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ABSTRACT 

In this thesis, we investigate the geodesics of the 4-dimensional (4D) linear dilaton 

black hole (LDBH), which is an exact solution to the Einstein-Maxwell-Dilaton 

(EMD) theory. These spacetimes have non-asymptotically flat (NAF) geometry. The 

motions of massless (null) and massive particles (timelike) are studied via the 

standard Lagrangian method. Due to the physical necessities, we do not consider the 

spacelike geodesics. After obtaining the Euler-Lagrange (EL) equations, we 

separately analyze both radial and circular motions of those geodesics. In the same 

line of thought, we perform numerical simulations in order to plot many graphs for 

displaying the geodesics. Exact analytical solutions are also obtained for the radial 

and the angular geodesic equations. In particular, it is shown that the radial 

trajectories are governed by the WeierstrassP-function (-function), which is an 

elliptic-type special function. 

Keywords: Linear dilaton black hole, Geodesics, WeierstrassP-function. 
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ÖZ 

Bu tezde, Einstein-Maxwell-Dilaton (EMD) teorisinin tam bir çözümü olan 4-

boyutlu (4D) doğrusal dilaton kara deliğinin (LDBH) jeodeziklerini araştırmaktayız. 

Bu uzay-zamanları asimptotik düz-olmayan (NAF) geometriye sahiptirler. Kütlesiz 

(boş) ve kütleli parçacıkların (zaman-gibi) jeodezik hareketleri standart Lagrange 

yöntemi ile incelenmiştir. Fiziksel gereklilikten ötürü, uzay-gibi jeodezikleri dikkate 

almadık. