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ABSTRACT 

Using the Damour-Ruffini-Sannan and the Parikh-Wilczek methods, we analyze the 

Hawking radiation of uncharged massive particles for linear dilaton black holes with 

ܰ  4 dimensions. Contrary to the many studies in the literature in which the original 

Parikh-Wilczek’s method are used, our results show that the obtained emission 

spectrum is precisely thermal. This implies that sole back-reaction effects do not 

retrieve the information from the linear dilaton black holes. On the other hand, when 

we recalculate the emission probability by taking into account the log-area quantum 

correction to the black hole entropy, it is seen that the radiation deviates from its pure 

thermal behavior. Besides, the quantum corrections give rise also to the statistical 

correlation between quanta emitted. The latter results yield that the information can 

leak out of the linear dilaton black holes together with preserving unitarity in quantum 

mechanics. In addition to these, we extend our study to the case in which quantum 

gravity  corrections in all orders in are considered. The obtained modified entropy and 

temperature are adjusted so finely that the scenario of fading Hawking radiation, in 

which both entropy and temperature vanish with zero mass, becomes possible. Finally, 

we highlight that, even in the case of fading Hawking radiation, the linear dilaton black 

holes could evaporate completely with conserving the total entropy െ “no information 

loss”. 

Keywords: Linear dilaton black holes, Hawking radiation, information loss paradox, 

entropy conservation, quantum corrections.  
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ÖZ 

Damour-Ruffini-Sannan ve Parikh-Wilczek yöntemleri kullanarak, ܰ   4 boyutlu 

lineer dilaton kara delikler için yüksüz kütleli parçacıkların Hawking radyasyonunu 

analiz ettik. Orjinal Parikh-Wilczek yönteminin kullanıldığı literatürdeki pek çok 

çalışmanın aksine elde edilen sonuçlar, emisyon spektrumunun tam ısıl olduğunu 

göstermektedir. Bu ise tek başına geriെreaksiyon etkisinin lineer dilaton kara 

deliklerinden bilgi çıkaramayacağını işaret etmektedir. Diğer taraftan, emisyon 

olasılığını, kara deliğin entropisine log-alan kuantum düzeltmesini dikkate alarak 

yeniden hesapladığımız zaman, radyasyonun saf ısıl davranışında sapma olduğu 

görüldü. Bunun yanında kuantum düzeltmeleri, yayılan kuantalar (kuantum 

parçacıkları) arasında istatistiksel bir ilişkinin de oluşmasına neden olmuştur. Son 

sonuçlar bilginin, kuantum mekaniğindeki üniterliği koruyarak lineer dilaton kara 

deliklerinden sızacağını göstermektedir. Bunlara ek olarak, çalışmamızı kuantum 

düzeltmelerini ’ın tüm derecelerini içerecek şekilde genelledik. Elde edilen 

değiştirilmiş entropi ve sıcaklığa, sıfır kütle ile biten entropi ve sıcaklığa sahip sönümlü 

Hawking ışımasını mümkün kılacak şekilde ince bir ayar yaptık. Son olarak, sönümlü 

Hawking ışıması durumunda dahi lineer dilaton kara deliklerinin toplam entropiyi 

koruyarak െ bilgi kayıpsız െ tamamen buharlaşabileceğini vurguladık. 

Anahtar Kelimeler: Entropi, lineer dilaton kara delik, Hawking ışıması, kuantum 

düzeltmeleri.  
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Chapter 1 

INTRODUCTION 

In 1972, J.D. Bekenstein suggested that a black hole (BH) should have well-defined 

entropy [1]. From the point of view of information theory, it is natural to introduce 

the concept of BH entropy as the measure of information about a BH interior, which 

is inaccessible to an exterior observer. The exact theoretical model for how a BH 

could emit black body radiation was worked out by S.W. Hawking [2,3]. Hawking 

proved that a stationary BH can emit particles with a temperature proportional to the 

surface gravity from its event horizon. He indicated that vacuum fluctuations near 

the horizon cause the generation of particle-antiparticle pairs. The idea is that out of 

nothing, pair of particles is created, and exist for a short time, until getting 

annihilated. This pair of particles likes the electron-positron pairs; one has positive 

energy while the other has negative energy. If this pair of particles bumped up 

against the BH, Hawking released that the positive particle would have just enough 

energy to escape the BH where it materializes as a real particle, but the particle with 

negative energy would fall in. The particle that goes inside the BH eventually 

decreases the mass of the BH. However, the particle that goes off to the distant 

observer is known as the Hawking radiation. 

Since the spectrum of such a radiation is pure thermal, it is understood that Hawking 

radiation has inconsistency with quantum theory. If one considers the information as 

a pure quantum state in the BH, according to the Hawking radiation the pure states 
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should be converted into mixed ones. This problem came to be a non-unitary 

quantum evolution, and it gives rise to the information loss paradox of BH physics. 

and it gives rise to the information loss paradox of BH physics. Among them we 

mainly focus on Damour-Ruffini-Sannan (DRS) [4,5] and Parikh-Wilczek (PW) [6] 

methods to compute the Hawking radiation. DRS method is applicable to any 

Hawking temperature ( ுܶ) problem in which the asymptotic behaviors of the wave 

equation near the event horizon are known. In this thesis, however, we will pay 

special attention to the PW method which corrects the Hawking’s pure thermal 

radiation, at least for many well-known BHs like Schwarzschild, de Sitter, Kerr, 

Reissner-Nordström etc. [6-9]. Thus it has a therapeutic effect on the information 

loss paradox. The power of the PW method stems from the idea which considers the 

Hawking radiation as a quantum tunneling process. Because of this, it is also called 

as PW’s tunneling formalism. To this end, it considers the outgoing particles as 

subsequently emitted spherical shells such that each shell has a small mass, 

compared with the mass of the BH, corresponding to its energy. Once the BH 

radiates, each shell decreases the total mass of the BH as the amount of its (shell’s) 

own mass. This phenomenon is known as the self-gravitational (or back-reaction) 

effect. Then, it uses the null geodesics of the outgoing quanta together with the 

WKB approximation. As we mentioned above, the result for many well-known BHs 

is astonishing: the Hawking radiation is not pure thermal anymore. So, it is supposed 

by many others that PW’s method is a general recipe for the information loss 

paradox. But as it will be shown explicitly in the following sections, contrary to the 

general belief, the original PW’s method does not solve the information loss 

problem appeared in the linear dilaton black holes (LDBHs). Essentially, this 

explains why researchers are still in search for alternative approaches [10], at least in 



 

3 

 

the framework of PW’s tunneling method, since the complete quantum gravity (QG) 

is unknown yet. Among those studies, the fascinating one belongs to Zhang et al. 

[11]. They have explicitly shown that the amount of information that formerly was 

perceived to be lost is found to be hidden in the correlations (mutual information 

[12]) of Hawking radiation, and by virtue of the associated correlations it can be 

leaked out of the BH. This process, irrespective of the microscopic picture of the BH 

collapse, resolves the paradox of BH information loss. In this regard, [11] can be 

considered as the first study which gives the whole scenario of resolving the 

information paradox for the Schwarzschild BH. For a more recent account in the 

same line of thought applied to different types of BHs, including the case of 

quantum horizon, one may consult [10,13], which also revisits the BH information 

loss paradox. Meanwhile, it is worth noting that for the BHs considered in [11,13] 

the information-carrying correlations among their Hawking radiation emerge 

without reference to QG effects. 

The considered LDBHs in this thesis are the solutions to Einstein-Maxwell-Dilaton 

(EMD), Einstein-Yang-Mills-Dilaton (EYMD) and Einstein-Yang-Mills-Born-

Infeld-Dilaton (EYMBID) theories [14]. In Ref. [14], the Hawking radiation of the 

LDBHs is analyzed with another method: semi-classical radiation spectrum method. 

Meanwhile, the eponyms of the LDBHs are Clement and Gal’tsov [15]. These BHs 

are non-asymptotically flat (NAF) spacetimes and their event horizon hides the null 

singularity at the center. We first apply the DRS method in order to find ுܶ of the 

LDBHs and the tunneling rate of the chargeless particles crossing the event horizon. 

The resulting temperature obtained from DRS method is in agreement with the 

statistical Hawking temperature [16]. Afterward, we compute the emission rate of 
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outgoing quanta. Similarly, we use the PW’s method to derive the tunneling rate of 

the LDBHs. The obtained tunneling rate which also yields the Bekenstein-Hawking 

entropy does not attribute non-thermal radiation. Namely, the original form of the 

PW’s tunneling formalism is inadequate while attempting to retrieve the information 

from a LDBH. So, as stated before, the sole PW’s tunneling method cannot be a 

general recipe for resolving the BH information loss paradox.  

The aim of this thesis is to show that tunneling probability of the emitted particles 

from LDBHs deviates from the pure thermal emission if the QG corrections are 

taken into account. To this end, we shall use the idea of Chen and Shao [17] who 

have modified the scenario of [11] by including the QG effects and the remnant, 

which is a minimal mass that remains at the end of the complete BH evaporation. 

