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                                         ABSTRACT

Finite state automata recognize regular languages which can be used in text 

processing, compilers, and hardware design. 2-head finite automata accept linear 

context-free languages. In addition, pushdown automata are able to recognize 

context-free languages which can be used in programming languages and artificial 

intelligence. We distinguish between deterministic and nondeterministic finite 

automata, 2-head automata and also pushdown automata. The deterministic version 

of these machines is such that there is no choice of move in any situation while the 

non-deterministic version may have a choice of move. The present thesis describes 2-

head pushdown automata which is more powerful than the pushdown automata and it 

is able to recognize some non-context-free languages as well. Throughout the thesis 

we try to focus on characterization of aforementioned machines. 

Keywords: 2-head pushdown automata, non-context-free languages, deterministic 

automata, non-deterministic automata.   
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ÖZ 

Sonlu otomata düzenli dilleri tanır ve metin işleme, derleyiciler ve donanım tasarımı 

icin kullanilabilir.  Iki basli sonlu otomata doğrusal bağlamsiz dilleri kabul eder, ve 

ters otomata programlama dilleri ve yapay zeka konularinda kullanilabilen baglamsiz 

dilleri tanir. Sonlu otomat iki basli sonlu otomata ve asagi suruklemeli otomata’da 

oldugu gibi deterministik ve deterministik olmayan versiyonlara sahiptir. Bu 

otomata’larin deterministik versiyonlarinda hareket etme secimi yapilamaz iken, 

deterministik olmayan versiyonlarda hareket seçimi yapmak mumkundur. Bu tezde 

ters otomata’dan daha güçlü olan bunun yani sira bazi baglamli dilleri de tanimakta 

olan 2-basli asagi suruklemeli otomata tarif edilmiştir.  Bu çalışmalar sırasında, temel 

olarak yapilan is bu otomata’lari karakterize etmektir. 

Anahtar Kelimeler: 2-basli asagi suruklemeli otomata, bağlamli serbest diller, 

deterministik otomata, deterministik olmayan otomata. 
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                                          Chapter 1 

INTRODUCTION 

Automata theory is the study of abstract computing devices or “machines” before 

there were computers [6]. In the field of automata theory; there are various kinds of 

automata recognizing various classes of languages [6]. The 2-head automata are 

equivalent to the WKA which was originally introduced as model of automata 

working on DNA strands as input. The DNA molecule encodes the genetic 

instructions used in the growth and behavior of all living organisms  [9]. DNA has 

double stranded helical structure one strand has 5' to 3' structure, and another is 

reverse ordered. The DNA’s two strands run in opposite directions to each other and 

they are anti-parallel. If we untwist the DNA, it will result in a double helix structure 

and from the study of molecular biology the DNA looks like two parallel strands in 

which  each of the strands has a linear sequence of Adenine, Cytosine, Guanine and 

Thymine (A, C, G, T) respectively. The exact arrangement of the letters contain the 

instructions that are coded such that one strand is an image that complements the 

other i.e. A always pairs with T, and C always pairs with G as shown in Figure 1 

below. By computational point of view, DNA molecules can be seen as double 

strings over the four letter alphabet. So if you know the sequence of one strand, you 

can work out the sequence of the other. Watson and Crick discovered the double 

helix structure of DNA and the fact that the two chains run in opposite directions 

[11]. WKA depicts an instance of mathematical model extracting biological 

properties for the purposes of computation [1]. The WKA are finite automata, their 

http://en.wikipedia.org/wiki/Genetics
http://en.wikipedia.org/wiki/Organism
http://en.wikipedia.org/wiki/Antiparallel_(biochemistry)
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two reading heads work on double stranded sequences. The two strands of the input 

are separately scanned by the read only heads and these read only heads are 

controlled by a common state. All regular languages can be accepted by the WKA 

[2]. If the two heads step together reading the same input letter at each transition then 

we simulate the work of a traditional finite state automata. But the accepting power 

of WKA is larger than one head finite automata.   

