
2-Head Pushdown Automata

 Samson Ayodeji Awe

Submitted to the

Institute of Graduate Studies and Research

in partial fulfillment of the requirements for the Degree of

Master of Science

in

Applied Mathematics and Computer Science

Eastern Mediterranean University

February 2015
Gazimağusa, North Cyprus

Approval of the Institute of Graduate Studies and Research

 Prof. Dr. Serhan Çiftçioğlu

 Acting Director

I certify that this thesis satisfies the requirements as a thesis for the degree of Master

of Science in Applied Mathematics and Computer Science.

 Prof. Dr. Nazim Mahmudov

 Acting Chair, Department of Mathematics

We certify that we have read this thesis and that in our opinion it is fully adequate in

scope and quality as a thesis for the degree of Master of Science in Applied

Mathematics and Computer Science.

 Assoc. Prof. Dr. Benedek Nagy

 Supervisor

 Examining Committee

 __

1. Prof. Dr. Rashad Aliyev ______________________________

2. Prof. Dr. Rza Bashirov ______________________________

3 Assoc. Prof. Dr. Benedek Nagy ______________________________

iii

 ABSTRACT

Finite state automata recognize regular languages which can be used in text

processing, compilers, and hardware design. 2-head finite automata accept linear

context-free languages. In addition, pushdown automata are able to recognize

context-free languages which can be used in programming languages and artificial

intelligence. We distinguish between deterministic and nondeterministic finite

automata, 2-head automata and also pushdown automata. The deterministic version

of these machines is such that there is no choice of move in any situation while the

non-deterministic version may have a choice of move. The present thesis describes 2-

head pushdown automata which is more powerful than the pushdown automata and it

is able to recognize some non-context-free languages as well. Throughout the thesis

we try to focus on characterization of aforementioned machines.

Keywords: 2-head pushdown automata, non-context-free languages, deterministic

automata, non-deterministic automata.

iv

ÖZ

Sonlu otomata düzenli dilleri tanır ve metin işleme, derleyiciler ve donanım tasarımı

icin kullanilabilir. Iki basli sonlu otomata doğrusal bağlamsiz dilleri kabul eder, ve

ters otomata programlama dilleri ve yapay zeka konularinda kullanilabilen baglamsiz

dilleri tanir. Sonlu otomat iki basli sonlu otomata ve asagi suruklemeli otomata’da

oldugu gibi deterministik ve deterministik olmayan versiyonlara sahiptir. Bu

otomata’larin deterministik versiyonlarinda hareket etme secimi yapilamaz iken,

deterministik olmayan versiyonlarda hareket seçimi yapmak mumkundur. Bu tezde

ters otomata’dan daha güçlü olan bunun yani sira bazi baglamli dilleri de tanimakta

olan 2-basli asagi suruklemeli otomata tarif edilmiştir. Bu çalışmalar sırasında, temel

olarak yapilan is bu otomata’lari karakterize etmektir.

Anahtar Kelimeler: 2-basli asagi suruklemeli otomata, bağlamli serbest diller,

deterministik otomata, deterministik olmayan otomata.

v

ACKNOWLEDGMENT

My heart of gratitude goes to my supervisor Assoc. Prof. Dr. Benedek Nagy for his

support throughout the period of working on this thesis, he was always available and

he guides me through every process of this thesis. I will also like to give thanks to

my friend Yetunde Adeuja for her countless assistance and inspiration while I was

writing this thesis.

The dedication of this thesis goes to my family for their countless support morally

and financially. I also dedicate this thesis to my friend Adeuja Yetunde.