For the subject of the BH remnant, one may refer to [18]. We show that in the 

LDBH case the crucial role of the QG corrections in finding the correlations 

between two sequential emissions becomes more apparent when compared with the 

Schwarzschild case [17]. Namely, in order to preserve the entropy conservation in a 

system of radiating LDBH plus its remnant, in conform with the  Bekenstein’s 

entropy bound (BEB) [19,20], QG effects must certainly be considered. We also 

model the remnant as an extreme LDBH spacetime with a point like horizon. By 

using the massless wave equation, we show that such a spacetime cannot radiate, 

which implies that its temperature must be zero.  

As a further step, we consider the general form of the quantum corrected 

temperature given by Singleton, Vagenas, Zhu and Ren (SVZR) [21,22], and apply 

it to the LDBHs in order to derive specific entropy and temperature which vanish 

while mass of the BH ends; ܵ. ܶሺܯ ՜ 0ሻ ՜ 0. Detailed calculations of these 
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processes are given, and as a result we obtain this particular radiation that can be 

named as fading Hawking radiation [23]. According to our literature knowledge, 

such a radiation has not been obtained before. The behaviors of both the entropy and 

temperature of the LDBH with the quantum correction parameters coming from 

String Theory (ST) and Loop Quantum Gravity (LQG) are examined. We find that 

the results which have no any physical ambiguity are possible only in the LQG case. 

Moreover, it is highlighted that higher order QG corrections which are in conform 

with the back reaction effects provide the correlations between the emitted quanta. 

Finally, we show that the LDBHs could evaporate away completely with the entropy 

conservation which leads to the fact that information is not lost. 

The thesis is organized as follows: In chapter 2, we make a brief review of the 

LDBHs in EMD, EYMD and EYMBID theories. Next, we apply the DRS and PW 

methods to the LDBHs to obtain the tunneling or emission rate of the chargeless 

particles crossing over the event horizon. By virtue of the tunneling rate, we obtain 

the difference of the Bekenstein-Hawking entropies. The result is interpreted in 

respect of information theory. Chapter 3 is devoted to entropy conservation of the 

LBBHs and their remnant structure. In this chapter, QG corrected entropy is used, 

and its role on the information conservation is emphasized. In chapter 4, a particular 

radiation which we call as “fading Hawking radiation” is thoroughly discussed by 

considering the QG  corrections in all orders. We draw our conclusions in chapter 

5. 

Throughout the thesis, the units ܩ ൌ ܿ ൌ ݇ ൌ 1 are used. Furthermore in chapters 

ܮ 2-3 ൌ 1, and in chapter 4 it is used as ܮ
ଶ ൌ  . 
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Chapter 2 

HAWKING RADIATION IN VARIOUS THEORIES FOR 

LINEAR DILATON BLACK HOLES1 

2.1 ࡰ-LDBHs, Calculation of Their Hawking Temperature and 

Tunneling Rate  

The metric of the 4ܦ-LDBHs, which are static spherically symmetric solutions in 

various theories (EMD, EYMD and EYMBID) [14], is 

ଶݏ݀ ൌ െ݂݀ݐଶ 
ଶݎ݀

݂   ଶ                                            ሺ1ሻߗ݀ݎଶܣ

where ݀Ωଶ ൌ ଶߠ݀  ݊݅ݏଶ݀ߠ߶ଶ, the metric function ݂ ൌ  Σ෨ݎ ቀ1 െ శ


ቁ, ݎା is the 

radius of the event horizon, and Σ෨ and ܣ are constants.  

One should consider the quasi-local mass definition  [24] ܯ for our metric (1), since 

the present form of the metric represents NAF geometry. In [14], the relationship 

between the mass ܯ and the horizon ݎା  is given as follows 

ା ൌݎ
ܯ4
Σ෨ Aଶ                                                                      ሺ2ሻ 

                                                 
1 This Chapter is mainly quoted from Ref. [25], which is Pasaoglu, H., Sakalli, I. (2009). 
International Journal of Theoretical Physics. 48, 3517-3525. 
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The coefficients Σ෨ and ܣ take different values according to the concerned theory 

(EMD, EYMD or EYMBID). In the EMD theory [14,26,27], the coefficients Σ෨ and 

  are found as ܣ

Σ෨ ՜ Σ෨ாெ ൌ  
1

ଶߛ ܣ ݀݊ܽ  ՜ ாெܣ ൌ  ሺ3ሻ                                    ߛ

where γ is a constant correlated to the electric charge of a BH. When inserting 

ߛ ؠ   , one can see that metric (1) matches with the solution given by Clément etݎ 

al. [27]. Afterwards, if we consider the EYMD and EYMBID theories [28,29], the 

coefficients in the line-element (1) become 

Σ෨ ՜ Σ෨ாெ ൌ  
1

2ܳଶ ܣ ݀݊ܽ  ՜ ாெܣ ൌ √2 ܳ                                  ሺ4ሻ 

Σ෨ ՜ Σ෨ாெூ ൌ  
1

ܳ
ଶ ሾ1 െ ඨ1 െ

ܳ
ଶ

ܳଶ ܣ ݀݊ܽ  ՜ ாெூܣ

ൌ  √2 ܳ ቆ1 െ
ܳ

ଶ

ܳଶቇ

ଵ
ସ

                 ሺ5ሻ 

where ܳ and ܳ are YM charge and the critical value of YM charge, respectively. 

According to EYMBID theory, the existence of the metric (1) depends strictly on the 

condition [29] 

ܳଶ  ܳ
ଶ ൌ

1
෨ଶߚ4                                                                  ሺ6ሻ 
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where ߚ෨ is the Born-Infeld parameter. It is needless to say that the constant Σ෨ in Eqs. 

(3), (4) and (5) should take positive values. This ensures the metric signature of the 

metric (1) as well. 

When the definition in [16] is used for surface gravity, we get 

ߢ ൌ lim
՜శ

݂ᇱሺݎሻ
2 ൌ

Σ෨
2                                                                    ሺ7ሻ 

Positive surface gravity (7) shows that its direction is towards the singularity and 

therefore it is attractive. In other words, the matter can only fall into the BH. 

Considering Eq. (1), we can use the covariant Klein-Gordon (KG) equation in 

curved spacetime for a massive test scalar field ߶ with mass ߤ, which is given by  

1
ඥെ݀݁݃ݐ

߲
ఓݔ߲ ൬ඥെ݀݁݃ݐ ݃ఓఔ ߲

ఔݔ߲ ߶൰ െ ߶ଶߤ ൌ 0                           ሺ8ሻ 

and by making the separation of variables as ߶ ൌ ܻሺߠ, ߮ሻ߰ሺݐ,  ሻ the radicalݎ

equation can be written as 

െ
߲ଶ߰
ଶݐ߲  ݂ ൬

݂
ݎ  Σ෨൰

߲߰
ݎ߲  ݂ଶ ߲ଶ߰

ଶݎ߲ െ ݂ ቆߤଶ െ
݈ሺ݈  1ሻ

ݎ ቇ ߰ ൌ 0                ሺ9ሻ 

where ݈ specifies the angular quantum number. In order to transform (9) to a 

standard wave equation at the horizon, conventionally one introduces the tortoise 

coordinate, which is obtained from 
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כݎ݀ ൌ
ݎ݀
݂

                                                                      ሺ10ሻ 

After making the straightforward calculation, we find an appropriate כݎ as 

כݎ ൌ
1

ߢ2 lnሺݎ െ  ାሻ                                                         ሺ11ሻݎ

Thus, the radical Eq. (9) can be rewritten as 

߲ଶ߰
ଶݐ߲ െ

݂
ݎ

߲߰
כݎ߲

െ
߲ଶ߰
כݎ߲

ଶ  ݂ ቈߤଶ െ
݈ሺ݈  1ሻ

ݎ  ߰ ൌ 0                  ሺ12ሻ 

so, when ݎ ՜ ݂ ,.ା , i.eݎ ՜ 0, the radical Eq. (12) can be reduced to the standard 

form of the wave equation: 

߲ଶ߰
ଶݐ߲ —

߲ଶ߰
כݎ߲

ଶ ൌ 0                                                                  ሺ13ሻ 

Above form of the wave equation shows that there are waves which propagate near 

the horizon. The solutions of Eq. (13) give us the ingoing and outgoing waves at the 

surface of the BH horizon as 

߰௨௧ ൌ ݁ିఠሺ௧ିכሻ                                                       ሺ14ሻ 

߰ ൌ ݁ିఠሺ௧ାכሻ                                                          ሺ15ሻ 
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The metric form (1) attains singularity at the horizon, so we transform it to a new 

coordinate system which is non-singular at ݎା. For this purpose, we introduce the 

Eddington-Finkelstein coordinate; ݒ ൌ ݐ   Thus, the line-element (1) of the .כݎ

LDBHs becomes  

ଶݏ݀ ൌ െ݂݀ݒଶ  ݎ݀ݒ2݀   Ωଶ                                           ሺ16ሻ݀ݎଶܣ

This yields the solutions of ingoing and outgoing waves at the event horizon, ݎା as 

follows 

߰௨௧ ൌ ݁ିఠ௩݁ଶఠכ                                                ሺ17ሻ 

߰ ൌ ݁ିఠ௩                                                             ሺ18ሻ 

where ߰ is the ingoing wave solution, which is analytic at the horizon. On the 

other hand, ߰௨௧ which represents the outgoing wave solution is logarithmically 

singular at the horizon. To see this, we can rewrite the outgoing wave solution (17) 

as 

߰௨௧ ൌ ݁ିఠ௩ሺݎ െ ାሻݎ
ఠ
                             ሺݎ   ାሻ         ሺ19ሻݎ

߰௨௧ can be analytically continued from the outside of the hole into the inside hole 

by the lower complex ݎ-plane.  

ሺݎ െ ାሻݎ ՜ ሺݎା െ  ሻ݁ିగ                                                      ሺ20ሻݎ
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Thus, we define the outgoing wave inside the horizon as 

෨߰௨௧ ൌ ݁ିఠ௩ሺݎା െ ሻݎ
ఠ
 ݁

ఠగ
                     ሺݎ ൏   ାሻ                               ሺ21ሻݎ

Following the DRS method proposed in [4,5], we see that the thermal spectrum of 

the scalar particles radiating from the BH is given by  

ܰఠ
ଶ ൌ

߁
1 െ ߁ ൌ

1

݁
ఠ
் െ 1

                                                 ሺ22ሻ 

where ߁ denotes the relative scattering probability (or the emission, tunneling rate) 

at the event horizon as 

߁ ൌ ቤ
߰௨௧  
෨߰௨௧   

ቤ
ଶ

ൌ ݁
ିଶగఠ

                                           ሺ23ሻ 

Whence we can read the resulting temperature in Eq. (22) as  

ܶ ൌ
ߢ

 ሺ24ሻ                                                                    ߨ2

which is nothing but the statistical ுܶ. In Ref. [16], its computation is given by  

  ுܶ ൌ
݂Ԣሺݎାሻ

ߨ4                                                               ሺ25ሻ 

In brief, the DRS method is in agreement with the Hawking’s original study [1,2]. 
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2.2 Entropy of the LDBH 

Another method to calculate the tunneling rate of the BH was developed by PW [6]. 

In the PW’s study, the relationship between the entropy and the tunneling rate with 

the aid of the WKB approximation is laid bare. In short, this section is devoted to the 

application of the PW’s method for the LDBHs.  

In the seminal work [6], PW described the Hawking radiation as a tunneling process 

and used the WKB method. Their study is mainly based on the subjects of energy 

conservation and the self-gravitation effect. They also showed how the tunneling 

rate is exponentially related to the imaginary part of the particle action at stationary 

phase. In the PW model, it is described that an outgoing particle with positive 

energy ߱ which crosses the horizon outwards from initial radius of the horizon ݎ to 

the final radius ݎ௨௧ has an imaginary part of the amplitude that is expressed in the 

WKB approximation as, 

ሻܫሺ ݉ܫ ൌ න ݉ܫ ݎ݀
ೠ



ൌ න ݉ܫ න ݎ݀݀
ೝ



ೠ



                                            

                                   ൌ න ݉ܫ න
ݎ݀
ሶݎ  ܪ݀ 

ெିఠ

ெ
 

ೠ



                           ሺ26ሻ 

where  and ܪ are momentum and Hamiltonian, respectively. Expression (26) is 

related to the emission rate of the tunneling particle by [30,31] 

Γ  ݁ିଶூሺூሻ                                                                     ሺ27ሻ 
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Remark: The above result is the consequence of the PW’s method, which considers 

each emitted particle (with an energy ߱) as a shell, fixes the total mass ܯ, however 

it allows the hole mass to fluctuate. Thus, when the LDBH emits a particle, the 

horizon moves inwards and the mass of the BH changes from ܯ to ܯ െ ߱. The 

Hamilton’s equation of motion is in general written as ݀ ൌ ௗு
ሶ

. Introducing the 

total energy of the BH as ܪ ൌ ܯ  െ ߱, i.e., ݀ܪ ൌ െ݀߱, and substituting the value 

of ݎሶ , which is obtained from the null geodesic equation of the metric (16) 

ሶݎ  ؠ
ݎ݀
ݒ݀ ൌ

݂
2                                                                ሺ28ሻ 

into Eq. (26), we obtain,  

ሻܫሺ ݉ܫ        ൌ න ݉ܫ න
ݎ2݀

ݎ෨ሺߑ െ ାሻݎ
ሺെ݀ ߱ሻ

ೠ



ఠ


              ሺ29ሻ 

One can evaluate the ݎ-integral by deforming the contour, where its semicircle 

centered at real axis pole ݎା . Thus we get 

ܫ ݉ܫ ൌ ߨ2 න
݀߱ᇱ

෨ߑ
ఠ


                                                       ሺ30ሻ 

So, the tunneling rate (27) becomes 

߁  ߨሺെ4ݔ݁ න
݀߱ᇱ

෨ߑ
ఠ


ሻ ൌ  ுሻ                              ሺ31ሻܵ߂ሺݔ݁
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where ܵ߂ு  represents the difference in Bekenstein-Hawking entropies of the 

LDBHs (ܵு ൌ 
ସ

ൌ   ,ା) before and after the emission of the particle. Namelyݎଶܣߨ

Δܵு ൌ ܵሺܯ െ ߱ሻ െ ܵሺܯሻ ൌ  െ
߱ߨ2

ߢ                                          ሺ32ሻ 

However, the foregoing result is not consistent with the results of the other works, 

see for instance [6-9,32-34]. Because Eq. (32) shows that the radiation spectrum still 

preserves its thermal character! In other words, the thermal spectrum does not 

suggest the underlying unitary theory of quantum mechanics, and therefore we 

understand that the conservation of information is violated. So, one should improve 

the original PW’s method in order to satisfy the information conservation for the 

LDBHs as well. The next chapter will be based on this issue. 
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Chapter 3 

ENTROPY CONSERVATION OF LDBHs IN QG 

CORRECTED HAWKING RADIATION2 

3.1 4D-LDBHs’ Tunneling Rate With QG Corrections 

In chapter 2, we have discussed the 4ܦ-LDBHs entropy without adding the QG 

effects. In this section we will work on the same metric (1) by applying the QG 

corrections. For this purpose, we will mainly focus on the study of Chen and Shao 

[17], apply the steps given there to the LDBHs. To this end, we start with a minor 

modification on the typeface of the metric (1) as follows  

²ݏ݀ ൌ െ݂ሺݎሻ݀ݐ
ଶ 

ଶݎ݀

݂ሺݎሻ  ܴଶ݀ߗଶ
ଶ                                     ሺ33ሻ 

where ݐ denotes the LDBH time, ܴଶ ൌ ଶߗ݀ and ݎଶܣ
ଶ ൌ ଶߠ݀   ଶ. The߶݀ߠଶ݊݅ݏ 

metric function ݂ሺݎሻ ൌ ݎ෨ߑ  ቀ1 െ శ


ቁ is already introduced in the previous chapter. 

 

The curvature of metric (33) has coordinate singularities at the horizon, so in order 

to remove it non-singular at ݎା, we pass to Painlevé-Gullstrand (PG) type 

coordinates with 

ݐ݀ ൌ ݐ݀ 
ඥ1 െ ݂ሺݎሻ

݂ሺݎሻ  ሺ34ሻ                                                             ݎ݀

Thus, the line element (33) transforms to 

                                                 
2 This Chapter is mainly quoted from Ref. [35], which is Sakalli, I., Halilsoy, M., Pasaoglu, H., 
(2011). International Journal of Theoretical Physics. 50, 3212-3224. 
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ଶݏ݀ ൌ െ݂ሺݎሻ݀ݐଶ  2ඥ1 െ ݂ሺݎሻ݀ݎ݀ݐ  ଶݎ݀  ܴଶ݀Ωଶ                  ሺ35ሻ 

The above metric has a number of advantages suitable for our present purpose. It is 

well known from the Schwarzschild case that the time ݐ in the PG coordinates is 

linearly related to the proper time for a radially falling observer, [36]. 

Considering the test particle as a massless spherical shell, the radial null geodesics 

has a rather simple form as 

ሶݎ ൌ  
ݎ݀
ݐ݀ ൌ െඥ1 െ ݂ሺݎሻ  േ 1                                          ሺ36ሻ 

where the choice of signs in equation (36) depends whether the rays are outgoing 

ሺሻ or ingoing ሺെሻ. In the PG coordinates, the strength of the gravitational field 

near a BH surface, which is known as the surface gravity, is one of the Christoffel 

components: 

ߢ ൌ ߁ 
 ൌ

1
2 ݂ᇱሺݎାሻ                                           ሺ37ሻ 

which becomes ߢ ൌ  
෩ఀ

ଶ
ൌ ଶெ

మశ
  for the 4ܦ LDBHs. The metric function f(r) is zero at 

the horizon, so we can expand it as 

݂ሺݎሻ ൌ ݂ᇱሺݎାሻሺݎെݎାሻ  ݂ᇱᇱሺݎାሻܱሺݎ െ  ାሻଶ                              ሺ38ሻݎ

As a result of vanishing term ܱሺݎ െ rାሻଶ in (38), the radial outgoing null geodesic 

takes the following form 

ሶݎ ൌ  
ݎ݀
ݐ݀ ൌ  

1
2 ݂ᇱሺݎାሻሺݎ െ  ାሻ                                              ሺ39ሻݎ

Combining Eqs. (37) and (39), we obtain 

ሶݎ ൌ ሺݎ െ ߢାሻݎ ൌ
2

ଶܣ ൬
ݎ
ାݎ

െ 1൰  ሺ40ሻ                                             ܯ

When we assume that the whole system with fixed total mass ܯ consists of a LDBH 

and a spherical shell of mass ߱, which is emitted by the BH, Eq. (40) modifies to 
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ሶݎ ൌ ሺݎ െ ߢାሻݎ ൌ
2

ଶܣ ൬
ݎ
ାݎ

െ 1൰ ሺܯ െ ߱ሻ                                                ሺ41ሻ 

where ሺܯ െ ߱ሻ is the varying mass of the LDBH with ߱ ا  This event is known .ܯ

as self-gravitational effect [30,31]. Following the PW’s method [6] which was 

thoroughly employed in chapter 2, one can refer to Eq. (26) to obtain imaginary part 

of the particle’s action. One gets the result as 

ሻܫሺ ݉ܫ ൌ െ݉ܫ න න
ଶ݀ܣ ߱

2 ቀ ݎ
ାݎ

െ 1ቁ ሺܯ െ ߱ሻ

ఠ


ሺ42ሻ                       ݎ݀

ೠ



 

After evaluating the ݎ-integral by deforming a contour, where its semicircle is 

centered at the real axis pole ݎା, we get 

ሻܫሺ ݉ܫ ൌ െߨ න
ା݀ݎଶܣ ߱

2ሺܯ െ ߱ሻ

ఠ


                                                 ሺ43ሻ 

The reason of the sign change in (43) is because of the shrinking of the horizon 

during the process of Hawking radiation i.e., the horizon tunnels inwards so, 

௨௧ݎ ൏   . ݎ

The quantum surface gravity [37,38] of the LDBHs can be defined as, 

ொீߢ ൌ
2ሺܯ െ ߱ሻ

ାݎଶܣ
                                                  ሺ44ሻ 

Therefore Eq. (43) turns out to be  

ሻܫሺ ݉ܫ ൌ  െߨ න
݀ ߱
ொீߢ

                                              ሺ45ሻ
ఠ


 

which changes the Hawking temperature as 

ுܶ ൌ  
ொீߢ

ߨ2                                                                    ሺ46ሻ 



 

18 

 

Accordingly, we can rewrite expression (45) as 

ሻܫሺ ݉ܫ ൌ െ
1
2 න

݀ ߱
ுܶ

ఠ


  ൌ െ

1
2 න ݀ܵ                                       

ௌೂಸሺெିఠሻ

ௌೂಸሺெሻ
 

ൌ െ
1
2 ൣܵொீሺெିఠሻ െ ܵொீሺெሻ൧ ൌ െ

1
2 Δܵொீ                       ሺ47ሻ 

where ܵொீ is the QG corrected area entropy for the LDBH. In ST and LQG, the 

general definition of the ܵொீ is introduced with a logarithmic correction [39-42] 

ܵொீ ൌ
ܣ

4  ܣ݈݊ߙ  ܱ ൬
1

ܣ
൰                                  ሺ48ሻ 

where ߙ is the QG correction parameter, and it is a dimensionless constant. It takes 

different values according to the concerned theory. Since ܣ ൌ ାݎଶܣߨ4 ൌ ଵగெ
ஊ෩

, one 

can easily read the tunneling rate with QG corrections as 

~߁ ሻሿܫሺ݉ܫሾെ2ݔ݁ ൌ ൫∆ܵொீ൯ݔ݁ ൌ ൬
ܯ െ ߱

ܯ
൰

ఈ

ݔ݁ ൬െ4ߨ
߱
෨ߑ

൰                      ሺ49ሻ 

The additional term ቀெିఠ
ெ

ቁ
ఈ

 in (49) compared with (31) comes from QG effects on 

the mass and the energy of the emitted particles of the LDBH. In chapter 2, the 

tunneling rate without QG corrections (ߙ ൌ 0), brought us a contradiction with 

quantum mechanics. Its corresponding emission spectrum was not deviating from 

the pure thermal emission [25]. So while a LDBH radiates, keeping ߙ ് 0 must be a 

precondition for unitarity in quantum mechanics as well as for the resolution of the 

information loss paradox. Meanwhile, it is observed that the value of the coefficient 

 . In the LDBHs its value reveals itself as 1ܣ ା inݎ depends on the power of ߙ
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because of ܣ ൌ  ା, while for the Schwarzschild BH [17] its value is 2 since itsݎߨ4

corresponding horizon area is ܣ ൌ ାݎߨ4
ଶ.  

According to the scenario of a radiating BH, which is employed by Chen and Shao 

[17], we assume that the quasilocal mass of a LDBH unites masses (energies) of ݊-

particles ߱ଵ, ߱ଶ, … , ߱ together with a non-vanishing BH remnant (߱). Therefore, 

ܯ ൌ ∑ ߱ 
ୀଵ ߱ . The complete evaporation process corresponds to successively 

emitted quanta (߱ଵ, ߱ଶ, … , ߱) from the BH. So the LDBH loses its mass ܯ during 

its evaporation, such that at the final state one will only see its remnant; ܯ െ ߱ ՜

߱. We must emphasize that the existence of the BH remnant is crucial in the QG 

corrected emission rate (49). Because since LQG envisages a negative value for ߙ 

[42], the case ܯ െ ߱ ՜ 0 i.e., non-suppression of the BH emission, yields a 

diverging emission rate. One also quests for the case ߱   however, this is not ,ܯ

allowed since our primary assumption is ܯ ൌ ∑ ߱ 
ୀଵ ߱ . Furthermore, such a 

case brings us an unphysical imaginary value (depending on the value of ߙ) for the 

emission rate (49), which means that tunneling process does not occur. In short, the 

case ߱   .should be excluded ܯ

3.2 Statistical Correlation (Mutual Information) Between Two 

Successive Emissions 

In this section we will discuss whether the emission probabilities of two successive 

emissions are statistically correlated [11,13,43] or not. Statistical correlation is a 

subject of the statistical physics which gives us a kind of quantitative measurement 

of how much a happened event tells about the probability of occurrence of another 

event. With the aid of the statistical correlation, we want to show that one can get a 
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measurement of how much a successive emission tells about another successive 

emission. The statistical correlation is also known as mutual information or 

transinformation [44]. The existence of mutual information indicates that the 

information leaks out of a BH during its radiation. As time goes on, it will reduce 

the total information stored in a BH. So when the BH reaches the late stages of its 

evaporation, there would be enough space for the rest of information to be stored in 

the remnant. In brief, the existence of the mutual information gives support to the 

BEB [19,20]. 

As we stated before, in this section we will follow the method used in [17]. When 

we consider two successive emissions with energies ߱ଵ and ߱ଶ , for the first 

emission of energy ߱ଵ from a LDBH mass ܯ, the tunneling rate (49) becomes, 

ሺ߱ଵሻ߁ ൌ ൬
ܯ െ ߱ଵ

ܯ ൰
ఈ

ݔ݁ ൬െ4ߨ
߱ଵ

෨ߑ
൰                                                   ሺ50ሻ 

The conditional probability of a second emission with energy ߱ଶ after the first 

emission ߱ଵ   becomes 

Γሺ߱ଶ|߱ଵሻ ൌ ൬
ܯ െ ߱ଵ െ ߱ଶ

ܯ െ ߱ଵ
൰

ఈ

ݔ݁ ൬െ4ߨ
߱ଶ

Σ෨
൰                                       ሺ51ሻ 

On the other hand, direct condition on the second emission yields 

ሺ߱ଶሻ߁        ൌ ൬
ܯ െ ߱ଶ

ܯ ൰
ఈ

ݔ݁ ൬െ4ߨ
߱ଶ

෨ߑ
൰                                                 ሺ52ሻ 

which is the probability just for the second emission. The emission of the total 

energy is 

Γሺ߱ଵ  ߱ଶሻ ൌ ൬
ܯ െ ߱ଵ െ ߱ଶ

ܯ ൰
ఈ

ݔ݁ ൬െ4ߨ
߱ଵ  ߱ଶ

Σ෨
൰                                      

                               ൌ Γሺ߱ଵሻΓሺ߱ଶ|߱ଵሻ                                                                      ሺ53ሻ 