                                         

Figure 1. The Structure of DNA 

The pushdown automata accept exactly the context free languages [5, 6]. Our new 

model, the 2HPDA accept some non-context free languages; we as well also consider 
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the subclass of the 2HPDA that is deterministic. The thesis is arranged as follows: 

the next section shows the fundamental definitions of the WKA, pushdown stack, the 

pushdown automaton. The informal description of the 2HPDA, the formal definition 

of the 2HPDA, the graphical notations, the instantaneous description, the languages 

of 2HPDA, the closure properties, the definition of deterministic version and 

example of deterministic version of the 2HPDA. 
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Chapter 2 

LITERATURE REVIEW 

Formal languages and automata theory are one of the essential foundation fields of 

theoretical computer science and they are rooted in the middle of the last century and 

most of the classical results are from the last century. Automata theories find 

important applications in other fields of computer science and information 

technology e.g. compiler technologies, operating systems etc. There are some new 

developments connected to various fields [6]. Some of the new developments are the 

modeling of DNA sequences, and 2D pictures. Basically in the formal language 

theory there has being a productive impact by the new model of computation caused 

by biological processes and these biological processes had being promoting the 

improvement of formal language theory. In 1987, the biological phenomenon of 

recombinant processes was mathematically formalized and was proposed by Tom 

Head [3]. Initiating a theoretical model of computation by using biological processes 

and an example of this is the WKA.  

As the interest in using DNA in computation increased so did the need for automata 

which exploit the properties of DNA. The first such automata which exploited the 

DNA property were the traditional WKA [2]. WKA are examples of mathematical 

model, this remarkable model of automata abstract the biological features of DNA 

for the usage of computation. The WKA are finite automata with two reading heads 

controlled by one finite state control; these two reading heads are operational on 
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double stranded tapes (inputs), these heads separately scan from 5' end to 3' end. 

Over the time, several variants and restrictions of WKA were introduced and 

investigated,  for example, stateless WK finite automata, WK two way finite 

automata, WKA with a Watson-Crick memory and Watson-Crick transducers [1]. 

Likewise,   Simple and 1-limited WKA with bounded number of leaps between the 

two strands were investigated in [7]. While Watson-Crick ω-automata were 

discussed in [10] also 5’→3’ Sensing WK Finite Automata was described in [8]. The 

main essence of these 2-head automata is not only that they could process the input 

twice faster than the traditional automata due to the two heads but they are accepting 

a wider class of languages [4]. One of the current trends in nanoengineering is to 

develop nanomachines which can parse molecules of DNA and perform a finite 

number of tasks, e.g., the development of artificial enzymes [11] in line with this; 

formal languages can be used to analyze the strings into logical syntactic 

components. The term "pushdown" means the stack can be considered as being 

"pushed down" similar to a tray dispenser used in a cafeteria. The operation of the 

pushdown stack majorly works on the top element of the stack.  

The set of finite automaton (both deterministic and nondeterministic ones) 

recognizes the class of regular languages, while the set of 2-head finite automata 

accepts the class of the linear context free languages. The class of regular languages 

is a proper subset of the class of linear languages. The set of pushdown automata are 

able to recognize the class of context-free languages and the set of linear bounded 

automata accepts the class of context-sensitive language. 

 

 

http://en.wikipedia.org/wiki/Stack_(abstract_data_type)
http://en.wikipedia.org/wiki/Proper_subset
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Chapter 3 

PRELIMINARIES 

3.1   5'→3' WKA 

5'→3’WKA are finite state automata working on double-stranded tapes, that are 

initiated to investigate the ability of DNA molecules for computing [8]. They have 

two heads, and the two heads are moving in opposite directions starting from the two 

extremes of the input. The two heads of the 5'→3'WKA move in anti-parallel, i.e., in 

opposite directions. This is the main difference between the traditional WKA [2, 9] 

and the 5'→3' WKA [8]. Moreover in the 5'→3' WKA the process terminates when 

the two heads meet, and do not move on to the corresponding ends of the word. 

 

Formally, a 5' → 3' WKA is a 7 tuple ( Q,  V,  so, F,  δ, $, ¥) as shown below: 

Q        =       the finite Set of States 

V         =        the input (tape) Alphabets 

$, ¥       =      end-markers of the Input Strings such that ($, ¥ ∉ V) 

so ∈ Q       =     is the Initial state 

F ⊂ Q      =     the set of final (accepting) state 

δ            =     is the state transition, a mapping ((Q × V
* 

× V
*
) →2

Q
) ∪  

                           ((Q × ($, ≦)) →2
Q
)     
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3.1.1 Accepted Language of 5'→3' WKA 

The 5'→3' WKA accepts linear languages. Linear languages are context-free but not 

all context-free languages are linear. However, every regular language is linear, and, 

thus, the set of 5'→3' WKA accepts all regular languages. 

3.2 Pushdown Stack  

The stack is a LIFO memory which has two operations, push and pop when we use 

the pop operation, we read the top letter of the stack and at the same time we delete it 

and when we use the push operation we add some symbols to the top of the stack. 

The presence of a stack means that an automaton using a pushdown stack can 

remember an infinite amount of information.  

3.3 Pushdown Automaton 

The Pushdown Automaton (PDA) is in essence a nondeterministic finite automaton 

with empty word transitions (λ-transition) permitted and one additional capability: a 

stack and on the stack it can store a string of “stack symbols” and the PDA accepts 

exactly the context-free language [6]. 

P = (Q, T, Z, δ, qo, zo, F) 

The meanings of the components are as shown below: 

Q    =     finite  set  of  states 

T     =     finite  set  of  input  symbols 

Z     =     finite  stack  alphabet 

δ     =     the transition function, δ controls the behavior of the automaton, formally   

              δ takes as argument a triple δ (q, a , X ) where: 

q ∈ Q    =    q is a state in Q 
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a  is either an input symbol in T or a = λ the empty string which is assumed not to be 

an input symbol. 

X is the stack symbol i.e. a member of Z 

qo   =   the initial state the PDA is in this state before making any transition 

Zo   =   the stack symbol, initially the PDA’S stack consist of one instance of this   

           symbol and nothing else 

F   =   the set of accepting state or final state. 

3.3.1 Accepted Language of PDA 

The Pushdown Automata (PDA) accept the class of languages called the context-free 

languages and, for instance, a language L = {a
n
b

n
 ∣ n ≥ 0} can be accepted by a PDA 

P such that L (P) = {a
n
b

n
 ∣ n ≥ 0}. 
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Chapter 4 

2-HEAD PUSHDOWN AUTOMATA 

4.1 Informal Description of a 2HPDA 

A 2HPDA is a theoretical device that has two reading heads that reads the input 

string (built by symbols) on a tape.  The reading heads are anti-parallel to each other 

i.e. they move in opposite (anti parallel) directions. The 2HPDA has a “finite-state 

control” and a “pushdown stack”. 

We can view the 2HPDA informally as the device suggested in Figure 2 below. A 

“finite-state control” reads two input symbols at the same time, the 2HPDA is 

allowed to observe the symbol at the top of the stack or alternatively, it may make a 

spontaneous transition using “λ” as its input instead of an input symbol. It observes 

the symbol on top of the stack according to transition rules in the “finite-state 

control”. 

 

                                                                         

 

 

Figure 2. The schematic diagram of a 2HPDA 
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4.2 The Formal Definition of a 2HPDA  

The formal notation for a two head pushdown automaton (2HPDA) involves seven 

components. The specification of a 2HPDA H is as follows:  

M = <Q, T, Z, δ, zo, qo, F> 

Q = finite set of states 

T = input symbols e.g. {a, b, c} 

Z = finite stack alphabet (it’s the set of symbols we are allowed to push    

onto the stack) 

δ  = it is the mapping from Q × (T ∪ {λ})
2 

 × Z → 2
Q
 
× Z* 

qo ∈ Q = it is the initial state 

zo ∈  Z = initial stack symbol (initially the pushdown stack consisting of one  

               instance of this symbol and nothing else)  

F = set of accepting states or final states 
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4.3 A Graphical Notation for 2HPDA 

The behavior of a given 2HPDA can easily be understood through a transition 

diagram. A transition diagram of a 2HPDA is explained below: 

a) The nodes corresponds to the states of the 2HPDA 

b) The arrow that is labeled Start indicates the initial state, and double circled   

states are the accepting states. 

