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ABSTRACT 

     Data Envelopment Analysis (DEA) is a methodology to compare efficiency of 

Decision Making Units (DMUs). DEA is an extension of Charnes, Cooper and Rhodes 

work by introducing CCR model in 1978. Ranking DMUs is one of the main purposes of 

DEA in management and engineering. DEA evaluates some DMUs with efficiency score 

one as efficient DMUs and we therefore need to produce a reliable method for fully 

ranking DMUs. Some methods have been proposed in this concept and newly 

Khodabakhshi and Aryavash (2012) ranked DMUs relative to their combined maximum 

and minimum efficiency scores where efficiency is defined as ratio of weighted sum of 

outputs to weighted sum of inputs. Due to some obtained weights (multipliers) in DEA 

may be zero, previous methods have low ability in ranking DMUs because of 

eliminating the effect of corresponding input and outputs on DEA evaluations. We 

expand their method by assigning lower bounds on multipliers using facet analysis and 

then we propose an equitable and precise method for ranking all DMUs based on the 

modified CCR. 

 

 

Keywords: Data envelopment analysis, decision making unit, rank. 
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ÖZ 

     Veri zarflama analizi, karar alma birimlerinin etkinlik lerini karşilaştirmaya yarayan. 

Veri zarflama analizi Charnes, Cooper ve Rhodes un 1978 de ki CCR model adinda ki 

çalışmalarinin geliştilirmiş halidir. Veri zarflama analizin karar alma birimlerinin 

sıralaması, mühendisilik ve işletme alanlarında ki esas konulardandir. Çoğu zaman veri 

zarflama analizi birden fazla etkili Kara Alma Birimi tanimlamasi için onlarin arasinda 

güvenilir ve bütünsel bir sıralama zorunluluğu söz konusu olabilir. Bu nedenle bazı 

methodlar Veri Zarflama Analizi modellerini, esasında karar alma birimlenin sıralama 

amacı ile tanimlanmışdir. Yakın zamanda Khodabakhshi ve Aryavash (2012) karar alma 

birimlerinin en yüksek ve en düşük verim puanlamalarının kombinasyon esasında 

sıralamayı başarmışlardır.  Tanımlanan ışlemde etki, toplam ağırlıklı çıktıların, toplam 

ağırlıklı girdilere oranı ile ifade edilir. Ama bazen Veri Zarflama Analizi sonuçlarında 

bazı cıktıları ve girdilerinin ağırlıklarının sıfır olması bundan önceki methotların 

özellikle Khodabakhshi ve Aryavash methodunun düşük performansina sebeb 

olmaktadır. bundandolayı bu tür verilerin tesiri sıralama sonuçlarında ihmal ediliyor. Bu 

tezde Khodabakhshi ve Aryavash metodunun genişletilip, bunu yüzey analizi 

aracılığıyla, modelde yeralan ağırlıklara aşağıdan sınırlamak prensibiyle, sonraki 

aşamada değiştirilmiş CCR modeline dayanarak kesin bir karar alma birimini sıralama 

methotu sunuyoruz.  

Anahtar Kelimeler: Veri zarflama analizi, karar alma birimi, sıralaması. 
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Chapter 1 

INTRODUCTION 

1.1 Preamble 

     Nowadays, change and competition are the main characteristics in this world and 

only organizations can achieve their objectives which are able to allocate their available 

resources effectively in these complex and dynamic conditions. Using modern 

technologies and determination of opportunities and restrictions depend on identification 

of present status. In this regard, performance evaluation plays the significant role and it 

can be used to identify strengths and weaknesses in organizations. One of the most 

important techniques in evaluating performance is Data Envelopment Analysis (DEA). 

This technique has been used extensively and successfully to improve efficiency in a 

wide variety of organizations. 

     Since the objective of all the evaluation systems is obviously to perform a precise and 

exact evaluation, DEA is being increasingly recognized as a key evaluation tool. 

Efficiency measurement of different sectors of an organization, performance comparison 

of organizations, and major capabilities determination of the sectors can reflect in 

productivity improvement and DEA as a strategic management tactic and operations 

research-based methodology can be used to assess the performance of comparable 

Decision Making Units (DMUs like organizations and systems) in different parts 

consisting management, education, finance, industry, even strategies and policies. DEA 
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aids managers establish where to look to improve efficiency and the extent of 

improvement in which is likely to be achieved. 

1.2 Problem Description 

     DEA employs mathematical models for evaluating and these models do not indicate 

sensible and valid results in some cases. Many papers have proposed the methods for 

improving these models and erasing their difficulties, but these methods have their 

limitations and one of the difficulties is shortage of discrimination in DEA uses, 

specifically when the number of DMUs is not enough or the number of DMUs is too 

small in comparison with the number of inputs and outputs and DEA cannot produce a 

full ranking of the efficient units, particularly if three times of the total number of 

outputs and inputs be greater than the number of DMUs, DEA will evaluate most of 

them as efficient DMUs. 

     DEA ranks DMUS in efficient and inefficient groups and it does not provide full 

ranking. DEA does not need any supposition of the input-output functions and DMUs 

assess their efficiencies by themselves with the input and output weights which are only 

most satisfactory. The dynamic system in the choice of input and output weights 

frequently allows some DMUs to be evaluated as DEA efficient, causing them unable to 

be completely classified. In other words, the usage of variable weights prevents various 

DMUs being fully ranked and basically compared.  It is important to be considered some 

criterions for ranking these DMUs while analysts and managers are often interested in a 

full ranking besides the dichotomous sorting to enable them evaluates all DMUs. The 

research reported in this thesis details a new approach for ranking all DMUs. 
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     This study introduces facet analysis in the basic DEA models. These models are used 

to assess the efficiency of the observed DMU in comparison with the efficient frontier 

which envelope all of DMUS that form Production Possibility Set (PPS). A section of 

this frontier may be contained the weak efficient parts including the weak efficient 

DMUs. Under the focus of hyperplanes of the efficient and the weak efficient frontiers, 

we try to modify the CCR models for eliminating the effect of the weak efficient frontier 

(the weak frontier) in evaluation using facet analysis. Regarding this subject, we 

consider input and output weighs as the normal vector of hyperplanes which envelop the 

PPS in the efficient DMUs located on the efficient frontier. Using facet analysis, we 

improve the CCR models through replacing the admissible hyperplanes with the weak 

hyperplanes. 

     Additionally, non-Archimedean element epsilons are applied as lower bound on input 

and output weights (multipliers) in the CCR model for discriminating the weak efficient 

and the strong efficient DMUs. Introducing epsilons in the CCR model move the weak 

frontier hyperplanes of PPS and this movement revises their efficiency scores. In a 

similar manner, these non-Archimedean elements change the efficiency scores of DMUs 

which compared with the weak frontier in the CCR model but this improvement cannot 

provide precise evaluation for the weak efficient DMUs and DMUs compared with weak 

efficient DMUs. Using facet analysis, we try to determine the lower bounds on each 

weight and modify the CCR model in a way that the efficiency scores of the weak 

efficient DMUs and DMUs compared with efficient DMUs, have been evaluated 

correctly. To validate the modified CCR model, numerical examples are implemented in 

the next sections.    
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1.3 Assumptions 

     In DEA literature, the same inputs and outputs are used for all DMUs and we assume 

that all data are positive. The data (choice of DMUs and their outputs/inputs) must 

express a manager’s or an analyst’s interest in a manner that will come into the 

efficiency evaluation of the DMUs. In general, higher outputs and lower input amounts 

are preferred and the efficiencies values should reveal these effects. Moreover, the 

measuring units of different inputs and outputs are not necessarily same.  

     There are some orientations for evaluating efficiency values of the observed DMUs 

in the DEA models. For instance, input-oriented model attempts to minimize the input 

amounts by whilst satisfying given outputs and output orientation tries to increase output 

amounts with keeping given input levels. During the research, we deal with the input 

orientations of the DEA models and output-oriented models can be developed for future 

studies. Furthermore, all computations are done using the GAMS, LINGO, and 

WINQSB and the obtained results are supplied in Appendix. 

1.4 Structure of Thesis 

     We organize this thesis as follows. The next chapter starts with a short presentation 

of DEA literature. Then, facet analysis is illustrated in Chapter 3 and modification of the 

CCR model, which is one of the most basic models in DEA, has been discussed in 

Chapter 4. We propose a new ranking method based on the CCR model using facet 

analysis in Chapter 5 and finally Chapter 6 concludes with a summary and suggestions. 

Figure 1.1 depicts structure of the main sections of this thesis in the next page. 
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Chapter 2 

DEA REVIEW 

2.1 Data Envelopment Analysis (DEA) 

     Data Envelopment Analysis (DEA) is an approach to assess the efficiency of a set of 

entities named Decision Making Units (DMUs) that produce various outputs using 

various inputs. Decision making is one of the most prominent subjects which the people 

always deal with it, even in their normal life. We may meet with diverse alternatives in 

which we should choose the best action. 

     In recent years a large amount of DEA applications have used for assessing 

performance of various types of entities involved in various places and activities. DEA 

evaluates the performances of different forms of DMUs such as organizations, schools, 

courts, business companies, industrial firms, department stores, bank branches, 

production centers, purchasing offices, powerhouses, refineries, cities, countries, 

regions, and so on. DEA is most effective where the organization uses multiple types of 

inputs (resources) to produce multiple outputs (services or products) and where 

production function is not well defined or well known. Since DEA does not need lots of 

functional assumptions between inputs and outputs for DMUs, it has been applied to 

other methods as well. DEA has been developed to provide new ideas for entities which 

have been assessed by other approaches. For example, DEA application have 
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acknowledged various resources of efficiency in benchmarking studies of the successful 

companies and it has supplied a tool for specifying the best benchmarks in numerous 

useful areas. The power of DEA is extremely enhanced. For example, financial service 

businesses have regularly identified ways to decrease operating costs by 20% to over 

30% without decreasing their service levels by means of DEA. 