vi

TABLE OF CONTENTS

ABSTRACT ……………………………………………………………………...iii

ÖZ………………………………………………………………………………... iv

ACKNOWLEDGMENTS ……………………………………………………….. v

LIST OF FIGURES ……………………………………………………………. viii

LIST OF ABBREVIATIONS …………………………………………………... ix

1 INTRODUCTION ...…………………………………………………………… 1

2 LITERATURE REVIEW ……………………………………………………… 4

3 PRELIMINARIES……………………………………………………………… 6

 3.1 5'→3' WKA……………………………………………………………..........6

 3.1.1 Accepted Language of a 5'→3' WKA…………………………........... 7

 3.2 Pushdown Stack…………………………………………………………….. 7

 3.3 Pushdown Automaton…………………………………………………......... 7

 3.3.1 Accepted Language of a PDA…………………………………............ 8

4 2-HEAD PUSHDOWN AUTOMATA………………………………................. 9

 4.1 Informal Description of a 2HPDA………………………………….……….. 9

 4.2 The Formal Definition of a 2HPDA ………………………………...……...10

 4.3 Graphical Notations for 2HPDA…………………….……………...……....11

 4.4 Instantaneous Description of a 2HPDA …………………………………….12

5 THE LANGUAGES OF A 2HPDA…………………………………………….13

 5.1 Acceptance of an Input String……………………………………….............13

 5.2 Various Acceptance Conditions………………………………………..........13

 5.3 Accepted Language by Final State……………………………………..........13

 5.4 Accepted Language by Empty Stack .……………………………………….15

vii

 5.5 Closure Properties……………………………………………........................18

 5.5.1 Closure under Union…………………………………………………...18

 5.5.2 Closure under Reversal…..……………………………………….........19

 5.6 The Formal Definition of a Deterministic 2HPDA……………….……........20

 5.6.1 D2HPDA accepting a non-context-free Language……………….........21

 6 CONCLUSION…………………………………………………………..........22

 REFERENCES………………………………………………………...…….23

viii

 LIST OF FIGURES

Figure 1. The Structure of DNA…………………………………………………….2

Figure 2. The Schematic Diagram of a 2HPDA...9

Figure 3. 2HPDA that accepts the language of Example 5.1 by a final state………14

Figure 4. 2HPDA that accepts the language of Example 5.2 by a final state………15

Figure 5. 2HPDA that accepts the language of Example 5.3 by empty stack…...…17

Figure 6. Extended Chomsky Hierarchy …………………………………………..17

Figure 7. 2HPDA accepting the union of two 2HPDA languages…………………18

Figure 8. 2HPDA accepting the reversal of a 2HPDA language…………………..20

Figure 9. Deterministic 2HPDA accepting a non-context-free language…………..22

ix

LIST OF ABBREVIATIONS

A, C, G &T Adenine, Cytosine, Guanine, Thymine

D2HPDA Deterministic 2-Head Pushdown Automata

DNA Deoxyribonucleic Acid

ID Instantaneous Description

LIFO Last in First Out

PDA Pushdown Automata

WK Watson-Crick

WKA Watson-Crick Automata

2HPDA 2-Head Pushdown Automata

3'→5' Three Prime to Five Prime

5'→3' Five Prime to Three Prime

1

 Chapter 1

INTRODUCTION

Automata theory is the study of abstract computing devices or “machines” before

there were computers [6]. In the field of automata theory; there are various kinds of

automata recognizing various classes of languages [6]. The 2-head automata are

equivalent to the WKA which was originally introduced as model of automata

working on DNA strands as input. The DNA molecule encodes the genetic

instructions used in the growth and behavior of all living organisms [9]. DNA has

double stranded helical structure one strand has 5' to 3' structure, and another is

reverse ordered. The DNA’s two strands run in opposite directions to each other and

they are anti-parallel. If we untwist the DNA, it will result in a double helix structure

and from the study of molecular biology the DNA looks like two parallel strands in

which each of the strands has a linear sequence of Adenine, Cytosine, Guanine and

Thymine (A, C, G, T) respectively. The exact arrangement of the letters contain the

instructions that are coded such that one strand is an image that complements the

other i.e. A always pairs with T, and C always pairs with G as shown in Figure 1

below. By computational point of view, DNA molecules can be seen as double

strings over the four letter alphabet. So if you know the sequence of one strand, you

can work out the sequence of the other. Watson and Crick discovered the double

helix structure of DNA and the fact that the two chains run in opposite directions

[11]. WKA depicts an instance of mathematical model extracting biological

properties for the purposes of computation [1]. The WKA are finite automata, their

http://en.wikipedia.org/wiki/Genetics
http://en.wikipedia.org/wiki/Organism
http://en.wikipedia.org/wiki/Antiparallel_(biochemistry)

2

two reading heads work on double stranded sequences. The two strands of the input

are separately scanned by the read only heads and these read only heads are

controlled by a common state. All regular languages can be accepted by the WKA

[2]. If the two heads step together reading the same input letter at each transition then

we simulate the work of a traditional finite state automata. But the accepting power

of WKA is larger than one head finite automata.

Figure 1. The Structure of DNA

The pushdown automata accept exactly the context free languages [5, 6]. Our new

model, the 2HPDA accept some non-context free languages; we as well also consider

3

the subclass of the 2HPDA that is deterministic. The thesis is arranged as follows:

the next section shows the fundamental definitions of the WKA, pushdown stack, the

pushdown automaton. The informal description of the 2HPDA, the formal definition

of the 2HPDA, the graphical notations, the instantaneous description, the languages

of 2HPDA, the closure properties, the definition of deterministic version and

example of deterministic version of the 2HPDA.

4

Chapter 2

LITERATURE REVIEW

Formal languages and automata theory are one of the essential foundation fields of

theoretical computer science and they are rooted in the middle of the last century and

most of the classical results are from the last century. Automata theories find

important applications in other fields of computer science and information

technology e.g. compiler technologies, operating systems etc. There are some new

developments connected to various fields [6]. Some of the new developments are the

modeling of DNA sequences, and 2D pictures. Basically in the formal language

theory there has being a productive impact by the new model of computation caused

by biological processes and these biological processes had being promoting the

improvement of formal language theory. In 1987, the biological phenomenon of

recombinant processes was mathematically formalized and was proposed by Tom

Head [3]. Initiating a theoretical model of computation by using biological processes

and an example of this is the WKA.

As the interest in using DNA in computation increased so did the need for automata

which exploit the properties of DNA. The first such automata which exploited the

DNA property were the traditional WKA [2]. WKA are examples of mathematical

model, this remarkable model of automata abstract the biological features of DNA

for the usage of computation. The WKA are finite automata with two reading heads

controlled by one finite state control; these two reading heads are operational on

5

double stranded tapes (inputs), these heads separately scan from 5' end to 3' end.

Over the time, several variants and restrictions of WKA were introduced and

investigated, for example, stateless WK finite automata, WK two way finite

automata, WKA with a Watson-Crick memory and Watson-Crick transducers [1].

Likewise, Simple and 1-limited WKA with bounded number of leaps between the

two strands were investigated in [7]. While Watson-Crick ω-automata were

discussed in [10] also 5’→3’ Sensing WK Finite Automata was described in [8]. The

main essence of these 2-head automata is not only that they could process the input

twice faster than the traditional automata due to the two heads but they are accepting

a wider class of languages [4]. One of the current trends in nanoengineering is to

develop nanomachines which can parse molecules of DNA and perform a finite

number of tasks, e.g., the development of artificial enzymes [11] in line with this;

formal languages can be used to analyze the strings into logical syntactic

components. The term "pushdown" means the stack can be considered as being

"pushed down" similar to a tray dispenser used in a cafeteria. The operation of the

pushdown stack majorly works on the top element of the stack.

The set of finite automaton (both deterministic and nondeterministic ones)

recognizes the class of regular languages, while the set of 2-head finite automata

accepts the class of the linear context free languages. The class of regular languages

is a proper subset of the class of linear languages. The set of pushdown automata are

able to recognize the class of context-free languages and the set of linear bounded

automata accepts the class of context-sensitive language.

http://en.wikipedia.org/wiki/Stack_(abstract_data_type)
http://en.wikipedia.org/wiki/Proper_subset

6

Chapter 3

PRELIMINARIES

3.1 5'→3' WKA

5'→3’WKA are finite state automata working on double-stranded tapes, that are

initiated to investigate the ability of DNA molecules for computing [8]. They have

two heads, and the two heads are moving in opposite directions starting from the two

extremes of the input. The two heads of the 5'→3'WKA move in anti-parallel, i.e., in

opposite directions. This is the main difference between the traditional WKA [2, 9]

and the 5'→3' WKA [8]. Moreover in the 5'→3' WKA the process terminates when

the two heads meet, and do not move on to the corresponding ends of the word.

Formally, a 5' → 3' WKA is a 7 tuple (Q, V, so, F, δ, $, ¥) as shown below:

Q = the finite Set of States

V = the input (tape) Alphabets

$, ¥ = end-markers of the Input Strings such that ($, ¥ ∉ V)

so ∈ Q = is the Initial state

F ⊂ Q = the set of final (accepting) state

δ = is the state transition, a mapping ((Q × V
*

× V
*
) →2

Q
) ∪

 ((Q × ($, ≦)) →2
Q
)

7

3.1.1 Accepted Language of 5'→3' WKA

The 5'→3' WKA accepts linear languages. Linear languages are context-free but not

all context-free languages are linear. However, every regular language is linear, and,

thus, the set of 5'→3' WKA accepts all regular languages.

3.2 Pushdown Stack

The stack is a LIFO memory which has two operations, push and pop when we use

the pop operation, we read the top letter of the stack and at the same time we delete it

and when we use the push operation we add some symbols to the top of the stack.

The presence of a stack means that an automaton using a pushdown stack can

remember an infinite amount of information.

3.3 Pushdown Automaton

The Pushdown Automaton (PDA) is in essence a nondeterministic finite automaton

with empty word transitions (λ-transition) permitted and one additional capability: a

stack and on the stack it can store a string of “stack symbols” and the PDA accepts

exactly the context-free language [6].

P = (Q, T, Z, δ, qo, zo, F)

The meanings of the components are as shown below:

Q = finite set of states

T = finite set of input symbols

Z = finite stack alphabet

δ = the transition function, δ controls the behavior of the automaton, formally

 δ takes as argument a triple δ (q, a , X) where:

q ∈ Q = q is a state in Q

8

a is either an input symbol in T or a = λ the empty string which is assumed not to be

an input symbol.

X is the stack symbol i.e. a member of Z

qo = the initial state the PDA is in this state before making any transition

Zo = the stack symbol, initially the PDA’S stack consist of one instance of this

 symbol and nothing else

F = the set of accepting state or final state.

3.3.1 Accepted Language of PDA

The Pushdown Automata (PDA) accept the class of languages called the context-free

languages and, for instance, a language L = {a
n
b

n
 ∣ n ≥ 0} can be accepted by a PDA

P such that L (P) = {a
n
b

n
 ∣ n ≥ 0}.

9

Chapter 4

2-HEAD PUSHDOWN AUTOMATA

4.1 Informal Description of a 2HPDA

A 2HPDA is a theoretical device that has two reading heads that reads the input

string (built by symbols) on a tape. The reading heads are anti-parallel to each other

i.e. they move in opposite (anti parallel) directions. The 2HPDA has a “finite-state

control” and a “pushdown stack”.

We can view the 2HPDA informally as the device suggested in Figure 2 below. A

“finite-state control” reads two input symbols at the same time, the 2HPDA is

allowed to observe the symbol at the top of the stack or alternatively, it may make a

spontaneous transition using “λ” as its input instead of an input symbol. It observes

the symbol on top of the stack according to transition rules in the “finite-state

control”.

Figure 2. The schematic diagram of a 2HPDA

10

4.2 The Formal Definition of a 2HPDA

The formal notation for a two head pushdown automaton (2HPDA) involves seven

components. The specification of a 2HPDA H is as follows:

M = <Q, T, Z, δ, zo, qo, F>

Q = finite set of states

T = input symbols e.g. {a, b, c}

Z = finite stack alphabet (it’s the set of symbols we are allowed to push

onto the stack)

δ = it is the mapping from Q × (T ∪ {λ})
2

 × Z → 2
Q

× Z*

qo ∈ Q = it is the initial state

zo ∈ Z = initial stack symbol (initially the pushdown stack consisting of one

 instance of this symbol and nothing else)

F = set of accepting states or final states

11

4.3 A Graphical Notation for 2HPDA

The behavior of a given 2HPDA can easily be understood through a transition

diagram. A transition diagram of a 2HPDA is explained below:

a) The nodes corresponds to the states of the 2HPDA

b) The arrow that is labeled Start indicates the initial state, and double circled

states are the accepting states.

c) The arcs represent the transitions of the 2HPDA in the following way: an arc

labeled a, b, β / α from state q to state p means that δ (q, (a, b), β) contains

the pair (p, α) meaning that the arc label shows the inputs that are used and

also shows the old and new tops of the stack.

12

4.5 Instantaneous Description of 2-Head Pushdown Automata

Intuitively the 2-head pushdown automata (machine) go from configuration to

configuration in response to input symbols or sometimes no input symbol. The

2HPDA configuration includes the state and the content of the stack together with

the input symbols and it has an instantaneous description. The standard step is when

the 2HPDA reads its current state, current input letters, the top stack symbol then it

finds an appropriate transition rule and changes its state. It moves to the next input

letters and changes the top symbol of the stack to the appropriate word formally we

say the 2HPDA can change its configuration from

(q1, aub, β μ) ⱶ (q2, u, α μ)

Here, q1. q2 ∈ Q, u ∈ T*, a, b ∈ (T ∪{λ}), α ∈ Z* , β ∈ Z

q1 = previous state

q2 = new State

(a, b) = a pair of input symbols (any or both of them could also be the empty

 word)

α = new word on top of the stack

β = previous symbol on top of the stack

This move shows that by consuming (a, b) which may be (λ, b) (a, λ) (λ, λ) from the

input and replacing β on top of the stack by α we consequently can go from the

current state q1 to state q2.

13

Chapter 5

THE LANGUAGES OF A 2HPDA

5.1 Acceptance of an Input String

The word w is accepted if (qo, w, zo) ⱶ* (p, λ, μ), where

(qo, w, zo) is the so-called initial configuration, i.e.

 qo = initial state

 w = the whole input string

zo = initial stack symbol

p ∈ F = an accepting state

μ ∈ Z* = string of stack symbols

5.2 Various Acceptance Conditions

We have therefore guessed that a 2HPDA accepts its inputs when its input is

consumed thereafter, entering an accepting state. We hence call this process

“acceptance by final state” there is a second process to defining the language of a

2HPDA which means that we may also define for any 2HPDA the language 2HPDA

the language “accepted by empty stack” i.e. the set strings that cause the 2HPDA to

empty its stack, starting from the initial ID.

5.3 Accepted Language by Final State

Let M = <Q, T, Z, δ, Zo, qo, F> be a 2HPDA, then L(M) is the language that is

accepted by M by final state is:

 {w | (qo, w, zo) ⱶ* (p, λ, μ)}

14

For some state p ∈ F and any stack string μ. That is starting in the initial ID with w

waiting on the input; M consumes w from the input and enters an accepting state.

The content of the stack at that time is irrelevant.

Example 5.1

For the language L = {a
n
 b

n
 c

n
: n ≥ 0}, consider the

2HPDA = ({qo, q1, q2},{ a, b, c},{a, Zo}, qo, Zo, δ,{q2}) having the following

transition function:

δ (qo, (a, c), Zo) = {(qo, aZo)}

δ (qo, (a, c), a) = {(qo, aa)}

δ (qo, (b, λ), a) = {(q1, λ)}

δ (q1, (b, λ), a) = {(q1, λ)}

δ (q1, (λ, λ), Zo) = {(q2, Zo)}

Figure 3. 2HPDA that accepts the language of Example 5.1 by a final state

Example 5.2

For the language L = {a
n
 b

n
 c

n
d

n
| n ≥ 0}, consider the

2HPDA = ({qo, q1, q2}, {a, b, c, d}, {a, b, Zo}, qo, Zo, δ,{q2}) having the following

transition function:

15

δ (qo, (a, d), Zo) = {(qo, aZo)}

δ (qo, (a, d), a) = {(qo, aa)}

δ (qo, (b, c), a) = {(q1, λ)}

δ (q1, (b, c), a) = {(q1, λ)}

δ (q1, (λ, λ), Zo) = {(q2, Zo)}

Figure 4. 2HPDA that accepts the language of Example 5.2 by a final state

5.4 Accepted Language by Empty Stack

Here the automaton does not have any final state and the word is accepted if it can

read the whole word and the stack is empty when the two heads meet and the input

string is consumed.

For each 2HPDA M = (Q, T, Z, δ, Zo, qo, F) we also define

 N (M) = {w | (qo, w, Zo) ⱶ* (p, λ, λ)}

Now, because the set of accepting state is inapplicable, we shall sometimes

discontinue the use of the last (seventh) component from the specification of a

(b, c) a/ λ

16

2HPDA M, provided all we care about is the language that M accepts by empting its

stack. Thus we could write M as a six-tuple.

 2HPDA e = (Q, T, Z, δ, Zo, qo)

For any state q, i.e. N (M) is the set of inputs w that M can consume and at the same

time empty its stack.

By empty stack L (2HPDA e) = {p∣ p ∈ T*, (qo, p, Zo) ⱶ*(p, ∈ Q} λ, λ), p

e.g., see the next example.

Example 5.3

Let L= {a
n
b

n
c

n ∣ n ≥ 0}, consider

2HPDA e = ({qo, q1, q2}, {a, b, c}, {a, Zo}, δ, zo, qo}) having the following transition

function:

δ (qo , (a, c), Zo) = {(qo, aZo)}

δ (qo, (a, c), a) = {(qo, aa)}

δ (qo, (b, λ), a) = {(q1, λ)}

δ (q1, (b, λ), a) = {(q1, λ)}

δ (q1, (λ, λ), Zo) = {(q2, λ)}

Figure 5. 2HPDA that accepts the language of Example 5.3 by empty stack

17

Consequently, with 2HPDA we may accept non-context-free languages and below is

the diagram of an (extended) Chomsky Hierarchy with 2-head pushdown languages

as proposed by this research.

Figure 6. Extended Chomsky Hierarchy

5.5 Closure Properties

5.5.1 Closure under Union

The class of 2-Head Pushdown languages is closed under union and for this, we can

use a proof that goes by construction of automata. Now we show it on an example.

Suppose 2HPDA1 accepts language L1= {a
n
b

n
c

n ∣ n ≥ 0} and 2HPDA2 accepts a

language L2 = {a
n
b

n
c

n
d

n
 | n ≥ 0}, then a 2HPDA1∪2 is a 2-head pushdown language.

The construction is as follows:

2HPDA1∪2 = ({qo,q1,q1′,q2, q2′,q3}, {a,b,c,d }, {a, Zo}, qo, Zo, δ, {q3}) has the

following transition function:

18

δ (qo, (λ, λ), Zo) = {(q1, Zo)}

δ (q1, (a, c), Zo) = {(q1, aZo)}

δ (q1, (a, c), a) = {(q1, aa)}

δ (q1, (b, λ), a) = {(q2, λ)}

δ (q2, (b, λ), a) = {(q2, λ)}

δ (q2, (λ, λ), Zo) = {(q3, Zo)}

and

δ (qo, (λ, λ), Zo) = {(q1′, Zo)}

δ (q1′, (a, d), Zo) = {(q1′, aZo)}

δ (q1′, (a, d), a) = {(q1′, aa)}

δ (q1′, (b, c), a) = {(q2′, λ)}

δ (q2′, (b, c), a) = {(q2′, λ)}

δ (q2′, (λ, λ), Zo) = {(q3, Zo)}

Thus, the new automaton can non-deterministically simulate any of the automata

accepting the language L1 and L2.

Figure 7. 2HPDA accepting the union of two 2HPDA languages

19

5.5.2 Closure under Reversal

The class of languages accepted by 2HPDA is closed under reversal. This can also be

proven by construction of automata. Now we show an example of such construction.

Suppose, the 2HPDA accepts the language L= {a
n
b

n
c

n
d

n ∣ n ≥ 0}. The construction is

the following:

2HPDA= ({qo, q1, q2} , { a, b, c, d }, { a, Zo}, qo, Zo, δ, {q2}) has the following

transition function:

δ (qo, (a, d), Zo) = {(qo, aZo)}

δ (qo, (a, d), a) = {(qo, aa)}

δ (qo, (b, c), a) = {(q1, λ)}

δ (q1, (b, c), a) = {(q1, λ)}

δ (q1, (λ, λ), Zo) = {(q2, Zo)}

and

2HPDA
R
= ({qo, q1, q2} , { a, b, c, d }, {a,Zo}, qo, Zo, δ, {q2}) has the following

transition function:

δ (qo, (d, a), Zo) = {(qo, dZo)}

δ (qo, (d, a), a) = {(qo, dd)}

δ (qo, (c, b), a) = {(q1, λ)}

δ (q1, (c, b), a) = {(q1, λ)}

δ (q1, (λ, λ), Zo) = {(q2, Zo)}

20

Figure 8. 2HPDA accepting the reversal of a 2HPDA language

5.6 The Formal Definition of a Deterministic 2HPDA

The 2-head pushdown automata 2HPDA d = (Q, T, Z, qo, Zo, δ, F) is deterministic if

and only if

• For every q ∈ Q, every z ∈ Z, if δ (q, λ, z) ≠ ∅ then for every a ∈ T, δ (q, a, z) = ∅,

a λ move is possible from q with z on top only if no other move is possible.