c) The arcs represent the transitions of the 2HPDA in the following way:  an arc 

labeled   a, b, β / α  from state q to state p means that δ (q, (a, b), β) contains 

the pair (p, α) meaning that the arc label shows the inputs that are used and 

also shows the old and new tops of the stack. 
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4.5 Instantaneous Description of 2-Head Pushdown Automata 

Intuitively the 2-head pushdown automata (machine) go from configuration to 

configuration in response to input symbols or sometimes no input symbol. The 

2HPDA configuration includes the state and the content of the stack together with 

the input symbols and it has an instantaneous description. The standard step is when 

the 2HPDA reads its current state, current input letters, the top stack symbol then it 

finds an appropriate transition rule and changes its state. It moves to the next input 

letters and changes the top symbol of the stack to the appropriate word formally we 

say the 2HPDA can change its configuration from 

(q1, aub, β μ) ⱶ (q2, u, α μ)  

Here,   q1. q2 ∈ Q,   u ∈ T*,   a, b ∈ (T ∪{λ}),    α ∈ Z*   , β ∈ Z 

q1 =  previous state 

q2 = new State  

(a, b) = a pair of input symbols (any or both of them could also be the empty   

                        word) 

α = new word on top of the stack 

β = previous symbol on top of the stack 

This move shows that by consuming (a, b) which may be (λ, b) (a, λ) (λ, λ) from the 

input and replacing β on top of the stack by α we consequently can go from the 

current state q1 to state q2. 
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Chapter 5 

THE LANGUAGES OF A 2HPDA 

5.1   Acceptance of an Input String 

The word w is accepted if (qo, w, zo) ⱶ* (p, λ, μ), where    

(qo, w, zo) is the so-called initial configuration, i.e.          

 qo  = initial state 

 w  = the whole input string 

zo  = initial stack symbol 

p ∈ F    = an accepting state 

μ ∈ Z*  = string of stack symbols 

5.2   Various Acceptance Conditions 

We have therefore guessed that a 2HPDA accepts its inputs when its input is 

consumed thereafter, entering an accepting state. We hence call this process 

“acceptance by final state” there is a second process to defining the language of a 

2HPDA which means that we may also define for any 2HPDA the language 2HPDA 

the language “accepted by empty stack”  i.e. the set strings that cause the 2HPDA to 

empty its stack, starting from the initial ID. 

5.3 Accepted Language by Final State 

Let M = <Q, T, Z, δ, Zo, qo, F> be a 2HPDA, then L(M) is the language that is  

accepted by M by final state is: 

                                       {w | (qo, w, zo) ⱶ* (p, λ, μ)}   
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For some state p ∈ F and any stack string μ. That is starting in the initial ID with w 

waiting on the input; M consumes w from the input and enters an accepting state. 

The content of the stack at that time is irrelevant. 

Example 5.1 

For the language L = {a
n
 b

n
 c

n 
: n ≥ 0}, consider the  

2HPDA = ( {qo, q1, q2},{ a, b, c},{a, Zo}, qo, Zo, δ,{q2} )  having the following 

transition function: 

δ  (qo, (a, c), Zo ) = {(qo, aZo)} 

δ  (qo,  (a, c), a )  = {(qo, aa)} 

δ  (qo,   (b, λ), a ) = {(q1, λ)} 

δ  (q1,   (b, λ), a )  = {(q1, λ)} 

δ  (q1,   (λ, λ), Zo) = {(q2, Zo)} 

 

 

 

      

 

 

Figure 3. 2HPDA that accepts the language of Example 5.1 by a final state 

Example 5.2 

For the language L = {a
n
 b

n
 c

n  
d

n 
| n ≥ 0}, consider the 

2HPDA = ({qo,  q1,  q2}, {a, b, c, d}, {a, b, Zo}, qo, Zo, δ,{q2}) having the following 

transition function: 
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δ (qo, (a,  d), Zo) = {(qo,  aZo)} 

δ (qo, ( a,  d), a) = {(qo,  aa)} 

δ (qo, ( b,  c), a) = {(q1,  λ)} 

δ (q1, ( b,  c), a) = {(q1,  λ)} 

δ ( q1, ( λ,  λ), Zo) = {(q2,  Zo)}  

 

 

 

 

 

 

 

                                        

Figure 4. 2HPDA that accepts the language of Example 5.2 by a final state 

5.4 Accepted Language by Empty Stack 

Here the automaton does not have any final state and the word is accepted if it can 

read the whole word and the stack is empty when the two heads meet and the input 

string is consumed. 