     DEA is frequently used in industrial and research applications and it has proved 

highly in improving manufacturing productivity as effective as productivity 

improvement of service operations. DEA determines the improved standards and it can 

be used to identify the best practice of manufacturing operations. Modern manufacturing 

companies which use production systems, integrated manufacturing, Just in Time (JIT), 

and customized manufacturing use DEA to consider the multiple dimensions of the 

manufacturing process and develop their standards as much as possible. In various 

industries, DEA helps managers to see the advantages and disadvantages of new 

technologies designed to improve their performance. This record should supply enough 

information for managers and researchers to seriously see the sights of the DEA 

potential in the engineering and management areas. 

2.2 How Does DEA Work? 

     DEA employs mathematical models for observational data to identify relations such 

as the efficient frontiers and the production functions which are basic concepts of 

engineering and economics. 

     DEA measures efficiencies of DMUs with given inputs and outputs by organizing a 

practically based best-performance. The DEA results show the hyperplanes which define 

an envelope surface or efficient frontier. Efficient DMUs are DMUs which rest on the 
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surface efficient and other DMUs as inefficient DMUs which are not laid on the efficient 

surface. DEA measures the distance between DMUs to the envelope surface or efficient 

frontier as their relative efficiencies. Since DEA attempts to determine relative 

efficiencies and this frontier or surface “envelops” inefficient DMUs which are below 

the efficient frontier; this method is named Data Envelopment Analysis (DEA). 

     DMUs define Production Possibility Set (PPS) and some elements of this set are 

boundary DMUs that form efficient surface or frontier and DEA tries to estimate the 

relative position of each DMU relative to efficient surface in PPS. Generally, DEA 

determines the following objectives: 

1. Best performance or most productive group of DMUs (efficient DMUs);  

2. Inefficient or less productive DMUs in comparison with efficient DMUs; 

3. Excess levels of inputs used by inefficient DMUs; 

4. Capacity of output levels to be considered for inefficient DMUs; 

5. Best performance DMUs which signify that excess resources are being used by the 

inefficient DMUs; 

6. The efficiency of merger and break up of DMUs; 

     This information implies that DMUs productivity can be improved and the amount of 

resource savings and output increases which the inefficient DMUs expect to meet the 

efficiency levels of the efficient DMUs.  

     DEA is a technique focused on frontiers rather than central tendencies. In contrast 

with DEA, statistical regression tries to fit a hyperplane over center of entities and this 

property has been proved DEA highly in discovering relations which are being unseen 

from other methods. 
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     Commonly, relative efficiency is obtained by dividing total weighted of outputs by 

total weighted of inputs and this definition of efficiency often called                  

“technical efficiency”. Full efficiency (100%) is attained for the observational DMU 

when its outputs or inputs cannot be improved any more by improving some of its other 

inputs or outputs in DEA concept. 

     DEA is a nonparametric method which does not need any functional forms of the 

production between inputs and outputs whereas other methods for estimating production 

functions which necessarily assume several limitations which are meaningless in a case 

for estimating a parametric form. 

     The superiority of DEA over other techniques results from the fact that other 

techniques are not designed to manage productivity or are less well-matched to the types 

of organizations in which are used. Another reason may be attributed which is useful in 

conjunction with DEA and there are certain situations where DEA either cannot be used 

or is not the most appropriate technique for productivity management. The distinct 

benefits of DEA take account in particular where there are restrictions and limitations of 

some common types of analyses like standards, profitability analysis, and ratios. 

2.3 Sensitivity Analysis in DEA  

     Effect of input or output changes should be verified for determining efficiency scores 

in various economic conditions. In DEA, this is achieved through sensitivity analysis. 

Sensitivity analysis demonstrates how DEA models are responsive to data changes and 

deals with methods for studying effects on evaluation when data are varied.  Sensitivity 

analysis further examines the effects when inputs or outputs are added or omitted or 

when DMUs are added or removed. 
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2.4 DEA Background 

     The definitions of performance relation with effective relations lead to generate a 

function as a production function that aims to produce maximum possible outputs using 

inputs. Obviously, estimation of this function is very difficult and impossible in some 

cases. DEA is an extension of Farrell work [2] in introducing first non-parametric 

approach for estimating production function. He determined Production Possibility Set 

(PPS) and estimated production function as a part of this set named efficient frontier and 

defined efficient DMUs which lie on this frontier. 

     Charnes, Cooper, and Rhodes [1] presented initial DEA model in 1987 based on the 

prior work of Farrell. This model was formulated in thesis work of Rhodes at Carnegie 

Mellon University in USA. Under the supervision of Cooper, this method was motivated 

to assess educational programs for disadvantaged students in a large number of studies 

in U.S. universities. Then Charnes joined them in which guaranteed to complete study 

effectively. It was verified that a fractional programming (FP) model change into a 

linear programming (LP) one to evaluate efficiency. Using the previous study of 

Charnes and Cooper, which had based on the fractional modeling, enabled Charnes to 

replace the dual linear programming models developed by Cooper and Rhodes with the 

equivalent format and it produced a reference for expanding applications and uses of 

DEA with former works to the performance evaluation applied in large areas of studies 

such as management and engineering. 

     After DEA was originated in its initial form in 1978, such fast growth and extensive 

acceptance of DEA is evidence to its powerfulness. Investigators have rapidly realized 

that DEA is a superior method for analyzing production processes, and its empirical base 
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without needing any suppositions of functional relations has led to its use in a large 

series of studies such as production functions and efficient production frontiers. 

2.5 CCR Model 

     This section introduces CCR model which is one of the principal DEA models. The 

name CCR model was originated by acronym of Charnes, Cooper and Rohdes [1].  

Suppose that the number of DMUs is n and each DMU uses m inputs to produce s 

outputs. Let ijx  and rjy  (i = 1 … m, j = 1 … n, r = 1 … s), which are assumed to be 

non-negative for all DMUs, be inputs and outputs of DMUj, respectively. Let DMUo        

(o = 1 … n) be DMU under study and consider the input weights (vi) and the output 

weights (ur). Then the CCR model evaluates the efficiency of DMUo to obtain input and 

output weights in the following programming model. Since the number of DMUs is n, 

this model should be run n times for optimizing all DMUs. 

   Max    = 


s

r

ror yu
1

/ 


m

i

ioi xv
1  

subject to (s. t.):    


s

r

rjr yu
1

/ 


m

i

iji xv
1

   1            j = 1 … n 

vi, ur   0           i = 1 … m, r = 1 … s 

     The second constraints show that value of relative efficiency should not exceed one 

for every DMU. 

     This model is a fractional programing (FP) problem and the linear programming (LP) 

is given by, 
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     This model refers to input orientation of the CCR model and it tries to minimize input 

amounts without increasing output amounts. There are other types of the CCR model for 

evaluating efficiency values of the observed DMUs in DEA. For example,             

output-oriented model that aims to increase output levels whereas satisfying at most the 

present input levels. 

     The above linear programming model can be expressed as a vector form       

(multiplier form) as follow: 

0

0

,...,2,10

1.

)2.2(











V

U

njVXUY

VXts

UYMax

jj

o

o

 

Definition 2.1 

A. If 1*   and 0* V and 0* U  be optimal solutions of the CCR model for DMU 

under evaluation, this DMU is said to be CCR-efficient.   

B. If 1*   and 0* V , 0* U  be optimal solutions of the CCR model for DMU 

under evaluation and there is at least one 
*V or 

*U with zero values, this DMU is said to 

be CCR-weak efficient.   

C. Otherwise, DMU under evaluation is CCR-inefficient, that is 1*  . 
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     Less efficient DMUs can be improved through sending them to the efficient frontier. 

Efficiency of one DMU can be improved by minimizing inputs proportionally in input 

orientations while output-oriented models try to increase output levels. 

     As mentioned earlier, all data presumed to be equal or greater than zero. We now 

assume that there is at least one input and one output with positive values for all DMUs. 

This property is called semipositive assumption and a pair of such semipositive inputs    

X  Rᵐ and outputs Y   Rⁿ define an activity and denote it by (X, Y).   

     We now define a set of feasible activities as Production Possibility Set (PPS) and 

denote it by CS  . We express the following properties of CS : 

(C1) All observational activities ),( jj YX  include in CS .(j = 1 … n) 

(C2) If activity (tX, tY) is included in CS  for any positive scalar t, we refer this property 

as constant Return to Scale (RTS) assumption.    

(C3) For all activities (X, Y) included in CS , any activity ),( YX with XX   and 

YY   belongs to CS .  

(C4) All linear combinations of activities in CS  are included in CS .  

     According to above assumptions, CS  can be defined as: 

)3.2(},0,,|),{(
1 1

jYYXXYXS j

n

j

n

j

jjjjC   
 

  

     Now based on the constraints of model 1.2, the dual model of this linear 

programming model is given by the real variable   and the nonnegative variables 

njj 10   as follows: 
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     We next can write the above model as a vector form (envelopment form) where 

),,,( 21 n  for j=1, 2… n as follows: 

free
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oj
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0
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     Table 2.1 depicts the relations between primal-dual variables and constraints in the 

CCR model. 