The statistical correlation [11] between two successive emissions is given by 
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߯ሺ߱ଵ  ߱ଶ; ߱ଵ, ߱ଶሻ ൌ ݈݊ ቈ
ሺ߱ଵ߁  ߱ଶሻ
 ሺ߱ଶሻ                                                 ሺ54ሻ߁ሺ߱ଵሻ߁

which is  

߯ሺ߱ଵ  ߱ଶ; ߱ଵ, ߱ଶሻ ൌ ݈݊ߙ ൬1 െ
߱ଵ߱ଶ

ሺܯ െ ߱ଵሻሺܯ െ ߱ଶሻ൰                       ሺ55ሻ 

First of all, our result (55) shows that the subsequent emissions are statistically 

dependent, and thus correlations must exist between them. As explicitly shown in 

[11,13], the statistical correlation is equal to the mutual information between two 

sequential emissions. The reason of this equality comes from the fact that the mutual 

information is used in statistics as a measure of the information shared by two 

random variables [43]. If such two variables are designated by ߱ଵ and ߱ଶ, then the 

mutual information is defined by 

:ሺ߱ଵܫ ߱ଶሻ ൌ ܵሺ߱ଵሻ  ܵሺ߱ଶሻ െ ܵ൫߱ଵ,߱ଶ൯                                                              

ൌ ܵሺ߱ଵሻ െ ܵሺ߱ଵ|߱ଶሻ ൌ ܵሺ߱ଶሻ െ ܵሺ߱ଶ|߱ଵሻ                            ሺ56ሻ 

where ܵሺ߱ଵሻ and ܵሺ߱ଶሻ are the entropies of ߱ଵ and ߱ଶ, respectively. ܵሺ߱ଵ, ߱ଶሻ is 

known as total (joint) entropy of ߱ଵ and ߱ଶ. Besides, ܵሺ߱ଵ|߱ଶሻ is known as the 

conditional entropy of ߱ଵ and similarly ܵሺ߱ଶ|߱ଵሻ denotes the conditional entropy of 

߱ଶ. Conditional entropy describes the uncertainty in the specified event that remains 

after the other event is known. In terms of the mutual information, the conditional 

entropies of ߱ଵ and ߱ଶ tell us that a certain information needs to be transferred from 

߱ଵ in order to determine ߱ଶ and vice versa. If we consider the event as an emission 

process of a particle with an emission rate Γሺ߱ሻ, the uncertainty of the event 

(entropy) is found by ܵሺ߱ሻ ൌ െ݈݊Γሺ߱ሻ [11]. So, the conditional entropy; 

ܵሺ߱ଵ|߱ଶሻ ൌ െ݈݊Γሺ߱ଵ|߱ଶሻ. After substituting those entropies in (56), one can easily 
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see that the mutual information (56) exactly matches with the statistical correlation 

(54). 

 

Remarkably, the most important point in (55) is that the obtained mutual 

information strictly depends on ߙ. In the Schwarzschild BH [17], even in the case of 

ߙ ൌ 0, the mutual information is non-zero. But, here once ߙ ൌ 0 is set, the 

subsequent emissions become statistically independent, and thus information does 

not come out with the Hawking radiation. This result emphasizes the necessity of 

QG effects in the calculation of mutual information while the LDBHs radiate. 

3.3 Entropy Conservation and BH Remnant 

For the calculation of total entropy carried by Hawking radiation, one should 

consider the complete process of the BH evaporation. For this purpose, we use the 

emission of all particles with energies ߱ଵ, ߱ଶ, … , ߱, which are successively emitted 

from the LDBH. At the end of the evaporation, we should see only the BH remnant 

having energy ߱ such that ߱ ൌ ܯ െ ∑ ߱

ୀଵ . 

In [11,13], it is shown that the chain rule of conditional entropies in quantum 

information theory [43] yields the total entropy ܵோ carried out by radiation 

ܵோ ൌ   ܵሺ߱|߱ଵ, ߱ଶ, … , ߱ିଵሻ                                               


ୀଵ

 

ൌ  െ ln ෑ ߁


ୀଵ

ሺ߱|߱ଵ, ߱ଶ, … , ߱ିଵሻ൩                            ሺ57ሻ 
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This expression states that the emitted particles extract entropies (or information) 

from the BH. Namely, the conditional entropies, part by part, transfer the entropy of 

the BH to ܵோ. Upon using the foregoing formula with Eq. (49), one finds 

ܵோ ൌ  െ ݈݊ ൜ቀ
߱

ܯ ቁ
ఈ

ݔ݁ െ
ߨ4
෨ߑ

ሺܯ െ ߱ሻ൨ൠ                                              

          ൌ
ߨ4
෨ߑ

ܯ  ߙ ݈݊ ൬
ܯ
߱

൰ െ
ߨ4
෨ߑ

߱                                            ሺ58ሻ  

It is instructive to remark that if we require a physical result (avoiding divergence of 

ܵோ) with QG effects (ߙ ് 0), the existence of remnant (߱) is of vital importance. 

The common sense about the remnants is that they should have a Planck size length 

with zero temperature. Remnant formation is in accordance with the generalized 

uncertainty principle (GUP), which might cease the complete evaporation of the BH 

[45-47], and also with spacetime noncommutativity [48]. Beside these, thinking of 

the remnant as a non-radiate object having an infinitesimal surface area would not be 

absurd. From this point of view, in the next section we shall model the remnant as an 

extreme LDBH with a point-like horizon. It will be shown that such a BH cannot 

radiate and its temperature would vanish much like an extremal BH. 

The entropy of the remnant ܵ can be read from Eq. (58). To this end, Eq. (58) is 

rewritten as 

ܵோ ൌ
ߨ4
෨ߑ

ܯ  ߙ ݈݊ ൬
ܯߨ16

෨ߑ
൰ െ ሾߙ ݈݊ ൬

߱ߨ16

෨ߑ
൰ 

ߨ4
෨ߑ

߱ ሿ 

ൌ ൬
ܣ

4  ൰ܣ݈݊ߙ െ  ߙ ln ൬
߱ߨ16

Σ෨
൰ 

ߨ4
Σ෨

߱൨             

                              ൌ ܵொீ െ ܵ                                                                  ሺ59ሻ 

From here, one can easily see that the remnant's entropy ܵ  is 
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ܵ ൌ ߙ  ln ൬
߱ߨ16

Σ෨
൰ 

ߨ4
Σ෨

߱                                                  ሺ60ሻ 

In fact, Eq. (59) represents the conservation of entropy. Clearly, the total entropy of 

a radiating LDBH ܵொீ is equal to the entropy of its remnant ܵ plus the entropy 

carried out by radiation ܵோ. Being in conform with [11,13,17], this interpretation 

implies that the information is not lost, and unitarity in quantum mechanics is 

restored during the Hawking radiation of the LDBH. Nevertheless, for a deeper 

analysis of the problem, we should emphasize that a complete QG theory is needed.  

 

3.4 QG Corrected Entropy of the Remnant in Higher Dimensional 

LDBHs 

The generic line element for higher dimensional (ܰ  4) static, spherically 

symmetric LDBHs in various theories can be found in [14]. In higher dimensions, 

the metric function ݂ሺݎሻ of the LDBHs and the spherical line-element of the metric 

(1) modify to 

݂ሺݎሻ ൌ ݎ෨ߑ 1 െ ቀ
ାݎ

ݎ ቁ
ேିଶ

ଶ ൩ ேିଶߗ݀              ,
ଶ ൌ ଵߠ݀

ଶ   ෑ ߠ݀ߠଶ݊݅ݏ
ଶ              ሺ61ሻ

ିଵ

ୀଵ

ேିଷ

ୀଶ

  

      

where 0  ߠ  ݇ with ߨ  ൌ 1. . ܰ െ 3, and 0  ேିଶߠ   The modified form of .ߨ2 

the physical constant ߑ෨ in higher dimensions can also be seen in [14]. 

 

In this section, we aim to find the quantum corrected entropy of the remnant of the 

LDBHs in higher dimensions. The surface area of a higher dimensional LDBH is 

[32] 
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ܣ ൌ  
ߨ16

ேିଵ
ଶ

ሺܰ െ 2ሻΓሺܰ െ 1
2 ሻ

ܯ
Σ෨

                                        ሺ62ሻ 

By following the procedure given in section (3.1), one can find the dimensionful and 

QG corrected entropy ܵேொீ, and tunneling rate ߁ே of the higher dimensional LDBHs 

as 

ܵேொீ ൌ
ߨ4

ேିଵ
ଶ

ሺܰ െ 2ሻΓሺܰ െ 1
2 ሻ

ܯ
Σ෨

 ߙ ln 
ߨ16

ேିଵ
ଶ

ሺܰ െ 2ሻ߁ ቀܰ െ 1
2 ቁ

ܯ
Σ෨

          ሺ63ሻ 

and 

ே~݁ିଶூሺூሻ߁ ൌ ݁∆ௌಿೂಸ ൌ ሺ1 െ
߱
ሻఈܯ ݔ݁ െ

ߨ4
ேିଵ

ଶ

ሺܰ െ 2ሻ߁ ቀܰ െ 1
2 ቁ

߱
Σ෨

          ሺ64ሻ 

We notice that, higher dimensions do not change the statistical correlation computed 

for the two successive emissions. That is the correlation remains unchanged as in the 

 case (see Eq. (55)). If we proceed to extend the study of emission of ݊-particles ܦ4

with energies ߱ଵ, ߱ଶ, … , ߱, which are successively emitted from the higher 

dimensional LDBHs, a straightforward calculation leads us to obtain the 

dimensionful entropy carried out by radiation ܵேோ as 

ܵேொீ ൌ  
ߨ4

ேିଵ
ଶ

ሺܰ െ 2ሻΓሺܰ െ 1
2 ሻ

ܯ
Σ෨

 ߙ ln ൬
ܯ
߱

൰ െ
ߨ4

ேିଵ
ଶ

ሺܰ െ 2ሻΓሺܰ െ 1
2 ሻ

߱       ሺ65ሻ 

This can be rearranged in the form 

ܵேோ ൌ ܵேொீ െ ܵே                                                                                ሺ66ሻ 

where the dimensionful entropy of the remnant ܵே is found to be  

ܵே ൌ ߙ ln 
ߨ16

ேିଵ
ଶ

ሺܰ െ 2ሻ߁ ቀܰ െ 1
2 ቁ

߱

Σ෨
 

ߨ4
ேିଵ

ଶ

ሺܰ െ 2ሻΓሺܰ െ 1
2 ሻ

߱                  ሺ67ሻ 
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Eq. (66) is nothing but the conservation of entropy in the higher dimensional 

LDBHs. Thus, we conclude that even in the higher dimensional LDBHs information 

is not lost and unitarity in quantum mechanics remains intact. 

Finally, as we stated in the previous section, we would like to model the remnant as 

an extreme LDBH with a point-like horizon. Our goal is to show that such a remnant 

cannot radiate and thus yields zero temperature, as expected. 

In generic, we can use the metric functions (61) to describe the remnant in an 

arbitrary dimension. Thus, the metric of the remnant can be approximated by an 

extreme LDBH metric as 

ଶݏ݀ ൌ  െΣ෨ݐ݀ݎଶ 
ଶݎ݀

Σ෨ݎ
 ܴଶ݀ΩNିଶ

ଶ                                          ሺ68ሻ 

One can find the statistical Hawking temperature of this metric as a finite 

temperature with ுܶ ൌ  ሺேିଶሻ
଼గ

Σ෨. But this result is not persuasive since we expect its 

temperature as zero. To this end, we proceed with a more precise computation of the 

temperature of the remnant from the study of wave scattering in such a spacetime. 

Metric (68) can be transformed into the vacuum metric [49] 

²ݏ݀ ൌ ଶሺെ݀߬ଶߩ  ଶݔ݀  ேିଶߗ݀
ଶ ሻ                                               ሺ69ሻ 

by the transformation 

ݎ ൌ ݁ఉ௫,     ݐ ൌ ൬
ߚ
Σ෨

൰ ߩ       ,߬ ൌ ݁ܣ
ఉ
ଶ௫                                                     ሺ70ሻ 

where constant ߚ ൌ ߚ EMD theory-ܦඥΣ෨ (for example, in 4ܣ ൌ 1 [14,15, 27]). 

Therefore metric (69) is conformal to the product of ₂ܯ ൈ ܵேିଶ of a two-
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dimensional Minkowski spacetime with the ሺܰ െ 2ሻ-sphere. The massless Klein-

Gordon equation 

ߔ²ߘ ൌ 0                                                                          ሺ71ሻ 

with ߔ ൌ ሺಿషమିߩ
మ ሻߖ can be reduced to 

ሺேିଶିߩ
ଶ ሻ ൝ ఛ߲ఛ െ ߲௫௫  ቈ

ሺܰߚ െ 2ሻ
4 

ଶ

െ ேିଶߘ
ଶ ൡ ߖ ൌ 0                          ሺ72ሻ 

where ߘேିଶ
ଶ  is the ሺܰ െ 2ሻ-dimensional Laplace-Beltrami operator with the 

eigenvalue െ݈ሺ݈  ܰ െ 3ሻ [50]. The reduced Klein-Gordon equation can be 

rewritten in spherical harmonics with orbital quantum number ݈ as  

ଶߘ
ଶߖ  ߖଶߤ ൌ 0                                                                     ሺ73ሻ 

where the effective mass ߤ can be found as 

ߤ ൌ ቊሾ
ሺܰߚ െ 2ሻ

4 ሿଶ  ݈ሺ݈  ܰ െ 3ሻቋ

ଵ
ଶ 

                                           ሺ74ሻ 

In Eq. (73), ߘଶ
ଶ is the d'Alembertian operator on ₂ܯ. Thus the problem of wave 

propagation of the remnant (69) reduces to the propagation of eigenmodes of a free 

Klein-Gordon field in two dimensions with effective mass ߤ. It is needless to say 

that this vacuum state of the LDBH admits quantum states, which can accommodate 

any amount of information as a remnant metric. However, according to the BEB 

[19,20] a remnant may not accommodate the huge information of the initial BH. The 

information capacity of a remnant has recently been discussed in [51] (and 

references therein), which certainly supports our scenario. In effect, the remnant 

cannot radiate and therefore contrary to the standard Hawking temperature 

calculation i.e., ேܶ ൌ  ሺேିଶሻ
଼గ

Σ෨ , its temperature must vanish i.e., the model that we 

created for the remnant seems plausible. 
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Chapter 4 

FADING HAWKING RADIATION3 

4.1 Entropy and Temperature Expressions with QG Corrections to 

All Orders in  for LDBHs 

In this chapter, before proceeding to the technical details, we first modify the unit of 

the Planck constant as ܮ
ଶ ൌ . Recall that it was scaled to one in the previous 

chapters. Thus, if one makes some elementary dimensional analysis, it can be seen 

that the units of ܯ and ܣଶ in Eq.(2) become ܮ, while Σ෨ has the unit of ܮ
ିଵ so that 

 .ܮ ା has the unit ofݎ

Recently, it has been shown that the temperature for a static and spherically 

symmetric BH with  corrections in all orders [21, 52] has the following form 

ܶ ൌ
ߢ
ߨ2 ቌ1  

ߙ

ାݎ
ଶ

ஶ

ୀଵ

ቍ

ିଵ

                                                       ሺ75ሻ 

where ߙ’s െ dimensionless constants – stand for the QG correction terms. In this 

expression 
ଶ

  is nothing but the well-known Hawking temperature, ுܶ. Here, we 

wish to highlight one of the important features of the LDBHs that their Hawking 

                                                 
3 This Chapter is mainly quoted from Ref. [23], which is Sakalli, I., Halilsoy, M., Pasaoglu, H., 
(2012). Astrophysics and Space Science. DOI: 10.1007/s10509-012-1028-3 
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temperature, ுܶ ൌ ஊ෩

ଶగ
, is independent of their quasilocal mass ܯ, and which is 

therefore a constant throughout the evaporation process i.e. an isothermal process. 

In general, the first law of thermodynamics is about an expression for the entropy 

(ܵ) as 

ܵ ൌ න
ܯ݀
ܶ                                                                               ሺ76ሻ 

As we adopt the temperature with generic QG corrections from Eq. (75), the entropy 

with  corrections in all orders can be found by substituting Eq. (75) into Eq. (76), 

and by evaluating the integral. Thus, for the LDBHs one obtains the following 

modified entropy as a function of ܯ 

ܵሺܯሻ ൌ  
ܯ

ுܶ
ቌ1 െ 

ߙ

2݆ െ 1

ஶ

ୀଵ

 ቍ                                            ሺ77ሻݔ

where ݔ ൌ  ஊ෩మAర

ଵெమ  is a dimensionless quantity.  

As we mentioned in the introduction, our ultimate aim is to find a specific condition 

by which it leads to a complete radiation of the LDBH with ܵ, ܶሺܯ ՜ 0ሻ  ՜ 0. This 

requirement implies conditions on the ߙ’s. It is remarkable to see that the only 

possibility which satisfies ܵ, ܶሺܯ ՜ 0ሻ  ՜ 0 is, 

ߙ ൌ
ሺെ1ሻାଵሺ2݆ െ 1ሻ

݆  ଵ                                                    ሺ78ሻߙ
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Inserting this into the sum of (77), we find the modified LDBH entropy as 

ܵሺܯሻ ൌ  
ܯ

ுܶ
ቈ1  ଵ݈݊ߙ ቆ

ଶܯ16

ଶܯ16  Σ෨ଶAସቇ                             ሺ79ሻ 

Now, it can be easily checked that ܵሺܯ ՜ 0ሻ ՜ 0 and ܵሺܯ ՜ ∞ሻ ՜ ∞. Although 

the result of the sum in Eq. (79) stipulates that ܯ  √ஊ෩²
ସ

, by making an analytical 

extension of the zeta function [21,53], one can redefine the sum via 

₁݈݊ߙ ቀ ଵெమ

ଵெమାஊ෩మAరቁ such that it becomes valid also for ܯ ൏ √ஊ෩²
ସ

.  

