < Topology.Length; i++)
 {
string[] TopologyParts = Topology[i].Split(';');
if (TopologyParts[1] == ServerIndex)
 {
 ChildrensCount++;
config.GetValue("SERVER" + (Convert.ToInt32(TopologyParts[0]) + 1), out val);
Servers.Add(val);
 }
 }

 System.Threading.Thread MulThread1 = null;
 System.Threading.Thread MulThread2 = null;
 System.Threading.Thread MulThread3 = null;
 System.Threading.Thread MulThread4 = null;
 System.Threading.Thread MulThread5 = null;
 System.Threading.Thread MulThread6 = null;
 System.Threading.Thread MulThread7 = null;

if (Servers.Count == 0)
 {
 MulThread1 = newSystem.Threading.Thread(()
=>MatriceUtilities.Multiplication(A11A22, B11B22, ref P1));
MulThread1.Start();
 MulThread2 = newSystem.Threading.Thread(()
=>MatriceUtilities.Multiplication(A21A22, B11, ref P2));
MulThread2.Start();
 MulThread3 = newSystem.Threading.Thread(()
=>MatriceUtilities.Multiplication(A11, B12B22, ref P3));
MulThread3.Start();
 MulThread4 = newSystem.Threading.Thread(()
=>MatriceUtilities.Multiplication(A22, B21B11, ref P4));
MulThread4.Start();

95

 MulThread5 = newSystem.Threading.Thread(()
=>MatriceUtilities.Multiplication(A11A12, B22, ref P5));
MulThread5.Start();
 MulThread6 = newSystem.Threading.Thread(()
=>MatriceUtilities.Multiplication(A21A11, B11B12, ref P6));
MulThread6.Start();
 MulThread7 = newSystem.Threading.Thread(()
=>MatriceUtilities.Multiplication(A12A22, B21B22, ref P7));
MulThread7.Start();
 }
elseif (Servers.Count == 1)
 {

 System.Threading.Mutex mtx0 = newSystem.Threading.Mutex();
 MulThread1 = newSystem.Threading.Thread(()
=>MatriceUtilities.Multiplication(A11A22, B11B22, ref P1));
MulThread1.Start();
 MulThread2 = newSystem.Threading.Thread(()
=>MatriceUtilities.Multiplication(A21A22, B11, ref P2));
MulThread2.Start();
 MulThread3 = newSystem.Threading.Thread(()
=>MatriceUtilities.Multiplication(A11, B12B22, ref P3));
MulThread3.Start();
 MulThread4 = newSystem.Threading.Thread(()
=>MatriceUtilities.Multiplication(A22, B21B11, ref P4));
MulThread4.Start();
 MulThread5 = newSystem.Threading.Thread(() =>
Server_Thread(Servers[0].ToString(), Port, A11A12, B22, out P5_Parts, mtx0,
Tree));
MulThread5.Start();
 MulThread6 = newSystem.Threading.Thread(() =>
Server_Thread(Servers[0].ToString(), Port, A21A11, B11B12, out P6_Parts, mtx0,
Tree));
MulThread6.Start();
 MulThread7 = newSystem.Threading.Thread(() =>
Server_Thread(Servers[0].ToString(), Port, A12A22, B21B22, out P7_Parts, mtx0,
Tree));
MulThread7.Start();
 }
elseif (Servers.Count == 2)
 {
 System.Threading.Mutex mtx0 = newSystem.Threading.Mutex();
 System.Threading.Mutex mtx1 = newSystem.Threading.Mutex();
 MulThread1 = newSystem.Threading.Thread(() =>
Server_Thread(Servers[0].ToString(), Port, A11A22, B11B22, out P1_Parts, mtx0,
Tree));
MulThread1.Start();
 MulThread2 = newSystem.Threading.Thread(() =>
Server_Thread(Servers[0].ToString(), Port, A21A22, B11, out P2_Parts, mtx0,
Tree));
MulThread2.Start();
 MulThread3 = newSystem.Threading.Thread(() =>
Server_Thread(Servers[0].ToString(), Port, A11, B12B22, out P3_Parts, mtx0,
Tree));
MulThread3.Start();
 MulThread4 = newSystem.Threading.Thread(() =>
Server_Thread(Servers[0].ToString(), Port, A22, B21B11, out P4_Parts, mtx0,
Tree));
MulThread4.Start();
 MulThread5 = newSystem.Threading.Thread(() =>
Server_Thread(Servers[1].ToString(), Port, A11A12, B22, out P5_Parts, mtx1,
Tree));

96

MulThread5.Start();
 MulThread6 = newSystem.Threading.Thread(() =>
Server_Thread(Servers[1].ToString(), Port, A21A11, B11B12, out P6_Parts, mtx1,
Tree));
MulThread6.Start();
 MulThread7 = newSystem.Threading.Thread(() =>
Server_Thread(Servers[1].ToString(), Port, A12A22, B21B22, out P7_Parts, mtx1,
Tree));
MulThread7.Start();
 }
elseif (Servers.Count == 3)
 {
 System.Threading.Mutex mtx0 = newSystem.Threading.Mutex();
 System.Threading.Mutex mtx1 = newSystem.Threading.Mutex();
 System.Threading.Mutex mtx2 = newSystem.Threading.Mutex();
 MulThread1 = newSystem.Threading.Thread(() =>
Server_Thread(Servers[0].ToString(), Port, A11A22, B11B22, out P1_Parts, mtx0,
Tree));
MulThread1.Start();
 MulThread2 = newSystem.Threading.Thread(() =>
Server_Thread(Servers[0].ToString(), Port, A21A22, B11, out P2_Parts, mtx0,
Tree));
MulThread2.Start();
 MulThread3 = newSystem.Threading.Thread(() =>
Server_Thread(Servers[0].ToString(), Port, A11, B12B22, out P3_Parts, mtx0,
Tree));
MulThread3.Start();
 MulThread4 = newSystem.Threading.Thread(() =>
Server_Thread(Servers[1].ToString(), Port, A22, B21B11, out P4_Parts, mtx1,
Tree));
MulThread4.Start();
 MulThread5 = newSystem.Threading.Thread(() =>
Server_Thread(Servers[1].ToString(), Port, A11A12, B22, out P5_Parts, mtx1,
Tree));
MulThread5.Start();
 MulThread6 = newSystem.Threading.Thread(() =>
Server_Thread(Servers[2].ToString(), Port, A21A11, B11B12, out P6_Parts, mtx2,
Tree));
MulThread6.Start();
 MulThread7 = newSystem.Threading.Thread(() =>
Server_Thread(Servers[2].ToString(), Port, A12A22, B21B22, out P7_Parts, mtx2,
Tree));
MulThread7.Start();
 }
elseif (Servers.Count == 4)
 {
 System.Threading.Mutex mtx0 = newSystem.Threading.Mutex();
 System.Threading.Mutex mtx1 = newSystem.Threading.Mutex();
 System.Threading.Mutex mtx2 = newSystem.Threading.Mutex();
 System.Threading.Mutex mtx3 = newSystem.Threading.Mutex();
 MulThread1 = newSystem.Threading.Thread(() =>
Server_Thread(Servers[0].ToString(), Port, A11A22, B11B22, out P1_Parts, mtx0,
Tree));
MulThread1.Start();
 MulThread2 = newSystem.Threading.Thread(() =>
Server_Thread(Servers[0].ToString(), Port, A21A22, B11, out P2_Parts, mtx0,
Tree));
MulThread2.Start();
 MulThread3 = newSystem.Threading.Thread(() =>
Server_Thread(Servers[1].ToString(), Port, A11, B12B22, out P3_Parts, mtx1,
Tree));
MulThread3.Start();