Table 2.1: Primal and Dual Relations in CCR Model 

Constraints of (2.2) Variables of (2.5) Constraints of (2.5) Variables of (2.2) 

1oVX    0 jo XX   0V  

0 jj UYVX  0j  0 oj YY  0U  

 

     Since there is a feasible solution )(0,1,1 ojjo    of model 2.5, the 

optimal   (
* ) may not exceed one. We also assumed that all data to be nonnegative in 

model 2.5, thus   cannot be zero because 0oY  and 0oY . We can see that 
*

should be less than 1 and greater than zero ( 10 *  ).  
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     Notice that model 2.5 shows activity ),( oo YX  belonging to CS  so as to minimize   

while the input vector oX  is reduced to oX  in CS  that is:  

free

SYXts

Min

Coo







),(.

)6.2(

 

     Here we determine the slack variables
mRs  , 

sRs 
 such that 0s  and 

0s  for any feasible solution ),(   of model 2.5: 
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     Thus, we rewrite model (2.5) for all j=1, 2… n as follows: 
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Definition 2.2  

A. If an optimal solution ),,,( ****  ss  of model 2.7 satisfies 1*   for all slack 

variables with zero values, DMUo is CCR-efficient. On the other hand, if DMUo has no 

output shortfalls and input excesses, it is CCR-efficient. 

B. If for above optimal solution 1*  and all slack variables are not equal to zero, that 

is 0s  and 0s , the DMUo called CCR-weak efficient. 

C. If 1*   then DMUo is CCR-inefficient. 
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2.6 BCC Model 

     Different models have been developed built on the initial CCR model. Banker, 

Charnes and Cooper introduced a variable Return to Scale (RTS) version of the CCR 

model, namely the BCC model [3] in 1984. They defined a new PPS denoted by BS  

including following properties:  

(B1) All observational activities ),( jj YX  include in BS . (j = 1 … n) 

(B2) If the activities ),( jj YX  belongs to BS  and then the convex combination of these 

activities 1),,(
111




n

j
jj

n

j
jj

n

j
j YX  , 0j  nj ,...,2,1  also belongs to BS .  

(B3) For all activities (X, Y) included in BS , any activity ),( YX with XX   and 

YY   belongs to BS .  

(B4) All linear combinations of activities in BS  are included in BS .  

     This PPS can be shown as: 

)8.2(},0,1,,|),{(
11 1
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      Regarding this subject, the BCC model can be formulated in the following model: 
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     According to 2.8, the above model can be replaced as follows: 
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     We now rewrite the above model as a vector form: 
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     The dual model of this problem (multiplier side) is given by: 
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     Hence model 2.12 can be replaced as a vector form: 
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     Table 2.2 depicts the relations between primal-dual variables and constraints in the 

BBC model. 

     The important consideration is that the difference between BCC models and CCR 

models results from variable ou and this variable is associated with the convexity 

constraint 11   in PPS as its dual variable. 

       In a similar manner, slack variables can be added to model 2.11 as follows:  

0
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11
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Table 2.2: Primal and Dual Relations in BCC Model 

Constraints of 

(2.14) 

Variables of 

(2.11) 

Constraints of 

(2.11) 

Variables of 

(2.14) 

1oVX    0 jo XX   0V  

0 ojj uUYVX  0j  0 oj YY  0U  

  11   uo 

 

Definition 2.4  

A. If an optimal solution ),,,( ****  ss  of model 2.14 satisfies 1*   and

0,0 **   ss , DMU under evaluation is said to be BCC-efficient. 
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B. If an optimal solution ),,,( ****  ss  of model 2.14 satisfies 1*   and

0,0 **   ss , DMU under evaluation is said to be BCC-weak efficient. 

C. If 1*  , then DMUo is BCC-inefficient. 

 2.7 Non-Archimedean Element Epsilon 

     One difficulty that has been discussed in DEA concept is evaluating some less 

efficient DMUs as efficient DMUs when some of their input and output weights are 

equal to zero. Since some of input and output weights are equal to zero, corresponding 

input and output cannot reflect in evaluating the efficiency. In this regard, we try to 

specify non-Archimedean element  as lower bound on weights to eliminate this 

difficulty. Epsilon is usual non-Archimedean infinitesimal element referred to a small 

positive value. Introducing these non-Archimedean elements as minimum weight 

restriction in the basic DEA models impose the positivity on input or output weights. 

Inappropriate determinations of epsilon values often lead to infeasibility in the multiplier 

side and unboundedness in the envelopment side. Therefore, estimating the appropriate 

value of epsilon is one of the most important topics in DEA. 

     As an illustration, we consider Example 2.1 with two DMUs, two inputs and one 

output and Table 2.3 shows the data of these DMUs. 

Table 2.3: Data of Example 2.1 

DMU 1 2 

Input X1 2 2 

Input X2 5 6 

Output Y 1 1 
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     Now applying the classic CCR model for these DMUs, we have: 

00

00
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052052

062062
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     Both these linear programming problems have the same optimal solution of

5.0,1 *
1

*  vu , 0*

2 v . The associated objective values for both of these problems 

are equal to one and so DMU1 and DMU2 are efficient. Since output values of these two 

DMUs are the same and DMU2 requires more inputs than DMU1, this shows that DMU2 

is inefficient. This results from 0*

2 v and then linear programming models show them 

as efficient DMUs because the second input weight of DMU2 is not affected by 

efficiency evaluation in DEA.    

     In order to eliminate this problem, Charnes, Cooper and Rohdes used the                

non-Archimedean element in DEA concept [4] through imposing non-negativity 

constraints in the CCR model in which 0iv , i=1,2,…,m and 0ru , r=1,2,…,r 

replace with iv , i=1,2,…,m and ru , r=1,2,…,s and the CCR mode is revised by 

introducing new intervals for weights. Hence the effect of weak efficient DMUs is 

eliminated using non-Archimedean element in the CCR model.  

     Hence the CCR model is restructured by inserting epsilons as weight minimum as 

follows: 
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     The dual format of the above model is given by: 
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2.8 Ranking Methods Review 

     All efficiency values of DMUs are obtained between zero and one using DEA 

methodologies. In this regard, DEA usually evaluate more than one DMU with unity 

values as efficient DMU. Hence researchers are motivated to find new methods to 

distinguish efficient DMUs. 

     Efficiency evaluation which enables decision makers to fully rank DMUs is one of 

the most important purposes of DEA. There are many approaches for ranking DMUs 

and we introduce some ranking methods in this section. 

     Sexton et al. [5] submitted the cross efficiency method for ranking DMUs in DEA 

concept. Doyle and Green suggested the cross evaluation matrix regarding the fact that 
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analysts cannot usually have a realistic procedure for selecting assurance regions to sort 

DMUs. In this methodology, efficiency value of each DMU is computed n times 

obtaining optimal weights by n linear problems and all obtained efficiency values are 

summarized in a cross-efficiency matrix to compare all DMUs. This method seems to be 

reasonable, but it has some drawbacks particularly when there are some alternative 

solutions in the linear problems of DEA. 

     Wang et al. carried out a ranking by assigning a suitable minimum weight restriction 

for all inputs and outputs. But, their method has some problems. One of the major 

problems is high calculations and comparisons, particularly when there are large 

numbers of efficient units. The second problem may occur when reassessing the 

efficiencies remain some DMUs with efficiency score one. It means that partial ranking 

of all units by this method cannot produce full ranking of all DMUs to distinguish 

between DEA efficient DMUs. 

     Anderson and Petersen introduced a model (AP model) [6] to rank efficient DMUs 

through eliminating them from PPS and then a method was developed to improve the 

AP model by Mehrabian et al. [7] namely the MAJ model. since the values of some 

inputs of some DMUs are comparatively too small, infeasibility and instability may 

occur in the AP model and the MAJ model because these models are too sensitive to 

small values in data and eliminating some of DMUs obtain very large   which may not 

be ranked properly. Avoiding this problem, Seiford et al. suggested characteristic 

bounds on weights of a super-efficiency ranking model. Moreover, Saati et al. [8] 

improved the MAJ model to remove infeasibility and the type of data normalization was 

changed by Jahanshahloo et al. [9] in the AP and the MAJ model in order to provide 

equitable outcomes.  



 23 
 

     To overcome the problems of AP and MAJ models, some researchers introduce some 

methods to rank efficient DMUs using especial norms such as Jahanshahloo et al. [10]. 

Amirteimoori et al. [11] have utilized norm to obtain the distance between efficient 

DMUs and inefficient DMUs. Gradient line and ellipsoid norms were also applied by 

Jahanshahloo et al [12] for discriminating efficient DMUs.  

     Torgersen et al. proposed a method to sort efficient units by determining their 

significances as reference for inefficient units. In addition, there are other methods and 

techniques that reflect in ranking DMUs in DEA concept. For example, Thompson et al 

[13] introduced assurance regions in DEA models and the efficiency scores of some 

efficient DMUs have been reduced using this method. Since precise determination of 

weights is difficult, this method does not signify reasonable results. Adler et al. [14] 

tried to minimize the number of inputs and outputs with component analysis resulting in 

reductions of the efficiency scores of some efficient DMUs. Ganley and Cubbin 

considered common weights for all DMUs through increasing their efficiency totals. Liu 

and Peng [15] determined a set of indexes for common weights using common weights 

analysis (CWA) to discriminate efficient units. Using this method, they try to reduce the 

efficiency values of efficient DMUs into the values smaller than one. Cooper and Tone 

[16] attempted to present a ranking approach using scalar measures of inefficiency based 

on the slack variables. Moreover, a series of various approaches have been also 

presented in the fuzzy environment (see, for example, [17-19]). Newly, a ranking 

method for assigning a common fixed cost or revenue among units has been suggested 

by Khodabakhshi and Aryavash [20] in DEA. 
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     All these methods have some limitations and weaknesses for ranking DMUs and 

none of them provides enough information to completely rank efficient and inefficient 

DMUs in DEA concept. 
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Chapter 3 

FACET ANALYSIS 

3.1 Facet Analysis Use in DEA 

     This chapter illustrates the basic concept of “facet analysis” in the CCR models.  

Generally, facet analysis focuses on hyperplanes which pass through the efficient 

frontier. It is demonstrated that the efficient frontier estimates production function in 

input-output space. Employing DEA models, the efficient frontier is generated by 

hyperplanes, which envelope Production Possibility Set (PPS) at efficient DMUs. In 

addition, the hyperplanes which form the weak frontier will be moved while satisfying 

the PPS properties in order to improve efficiency scores of weak efficient DMUs. 

     Facet analysis initially was originated by Bessent et al. [21] for use in the DEA 

models. Facet is defined as a face with n-1 freedom degree or a face with                       

n-1dimensional for a polyhedral in n dimensions space. Notice that facets are 

hyperplanes for a polyhedral with linear structures in n dimensions case. These facets 

are used as the reference to categorize DMUs in DEA. Facet analysis shows relation 

between algebraic and geometric view of points in DEA and depicts the relation between 

feasible region of constraints in CCR model for DMU under evaluation and the 

corresponding PPS under the focus of the Returns to Scale (RTS). The concept of the 

RTS is illustrated in details in the next section. Furthermore, it can be shown that the 
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feasible solutions of CCR model (model 2.2) are the normal vectors for the 

corresponding supporting hyperplanes of PPS for a specific DMU.  

3.2 Importance of Facet 

     Facet is an important subject of concern in order to evaluate efficiency in DEA. The 

efficiency measure enables analysts to realize whether can convert fewer inputs into 

given output or increase outputs using present inputs. As a result, only part of the 

efficient frontier is concerned in evaluating efficiency score. This part is said to be facet.  
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     For instance, in Figure 3.1, only the facet from DMU1 to DMU3 is concerned for 

evaluating the efficiency of the DMU denoted by DMU2. In a similar manner, the facet 

from DMU3 to DMU5 is considered to evaluate DMU4. 

     The applications of facets aid managers or analysts to identify the inefficient DMUs 

and find ways so that the inefficient DMUs may improve their efficiencies by comparing 

with the efficient DMUs. For instance, in Figure 3.1, efficiency of DMU2 can be 

improved through moving to some points on the facet DMU1 to DMU3. Especially, this 

DMU can move to A by requiring less input, to B by increasing output or both increasing 

output and decreasing input.  

3.3 Return to Scale (RTS) 

     We begin with theoretical formulations in which we apply Figure 3.2 to comprehend 

the concept of Return to Scale (RTS). Function y=f(x) in Figure 3.2 as production 

function aims to maximize y using value of x and this production function forms the 

frontier to evaluate relative efficiency in DEA. For this reason, we consider only points 

located on the frontier as desirable points and hence points such as s, which places inside 

PPS, are not favorable in the idea that we are currently expanding. 

     Figure 3.2 also depicts manners of average (a.p=y/x) and marginal (m.p=dy/dx) of 

production function, where y/x relates to the slope of the ray from the origin to y and 

dy/dx is the derivative of f(x) at this point. 

     The slopes of rays (average productivity) rise up to xo while x is increasing, in this 

case we say RTS is increasing, and then slopes of the relevant rays start reducing, here 

we say RTS is decreasing, and for xo RTS is constant in Figure 3.2.  In a Similar way, 

the marginal productivity start increasing till relevant point and then the marginal 



 28 
 

productivity reduces. As can be seen in Figure 3.2, the marginal productivity places 

below the average productivity in the right of xo and above the average productivity for 

left side. This shows that input is increasing relatively slower than output for right of xo 

whereas this situation happens conversely in right side of xo.     

 

 

 

 

 

 

 

 

 

 

      

 

 

 

 

 

 

 

     Economic contexts have usually defined RTS for single output case. The 

development of the conception of RTS can be attributed for multiple output cases. In 

multiple inputs and outputs case, RTS defines as effect of product factors changes on 

production. Mathematically, for multiple inputs and outputs RTS is defined as follows: 
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Figure 3.2: Returns to Scale 
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Definition 3.1 Suppose that TYX oo ),( ( CS  or
BS ) and 0 is fixed scalar, let 
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Figure 3.3: An Illustration of Return to Scale (RTS) 
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     Despite evaluating relative efficiency, DEA produce information about scale 

efficiency in Production Possibly Set (PPS) since the measure of scale efficiency differs 

from one model to another model in DEA and so it should be the center of attention. To 

this effect, consider the facet from DMU1 to DMU3 in Figure 3.3. For DMUs lied on this 

facet, RTS is increasing because of increasing relationally their output and input remains 

them in PPS. A proportional decrease in their output and input cannot occur because it 

may place them outside of PPS. This is demonstrated by passing a ray from the origin 

through DMU1 to DMU3 at DMU2. 

     DMUs rested on the facet from DMU1 to DMU3 depicts decreasing Returns to Scale 

(RTS) since a decrease relative to their output and input move them inside the PPS and a 

rise relative to their output and input place them outside of the PPS. 

     RTS is constant for a DMU if all decrease or increase relative to their output and 

input move the DMU either above or along the PPS. For instance, in Figure 3.3, DMU3 

implies constant Returns to Scale (RTS) due to the fact that proportional decrease and 

increase might move it outside of the PPS. 

     Due to facets are formed by efficient DMUs, the scale efficiency of them is identified 

by the properties of their relevant facet and scale efficiency of inefficient DMUs are 

specified by their relevant reference facets, respectively. Therefore, RTS is decreasing 

for DMU4 and RTS is increasing for DMU2.  

3.4 Facet Analysis in General Case  

     The conception of a facet (plane) for the production function in Figure 3.2 can be 

developed for a general situation in supporting hyperplane in multiple inputs and outputs 

case as follows. A hyperplane Ho in an m + s dimensional space (where m and s are the 
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numbers of inputs and outputs respectively) which passes through the point represented 

by the vectors ),( oo YX  can be shown by this equation: 

)1.3(0)()(:  ooo XXVYYUH  

     Where 
sRU  and 

mRV  are coefficients in this equation considered as normal 

vectors. Let ou has following value:  

)2.3(ooo UYVXu   

     Thus, the hyperplane presented by 3.1 can be formulated in the followingequation: 

)3.3(0 ouVXUY  

     A hyperplane divides a space into the two halfspaces. We define hyperplane oH  as 

the supporting hyperplane of PPS, if it envelops the PPS in one of these two halfspaces 

at the point ),( oo YX . 

     For any DMU related to any ),( YX belonging to PPS, we have: 

0 ouVXUY  

     Since input and output multipliers are supppsed to be positive in the CCR model and 

according to the above, for supporting hyperplanes of PPS can be shown that: 

0,0  VU  

     Moreover, we consider the following constraint as a normalization constraint: 

)4.3(1oVX  

     PPS is generated by the observed DMUs and hyperplanes defined by 

0 ouVXUY  and the relation between 
sRU  and 

mRV   as factor weights in 
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the CCR model and set of observed DMUs in PPS can be considered from this point of 

view.  

     Now for an efficient DMU in the CCR model say ),( oo YX from (3.2), (3.3), (3.4) 

and  

1oUY  

   We can see that 0ou and so we conclude that hyperplane 0VXUY  is a 

supporting hyperplane of PPS at ),( oo YX , with ),( UV  as normal vector which passes 

through the origin. 

3.5 Facet Analysis in CCR Model 

     Let ),( oo YX  be the CCR-efficient DMU and for the optimal weight 
** ,UV  of 

model 2.1, we obtain: 
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     As mentioned earlier, the hyperplane 0
11




m

i
ii

s

r
rr xvyu  in input-output space is a 

hyperplane which passes through the origin and support CT  in ),( oo YX  with 

),( ** UV as the normal vector. Since ),( oo YX is the CCR-efficient DMU, optimal 

solution of model 2.1 (CCR model) equals to one ( 1*  ). Now, if for all i = 1,2,…,m 

and r = 1,2,…,s we have 0,0 **  ri uv , and consequently complementary slackness 

theorem shows that 0,0  
ri ss  for all i = 1,2,…,m and r=1,…,s in model 2.7 as a 
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dual linear programming of multiplier side. But if any i exists such that 0* iv or any r 

exists such that 0* ru  and so corresponding slack variable 


is or 


rs can be nonzero 

based on the complementary slackness theorem. In this case, the DMU under evaluation 

is the CCR-weak efficient. Hence there is at least one component with zero value in its 

normal vector ),( ** UV  for the hyperplane passing through the weak efficient DMU. 

     Figure 3.4 shows that the hyperplane with zero components in normal vector is 

parallel with the axes whose corresponding weight is equal to zero. Therefore, these 

hyperplanes of weak frontier are parallel with at least one of the input or output axes. 

