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ABSTRACT 

Recently it has been found that the Exponential window gives better side-lobe roll-

off ratio compared with Kaiser window. That difference is important for some 

applications like beam forming, filter design, and speech processing. In this thesis, 

the design of digital non-recursive finite impulse response (FIR) filter by using 

Exponential window is proposed. 

One of the most effective variables is the far-end stopband attenuation especially 

when the signal needed to be filtered has a great concentration of spectral energy. In 

a sub-band coding, the filter is intended to separate out various frequency bands for 

independent processing. When it is applied on speech, the far-end rejection of the 

energy in the stopband needs to be as higher as possible to make leakage of the 

energy from one band to another as lower as possible. Therefore, the designed filter 

should have special specifications which should provide better far-end stopband 

attenuation (amplitude of last ripple in stopband). Finding a digital filter that has a 

higher performance far-end stopband attenuation than Kaiser window is very 

valuable when the FIR filter constructed by the use of Kaiser window far-end 

stopband attenuation becomes better than the one constructed by the well-known 

adjustable windows, for instance, the special cases of Ultraspherical windows, 

Dolph-Chebyshev and Saramaki. 

In this thesis, the construction of non-recursive digital FIR filter has been presented 

through applying Exponential window. After applying the Exponential window, it is 

found that the far-end stopband attenuation becomes better than the filter constructed 
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by Kaiser window, and that is one of the advantages of filter building by using 

Exponential window over Kaiser window. The proposed scheme is simulated by 

MATLAB. All the simulation results show a good agreement with the proposed 

theory. 

Keywords: Digital FIR Filter, Side-lobe Roll-off Ratio, Far-end Stopband 

Attenuation, Window Technique, Kaiser Window, Exponential Window 
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ÖZ 

Son zamanlarda üstsel pencerenin Kaiser penceresine göre daha iyi kenar-lob 

yuvarlanma oranı verdiği bulunmuştur. Bu farklılık, demet yapımı, süzgeç tasarımı, 

ve konuşma işleme gibi bazı uygulamalarda önemlidir. Bu tezde, sonlu-dürtü-cevaplı 

(FIR) sayısal yinelemesiz süzgeç için üstsel pencere kulanarak tasarımı 

önerilmektedir. 

Süzgeçlenecek sinyalin yoğun enerjisi olduğu durumlarda uzak-son durduran bant 

zayıflatma en önemli değişkenlerden bir tanesidir. Alt bant kodlamada, süzgecin 

çeşitli frekans bantlarını bağımsız işlem yaparak ayırması beklenir. Konuşmaya 

uygulandığı zaman, durdurma bandında enerjinin uzak-son kabul edilmemesi 

mümkün olduğu kadar yüksek olmalıdır. Dolayısyla, tasarlanan süzgeçin iyi uzak-

son durduran bant zayıflatma gibi özel tarifnamesi olması gerekir. FIR süzgecin 

Kaiser penceresi ile tasarlandığı durumda, uzak-son durduran band zayıflaması iyi 

bilinen ayarlanabilir pencereler (Ultraspherical, Dolph-Chebyshev ve Saramaki) ile 

tasarlanan süzgeçlerden daha iyi olmaktadır. 

Bu tezde, yinelemesiz sayısal FIR süzgecinin üstsel pencere kullanarak tasarımı 

önerilmiştir. Üstsel pencere uygulanması sonucu olarak, uzak-son durduran bant 

zayıflatmasının Kaiser pencersi ile elde edilenden daha iyi olduğu bulunmuştur. 

Önerilen yöntemin simulasyonu MATLAB yardımıyla yapılmıştır. Elde edilen tüm 

sonuçlar, önerilen teori ile iyi bir ilişki göstermektedir. 

Anahtar Kelimeler: Sayısal FIR Süzgeç, Kenar-lob Yuvarlanma Oranı, Uzak-son 

Durduran Bant Zayıflatması, Pencere Tekniği, Kaiser Penceresi, Üstsel Pencere 
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Chapter 1 

1 INTRODUCTION 

A   more   comprehensive   view   of   the   truncation   and smoothing operations is 

in terms of window functions (or windows for short). Windows are normally 

compared and classified into different types according to their spectral 

characteristics. Window functions have been widely used in various digital signal 

processing (DSP) applications such as signal analysis, signal estimation, digital 

filter design and speech processing [1] [2]. 

Various windows have been proposed to achieve the desired solutions [3] [4] [2] [5]. 

Cosine hyperbolic function is one of them [6]. The idea of this window is based on 

the Kaiser window, but it has an advantage since there is no expanding in the power 

series in the time domain representation. This window gives a better ripple ratio for 

wider main lobe width and larger side lobe roll-off ratio along with the ultra 

spherical comparison. When its function is merged with the Hamming window, it 

produces a better performance in terms of the ripple ratio, better than a same 

margin of a Kaiser and Hamming windows. Another method to design 

ultraspherical window functions in order to reach prescribed spectral characteristics 

can be found in [4]. This method is made of combining various techniques basically 

to measure the ultraspherical window, independent parameters which are ripple ratio 

and main-lobe width or null-to-null width along with a user-defined side-lobe pattern 

can also be reached. A simple comparison has been made between the ultraspherical 
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and Kaiser windows and the result of this comparison showed that there is a 

difference in the performance which depends on the required specifications.  

It is well known that the Kaiser window is a flexible one which is used in applications 

such as digital filter design and spectrum analysis [6] [2]. The advantage of using 

the Kaiser window is that it accomplishes a good approximation to the discrete 

prolate spheroidal functions whose mainlobe has a maximum concentration of 

energy. There are two main independent parameters in the Kaiser window: the first 

one is the window length (N) and the second one is the shape parameter alpha (α). 