97

 MulThread4 = newSystem.Threading.Thread(() =>
Server_Thread(Servers[1].ToString(), Port, A22, B21B11, out P4_Parts, mtx1,
Tree));
MulThread4.Start();
 MulThread5 = newSystem.Threading.Thread(() =>
Server_Thread(Servers[2].ToString(), Port, A11A12, B22, out P5_Parts, mtx2,
Tree));
MulThread5.Start();
 MulThread6 = newSystem.Threading.Thread(() =>
Server_Thread(Servers[2].ToString(), Port, A21A11, B11B12, out P6_Parts, mtx2,
Tree));
MulThread6.Start();
 MulThread7 = newSystem.Threading.Thread(() =>
Server_Thread(Servers[3].ToString(), Port, A12A22, B21B22, out P7_Parts, mtx3,
Tree));
MulThread7.Start();
 }

 Status = "Waiting";

if (MulThread1.IsAlive)
MulThread1.Join();
if (MulThread2.IsAlive)
MulThread2.Join();
if (MulThread3.IsAlive)
MulThread3.Join();
if (MulThread4.IsAlive)
MulThread4.Join();
if (MulThread5.IsAlive)
MulThread5.Join();
if (MulThread6.IsAlive)
MulThread6.Join();
if (MulThread7.IsAlive)
MulThread7.Join();

 Status = "Busy";
if (Servers.Count != 0)
 {
if (Servers.Count != 1)
 {
 P1 = MatriceUtilities.StrassenConquer(P1_Parts[0],
P1_Parts[1], P1_Parts[2], P1_Parts[3], P1_Parts[4], P1_Parts[5], P1_Parts[6]);
 P2 = MatriceUtilities.StrassenConquer(P2_Parts[0],
P2_Parts[1], P2_Parts[2], P2_Parts[3], P2_Parts[4], P2_Parts[5], P2_Parts[6]);
 P3 = MatriceUtilities.StrassenConquer(P3_Parts[0],
P3_Parts[1], P3_Parts[2], P3_Parts[3], P3_Parts[4], P3_Parts[5], P3_Parts[6]);
 P4 = MatriceUtilities.StrassenConquer(P4_Parts[0],
P4_Parts[1], P4_Parts[2], P4_Parts[3], P4_Parts[4], P4_Parts[5], P4_Parts[6]);
 }
 P5 = MatriceUtilities.StrassenConquer(P5_Parts[0],
P5_Parts[1], P5_Parts[2], P5_Parts[3], P5_Parts[4], P5_Parts[5], P5_Parts[6]);
 P6 = MatriceUtilities.StrassenConquer(P6_Parts[0],
P6_Parts[1], P6_Parts[2], P6_Parts[3], P6_Parts[4], P6_Parts[5], P6_Parts[6]);
 P7 = MatriceUtilities.StrassenConquer(P7_Parts[0],
P7_Parts[1], P7_Parts[2], P7_Parts[3], P7_Parts[4], P7_Parts[5], P7_Parts[6]);
 }
 }

byte[] Result = MatriceUtilities.ToByteArray(P1, P2, P3, P4, P5, P6, P7);
socket.SendMessage(Result);
 Status = "Idle";
 }

98

staticvoid Server_Thread(string IP, int Port, int[,] Input1, int[,] Input2,
outint[][,] Ouptuts, System.Threading.Mutex mtx, string Topology)
 {
if (IP != null)
 {

TCPIPSocket TopologySocket = newTCPIPSocket(IP, LocalIP, 0, 10002);
byte[] Message = Encoding.ASCII.GetBytes(Topology);
mtx.WaitOne();
TopologySocket.SendMessage(Message);
mtx.ReleaseMutex();