    

 

 

 

 

 

   

 

 

     

 

     It is illustrated that epsilon  is used as a minimum weight restriction to differentiate 

between the weak efficient DMUs and efficient ones where epsilon is usual               

non-Archimedean infinitesimal element referred to a small positive value ( > 0). This 

lower bound forces input or output weights to be nonzero and then corresponding 

weights reflect in evaluating efficiency in DEA. In fact, determination of weight 
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Figure 3.4: Plane with Zero Components in Its Normal Vector  
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minimum moves the normal vector preventing the hyperplanes of weak frontier to be 

formed.  Depending on the  value, efficiency scores of the weak efficient DMUs and 

the DMUs which are compared with them are changed. Figure 3.5 portrays the situation 

geometrically. 

 

 

 

 

 

 

 

    

     Figure 3.3 depicts PPS for one output and two inputs case and relevant frontiers. 

3.6 Determining Admissible Hyperplanes 

     It is shown that the weights vector (-V, U) can be considered as normal vector of a 

supporting hyperplane of PPS (SC). The CCR model generally evaluates these weights 

for observed DMUs resulting as the normal vectors of supporting hyperplanes in PPS for 

each efficient DMU. Here we try to determine appropriate non-Archimedean epsilons as 

lower bounds on components of normal vectors considered for each efficient DMU 

while satisfying the properties of PPS. These intervals are also used to obtain the most 

appropriate hyperplanes as admissible hyperplanes which can be replaced with 

hyperplanes of weak frontier.  
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Figure 3.5: PPS in Two Inputs and One Output Case 
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     Let ),( oo YX  be the efficient DMU, for all r = 1,2,…,s and i = 1,2,…,m. We consider 

the following problems: 
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     Suppose that optimal solutions of model 3.5 and model 3.6 be 
ru  and 

ru . 

Additionally, optimal solutions of model 3.7 and model 3.8 assumed to be 
iv  and 

iv , 

respectively. We now determine intervals for epsilon while place the DMUs inside the 

PPS which satisfy the properties of PPS as follows:  

 DMUefficient for 
  rr uMin  

 DMUsefficient for 
  rr uMax  

 DMUsefficient for 
  ii vMin  

 DMUsefficient for 
  ii vMax  
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Definition 3.2 

     Let ),( oo YX  be CCR efficient DMU and ),( ** UV be relevant weights considered 

as normal vector of the hyperplane, which satisfied following inequalities is the 

admissible supporting hyperplane for CS : 

sru rrr ,...,2,1*      

 miv iii ,...,2,1*     
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Chapter 4 

MODIFICATION OF CCR MODEL 

4.1 Introduction   

     This chapter represents a modification of the CCR model using facet analysis. As 

already described, when the CCR model is employed to specifics DMUs without 

assigning minimum weight restriction, efficiency evaluation is not affected by DMUs 

located on weak frontier and DMUs which are compared with this frontier. The non-

Archimedean element epsilons are used as lower bounds on weights to remove this 

difficulty through preventing weights to be zero. Introducing a unique epsilon to 

intervals for minimum weights of the CCR model cannot produce the precise and exact 

efficiency scores for weak efficient DMUs and DMUs which are related to them for 

evaliation. Here we modify CCR model to improve efficiency measures of weak 

efficient DMUs. We organize this chapter such that the next section provides a problem 

definition and the Section 4.3 exhibits a modification of the CCR model using facet 

analysis. The modified CCR model and the classical CCR models are compared in 

Section 4.4 via an example. 

4.2 Problem Definition 

     Charnes, Cooper and Rohdes [4] introduced non-Archimedean epsilons in DEA 

models which have been used as lower bounds on factor weights to show the 

inefficiency of the weak efficient DMUs in the CCR model. Afterwards, many 
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approaches are presented for estimating ε value. Majority try to find epsilon while 

preventing infeasibility and unboundedness in multiplier and envelopment orientations, 

respectively. These methods could not obtain interesting results for some real problems. 

Finally, Mehrabian, Jahanshahloo and Alirezai determined the assurance intervals and 

showed that each number within these intervals can be used as non-Archimedean 

number ε. All of these approaches try to reduce efficiency values of weak efficient 

DMUs and DMUs compared with weak efficient ones. It is verified that less efficiency 

scores of these DMUs while properties of PPS are satisfied, result in more exact and 

precise evaluation of efficiency scores. We want to show that a unique choice of ε value 

as lower bound on all multipliers (weights) may not obtain true efficiency scores of 

weak efficient DMUs and DMUs compared with weak efficient ones. Hence we aim to 

determine lower bound on each multiplier. These lower bounds are used to revise CCR 

model. 

4.3 Modification of CCR Model Using Facet Analysis 

     When a unique value of ε is assigned as lower bound on all input and output 

multipliers, zero components of normal vectors in weak frontier hyperplanes are 

changed by same value. In this case, depending on evaluated ε, the hyperplanes of the 

weak frontier move while preserving properties of PPS.    

     Returning to the previous chapter, there is at least one component with zero value in 

normal vectors of weak frontier hyperplanes, that is an r or i exists such that 0ru or

0iv . Then normal vectors of these hyperplanes are also moved by determining 

intervals for ε. This changes move the weak frontier hyperplanes because epsilons force 

the normal vectors of the weak frontier hyperplanes to have non-zero components.  
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     The optimal values of multipliers in the multiplier direction of CCR model are 

relevant non-zero slacks. Based on complementary slackness theorem either any 

multiplier is greater than zero then relevant slack should be zero and reversely or both of 

them can be zero as well. Therefore, complementary slackness theorem signifies that 

corresponding dual variable of these zero components ( 
is  and 

rs ) can be non-zero 

because based on envelopment side of the CCR model (the following model), if for the 

optimal solution 1*  , for 0s  DMU under evaluation consumes more inputs than 

others and in a case 0s , DMU under evaluation produces less outputs than other 

DMUs. Thus, efficiency value of DMU under evaluation is not really equal to unity and 

this DMU is referred to a weak efficient DMU. Consequently, if we specify the 

appropriate minimum value for each multiplier, then we can suppress the non-zero 

slacks by the complementary slackness theorem condition to improve the efficiency of 

the weak efficient DMUs.  
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     According to the CCR model in order to move the weak frontier hyperplanes, we 

consider the DMUs which are located on the region formed by the intersection of the 

efficient and weak efficient frontiers.  Figure 4.1 shows some of these DMUs for two 
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inputs/one output and one input/two outputs cases. We therefore discriminate these 

DMUs from observed DMUs for modifying the CCR model. 

     To this effect, we consider the following model for CCR-efficient DMUs based on 

definition of CCR-efficiency.  

rrs

mis

nj

srsyy

misxxts

ssMax

r

i

j

r

n

j

rjjro

i

n

j

ijjio

s

r

r

m

i

i

,...,2,10

,...,2,10

,...,2,10

,...,2,10

,...,2,10.

)4.4(

1

1

11













































 

     The above linear programming model can be considered for all observed DMUs but 

it is infeasible for inefficient DMUs. This model identifies CCR-efficient DMU placed 

on the intersection of efficient frontier and weak efficient frontier hyperplanes with 

positive value in its optimal solution. Let Z be the set of these DMUs (see Figure 4.1). 

 

  

 

 

 

 

    

 

 

Figure 4.1: Elements of Set Z for   
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     Let DMUw be DMU belongs to set Z. Now for DMUs belonging to Z denoted by

),( ww YX , we have the following problems where viw and urw are input weights and 

output weights for DMUw, respectively. 
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     Assume that 

iwv  and 

rwu  are the optimal values for model 4.5 and model 4.6, 

respectively. To reduce the number of problems, problem 4.5 and 4.6 can be solved for 

only iv s and ru s when we have w 0

is  and 0

rs  in the optimal solution of problem 

4.4. Finally we determine epsilons as follows. 
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     Based on models 4.7 and 4.8, the CCR model is modified as follow. Notice that we 

determine the above intervals for epsilon while satisfying the properties of PPS. In other 

words, we try to locate all DMUs inside PPS while moving the hyperplanes of weak 

efficient DMUs. 
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     In accordance with values of srr ,...,2,1,   and mii ,...,2,1 , we assign them 

as lower bound on each multiplier in CCR model to produce admissible hyperplanes. 

These hyperplanes are replaced with hyperplanes of weak frontier. This replacement 

satisfies the feasibility of multiple sides in modified CCR model.  

     In next section, the modified CCR model is illustrated via a numerical example. Then 

the results have been compared with the classical CCR and CCR models with fixed 

epsilon.  

4.4 A Numerical Example 

     Table 4.1 shows data of Example 4.1 for eight DMUs with one input and two outputs 

and results of the CCR models are summarized in Table 4.4. Efficiency values of the 

classical CCR model are obtained in the second column of Table 4.4. DMUs C, F, G and 

H are CCR-efficient and DMU A is a CCR weak efficient and others are inefficient. 

Using model 4.4 for all efficient DMUs, optimal solutions are given by Table 4.2. 
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     According to definition of set Z, DMU C and DMU H are those belong to set Z. Now 

models 4.5 and 4.6 are applied for these two DMUs and Table 4.3 summarizes the 

results. 

Table 4.1: Data of Example 4.1 

DMUs A B C D E F G H 

Input x 1 1 1 1 1 1 1 1 

Output1 y1 1 1 2 3 4 4 5 6 

Output2 y2 7 5 7 4 3 6 5 2 

 

Table 4.2: Optimal Values of Model 4.4 for Efficient DMUs 

DMUs C F G H 

Optimal value of (4.4) 0.875 0 0 0.9 

 

Table 4.3: Optimal Values of Model 4.5 and Model 4.6 

DMUs 
1v  

1u  

2u  

C 1 0.0625 0.1429 

H 1 0.1667 0.05 

     Thus, from (4.7) and (4.8), we have: 

05.0}05.0,125.0{
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     Therefore, the CCR model for the observed DMUs can be modified as follow: 
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     Table 4.4 summarizes the efficiency values using modified CCR model, the classical 

CCR model and CCR model with ε = 0.05 (model 2.16). 