For different applications, it is possible to control the mainlobe width, ripple ratio 

and sidelobe roll off ratio by changing these two parameters.  

In some applications such as beamforming [7], digital filter design and speech 

processing [4], the sidelobe roll off ratio is a significant parameter. A beamforming 

application is required to have a large sidelobe roll off ratio for ignoring the far end 

interference [4]. On the other hand, the sidelobe roll off ratio can reduce the far end 

attenuation for stopband energy in filter a design application. Furthermore, it can 

reduce the energy leak from one band to another in speech processing applications.  

There are many useful adjustable windows for instance Saramaki [5] and Dolph-

Chebyshev [3]. In fact, they are special form of Ultrapherical window [7]. However, 

the sibelobe roll off characteristics of the Kaiser window is better than the last 

mentioned two windows. In some applications, it could be quite reasonable to obtain 

a window that could provide higher sidelobe roll off characteristics than what 

Kaiser w indow provides. 
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It has been noted that the window based on exponential function offers a higher 

sidelobe roll off ratio c ompared to the Kaiser window [8]. In this thesis, the idea 

of exponential window has been explored for desiging the digital nonrecursive finite 

impulse response (FIR) filters. It is shown that the FIR filter designed with the help 

of exponential window provides better far-end stopband attenuation against filters 

designed by well-known windows in literature. 

The thesis is organized as follows: chapter two gives information about the structure 

of FIR filters and the design methods such as the optimal method, frequency 

sampling method and window method. In chapter three, FIR filter design using 

exponential window is explained, and in chapter four, the computer simulations 

obtained from FIR filters which are designed by Kaiser, Cosh and Exponential 

windows are presented and discussed. Finally, chapter five addresses the conclusions 

and the future work. 
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Chapter 2  

2 FIR FILTERS 

2.1 Structures of FIR Systems 

A basic FIR filter is of a polynomial system function in    as shown below 

 (z)         
 

   

 (2-1) 

where H(z) is the transfer function of the FIR filter, h(n) is the impulse response, 

    
 
 represents a delay of one sample time, n represents discrete time and N 

represents the filter length (number of coefficients). For an input      , the output is 

determined by 

y(n)           

 

   

 (2-2) 

Equation (2-2) is known as the convolution sum equation. Calculation of this sum 

needs         multiplications and   additions for every n value.  

2.1.1 Direct Form 

Figure 1 shows the realization of equation (2-2) by using a tapped delay line method.  

 

 

Figure 1: Direct Form Structure 
 

            

      + 
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The computation of each output sample,     , requires       multiplications,   

additions, and   delays. But, in the case of any similarity in the unit sample 

response, it is possible to decrease the multiplications number. 

2.1.2 Cascade Form 

For a basic FIR filter, the transfer function could be factored into first-order factors, 

 (z)                 

 

   

 

   

     (2-3) 

where    for              are the zeros of      . The complex roots of      

happen in complex conjugated pairs if h(n) is real and these conjugated pairs can be 

combined to form second-order factors with real coefficients, 

 (z)            

  

   

          
    (2-4) 

     , in this form, may be applied as a cascade of second-order FIR filters as 

illustrated in Fig. 2. 

 

 

 

Figure 2: An FIR Filter Implemented as a Cascade of Second-order Systems 

 

2.1.3 Linear Phase Filters 

Filters with linear phase have a unit sample response that is either symmetric, 

            (2-5) 

or anti-symmetric (see sec. 2.1.3.1) 
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             (2-6) 

This symmetric could be exploited to shorten the network structure and make it 

easier to use. An example for it, if N is even and h(n) is symmetric (type I filter),  

                                          
 

 
     

 

 
 

 
 
  

   

 

   

 (2-7) 

Consequently, making the sums                           prior to 

multiplying by      decreases the multiplications numbers. The out coming structure 

is in Figure 3 (a). On the other hand, if N is odd and      is symmetric (type II 

filter), the resulting structure is as in Figure 3 (b). There are similar anti-symmetric 

structures (types III and IV) linear phase filters. 

 

  

 

 

 

 

 

 

Figure 3: Direct Form Implementations for Linear Phase Filters. (a) Type I, III (b) 

Type II, IV 
 

    

  

        

    

    

    

    

  

            

        

        

    

    

    

      

+ for type I 

 

-  for type III 

 

 

+ for type II 

 

-  for type IV 
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2.1.3.1 Types of Linear Phase FIR Filters 

Let us consider the unique kinds of FIR filters where the coefficients      of the 

transfer function 

                 
 

   

 (2-8) 

are supposed to be symmetric or anti-symmetric. Since the organization of the 

polynomial in both of these two kinds can be either odd or even, there are four kinds 

of filters with diverse properties, which will be explained next [9].  

Type I. Coefficients are symmetric [               ], and the order N is even. 

In general, coefficient can be expressed in some other forms. Let us assume that the 

order is even. The transfer function in equation (2-8) can be expanded as: 

               
 

   

  

                                            (2-9) 

For type I filter with   order, as shown in Fig. 4, it is noted that           

                           Applying these relationships in the equation 

above, we get 

                                       
 

 
   

  
    

(2-10) 

This can also be shown as in the following form 

        
  
         

 
   

  
            

 
        

 
    

   
 

 
   

  

(2-11) 
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Figure 4: Unit Impulse Response of Type I FIR Linear Phase Filter 
 

The frequency response of equation (2-11) is given by 

                    (2-12) 

 In this formula, the term       is a real-valued function; however it can be negative 

or positive at any specific frequency, therefore while transforming from a positive 

value to a negative one, the angle of the phase changes by   radians       . The 

angle of the phase            is a linear function of ω, and the group delay   is 

the same as three samples. Remember that the group delay is three samples on the 

normalized frequency basis, but the real the group delay is    seconds, where   

denotes the sampling period. In general,        can be expressed in some other 

forms 

                 
 

   

 

                                         

                      
  

 
            

 

 
                

 

 
        

    
 

 
   

(2-13) 
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and now in a more compact form: 

                     
 

 
      

 

 
          

   

   

             
(2-14) 

The whole the group delay is constant         in the general case, for a type 

I           . 

         Coefficients are symmetric [               ], and the order N is odd. 

Now, if we consider symmetric coefficients with N odd, we obtain the impulse 

response shown in Figure 5. 

               
 

   

                               (2-15) 

and due to symmetry 

                                                 (2-16) 

Now, if we consider symmetric coefficients with N odd, the impulse response 

is shown in Figure 5. 

The frequency response is in the type II filter for general case can be written as 

                  
 

   

               

     
 
 
       

   

 
          

 

 
   

       

   

  

 (2-17) 

which demonstrates a linear phase                  and a constant group delay 

       samples.  
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Figure 5: Unit Impulse Response of Type II FIR of Linear Phase FIR Filter 
 

Type III. The coefficients are anti-symmetric                 , and the order 

N is even. Figure 6 shows that                                   

         and        = 0 to preserve anti-symmetry for these samples: 

                                       
 

 
   

  
      (2-18) 

This can also be shown as in the following form 

        
  
         

 
   

  
            

 
        

 
    

   
 

 
     

(2-19) 

Here if we place        , and     –                                   , we 

get the frequency response in the general case as 

                          
 

 
          

   

   

  
(2-20) 

and it has a linear phase                      and the group delay τ = N/2 

samples. 
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Figure 6: Unit Impulse Response of Type III FIR of Linear Phase FIR Filter 

 

Type IV. Coefficients are anti-symmetric [                 , and the order N is 

odd. As in Figure7, in which                              

                      . Its transfer function can be written: 

                                       
   

 
   

–   
    (2-21) 

The frequency response of the transfer function of the type IV linear phase filter is 

usually given by 

                          
   

 
          

 

 
   

       

   

  (2-22) 

 

 

 

 

Figure 7: Unit Impulse Response of Type IV FIR of Linear Phase FIR Filter 
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2.1.4 Frequency Sampling 

A filter is parameterized after the implementation of frequency sampling structure in 

terms of its discrete Fourier transform (   ) coefficients. Particularly, if      is the 

            of an FIR filter with        for       , then the impulse 

response of the filter is 

     
 

 
             
 

   

 (2-23) 

The transfer function can be written as:  

 

                
 

 
             
   

   

    
   

   

   

   

 

            
 

 
                 

   

   

   

   

 

 (2-24) 

Calculating the sum over n gives 

     
 

 
        

    

             

   

   

 (2-25) 

which corresponds to an FIR filter cascade 
 

 
        with one-pole parallel 

network filters: 

     
    

            
 (2-26) 

For a filter with narrowband that has the majority of its DFT coefficients equal to 

zero, the structure of the frequency sampling shall be an efficient implementation. 

The structure of the frequency sampling is given in Figure 8. If       is real,       

          , the structure could be simplified. An example for it, if N is even, [10] 

     
 

 
        

    

     
 
      

     
  

            

                    

     

   

  (2-27) 
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where  

                 (2-28) 

                                (2-29) 

On the other hand, when N is odd similar simplification results can be obtained. 

 

 

 

  

 

 

 

 

 

 

 

 

Figure 8: Frequency Sampling Filter Structure 
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2.2 FIR Filter Design Methods 

There are five steps in the process of designing a digital filter: 

(i) Specifying the type of filter. For example, lowpass filter the preferred amplitude 

and/or phase responses and the acceptable tolerances, the sampling frequency, and 

the length of words in the input data. 

(ii) Determining the coefficients of a transfer function,     , that satisfy the 

specifications given in (i). There are several factors that influence the choice of the 

method of coefficient calculation. The critical requirements in step (i) are the most 

important of these factors.  

(iii) Converting the transfer function obtained in (ii) into a suitable filter network or 

structure, which is known as realization. 

(iv) Analysing the effects of finite word length.  Here, the effect of quantizing the 

filter coefficients and the input data as well as the effect of carrying out the filtering 

operation are analysed by using fixed word lengths on the filter performance. 

(v) Producing the software code and/or hardware and performing the actual filtering. 

These five interrelated steps are summarized in Fig.9. 
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Redesign 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 9: Summary of Design Stages for Digital Filters 

 

2.2.1 FIR Filters Specifications 

For the phase response, what is needed is to state whether positive symmetry or 

negative symmetry is required (assuming linear phase). The amplitude-frequency 

response of an FIR filter is usually determined by a tolerance scheme. Such a scheme 

for the low pass filter is shown in Figure 10. A similar scheme can be used for other 

frequency selective filters. Referring to the figure, the following parameters are of 

interest: 

       peak passband deviation (or ripples) 

       stopband deviation 

Start 

Performance specification 

Calculation of filter coefficients 

Realization structuring 

Finite wordlength effects 

analysis and solutions 

 

 

Hardware and/or software 

implementation + testing 

Stop 
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       passband edge frequency 

       stopband edge frequency 

       sampling frequency 

      transition band 

Practically, it is more suitable to express    and    in decibels (dB) as shown in the 

figure. The transition width of the filter is given by the difference between    and    . 