For each 2HPDA M = (Q, T, Z, δ, Zo, qo, F) we also define  

                                     N (M) = {w | (qo, w, Zo) ⱶ* (p, λ, λ)} 

Now, because the set of accepting state is inapplicable, we shall sometimes 

discontinue the use of the last (seventh) component from the specification of a 

( b,  c) a/ λ 
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2HPDA M, provided all we care about is the language that M accepts by empting its 

stack. Thus we could write M as a six-tuple. 

                                          2HPDA e   = (Q, T, Z, δ, Zo, qo)        

For any state q, i.e. N (M) is the set of inputs w that M can consume and at the same 

time empty its stack. 

By empty stack L (2HPDA e) = {p∣ p ∈ T*, (qo, p, Zo) ⱶ*(p, ∈ Q} λ, λ), p 

e.g., see the next example. 

Example 5.3  

Let L= {a
n
b

n
c

n ∣ n ≥ 0}, consider 

2HPDA e = ({qo, q1, q2},   {a, b, c}, {a, Zo}, δ, zo, qo}) having the following transition 

function: 

δ (qo , (a, c), Zo)   =  {(qo, aZo)} 

δ (qo, (a, c), a)   =  {(qo, aa)} 

δ (qo, (b, λ), a)   =  {(q1, λ)} 

δ (q1, (b, λ), a)   =   {(q1, λ)} 

δ (q1, (λ, λ), Zo)   =  {(q2, λ)} 

 

                                          

                                       

 

 

 

Figure 5. 2HPDA that accepts the language of Example 5.3 by empty stack 
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Consequently, with 2HPDA we may accept non-context-free languages and below is 

the diagram of an (extended) Chomsky Hierarchy with 2-head pushdown languages 

as proposed by this research. 

 

 

 

 

 

 

                                    

Figure 6. Extended Chomsky Hierarchy 

5.5 Closure Properties 

5.5.1 Closure under Union 

The class of 2-Head Pushdown languages is closed under union and for this, we can 

use a proof that goes by construction of automata. Now we show it on an example. 

Suppose 2HPDA1 accepts language L1= {a
n
b

n
c

n ∣ n ≥ 0} and 2HPDA2 accepts a 

language  L2 = {a
n
b

n
c

n
d

n
 | n  ≥  0}, then a 2HPDA1∪2 is a 2-head pushdown language. 

The construction is as follows:  

2HPDA1∪2 = ( {qo,q1,q1′,q2, q2′,q3},  {a,b,c,d },  {a,  Zo},  qo,  Zo,  δ,  {q3} ) has the 

following transition function: 
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δ (qo, (λ, λ), Zo)   =   {(q1, Zo)}              

δ (q1, (a, c), Zo)   =   {(q1, aZo)}              

δ (q1, (a, c), a)    =    {(q1, aa)}    

δ (q1, (b, λ), a)    =    {( q2,  λ)} 

δ (q2, (b, λ), a)    =    {( q2,  λ)}               

δ (q2, (λ, λ), Zo)   =   {( q3,  Zo)}        

and               

δ (qo, (λ, λ), Zo)    =   {(q1′, Zo)}       

δ (q1′, (a, d), Zo)  =  {(q1′, aZo)}  

δ (q1′, (a, d), a)   =    {(q1′,  aa)} 

δ (q1′, (b, c), a)   =   {(q2′,  λ)} 

δ (q2′, (b, c), a)   =   {(q2′,  λ)} 

δ (q2′, (λ, λ), Zo)   = {(q3, Zo)}   

Thus, the new automaton can non-deterministically simulate any of the automata 

accepting the language L1 and L2. 

 

 

 

 

                                      

Figure 7. 2HPDA accepting the union of two 2HPDA languages 
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5.5.2 Closure under Reversal 

The class of languages accepted by 2HPDA is closed under reversal. This can also be 

proven by construction of automata. Now we show an example of such construction. 