Table 4.4: Results of CCR Models 

DMUs Classical CCR CCR with ε = 0.05 Modified CCR 

A 1 0.95 0.9375 

B 0.7143 0.6929 0.6875 

C 1 1 1 

D 0.7 0.7 0.7 

E 0.75 0.75 0.75 

F 1 1 1 

G 1 1 1 

H 1 1 1 

 

     As can be seen in Table 4.4 and Figure 4.1 and Figure 4.2, DMU A is weak efficient 

and DMU B is one which has been compared with the weak frontier. DMU A is efficient 

in the classical CCR model, because it is spotted on the weak efficiency frontier. Using 

the CCR/ε model, this DMU is considered by an admissible hyperplane with the 

corresponding ε equal to 0.05. The normal vector of this hyperplane is (-1, 0.05, 0.1286) 

and the efficiency score of this DMU is reduced to 0.95 and the efficiency score of this 
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DMU is equal to 0.9375 in the modified CCR model because DMU A is compared by an 

admissible hyperplane with vector (-1, 0.0625, 0.125) as its normal vector. Now 

consider DMU B which is compared with the weak frontier. To this effect, efficiency 

score of DMU B is equal to 0.714. This efficiency score is reduced to 0.929 when   

DMU B compared with the admissible hyperplane with vector (-1, 0.05, 0.1286) as a 

normal vector in the CCR/0.05 model. Finally, in the modified CCR model, DMU B 

compared with admissible hyperplane with vector (-1, 0.0625, 0.125) as normal vector 

and its efficiency score is improved to 0.6875. Figure 4.2 shows PPS (Sc) and Figure 4.3 

depicts intersection of this set with plane x=1. Figure 4.4 illustrates the situation 

geometrically after modification and Figure 4.5 depicts intersection of new Sc with plane 

x = 1. 
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Figure 4.2: Efficient and Weak Efficient Frontiers in  
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Figure 4.5: Intersection of Modified  and Plane x=1  



 47 
 

 

     As can be seen in this example, assigning assurance interval for non-Archimedean 

elements as lower bounds on each factor weight by using facet analysis, we modify the 

CCR model while the properties of PPS ( CT ) are satisfied. This model clearly depicts 

more exact and precise results than the CCR/ε model, which impose a unique lower 

bound for all factor weights.        
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Chapter 5 

RANKING ALL UNITS IN DEA 

5.1 An Introduction to a Ranking Method 

     In this section, we introduce a ranking method presented by Khodabakhshi and 

Aryavash [22]. Their idea was motivated to remove difficulties of ranking DMUs in 

DEA literature. In this regard, firstly, they suppose that total efficiencies be equal to one 

and then they determine maximum and minimum efficiency scores of DMUs. Finally, 

DMUs are ranked relative to their combined maximum and minimum efficiency scores. 

Here we illustrate this method in details as follows.  

     Let the number of DMUs is n while DMUj (j = 1 . . . n) produce s outputs                   

yrj (r = 1 . . . s) using m inputs xij (i = 1 . . . m). Assume that DMUo is a specific DMU to 

be evaluated and all data (inputs and outputs) is equal or greater than zero. They try to 

measure the single efficiency score of DMUo (θo) under focus of total efficiencies is one 

(∑ θj=1 n
j=1 . In general, the efficiency of a specific DMU is obtained by dividing total 

weighted of outputs by total weighted of inputs as follows where we define                    

vi (i = 1 . . . m) as input weights and ur (r = 1 . . . s) as output weights. 

θj = ∑ y
rj 

s
r=1  r / ∑  ij 

m
i=1  i         j = 1 … n                                                                    (5.1)                                                                                       

 ∑ θj 
 
j=1  = 1   

     Equations 5.1 are not used to estimate the unique scores θj , but we apply them to 

compute their maximum and minimum scores in the following model. 
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   Min and Max θo                   (5.2) 

s.t.       θj = ∑ y
rj 

s
r=1  r / ∑  ij 

m
i=1  i         j = 1 … n 

∑ θj 
n
j=1  = 1        

vi       i = 1 … m 

ur       r = 1 … s 

θj        j = 1 … n 

     This problem is needed to evaluate DMUs twice. The maximum and minimum values 

of θo are obtained by maximizing and minimizing the objective function of model 5.2, 

respectively. Notice that the above model is a fractional programming and hence we 

convert this model into a linear programming and we further re-equate this nonlinear 

program 5.2 as follows: 

   Min and Max θo = ∑ y
r  

s
r=1  r                                                                                    (5.3) 

s.t.      ∑  i  
m
i=1  i = 1 

∑  ij
m
i=1  iθj  - ∑ y

rj 
s
r=1  r = 0           j = 1 … n 

∑ θj 
 
j=1  = 1        

vi       i = 1 … m 

ur       r = 1 … s 

θj        j = 1 … n 

     Using the transformation hij = vi θj, model 5.3 is substituted as follows: 

   Min and Max θo = ∑ y
r  

s
r=1  r                                                                                    (5.4) 

s.t      ∑  i  
m
i=1  i = 1 

∑  ij
m
i=1  ij  - ∑ y

rj 
s
r=1  r = 0         j = 1 … n 
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∑  ij
 
j=1  = vi       i = 1 … m  

vi                   i = 1 … m 

ur                   r = 1 … s 

hij                  i = 1 … m        j= 1 … n 

     Model 5.4 identifies the maximum and minimum scores of θj and then we can 

determine interval of efficiency scores as follows: 

θj
min

   θj   θj
max

,                                                                                                 (5.5)               

We next write the above ranges as convex combinations of  the maximum and minimum 

scores of θj : 

θj = θj
min

 λj + θj
max

 (1- λj),  λj ,0   λj    1,                                                           (5.6)                                                       

To attain the single efficiency scores in an equitable way, all θj (j = 1 . . . n) should be 

evaluated relative to their ranges. Consequently, λj (j = 1 . . . n) should be identically 

determined, that is λ = λ1 = ・ ・ ・ = λn. Notice that we assumed that∑ θj=1n
j=1  and so 

the θj is obtained from the associated equations as follows: 

θj = θj
min

 λ + θj
max

(1- λ),  0   λ    1,                                                                   (5.7) 

∑ θj 
n
j=1  = 1        

     λ can be simply obtained by submitting convex combination of  the maximum and 

minimum scores of θj in our assumption as follows: 

1 = ∑ θj 
n
j=1  = ∑ (θj

min
λ  n

j=1 θj
m  (1-λ))= λ∑ (θj

min
- n

j=1 θj
m  

) ∑ θj
m  n

j=1                         (5.8) 

     And we therefore have 

λ = (1 - ∑ θj
m  n

j=1 ) / ∑  θj
min    

   θj
m                                                                           (5.9) 
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     Finally, values of θj (j = 1, 2 . . . n) are determined by Equation 5.6 Using obtained λ. 

Now, in accordance with efficiency score (θj), the DMUs can be ranked. On the other 

hand, DMUs are sorted in a decreasing arrangement of efficiency scores. In addition, we 

can rank DMUs from distance attitudes based on comparisons between efficiency scores 

where distance from DMUi to DMUj can be defined by d (i,j) = | θi - θj |.  

5.2 A Proposed Approach for Ranking All DMUs 

     We now present a new ranking method through introducing non-Archimedean 

element epsilons as lower bound on each input and output weight to the model presented by 

Khodabakhshi and Aryavash as follows. On the other hand, we expand their method by 

determining appropriate minimum weight for each input and output. 

Min and max θo = ∑ y
r  

s
r=1  r                                                                                     (5.10) 

s.t.     ∑  i  
m
i=1  i = 1 

∑  ij
m
i=1  ij  - ∑ y

rj 
s
r=1  r = 0          j = 1 … n 

∑  ij
 
j=1  = vi         i = 1 … m  

vi   i        i = 1 … m 

ur   r       r = 1 … s 

hij         j= 1 … n 

     It is demonstrated that it happens that some inefficient DMUs evaluated as efficient 

DMUs in efficiency evaluation using DEA techniques when some input and/or output 

weights of weak efficient DMUs are equal to zero because the corresponding input 

and/or output cannot reflect in evaluating efficiency scores of these DMUs. We use  

non-Archimedean element epsilon as lower bound on multipliers to remove the 

difficulty for discriminating efficient and inefficient DMUs so that this                      
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non-Archimedean element forces input or output weights to be non-zero in the proposed 

model and evaluation will be effected to obtain true and exact efficiency scores. Usage 

of facet analysis shows that there is at least one component with zero value in normal 

vector ),( ** UV as input and output weights of hyperplane passing by weak efficient 

DMU or weak efficient hyperplane. Epsilons impose positivity on weights and move 

normal vectors of weak hyperplanes causing their efficiency to be measured correctly. 

Simultaneously, epsilons change efficiency scores of DMUs compared with the weak 

efficient hyperplanes. To be notice that hyperplanes of weak frontier move depending on 

epsilon value, and this movement must be in a manner that the properties of PPS are 

preserved by considering epsilons as lower bound of weights in order to remain 

feasibility of the model. Since we attempt to reduce efficiency scores of these DMUs 

while holding properties of PPS, assignment of a unique value of  as lower bound on all 

multiplers cannot obtain real results in efficiency evaluation because zero components in 

normal vectors of the weak frontier hyperplanes are changed by the same value. Using 

facet analysis, we try to determine lower bounds on each weight to modify the 

introduced model such that efficiency scores of weak efficient DMUs and DMUs 

compared with weak efficient DMUs, has been evaluated correctly.   