The filter length is another important parameter. The number of filter coefficients is 

defined by a given  . In most cases, these parameters completely define the 

frequency response of the FIR filter [11]. 

 

Figure 10: Specification of Magnitude-frequency Response for a Lowpass Filter 

The passband deviation in dB is defined as: 

20           (2-30) 

The stopband deviation in dB is defined as: 

           

     

     
1 

   

   

              

Stopband Passband Stopband Transition 

band 
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-20         (2-31) 

Other specifications include the maximum accepted number of filter coefficients 

(this may be determined by the particular application, such as the speed of 

operation). It is difficult to select one or more of the parameters above and so trial 

and error may help to deduce that. 

2.2.2 FIR Coefficient Calculation Methods 

The following equations characterize the FIR filter: 

y(n)            

   

   

 

(2-32) 

             
   

   

 

(2-33) 

The aim of most FIR coefficient calculation (or approximation) methods is to get 

values of      in a way that the resulting filter meets the design specifications such 

as amplitude-frequency response and throughput requirements. There are several 

methods for obtaining     .  However, the optimal, frequency sampling and window 

methods are the most commonly used. All three methods lead to linear phase FIR 

filters. 

2.2.2.1 The Optimal Method 

The optimal (in the Chebyshev sense) method of calculating FIR filter coefficients is 

very easy to apply because of the existence of a design program, and very powerful 

and flexible as well. This method has become the first choice in many FIR 

applications for the above mentioned reasons and because it yields excellent filters.  

In the window method, the problem of finding a suitable approximation to a desired 

or ideal frequency response is inherent in the process of calculating suitable filter 
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coefficients. The peak ripple of filters designed by the window method occurs near 

the band edges, and decreases away from the band edges (Figure 11 (a)). 

 

 
Figure 11: Comparison of the Frequency Response of (a) the window filter and (b) 

the optimal filter. In (a) the ripples are largest near bandedge; in (b) the ripples have 

the same peaks (equiripple) in the passband or stopband 
 

If the ripples were distributed equally over the passband and stopband as in Figure 11 

(b), we can achieve a better approximation of the desired frequency response.  

2.2.2.2 Frequency Sampling Method 

The frequency sampling method helps in designing nonrecursive FIR filters for both 

standard frequency selective filters (lowpass, highpass, bandpass filters) and filters 

with arbitrary frequency response. A unique attraction of the frequency sampling 

method is that it also allows recursive implementation of FIR filters, which leads to 
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computationally well-organized filters. With some limits, recursive FIR filters whose 

coefficients are simple integers may be designed, which is attractive when only 

primitive arithmetic operations are possible, as in systems implemented with 

standard microprocessors. 

2.2.2.3 Window Method: 

In this method, the frequency response of a filter      , and the corresponding 

impulse response,      , are related by the inverse Fourier transform below: 

      
 

  
       

   
 

  

    
(2-34) 

To distinguish between the ideal and practical impulse responses, the subscript D is 

used. This distinction is clearly needed. If       is known,       can be obtained 

by evaluating the inverse Fourier transform of equation (2-34). To illustrate that, 

presume that we need to design a lowpass filter. We can start with the ideal lowpass 

response revealed in Figure 12(a) where     is the cutoff frequency and the frequency 

scale is normalized    . By letting the response go from     to    , the 

integration operation is simplified. Thus, the impulse response is given by: 

 

      
 

  
       
 

  
   

 

  
     
  

   
   

             
           

     
                    

                                                

 

 

 

(2-35) 
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Figure 12: (a) Ideal Frequency Response of a Lowpass Filter. (b) Impulse Response 

of the Ideal Lowpass Filter 
 

The low pass case of equation (2-35) gives the impulse responses for the ideal 

highpass, bandpass and bandstop fillers as summarized in Table 1. The impulse 

response for the low pass filter is shown in Figure 12(b) from which it is noted that 

      is symmetrical about       (that is              ), so that the filter will 

have a linear (in this case zero) phase response. Several practical problems with this 

simple approach are clear. The most important of these is that, although       a 

decrease as we move away from      , theoretically, it carries on to      , thus, 

the resulting filter is not an FIR. 

An obvious solution is to truncate the ideal impulse response by setting           

for   greater than M. However, this gives undesirable ripples and overshoots-the so-

called Gibb's phenomenon. The effects of discarding coefficients on the filter 

response are shown in Figure 13. The more coefficients that are retained, the closer 

the filter spectrum is to the ideal response (Figures 13(b) and 13(c)). Direct 

      

             normalized) 
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truncation of       as described above is equivalent to multiplying the ideal impulse 

response by a rectangular window of the form 

                                

                              

(2-36) 

 

Table 1: Summary of Ideal Impulse Responses hD(n) for Standard Frequency 

Selective Filters 

Filter type                 

Lowpass    
        

   
     

Highpass     
        

   
       

Bandpass    
        

   
    

        

   
          

Bandstop    
        

   
    

        

   
            

 
      and    are the normalized passband or stopband edge frequencies; N is the 

length of filter. 
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Figure 13: Effects on the Frequency Response of Truncating the Ideal Impulse 

Response to (a) 13 coefficients, (b) 25 coefficients and (c) an infinite number of 

coefficients 
 

In the frequency domain this is equivalent to convolving       and     , where 

     is the Fourier transform of     . Truncation of       leads to the overshoots 

and ripples in the frequency response because      has the classic           shape.  

A practical approach is to multiply the ideal impulse response,      , by an 

appropriate window function w   , whose duration is finite so that the resulting 

impulse response decays smoothly towards zero. The process is shown in Figure 14. 