• For every q ∈ Q, every z ∈ Z, every a ∈ T ∪ {λ}, | δ (q, a, z) | ≤ 1. There is at most

one allowed transition from any ID.

Q = finite set of states

T = input symbols e.g. {a, b, c}

Z = a finite stack alphabet (it’s the set of symbols we are allowed to push

 onto the stack)

δ = it is the mapping from Q × (T ∪ {λ})
2

 × Z → Q × Z
*

qo ∈ Q = it is the initial state

zo ∈ Z = the stack symbol (initially the 2HPDA stack consisting of one

 instance of this symbol and nothing else)

F = accepting states

2HPDA

21

It holds that

{Languages accepted by D2HPDA}{Languages accepted by 2HPDA}

Since every D2HPDA is also a 2HPDA the above statement is true.

5.6.1 Deterministic 2HPDA accepting a Non-Context-Free Language

We show that there exist a non-context-free language L which can be accepted by the

deterministic version of the 2HPDA. Consider the next example.

Example 5.4

The deterministic 2HPDA below accepts the non-context-free language

L (M) = {a
n
b

2n
a

n ∣ n ≥ 0}.

Let the D2HPDA = ({qo, q1, q2, }, {a, b, c}, {a, zo}, qo, Zo, δ, {qo, q3}) with q3

the following transition function:

δ (qo, (a ,a), Zo) = {(q1, aZo)}

δ (q1, (a ,a), a) = {(q1, aa)}

δ (q1, (b ,b), a) = {(q2, λ)}

δ (q2, (b ,b), a) = {(q2, λ)}

δ (q2, (λ ,λ), Zo) = {(q3, Zo)}

Figure 9. Deterministic 2HPDA accepting a non-context-free language

22

Chapter 6

CONCLUSION

We have defined the 2HPDA and have shown that the 2HPDA can accept some non-

context free language and deterministic version of the 2HPDA has also being defined

and it is also shown that this version can accept some non-context-free language.

This research has successfully modeled the properties of a DNA and has combined it

with a pushdown stack such that an acceptance requires that we have an empty stack

at the end of the computation.

23

REFERENCES

[1] Czeizler, E. & Czeizler, E. A Short Survey on Watson Crick Automata.

 Bulletin of the European Association of Theoretical Computer Science

 88 (2006) 104-119.

[2] Freund, R., Paun, Gh., & Rozenberg, G., A Watson-Crick Finite

 Automata, Proceedings of the 3rd DIMACS Workshop on DNA Based

 Computers, Philadelphia, (1997), 291- 329

[3] Head, T. Formal Language Theory and DNA : An Analysis of the Generative

 Capacity of Specific Recombinant Behavior, The Bulletin of Mathematical

 Science

[4] Herendi, T., Nagy, B. The Parallel Approach of Algorithms, Typotex,

 Budapest, 2014 http://www.interkonyv.hu/

[5] Horvath, G., Nagy, B. Formal Languages and Automata Theory,

 Typotex, Budapest, 2014

[6] Hopcroft, J. E., Motswani, R. & Ullman, J. D. Introduction to Automata

 Theory, Languages and Computation; (2
nd

Edition) Addison-Wesley 2001

[7] Martin-Vide, C., Paun, Gh. Normal Forms for Watson-Crick Finite

 Automata, F. Cavoto (Ed). The Complete Linguist: A Collection of Papers in

 Honor of Alexis Manaster Ramer: Lincom Europa. Munich (2000) 281 - 296

http://www.interkonyv.hu/

24

[8] Nagy, B. On 5’→3’ Sensing Watson Crick Finite Automata: Proceedings of

 the 13
th

 International Conference on DNA computing. LNCS Springer-Verlag

 Berlin, (2008) 256 – 262.

[9] Paun, Gh., Rozenberg, G & Salomaa, A. DNA Computing: New

 Computing Paradigms, Springer – Verlag, Berlin. (1998).

[10] Petre, E., Watson-Crick ω-Automata, J. Autom. Lang. Comb. 8 (2003), 59-70.

[11] Watson, J.D. & Crick, F. H. C. A Structure for Deoxyribose Nucleic Acid

 Nature 171 (1953) 737 – 738