Suppose, the 2HPDA accepts the language L= {a
n
b

n
c

n
d

n ∣ n ≥ 0}. The construction is 

the following: 

2HPDA= ( {qo, q1,  q2} ,  { a, b, c, d },  { a, Zo},  qo,  Zo,  δ,  {q2}  ) has the following 

transition function: 

δ (qo,  (a, d), Zo) = {(qo,  aZo)}    

δ (qo,  (a, d), a) = {(qo,  aa)}    

δ (qo,  (b, c), a) = {(q1,  λ)}    

δ (q1,  (b, c), a) = {(q1,  λ)}    

δ (q1,  (λ, λ), Zo) = {(q2,  Zo)}   

and  

2HPDA
R
= ( {qo, q1, q2} ,  { a, b, c, d },  {a,Zo},  qo,  Zo,  δ,  {q2} ) has the following 

transition function: 

δ (qo, (d, a), Zo) = {(qo, dZo)} 

δ (qo, (d, a), a) = {(qo, dd)} 

δ (qo, (c, b), a) = {(q1,  λ)} 

δ (q1, (c, b), a) = {(q1,  λ)} 

δ (q1, (λ, λ), Zo) = {(q2, Zo)} 

 

 

 

 



20 
 

 

 

 

 

 

 

 

Figure 8. 2HPDA accepting the reversal of a 2HPDA language 

5.6   The Formal Definition of a Deterministic 2HPDA 

The 2-head pushdown automata 2HPDA d = (Q, T, Z, qo, Zo, δ, F) is deterministic if 

and only if 

• For   every  q ∈ Q, every z ∈ Z, if δ (q, λ, z) ≠ ∅ then for every a ∈ T, δ (q, a, z) = ∅, 

a λ move is possible from q with z on top only if no other move is possible. 

• For   every  q ∈ Q, every z ∈ Z, every a ∈ T ∪ {λ}, | δ (q, a, z) | ≤ 1. There is at most 

one allowed transition from any ID. 

Q             =        finite set of states 

T              =        input symbols e.g. {a, b, c} 

Z              =        a finite stack alphabet (it’s the set of symbols we are allowed to push   

                           onto the stack) 

δ               =        it is the mapping from Q × (T ∪ {λ})
2 

 × Z → Q × Z
* 

qo ∈ Q        =        it is the initial state 

zo ∈  Z        =        the stack symbol (initially the 2HPDA stack consisting of one     

                           instance of this symbol and nothing else)  

F              =        accepting  states 

2HPDA 
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It holds that  

{Languages accepted by D2HPDA}{Languages accepted by 2HPDA} 

Since every D2HPDA is also a 2HPDA the above statement is true.  

5.6.1 Deterministic 2HPDA accepting a Non-Context-Free Language 

We show that there exist a non-context-free language L which can be accepted by the 

deterministic version of the 2HPDA. Consider the next example.  

Example 5.4 

The deterministic 2HPDA below accepts the non-context-free language  

L (M) = {a
n
b

2n
a

n  ∣ n ≥ 0}. 

Let the D2HPDA = ({qo, q1, q2, }, {a, b, c}, {a, zo}, qo, Zo, δ, {qo, q3}) with q3

the following transition function: 

δ  (qo,  (a ,a), Zo) = {(q1, aZo)} 

δ  (q1,  (a ,a), a) = {(q1,  aa)} 

δ  (q1,  (b ,b), a) = {(q2,  λ)} 

δ  (q2,  (b ,b), a) = {(q2,  λ)} 

δ  (q2,  (λ ,λ), Zo) = {(q3,  Zo)}  

 

 

 

 

 

Figure 9.  Deterministic 2HPDA accepting a non-context-free language 
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Chapter 6 

CONCLUSION 

We have defined the 2HPDA and have shown that the 2HPDA can accept some non-

context free language and deterministic version of the 2HPDA has also being defined 

and it is also shown that this version can accept some non-context-free language. 

This research has successfully modeled the properties of a DNA and has combined it 

with a pushdown stack such that an acceptance requires that we have an empty stack 

at the end of the computation.  
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