The ideal frequency response and the corresponding ideal impulse response are 

shown in Figure 14(a). Whereas, Figure 14(b) illustrates a finite duration window 

function and its spectrum       which is obtained by multiplying        by w     

is shown in Figure 14(c). 

    

    

    

   

   

   

        

        

        

(a) 

(b) 

(c) 
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Figure 14: An Illustration of how the Filter Coefficients, h(nT) are Determined by 

the Window Method 
 

The corresponding frequency response shows that the ripples and overshoots, 

characteristic of direct truncation, are much reduced. However, the transition width is 

wider than for the rectangular case. The transition width of the filter is limited by the 

width of the main lobe of the window. Ripples are produced by the side lobes in both 

passband and stopband [11]. Some common window functions are: 

i) Hamming window is the most important one of the many common window 

functions can be defined as: 

    

                      
                                    

                                                    
 

                                                             

  
(2-37) 
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ii) Hanning window is defined as: 

                        
                                    

                                                    
 

                                                             

  

(2-38) 

iii) Blackman window is defined as: 

      
                               

                          

                     
 

                                                             

  

(2-39) 

iv) Kaiser window is defined as: 

      

 
 

          
  

    
 

 

      
     

   

 
 

                                                                          

(2-40) 

where    is the adjustable parameter and   (x) is the modified Bessel function of the 

first kind of order zero which is described by the power series expansion as 

          
 

  
 
 

 
 
 

 
  

   

 
(2-41) 

v) Cosh window is defined as: 

      

 
 

             
  

    
 

 

         
     

   

 
 

                                                                          

(2-42) 
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Chapter 3 

3 FIR FILTER DESIGN USING EXPONENTIAL 

WINDOW 

 

3.1 Spectral Characteristics of Windows 

A window function w(nT) having a length of N is a time-domain function which is 

nonzero for              and zero for other values of n. The frequency 

spectrum of w(nT)  can be defined as 

    
                 

     (3-1) 

where     
     stands for the amplitude function. The amplitude and phase 

spectrums of a window function are defined as A( ) =      
      and θ( ), 

respectively. The amplitude spectrum in the normalized form is given by 

      
            .  
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Figure 15: Amplitude Spectrum and Some Common Spectral Characteristics of a 

Typical Normalized Window 
 

Typical normalized amplitude spectrum of a window together with some spectral 

characteristics is shown in Fig. 15. One of the most important variables of the 

window is the ripple ratio (see the Fig. 15) which is defined as in the following 

equation: 

  

   
                          

                   
  

 

(3-2) 

Since the ripple ratio is a small quantity less than unity, it is more suitable to consider 

its larger amounts by using the reciprocal of r in decibels (dB) as: 

           
 

 
   

(3-3) 

where R represents the minimum side-lobe attenuation (or equivalently minimum 

stopband attenuation) with respect to the main lobe. In addition, the second 

parameter that describes the side-lobe pattern of a window is the side-lobe roll-off 

ratio whose definition is given by: 



 

27 

   
  
  

 (3-4) 

where    represents the amplitude of the nearest side lobe,    represents the 

amplitude of the furthest side lobe (see Fig. 15). The side-lobe roll-off ratio, S, can 

be obtained from its dB domain as follows  

          (3-5) 

In order to have a logical meaning of the side-lobe roll-off ratio, the side-lobe pattern 

envelope should be increased or decreased monotonically. Also, the side-lobe roll-off 

ratio gives an explanation of the energy distribution over the side lobes that could be 

considered important, when prior knowledge of the location of an interfering signal 

is known.  More about the usefulness of this spectral characteristic can be found in 

[12]. 

3.2 Introduction of the Exponential Window 

The plot of functions exp(x) and Io(x) (zero order Bessel function of first kind used 

for Kaiser window) are shown in Fig. 16. It is clear from this figure that they exhibit 

the same shape characteristics which is exponential in nature. For this reason, a new 

window which is called Exponential window is defined as: 

 

       

           
  

    
  

        
              

   

 
 

 

(3-6) 
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Figure 16: The Functions exp(x) and Io(x) Characteristics which have Similar Shape 

 

The normalized spectrum of the Exponential window in dB can be written as: 

    
               

      

         
    

 

(3-7) 

The magnitude response of the Exponential window obtained with different values of 

     when the value of filter length is constant (N = 51) is shown in Figure 17. It 

should be noted that    =0 corresponds to the rectangular window. It is obvious 

from Fig. 17 that the mainlobe width increases and ripple ratio decreases if      is 

increased. 

  (x) 

Exp(x) 
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Figure 17: Proposed Window Spectrum in dB for αex= 0, 2, and 4 and N=51 

 

3.3 FIR Filter Design Using Exponential Window 

In designing FIR filters, the most straightforward approach is the Fourier series 

technique. This technique requires a very small calculation in comparison to other 

optimization methods. The idea of using a window in Fourier series technique is to 

truncate and smooth the infinite duration impulse response of the ideal prototype 

filter. The realizable noncausal FIR filter with a window function, w(nT), has the 

following impulse response  : 

                     (3-8) 

were    (nT) represents the infinite duration impulse response of the ideal filter. The 

infinite duration impulse response of a low pass filter (LPF) with a cut off frequency 

     and a sampling frequency      can be obtained from [1]. 

   =0 

   =2 
   =4 
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(3-9) 

It is possible to obtain a causal filter by delaying the noncausal impulse 

response,        , by period        . The expression of this causal filter is given 

by: 

              
   

 
              

(3-10) 

It is well known that the filters which are designed by the window method have 

approximately equal ripples in the  passband and stopband regions [6].  