We plot ܵሺܯሻ (79) versus ܯ for the cases of semi-classical and QG  corrections in 

all orders, and display all graphs in Fig. 1. In all figures, we have used two different 

₁ߙ values such that ₁ߙ ൌ െ ଵ
ଶ
  is taken as the representative of the LQG [42], while 

the choice ₁ߙ ൌ ଵ
ଶ
 stands for the ST [39,40]. Here, physically inadmissible case 

belongs to the ST's one in which the behavior of the entropy is not well-defined. 

Because, as seen in Fig. 1(b), just before the complete evaporation of the LDBH, the 

entropy first decreases to a negative value and then increases from below to become 

zero with ܯ ൌ 0. 
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Figure 1(a). Entropy ܵሺܯሻ in LQG. The relation is governed by (79). Here, ₁ߙ ൌ
െ ଵ

ଶ
. The two curves correspond to the semi-classical entropy (dashed line) and 

entropy with QG  corrections in all orders (solid line).  
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Figure 1(b). Entropy ܵሺܯሻ in ST. The relation is governed by (79). Here, ₁ߙ ൌ ଵ
ଶ
. 

The two curves correspond to the semi-classical entropy (dashed line) and entropy 
with QG  corrections in all orders (solid line). 

Furthermore, if we impose the same condition (78) in Eq. (75), a straightforward 

calculation of the sum shows that the temperature reads, 

ܶሺܯሻ ൌ  ுܶ

1  ଵߙ  2Σ෨ଶAସ

ଶܯ16  Σ෨ଶAସ   ln ൬ ଶܯ16

ଶܯ16  Σ෨ଶAସ൰൨
                         ሺ80ሻ  
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Figure 2(a). Temperature ܶሺܯሻ in LQG. The relation is governed by (80). Here, 
₁ߙ ൌ െ ଵ

ଶ
. The two curves correspond to the semi-classical temperature (dashed line) 

and temperature with QG  corrections in all orders (solid line). 

Figure 2(b). Temperature ܶሺܯሻ in ST. The relation is governed by (87). Fig 2(b) 
stand for ₁ߙ ൌ ଵ

ଶ
. The two curves correspond to the semi-classical temperature 

(dashed line) and temperature with QG  corrections in all orders (solid line). 

It is obvious that removing the QG corrections i.e., ₁ߙ ൌ 0, leads ܶ to the semi-

classical result, ுܶ. Significantly, one can easily verify that ܶሺܯ ՜ 0ሻ ՜ 0 and 

ܶሺܯ ՜ ∞ሻ ՜ ுܶ. As it can be seen in Fig. 2(a), when ₁ߙ ൏ 0 (the LQG case), the 

temperature does not take negative value, rather it remains always positive and goes  
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to zero with ܯ ՜ 0. On the other hand, for ₁ߙ  0 (the ST case, see Fig. 2(b)), the 

temperature does not exhibit well-behaved behavior as obtained in the LQG case. 

Because it first diverges for some finite value of ܯ, then becomes negative and 

approaches zero from below. 

As a final remark for this section, our results suggest that the quantum corrected 

Hawking radiation of the LDBH should be considered with the LQG term ₁ߙ ൏ 0 in 

order to avoid from any unphysical thermodynamical behavior. Because in the LQG 

case, both plots of ܵሺܯሻ and ܶሺܯሻ have physically acceptable thermodynamical 

behaviors and represent the deserved final; ܵ, ܶሺܯ ՜ 0ሻ ՜ 0. 

4.2 Entropy Conservation of LDBHs in QG Corrected Hawking Radiation 

As it is seen in the previous chapter 2, in the WKB approximation, the tunneling rate 

for an outgoing positive energy particle with a field quantum of energy ߱, which 

crosses the horizon from ݎሺܯሻ to ݎ௨௧ሺܯ െ ߱ሻ, is related to the entropy change ∆ܵ 

߁  ݁ௌ ൌ ܯሾܵሺ ݔ݁ െ ߱ሻ െ ܵሺܯሻሿ                                                    ሺ81ሻ  

By using (79), Δܵ becomes 

Δܵ ൌ  
1
ுܶ

൝െ߱  ₁݈݊ߙ ቆ
ܯ െ ߱

ܻሺ߱ሻ
ቇ

ெିఠ

ቆ
ܯ

ܻሺ0ሻ
ቇ

ିெ

൩ൡ                    ሺ82ሻ 

where 

ܻሺ߱ሻ ൌ ඨሺܯ െ ߱ሻଶ 
Σ෨ଶAସ

16                                                   ሺ83ሻ 
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and after substituting (82) into (81), the tunneling rate with QG  corrections in all 

orders is found as 

Γሺܯ; ߱ሻ ൌ ݔ݁ ൬െ
߱

ுܶ
൰ ቆ

ܯ െ ߱
ܻሺ߱ሻ

ቇ
ெିఠ

ቆ
ܯ

ܻሺ0ሻ
ቇ

ିெ

൩

ଶఈభ
்ಹ

 

          ሺ84ሻ 

In this expression, the term ݁ݔ ቀെ ఠ
்ಹ

ቁ arises due to the back reaction effects. The 

other term to the power ଶఈభ
்ಹ

 shows the QG  corrections in all orders, and 

significantly it gives rise to a degeneracy in the pure thermal radiation. In the 

absence of the QG corrections (₁ߙ ൌ 0) the radiation of the LDBH is pure thermal 

since the rate (84) reduces to ݁ݔ ቀെ ఠ
்ಹ

ቁ. The latter case was studied in detail in 

chapter 2, which is quoted from [25], in which it was stated that the Hawking 

radiation of the LDBH leads to the information loss paradox. The essential 

annoyance in the pure thermal radiation is that it never allows the information 

transfer, which can be possible with the correlations of the outgoing radiation. So it 

is prerequisite to keep the ₁ߙ ് 0 in the tunneling rate (84) when the agenda is about 

obtaining a spectrum which is not pure thermal, and accordingly the correlations of 

the emitted quanta from the LDBH. Applying the definition of the statistical 

correlation (54), which is given in the chapter 2, for the present case one obtains it as 

߯ሺ߱ଵ  ߱ଶ; ߱ଵ, ߱ଶሻ

ൌ
ଵߙ2

ுܶ
݈݊ 

ۏ
ێ
ێ
ێ
ۍ ൬ܯ െ ߱ଵ െ ߱ଶ

ܻሺ߱ଵା߱ଶሻ
൰

ெିఠభିఠమ

൬ܯ െ ߱ଵ
ܻሺ߱ଵሻ

൰
ெିఠభ

൬ܯ െ ߱ଶ
ܻሺ߱ଶሻ

൰
ெିఠమ

ے
ۑ
ۑ
ۑ
ې

ቆ
ܯ

ܻሺ0ሻ
ቇ

ெ

         ሺ85ሻ 
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This result shows that successive emissions are statistically dependent if and only if 

the quantum correction parameter ₁ߙ is non-zero. Since the amount of correlation is 

precisely equal to mutual information between two sequentially emitted quanta, one 

can deduce that the statistical correlation enables the information leakage from the 

LDBH during its evaporation process. 

Now, one can assume that the quasilocal mass of a LDBH is a combination of ݊-

particles with energies (masses) ߱ଵ, ߱ଶ, … ߱, ܯ ൌ ∑ ߱
ஶ
ୀଵ   in which ߱ is the 

energy of the ݆௧ emitted field quanta (particle). Namely, the whole radiation process 

constitutes of successively emitted quanta (߱ଵ, ߱ଶ, … ߱) from the BH, so that the 

LDBH loses its mass ܯ during its evaporation, and at the final stage of the 

evaporation we find ܵ, ܶሺܯ ՜ 0ሻ ՜ 0. 