     Furthermore, our approach provides a full and complete ranking for all efficient and 

inefficient DMUs using non-Archimedean element epsilons as lower bound on input and 

output weights based on the modified CCR model. In the next section, we illustrate how 

to compute these for non-Archimedean elements for lower bounds of weights in the 

improved model. 
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5.3 Determining Minimum Weight Restrictions 

    In this section, we determine assurance intervals for non-Archimedean element  

based on modified CCR model. We first determine the efficiency scores from the              

input-oriented version of the CCR model using this problem: 
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     Then we select the efficient DMUs and obtain their optimal values of the following 

model to decrease the number of problems for solving in the next steps. 
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     Let Z be set of DMUs with the positive optimal solutions of the above model and 

DMUw be DMU belongs to set Z. Then we determine the maximum values of input and 

output multipliers for DMUs belonging to set Z by solving the following problems 

where viw and urw are input weights and output weights for DMUw, respectively. 
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     Assume that 

iwv  and 

rwu  are the optimal values for model 4.5 and model 4.6, 

respectively and finally we obtain epsilons from (4.7) and (4.8) as follows: 

)8.4(,...,2,1}|0{

)7.4(,..,2,1}|0{

miZDMUvMin

srZDMUuMin

iwi

rwr












 

     Notice that we determine epsilons while satisfying properties of PPS especially 

convexity property. 

5.4 A Numerical Example 

     Here new method is demonstrated via Example 5.1. There are 8 DMUs including 1 input and 

2 outputs in this example listed in Table 5.1. Firstly, we deduce epsilons by following steps. The 

efficiency scores of CCR models are determined in Table 5.2 and then we represent optimal 

values of model 4.4 for the efficient DMUs in Table 5.3. Notice that DMU3 and DMU8 

belong to set Z because model 4.4 identifies their optimal solutions with positive values. 

Hence we obtain maximum values of input and output weights for DMU3 and DMU8 in 
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Table 5.4 by solving model 4.5 and model 4.6.  Finally epsilons are obtained from (4.7) 

and (4.8) as follows: 

0500.0}0500.0,1250.0{

0625.0}1500.0,0625.0{

1}1,1{

2

1

1







Min

Min

Min

u

u
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Table 5.1: Data of Example 5.1 

DMUs 1 2 3 4 5 6 7 8 

Input x 1 1 1 1 1 1 1 1 

Output1 y1 1 1 2 3 4 4 5 6 

Output2 y2 7 5 7 4 3 6 5 2 

 

Table 5.2: Optimal Solutions of CCR Model 

DMUs 1 2 3 4 5 6 7 8 

CCR 

Results 

1 0.7143 1 0.7 0.75 1 1 1 

 

Table 5.3: Optimal Values of Model 4.4 for Efficient DMUs 

DMUs 3 6 7 8 

Optimal value of 

(4.4) 

0.8750 0 0 0.9000 
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Table 5.4: Optimal Values of Model 4.5 and Model 4.6 

DMUs 
1v  



1u  


2u  

3 1 0.0625 0.1429 

8 1 0.1667 0.0500 

      Then maximum and minimum scores of a specific DMU (DMUo) are united into a 

single value by solving model 5.4 as follows: 

   Min and Max θo = y1ou1 + y2ou2                                                                               

s.t.     x1ov1 = 1 

x11h11 – (y11u1 + y21u2) = 0 

x12h12 – (y12u1 + y22u2) = 0 

x13h13 – (y13u1 + y23u2) = 0 

x14h14 – (y14u1 + y24u2) = 0 

x15h15 – (y15u1 + y25u2) = 0 

x16h16 – (y16u1 + y26u2) = 0 

x17h17 – (y17u1 + y27u2) = 0 

x18h18 – (y18u1 + y28u2) = 0 

h11 + h12 + h13 + h14 + h15 + h16 + h17 + h18 = v1 

v1    

u1   0.0625 

u2   0.0500   

h11  h12  h13  h14  h15  h16  h17  h18      

(where o varies from 1 to n). 
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     For instance, we write the new model for evaluating θ1 of first DMU as follows: 

   Min and Max θo = 1u1 + 7u2                                                                              

s.t.        1v1 = 1 

1h11 – (1u1 + 1u2) = 0 

1h12 – (1u1 +5u2) = 0 

1h13 – (2u1 + 7u2) = 0 

1h14 – (3u1 + 4u2) = 0 

1h15 – (4u1 + 3u2) = 0 

1h16 – (4u1 + 6u2) = 0 

1h17 – (5u1 + 5u2) = 0 

1h18 – (6u1 + 2u2) = 0 

h11 + h12 + h13 + h14 + h15 + h16 + h17 + h18 = v1 

v1   1 

u1   0.0625 

u2   0.0500   

h11  h12  h13  h14  h15  h16  h17  h18      0 

     The obtained θj
min 

and θj
max

 are listed in the fourth column of Table 5.5. After 

computing θj
min 

and θj
max

 for all DMUs, the value of λ can be determined from 5.9 as 

follow: 

λ = (1 - ∑ θj
m  n

j=1 ) / ∑  θj
min    

   θj
m    = 0.6717                                                                      

     Then integrated scores for all DMUs are summarized in Table 5.5 using                      

θj = θj
min

 λ + θj
max

(1- λ) and we rank DMUs based on the obtained efficiency scores. For 

instance, the minimum and maximum values of DMU1 are θ1
min

 = 0.0400 and            
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θ1
max

 = 0.2188, respectively. Thus, the efficiency score of DMU1 must be in the interval 

[0.0400, 0.2188]. Moreover, θ1 is an integrated value of θ1
min

 and θ1
max

. Notice that 

computations are obtained from WinQSB and GAMS and the results are provided in 

Appendix. 

     We can rank DMUs from distance point of view as well. For instance, DMU6, DMU3 

and DMU4 as the second, third and fourth positions of new ranking, are compared from a 

Table 5.5: A Full Ranking of DMUs 

 

DMU 

 

CCR  

Results 

 

Khodabakhshi&Aryavash 

Results 

 

[θj
min

 , θj
max

] 

 

θj 

 

Rank 

1 

2 

3 

4 

5 

6 

7 

8 

1 

0.714 

1 

0.688 

0.750 

1 

1 

1 

0.1090 (6) 

0.0834 (8) 

0.1282 (4) 

0.1090 (7) 

0.1154 (5) 

0.1538 (2) 

0.1603 (1) 

0.1411 (3) 

[0.0400, 0.2188] 

[0.0400, 0.1562] 

[0.0800, 0.2188] 

[0.1200, 0.1250] 

[0.0938, 0.1600] 

[0.1600, 0.1875] 

[0.1562, 0.2000] 

[0.0625, 0.2400] 

0.0987 

0.0781 

0.1256 

0.1216 

0.1155 

0.1690 

0.1706 

0.1208 

7 

8 

3 

4 

6 

2 

1 

5 

 

Distance viewpoint. We have d(6,3) = 0.0434 and d(3,4) = 0.004 and so                  

d(6,3) = 10.85(3,4). Thus, the distance from DMU6 to DMU3 is approximately 10 times 

more than the distance from DMU3 to DMU4.  
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      In addition, the optimal solutions of CCR model and Khodabakhshi and Aryavash 

model are shown in Table 5.5, respectively. Obviously, these values differ from our 

ranking in some cases. For example, the rank of DMU3 is third position in our method 

whereas the third position of Khodabakhshi and Aryavash ranking belongs to DMU8. 

We produce a complete ranking approach for all DMUs in Data Envelopment Analysis 

(DEA). The results indicate that new approach is more reasonable and precise than other 

approaches. In this approach, weak efficient DMUs are concerned with improvement 

their efficiency values and a combination of both pessimistic and optimistic attitude is 

applied to specify the scores. Subsequently, strengths of DMU play significant role in 

identifying θo
max

, and weaknesses of DMUo play significant role in identifying θo
min

. 

Thus both θo
min

 and θo
max

 are used to determine the rank of DMUo. 
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Chapter 6 

CONCLUSION AND FUTURE STUDY 

6.1 Conclusion  

     This thesis has introduced Data Envelopment Analysis (DEA) and its application and 

importance. Using output-to-input measures and performance evaluation, DEA aims to 

improve productivity of management as well as efficiency measures related to business, 

economics, and engineering. Chapter 2 covered a complete reference in treating this 

subject. We also illustrated interpretations and uses of facet analysis in Chapter 3. We 

expand usage of facet analysis to modify the CCR model in Chapter 4. Efficiency 

evaluation which enables researchers to rank DMUs is one of the most critical objectives 

of DEA and we represent a new ranking method for all DMUs using facet analysis in 

Chapter 5.  

     In DEA, some of inputs and/or outputs cannot reflect in evaluating the efficiency of 

DMUs when DEA evaluates some of their corresponding input and/or output weights 

with zero values. Optimal values of weights (multipliers) in the multiplier side for the 

CCR model (model 2.2) are relevant slacks for DMUs under evaluation in the 

envelopment side (model 2.7) and hence the complementary slackness theorem indicates 

that corresponding dual variables 
is (input excesses) and 

rs   (output shortfalls) of input 

and/or output weights with zero values, can be non-zero in the envelopment side. If there 

are input excesses and output shortfalls for an efficient DMU, this DMU is referred to 
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the weak efficient DMU because it has some positive slack variables in the envelopment 

side and relevant zero multipliers of multiplier side simultaneously. 

     In this regard, we determined non-Archimedean element epsilons as lower bound on 

each weight to eliminate this difficulty where epsilon is usual non-Archimedean 

infinitesimal element referred to a small positive value. To be noticed in introducing 

epsilon as a minimum weight restriction in DEA is the fact that this element imposes the 

positivity on input or output weights. This lower bound forces input or output weight to 

be nonzero and then corresponding weights reflect in evaluating efficiency in DEA. 

Consequently, we specified the appropriate lower bound on each multiplier, and so we 

can suppress the non-zero slacks through the complementary slackness theorem 

condition in order to correct efficiency scores of weak efficient DMUs. We modified the 

CCR model, which is one of the basic DEA models, by introducing lower bounds on 

input and output multipliers using facet analysis. Generally, we presented a method for 

determining lower bounds of the non-Archimedean in DEA models. 

     It is demonstrated that the feasible solutions of the CCR model (weights) are the 

normal vectors for the corresponding supporting hyperplanes of PPS using facet analysis 

and for the efficient DMUs; these hyperplanes pass through the origin. Thus, there is at 

least one component with zero value in normal vectors ),( ** UV  of weak efficient 

hyperplanes. Imposing epsilons as weight minimum move the normal vectors and do not 

allow the hyperplanes of weak frontier to be generated.  Depending on the evaluated  

value, efficiency measures of weak efficient DMUs and DMUs, which are related to 

them for evaluation, are revised. We determine an appropriate non-Archimedean 

element epsilon as lower bound on components of normal vectors considered for each 
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efficient DMU while satisfying the properties of PPS. On the other hand, we find them 

such that feasibility and boundedness are validated in the multiplier and envelopment 

sides. This results in the most appropriate hyperplane as admissible hyperplanes which 

can be replaced with hyperplanes of weak frontier. 

     When a unique value of ε is assigned as lower bound on all factor weights, the zero 

components in normal vectors of the weak frontier hyperplanes are changed by the same 

value. In this case, depending on evaluated ε, the hyperplanes of the weak frontier move 

while preserving properties of PPS. Assigning a unique epsilon as minimum restriction 

on all input and output weights of CCR model cannot produce the precise and exact 

efficiency scores for weak efficient DMUs and DMUs which are related to them for 

evaluation. Hence we modify the CCR model so as to improve the efficiency scores of 

these DMUs. We aim to reduce efficiency scores of these DMUs while satisfying the 

properties of PPS. Using facet analysis, we determined non-Archimedean element as 

lower bound on each multiplier and then we improved the CCR model such that 

efficiency scores of the weak efficient DMUs and the DMUs which are compared with 

them, has been evaluated correctly. In fact, we considered factor weights as normal 

vectors of hyperplanes, which envelop PPS at efficient frontier which is generated by 

efficient DMUs and we improved the CCR models by replacing admissible hyperplanes 

with the weak frontier hyperplanes. 

     Facet analysis was discussed in some details in Chapter 3 which has been used in 

modification of the CCR model. The efficiency evaluation in DEA enables decision 

maker to show either a DMU can increase outputs without requiring any more input 

amounts or convert fewer input amounts into the present output amounts. Subsequently, 

only section of efficient frontier is associated while a specific DMU is being evaluated 
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in DEA. This section is called facet and usage of facets helps managers or analysts to 

specify the inefficient DMUs in order to identify ways in a way that the inefficient 

DMUs improve their efficiencies through comparing with the efficient DMUs. Due to 

facets are produced by efficient DMUs, the Return to Scale (RTS) is recognized by the 

properties of their relevant facet and the scale efficiency of inefficient DMUs are 

specified by their relevant facets, respectively. 

     We focus on hyperplanes (facets) which pass through the efficient frontier using facet 

analysis. In DEA, the efficient frontier is generated by hyperplanes, which envelope 

Production Possibility Set (PPS) at efficient DMUs. In addition, the hyperplanes which 

form the weak frontier are moved while satisfying the properties of PPS so as to improve 

efficiency scores of weak efficient DMUs. 

     Khodabakhshi and Aryavash [22] ranked DMUs in 2012 relative to combinations of 

their maximum and minimum efficiency scores. Then we expand their method through 

introducing epsilons as minimum weight restriction for each DMU in their model and 

we suggest a reliable and precise method to rank all DMUs using facet analysis.    

     Another difficulty in DEA conception is shortage of discrimination in DEA uses, 

specifically when the number of DMUs is not enough or the number of DMUs is too 

small in comparison with the number of inputs and outputs and DEA cannot produce a 

full ranking of efficient DMUs. This difficulty is eliminated from our approach. Due to 

some of weight values of inputs or outputs of DMUs equal to zero, former methods have 

low ability in ranking DMUs and they have some limitations and drawbacks. This 

research has developed an equitable and precise approach for ranking all DMUs based 

on the modified CCR model using facet analysis and validation of the study has been 

achieved. Using this method, we observe a full ranking for both efficient and inefficient 
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DMUs. Two numerical examples have been studied using the new approach to examine 

its capability in fully ranking DMUs and all the DMUs have been completely ranked and 

successfully discriminated. This implies the power of new method to distinguish units, 

especially efficient DMUs. In this thesis, we supplied examples to show how new results 

can be validated when modification is applied to use. 

     Infeasibility and instability that happen in the super-efficiency models                   

(like AP model) because of being extreme sensitive to small values in data of these 

models and eliminating some of DMUs obtain very large   are removed in this 

approach. 

     Moreover, for modification of the CCR model, the number of problems for 

determining the lower bounds on each factor weight is great. Using the complementary 

slackness theorem, we reduce the number of problems for solving and the computational 

burden is considerably decreased. The new approach presents a precise ranking with 

fewer computations. 

     Our approach is concerned form both optimistic and pessimistic points of view in 

DEA and it could be more reasonable than other methods which considered only one of 

these views and a full ranking is developed using this method. Furthermore, this 

approach can compare DMUs in accord with distance attitude.  

6.2 Suggestions for Future Work 

     The importance of ranking subject in DEA concept has shown that future study in 

this direction is necessary and our work opens up several research directions. A study on 

combining our work in DEA models is recommended as a significant future expansion. 

It is verified that the applications of facet analysis and non-Archimedean elements with 
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other DEA methodologies can be developed to rank DMUs. Another direction for 

research is provided by ranking DMUs with imprecise and vague data. Moreover, 

determination of λ can be expanded in our method. In this thesis, we focused on 

modeling input orientations and our study can be easily extended to output-oriented 

models. 
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Appendix A: Coding Example 5.1 Using WinQSB 

A.1 Optimal Solutions of CCR Models Summarized in Table 5.2 
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A.2 Optimal Values of Models (4.5) and (4.6) Summarized in Table 5.4 

Optimal v1 of model 4.5 for DMU3:

Optimal u1 of model 4.6 for DMU3:
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Optimal u2 of model 4.6 for DMU3: 

 

Optimal v1 of model 4.5 for DMU8:
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Optimal u1 of model 4.6 for DMU8:

 

Optimal u2 of model 4.6 for DMU8: 
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A.3 Optimal Values of Models (5.4) Presented by Khodabakhshi and Aryavash 

Maximum value of model (5.4) for DMU1:

 

Maximum value of model (5.4) for DMU2:
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Maximum value of model (5.4) for DMU3:

 

Maximum value of model (5.4) for DMU4:
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Maximum value of model (5.4) for DMU5:

 

Maximum value of model (5.4) for DMU6:
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Maximum value of model (5.4) for DMU7:

 

Maximum value of model (5.4) for DMU8:
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Minimum value of model (5.4) for DMU1:

 

Minimum value of model (5.4) for DMU2:
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Minimum value of model (5.4) for DMU3:

 

Minimum value of model (5.4) for DMU4:
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Minimum value of model (5.4) for DMU5:

 

Minimum value of model (5.4) for DMU6:
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Minimum value of model (5.4) for DMU7:

 

Minimum value of model (5.4) for DMU8:
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Appendix B: Coding Example 5.10 Using GAMS 

B.1 Maximum Solutions of Proposed Model 5.10 Summarized in Table 5.5  

Maximum solution of model 5.10 for DMU1: 

 

Maximum solution of model 5.10 for DMU2: 
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Maximum solution of model 5.10 for DMU3: 

 

 

Maximum solution of model 5.10 for DMU4: 
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Maximum solution of model 5.10 for DMU5: 

 

 

Maximum solution of model 5.10 for DMU6: 

 

 

 

 



 97 
 

Maximum solution of model 5.10 for DMU7: 

 

 

Maximum solution of model 5.10 for DMU8: 
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B.2 Minimum Solutions of Proposed Model 5.10 Summarized in Table 5.5 

Minimum solution of model 5.10 for DMU1: 

 

 

Minimum solution of model 5.10 for DMU2: 

 

**** MODEL STATUS      1 Optimal 

**** OBJECTIVE VALUE                0.0400 
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Minimum solution of model 5.10 for DMU3: 

 

 

Minimum solution of model 5.10 for DMU4: 
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Minimum solution of model 5.10 for DMU5: 

 

 

Minimum solution of model 5.10 for DMU6: 
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Minimum solution of model 5.10 for DMU7: 

 

 

Minimum solution of model 5.10 for DMU8: 

 

 

USER: GAMS Development Corporation, Washington, DC   G871201/0000CA-ANY 

 

 