Fig. 18 shows the magnitude response of digital FIR filter designed by exponential 

window. The parameter (   ) effect on the filter characteristic can be clearly noticed. 

Also, it is clear from Fig. 18 that when     is increased, the minimum stopband 

attenuation (As) becomes better but the transition width becomes worse. 

 

 

Figure 18: Amplitude Spectrums of the Filters Designed by the Exponential Window 

for Various Alpha with N=127 
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3.4 Filter Design Using Exponential Window Function 

In order to find an appropriate window satisfying desired filter specifications, it is 

needed to find the relationship between the window parameters and the filter 

parameters. The relationship between Exponential window parameter,     and the 

minimum stopband attenuation (As) has been shown in Fig. 19 when N=127. It is 

obvious from Fig. 19 that the value of minimum stopband attenuation increases when 

the value of the window parameter becomes larger. The first design equation which 

can be obtained by applying the quadratic polynomial curve fitting method can be 

written as: 

                  
                                         (3-11) 

Secondly, in filter design equation, in order to find the minimum length of the filter, 

the relation between the normalized width, D, and the minimum stopband attenuation 

(As) should be obtained [7]. Also, the equation of the normalized width parameter 

can be written as: 

   
       

  
 

(3-12) 

where    denotes the transition bandwidth. 
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Figure 19: The Relation between Alpha and the Minimum Stopband Attenuation for 

Exponential Window with N=127 
 

Fig. 20 shows the relation between the stopband attenuation (  ) and the normalized 

width (D). A comparison is also shown in Fig. 20 between the filters designed by 

Kaiser and Exponential windows. It can be seen from Fig. 20 that the filters designed 

by Kaiser window exhibit better minimum stopband attenuation characteristic than 

that of designed by exponential window. An approximate equation for the 

normalized width (D) can be determined by using quadratic curve fitting method as 

follows 

                
                                     (3-13) 

 The minimum odd integer filter length needed to satisfy    and    can be obtained, 

with the help of equations (3-12) and (3-13), 
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Figure 20:  The Difference in the Minimum Stopband Attenuation with N=127 

between the Filters Designed by Exponential and Kaiser Windows 
 

As a consequence, an exponential window can be designed by using equations (3-

11), (3-12) and (3-13). It is worth to note that this exponential window is expected to 

satisfy the desired filter characteristic presented in terms of    and   .  

In order to do another comparison with Kaiser window, the far end stopband 

attenuation is also considered as a figure of merit. Fig. 21 shows the comparison of 

far end stopband attenuation in FIR filter which is designed by exponential and 

Kaiser windows. It is obvious from Fig. 21 that when the transition width is 

increased, the filters designed by exponential window provide better far end 

suppression than that of designed by Kaiser window. 



 

34 

 
Figure 21: The Difference between the Designed Filters once when Exponential and 

Kaiser windows, the term of Comparison is the Maximum Stopband Attenuation 

with N=127 
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Chapter 4 

4 COMPUTER SIMULATIONS 

In this chapter, the simulation results carried out for designing a lowpass FIR filter 

by using Kaiser, Cosh, and Exponential windows satisfying the following 

specifications are discussed: 

Sampling frequency Fs=5 kHz,  

passband edge frequency=100 Hz,  

stopband edge frequency=150 Hz,  

passband attenuation=10 dB,  

stopband attenuation=60 dB,  
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4.1 FIR Filter Design by Kaiser Window 

 

 
Figure 22: Frequency Response of FIR Filter Obtained by Kaiser Window, where 

F=frequency and A=magnitude 

 

Fig. 22 shows the simulated frequency response of the FIR filter which is designed 

by the Kaiser window.  To achieve a 50 Hz transition band (from 100 to 150 Hz) and 

at least 50 dB of attenuation (from 10 to 60 dB) in the design, the value of    was 

taken as 3.9524 and the number of coefficients (filter length) was taken as N =259. 

The far end stopband attenuation (FSA) is measured as FSA=-76.78dB and the 

minimum stopband attenuation (MSA) was measured as MSA=-44.56dB. 

 

F=150 Hz 
A=-44.56 dB 
 

F=2500 Hz 
A=-76.78 dB 
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4.2 FIR Filter Design by Cosh Window 

 
Figure 23: Frequency Response of FIR Filter Obtained by Cosh Window, where 

F=frequency and A=magnitude 

 

Fig. 23 shows the frequency response of the FIR filter which is designed by the Cosh 

window.  To achieve a 50 Hz transition band (from 100 to 150 Hz) and at least 50 dB 

of attenuation (from 10 to 60 dB) in the design, the value of    was taken as 3.7111 

and the number of coefficients was set to N =295. The far end stopband attenuation 

is measured as FSA=-81.27dB and the minimum stopband attenuation was measured 

as MSA=-48.79dB. 

 

 

 

 

F=150 Hz 
A=-48.79 dB 
 

F=2500 Hz 
A=-81.27 dB 
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4.3 FIR Filter Design by Exponential Window 

 
Figure 24: Frequency Response of FIR Filter Obtained by Exponential Window, 

where F=frequency and A=magnitude 

 

Fig. 24 shows the frequency response of the FIR filter which is designed by the 

Exponential window.  To achieve a 50 Hz transition band (from 100 to 150 Hz) and 

at least 50 dB of attenuation (from 10 to 60 dB) in the design, the value of     was 

taken as 3.7254 and the number of coefficients was set to N =293. The far end 

stopband attenuation is measured as FSA=-82dB and the minimum stopband 

attenuation was measured as MSA=-47.5dB. 