The probability of a radiation composed of correlated quanta is defined in the 

previous chapter (see Eq.(57)) as 

ܲௗ ൌ ;ܯሺ߁ ߱ଵሻ ൈ ܯሺ߁ െ ߱ଵ; ߱ଶሻ ൈ. . . .ൈ ߁ ቌܯ െ  ߱

ିଵ

ୀଵ

; ߱ቍ                    ሺ86ሻ 

where the probability of emission of each radiation of energy ߱ is given by  

;ܯሺ߁ ߱ଵሻ ൌ ݔ݁ ൬െ
߱ଵ

ுܶ
൰ ቊ

ܯ െ ߱ଵ

ܻሺ߱ଵሻ ൨
ெିఠభ


ܯ

ܻሺ0ሻ
൨

ିெ

ቋ

ଶఈభ
்ಹ

,         

ܯሺ߁ െ ߱ଵ; ߱ଶሻ ൌ ݔ݁  ൬െ
߱ଶ

ுܶ
൰ ቊ

ܯ െ ߱ଵ െ ߱ଶ

ܻሺ߱ଶሻ ൨
ெିఠభିఠమ


ܯ െ ߱ଵ

ܻሺ߱ଵሻ ൨
ିሺெିఠభሻ

ቋ

ଶఈభ
்ಹ

, 
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….., 

Γ൫ܯ െ ∑ ߱
ିଵ
ୀଵ ; ߱൯ ൌ

ݔ݁ ቀെ ఠ
்ಹ

ቁ ൝
ெି∑ ఠೕ


ೕసభ

ሺఠሻ ൨
ெି∑ ఠೕ


ೕసభ


ெି∑ ఠೕ

షభ
ೕసభ

ሺఠషభሻ ൨
ିሺெି∑ ఠೕ

షభ
ೕసభ

ൡ

మഀభ
ಹ

,  

            ൌ  exp ൬െ
߱

ுܶ
൰ 

߱

ܻሺ߱ିଵሻ൨
ିଶఈభ 

்ಹ
ఠ

                                                               ሺ 87ሻ 

 

in which  

ܻሺ߱ሻ ൌ  ඩቌܯ െ  ߱



ୀଵ

ቍ

ଶ


Σ෨ܣସ

16                                            ሺ88ሻ 

Here, ߁൫ܯ െ ߱ଵ െ ߱ଶ െ ڮ െ ߱ିଵ െ ߱൯ is the conditional probability of an 

emission with energy ߱ following the emission before the energy ߱ଵ  ߱ଶ  ڮ 

߱ିଵ. 

We can now substitute Eq. (87) into Eq. (86), and calculate the total probability for 

the whole radiation, which turns out to be 

ܲௗ ൌ ݔ݁  ൬െ
ܯ

ுܶ
൰ ቆ

ܯ
ܻሺ0ሻ

ቇ
ିଶఈభ ெ

்ಹ
                                            ሺ89ሻ 
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According to the statistical mechanics, we recall that all microstates are equally 

likely for an isolated system. Since the radiation of a BH can be considered as an 

isolated system, the number of microstates ߗ in the system is 1/ ܲௗ. Thus, one 

calculates the entropy of the radiation ܵௗ from the Boltzmann's definition as 

ܵௗ ൌ ݈݊ሺߗሻ ൌ ݈݊ ൬ 
1
ܲௗ

൰ ൌ  
ܯ

ுܶ


ܯ ଵߙ2
ுܶ

݈݊ ቆ
ܯ

ܻሺ0ሻ
ቇ                       

ൌ  
ܯ

ுܶ
ቈ1  ݈݊ ଵߙ  ቆ

ଶܯ16

ଶܯ16  Σ෨ଶAସቇ                                         ሺ90ሻ 

Clearly, the total entropy of the radiation ܵௗ is equal to the entropy of the initial 

LDBH ܵሺܯሻ (79). We deduce therefore that the entropy is conserved; the entropy of 

the original LDBH (before radiation, initial state) is equal to the entropy of the 

radiation (after radiation, final state). From the microscopic point of view of the 

entropy, this result shows that the number of microstates of initial and final states is 

same. The latter remark implies also that under specific conditions it is possible to 

save the information during the Hawking radiation of the LDBHs. In this way, 

unitarity in quantum mechanics of the Hawking radiation is also restored. 
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Chapter 5 

CONCLUSION 

In this thesis, we considered the LDBHs, which are NAF spacetimes. One of the 

important thermodynamical aspects of them is that their Hawking temperature turns 

out to be a constant, i.e. independent of its event horizon. This is in analogy with a 

classical isothermal process where although the temperature remains constant this 

does not prevent absorption or emission of heat. For the deeper analysis, we 

effectively utilized two different methods (DRS and PW’s tunneling models) to 

investigate the Hawking radiation for 4ܦ-LDBHs in the EMD, EYMD and 

EYMBID theories. Both methods yielded the same tunneling rate. In the framework 

of the original (without QG corrections) PW method, the inclusion of the back-

reaction effects, which guarantees the conservation of energy during a particle 

tunneling the horizon, yields the tunneling rate of a BH in terms of difference of the 

Bekenstein-Hawking entropies ∆ܵு of the BH. Namely, the difference of the 

entropies corresponding to the entropies of the BH with mass ܯ before and after the 

emission of a particle having energy ߱. Contrary to the similar studies about the 

original PW model for the ordinary BHs like Schwarzschild, de Sitter, Kerr, 

Reissner-Nordström [6-9] etc., as it was shown in chapter 2, the obtained emission 

spectrum for the LDBHs did not exhibit any deviation from its thermal spectrum. 

This result violates the unitarity principle, which is a fundamental law in quantum 

mechanics. In fact, unitarity principle puts a restriction on the allowed evolution of 

quantum systems that ensures the sum of probabilities of all possible outcomes of 
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any event is always 1. Correspondingly, it means the violation of the conservation of 

information in the LDBHs. Above all our result implies that the original form of the 

PW’s method is inadequate while attempting to retrieve the information from a 

LDBH.  

For a theoretical treatment of the original PW’s method, we considered the QG 

corrections in chapter 3. Unlike the previous result obtained in chapter 2, the 

quantum corrected tunneling probability changed its pure thermal form. It contains 

an overall factor with power α, which pertains to QG effects, to its former 

expression (without QG correction). By using this new tunneling probability, the 

correlation between successively emitted quanta is found to be statistically 

dependent. It is also found that the associated correlation is independent of the 

dimension of the LDBH. Furthermore, this nontrivial correlation proves the mutual 

information, which means that in each emission an amount of information should 

leak out of the LDBH. Therefore, QG effects play crucial role in having non-zero 

statistical correlation and also in resolving the information paradox for the LDBH. 

On the other hand, it is seen that keeping ߙ ് 0 and requiring non-divergent entropy 

carried out by radiation (ܵோ and ܵேோ) renders the existence of the BH remnant 

indispensable. When the complete evaporation process of the LDBH is considered, 

the conservation of entropy is obtained both for 4ܦ and higher dimensional LDBHs. 

It is also shown that an extreme LDBH with a pointlike horizon can be used to 

describe the LDBH remnant. Using the massless Klein-Gordon equation, it is proved 

that such a remnant cannot radiate, as expected, and its Hawking temperature is 

zero. This latter result shows that a LDBH supplemented with QG effects does not 

radiate away all of its mass and leaves a remnant at the end or forms an extreme BH.  
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In chapter 4, we have used SVZR's analysis [21,22] in order to obtain a specific 

radiation which yields both zero temperature and entropy for the LDBH when its 

mass is radiated away, i.e. ܵ, ܶሺܯ ՜ 0ሻ  ՜ 0. According to this analysis, the 

complete evaporation of a BH is thought as a process in which both back reaction 

effects and QG  corrections in all orders are taken into consideration. For this 

purpose, we imposed a condition on ߙ 's which are the parameters of the QG  

corrections in all orders. Unless the QG corrections are ignored, the choice of ߙ 's 

works finely in the LDBHs to end up with ܵ, ܶሺܯ ՜ 0ሻ  ՜ 0. 

Upon using the specific form of the entropy (79), we derived the tunneling rate (84) 

with QG  corrections in all orders. Then, it is shown that this rate attributes to the 

correlations between the emitted quanta. On the other hand, existence of the 

correlations of the outgoing radiation allowed us to make calculations for the 

entropy conservation. Thus we proved that after a LDBH is completely exhausted 

due to its Hawking radiation, the entropy of the original LDBH is exactly equal to 

the entropy carried away by the outgoing radiation. The important aspect of this 

conservation is that it provides a probable decoding for the information loss paradox 

associated with the LDBHs. Another meaning of this conservation is that the process 

of the complete evaporation of the LDBH is unitary in regard to quantum 

mechanics. Because, it is precisely shown that the numbers of microstates before 

and after the complete evaporation are the same. 

After analyzing the Figs. (1) and (2), which are about the scenario of ܵ, ܶሺܯሻ in the 

QG corrected Hawking radiation of the LDBH, it is seen that our specific choice of 

ߙ 's (78) with ₁ߙ ൌ ଵ
ଶ
 from ST led to unacceptable behavior for the entropy (79) in 
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which it gets negative values for some ܯ values. In addition to this, the behavior of 

the temperature (80) in the ST case is not well-behaved compared to the LQG case. 

However, we have no such unphysical thermodynamical behaviors in the LQG case 

₁ߙ) ൌ െ ଵ
ଶ
). So, for the scenario of S, ܶሺܯ ՜ 0ሻ, we conclude that only the QG 

correction term ₁ߙ coming from the LQG should be taken into consideration.  

In conclusion, we show in detail that in the QG corrected Hawking radiation of the 

LDBHs, the information is conserved, and unitarity in quantum mechanics is 

restored in the process of complete evaporation of the LDBHs. We also confirm that 

QG corrections with the back reaction effects (PW’s original method) remain crucial 

for the information leakage. Therefore, it should be stressed that the present study is 

also supportive to the usage of higher order QG corrected Hawking radiation, which 

is first introduced by Banerjee and Majhi [52]. Finally, we point out that since the 

LDBHs are conformally related to the Brans-Dicke BHs [54], similar analysis might 

work for those BHs as well. 
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