TCPIPSocket socket = newTCPIPSocket(IP, LocalIP, 0, Port);
byte[] BytesSend = MatriceUtilities.ToByteArray(Input1, Input2);
mtx.WaitOne();
socket.SendMessage(BytesSend);
mtx.ReleaseMutex();

byte[] BytesReceived = socket.ReceiveMessage();
 Ouptuts = MatriceUtilities.FromByteArray(BytesReceived);
 }
else
 {

int[,] A11 = null, A12 = null, A21 = null, A22 = null;
int[,] B11 = null, B12 = null, B21 = null, B22 = null;

 Status = "Busy";

MatriceUtilities.StrassenDivide(Input1, out A11, out A12, out A21, out A22);
MatriceUtilities.StrassenDivide(Input2, out B11, out B12, out B21, out B22);

int[,] A11A12 = null, A21A11 = null, B11B12 = null, A12A22 = null, B21B22 =
null;
int[,] A11A22 = null, B11B22 = null, A21A22 = null, B12B22 = null, B21B11 =
null;
MatriceUtilities.Add(A11, A22, ref A11A22);
MatriceUtilities.Add(B11, B22, ref B11B22);
MatriceUtilities.Add(A21, A22, ref A21A22);
MatriceUtilities.Subtract(B12, B22, ref B12B22);
MatriceUtilities.Subtract(B21, B11, ref B21B11);
MatriceUtilities.Add(A11, A12, ref A11A12);
MatriceUtilities.Subtract(A21, A11, ref A21A11);
MatriceUtilities.Add(B11, B12, ref B11B12);
MatriceUtilities.Subtract(A12, A22, ref A12A22);
MatriceUtilities.Add(B21, B22, ref B21B22);

int[,] P1 = null, P2 = null, P3 = null, P4 = null, P5 = null, P6 = null, P7 =
null;
file.WriteLine(DateTime.Now.ToLongTimeString() + "\t" + "on local machine");
file.Flush();

 System.Threading.Thread MulThread1 =
newSystem.Threading.Thread(() =>MatriceUtilities.Multiplication(A11A22,
B11B22, ref P1));
MulThread1.Start();
 System.Threading.Thread MulThread2 =
newSystem.Threading.Thread(() =>MatriceUtilities.Multiplication(A21A22, B11,
ref P2));

99

MulThread2.Start();
 System.Threading.Thread MulThread3 =
newSystem.Threading.Thread(() =>MatriceUtilities.Multiplication(A11, B12B22,
ref P3));
MulThread3.Start();
 System.Threading.Thread MulThread4 =
newSystem.Threading.Thread(() =>MatriceUtilities.Multiplication(A22, B21B11,
ref P4));
MulThread4.Start();
 System.Threading.Thread MulThread5 =
newSystem.Threading.Thread(() =>MatriceUtilities.Multiplication(A11A12, B22,
ref P5));
MulThread5.Start();
 System.Threading.Thread MulThread6 =
newSystem.Threading.Thread(() =>MatriceUtilities.Multiplication(A21A11,
B11B12, ref P6));
MulThread6.Start();
 System.Threading.Thread MulThread7 =
newSystem.Threading.Thread(() =>MatriceUtilities.Multiplication(A12A22,
B21B22, ref P7));
MulThread7.Start();

if (MulThread1.IsAlive)
MulThread1.Join();
if (MulThread2.IsAlive)
MulThread2.Join();
if (MulThread3.IsAlive)
MulThread3.Join();
if (MulThread4.IsAlive)
MulThread4.Join();
if (MulThread5.IsAlive)
MulThread5.Join();
if (MulThread6.IsAlive)
MulThread6.Join();
if (MulThread7.IsAlive)
MulThread7.Join();

 Ouptuts = newint[7][,];
Ouptuts[0] = P1;
Ouptuts[1] = P2;
Ouptuts[2] = P3;
Ouptuts[3] = P4;
Ouptuts[4] = P5;
Ouptuts[5] = P6;
Ouptuts[6] = P7;
 }
 }
 }
}