 

F=150 Hz 
A=-47.5 dB 
 

F=2500 Hz 
A=-82 dB 
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Table 2: Comparison of FIR Filters Designed by Kaiser, Cosh and Exponential 

Windows   

Parameters Kaiser Cosh Exponential 

   0.7695 0.7695 0.7695 

D 2.5659 2.9329 2.9165 

Alpha (α) 3.9524 3.7111 3.7254 

N  259 295 293 

FSA (in dB) -76.78 -81.27 -82 

MSA ( in dB) -44.56 -48.79 -47.5 

The parameters of Kaiser, Exponential and Cosh windows together with the FSA and 

MSA values obtained from the simulation study are recorded in Table 2. The 

normalized cutoff frequency      is computed by using the following equation 

            (4-1) 

where    is a cutoff frequency. Normalized transition width (D) is computed by using 

the following equation 

  
       

  
 

(4-2) 

where    is a transition bandwidth, (N) is a filter length and    is sampling 

frequency. From table 2, it is obvious that the Exponential window provides 

maximum FSA than that of obtained by Kaiser and Cosh windows. However, its 

performance in the minimum stopband is not the best. Here, the Kaiser window 

provides maximum MSA than that of obtained by Exponential and Cosh windows 

[13]. 
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4.4 Performance Comparison of the Filters 

Performances of the FIR filters designed by the Exponential, Kaiser and Cosh 

window functions were tested by applying a sinusoidal input, x(n), with a frequency 

of 50 Hz and inspecting the output produced by the filter. 

 
Figure 25: (a) Sinusoidal Input, (b) Outputs of the Filter Obtained by Kaiser, Cosh 

and Exponential windows 

 

 

 

 

Fig.25 shows the input signal and the output signals obtained from the filter designed 

by Kaiser, Cosh and Exponential windows. Since the frequency of the input signal is 

50Hz which is within the passband of the filter whose magnitude response is equal to 

one, the amplitude of the output signal remains unchanged for all window functions. 

However, there exists a phase shift between input and output due to the 

characteristics of the filter.  

Time (sec) 

(a) 

(b) 
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Again, performances of the same FIR filters were tested by applying a sinusoidal 

input, x(n), with a frequency of 150 Hz and inspecting the output produced by each 

filter. 

 
Figure 26: (a) Sinusoidal Input, (b) Outputs of the Filter Obtained by Kaiser, Cosh 

and Exponential windows 

 

 

Fig.26 shows the input signal and the output signals obtained from each filter. The 

frequency of the input signal is 150Hz which is the cut-off frequency of the filter. 

The amplitude of the output signal obtained from the filter designed by Kaiser 

window is approximately 3106  which agrees well with the result obtained from 

                                                                (4-3) 

where 44.56 is the MSA value in dB at 150Hz (see Fig. 22). 

(a) 

(b) 
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Similarly, the amplitude of the output signal obtained from the filter designed by 

Cosh window is approximately 3106.3   which agrees well with the result obtained 

from 

                                                   (4-4) 

where 48.79 is the MSA value in dB at 150Hz (see Fig. 23). 

Finally, the amplitude of the output signal obtained from the filter designed by 

Exponential window is approximately 3104.4   which agrees well with the result 

obtained from 

                                                              (4-5) 

where 47.5 is the MSA value in dB at 150Hz (see Fig. 24). 

The far end stopband attenuation performance of the filters can also be tested by 

selecting the frequency to be in the stopband (i.e. beyond the cutoff). It is clear from 

table2 that the amplitude of the output signal obtained from the filter designed by the 

Exponential window is expected to be the minimum compared with the outputs of 

other filters. This shows that the performance of the Exponential window is the best 

in the far end stopband. 
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Chapter 5 

5 CONCLUSIONS 

The application of the Exponential window in the nonrecursive digital FIR filter 

design has been introduced in this thesis. It has been observed that the Exponential 

window exhibits worse minimum stopband attenuation than that of obtained by 

Kaiser Window. However, it offers better far end attenuation than the filter which is 

designed by Kaiser and Cosh windows. Comparisons are based on the normalized 

transition width, filter length, design parameter, far end stopband attenuation and 

minimum stopband attenuation. The better far end stopband attenuation can be 

considered as a significant improvement which can be used in subband coding and 

speech applications.  

The minimum and far end stopband attenuation levels regarding each filter have been 

verified by a simulation study. The simulation results showed a good agreement with 

the theoretical results.  

As a continuation of this work, the following points can be taken into consideration 

as a future work. 

i) Trial of higher order Bessel functions which have exponential characteristics 

instead of the exponential window in an attempt to improve the minimum stop 

band attenuation while maintaining the far end stop band attenuation improvement. 
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ii) Modification of Kaiser window by adding a multiplicative exponential term which 

will result in improvement in both the minimum stop band attenuation and far end 

stop band attenuation. 

iii) Relate the delay characteristics of the filter to the far-end stop band attenuation 

and advise an empirical formula that can be used to automate the design procedure. 
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Appendix A1: Simulations of FIR Filter Design by Exponential, 

Kaiser and Cosh Window  
 

clc; 

clear 

disp('for Exponential Window choose      1'); 

disp('for Kaiser Window choose           2'); 

disp('for Cos hyperbolic Window choose   3'); 

windowtype=input('window type='); 

fs=5000; 

if windowtype==1 

    alpha=3.7254; 

    N=293; 

    w=expwin(N+1,alpha); 

    h=fir1(N,0.05,w); 

    [H,f] = freqz(h,1,512,fs); 

    mag = 20*log10(abs(H)); 

    plot(f,mag), grid on; 

    title('Exponential Window'); 

    xlabel ('Frequency in Hertz') 

    ylabel ('MagnitudeResponse(dB)') 

elseif windowtype==2 

    alpha=3.9524; 

    N=259; 

    w=kaiser(N+1,alpha); 

    h=fir1(N,0.05,w); 

     

    [H,f] = freqz(h,1,512,fs); 

    mag = 20*log10(abs(H)); 

    plot(f,mag), grid on 

    title('Kaiser Window'); 

    xlabel ('Frequency in Hertz') 

    ylabel ('MagnitudeResponse(dB)') 

else 

    alpha=3.7111; 

    N=295; 

    w=coshwin(N+1,alpha); 

    h=fir1(N,0.05,w); 

     

    [H,f] = freqz(h,1,512,fs); 

    mag = 20*log10(abs(H)); 

    plot(f,mag), grid on 

    title('Cosh Window'); 

    xlabel ('Frequency in Hertz') 

    ylabel ('MagnitudeResponse(dB)') 

     

end 

 

% % %=============================End==========================% % % 
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Function for Exponential and Cosh Window 
 
function w = expwin(n_est,bta) 

error(nargchk(1,2,nargin,'struct')); 

if nargin < 2 || isempty(bta),  

    bta = 0.000; 

end 

[nn,w,trivialwin] = check_order(n_est); 

if trivialwin, return, end; 

nw = round(nn); 

bes = abs(cosh(bta)); 

odd = rem(nw,2); 

xind = (nw-1)^2; 

n = fix((nw+1)/2); 

xi = (0:n-1) + .5*(1-odd); 

xi = 4*xi.^2; 

w = cosh(bta*sqrt(1-xi/xind))/bes; 

w = abs([w(n:-1:odd+1) w])'; 

  

function [n_out, w, trivalwin] = check_order(n_in) 

w = []; 

trivalwin = 0; 

  

if ~(isnumeric(n_in) & isfinite(n_in)), 

    error(message('signal:check_order:InvalidOrderFinite', 'N')); 

end 

if n_in < 0, 

   error(message('signal:check_order:InvalidOrderNegative')); 

end 

if isempty(n_in) | n_in == floor(n_in), 

   n_out = n_in; 

else 

   n_out = round(n_in); 

   warning(message('signal:check_order:InvalidOrderRounding')); 

end 

if isempty(n_out) | n_out == 0, 

   w = zeros(0,1);                

   trivalwin = 1;  

elseif n_out == 1, 

   w = 1; 

   trivalwin = 1;    

end 
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Appendix A2: Performance Comparison of the Filters 

%% Exponential Window%%  

clc; 
clear 
M=58; 
A=1; 
fc=122.47; 
f=input('Enter the Frequency =   '); 
w=2*pi*f; 
theta=0; 
fs=5000; 
n=0:1/fs:0.2; 
x=A*sin((w*n)+theta); 
subplot(3,1,1); 
plot(n,x); 
title('Input x(n) '); 
grid 

  
alpha=3.7254; 
    N=293; 
    w=expwin(N+1,alpha); 
    h=fir1(N,fc/fs*2,w); 
    [H,f] = freqz(h,1,512,fs); 
    mag = 20*log10(abs(H)); 
    y=filter(h,1,x); 
    subplot(3,1,2); 
    plot(n,y); 
    title('Output y(n)'); 
    grid 

     
[H,f]=freqz(h,1,512,fs); 
mag=20*log10(abs(H)); 
subplot(3,1,3); 
plot(f,mag); 
title(' Output filter ');grid 
xlabel ('Frequency (Hz)') 
 

 

% % %=============================End==========================% % % 
 

%%Cosh Window%% 

clc; 
clear 
M=58; 
A=1; 
fc=122.47; 
f=input('Enter the Frequency =   '); 
w=2*pi*f; 
theta=0; 
fs=5000; 
n=0:1/fs:0.2; 
x=A*sin((w*n)+theta); 
subplot(3,1,1); 
plot(n,x); 
title('Input x(n) '); 
grid 

  
alpha=3.7111; 
    N=295; 
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    w=coshwin(N+1,alpha); 
    h=fir1(N,fc/fs*2,w); 
    [H,f] = freqz(h,1,512,fs); 
    mag = 20*log10(abs(H)); 
    y=filter(h,1,x); 
    subplot(3,1,2); 
    plot(n,y); 
    title('Output y(n)'); 
    grid 

     
[H,f]=freqz(h,1,512,fs); 
mag=20*log10(abs(H)); 
subplot(3,1,3); 
plot(f,mag); 
title(' Output filter ');grid 
xlabel ('Frequency (Hz)') 
 

% % %=============================End==========================% % % 
 

%%Kaiser Window%% 

clc; 
clear 
M=58; 
A=1; 
fc=122.47; 
f=input('Enter the Frequency =   '); 
w=2*pi*f; 
theta=0; 
fs=5000; 
n=0:1/fs:0.2; 
x=A*sin((w*n)+theta); 
subplot(3,1,1); 
plot(n,x); 
title('Input x(n) '); 
grid 

  
alpha=3.9524; 
    N=259; 
    w=kaiser(N+1,alpha); 
    h=fir1(N,fc/fs*2,w); 
    [H,f] = freqz(h,1,512,fs); 
    mag = 20*log10(abs(H)); 
    y=filter(h,1,x); 
    subplot(3,1,2); 
    plot(n,y); 
    title('Output y(n)'); 
    grid 

     
[H,f]=freqz(h,1,512,fs); 
mag=20*log10(abs(H)); 
subplot(3,1,3); 
plot(f,mag); 
title(' Output filter ');grid 
xlabel ('Frequency (Hz)') 
% % %=============================End==========================% % % 

 


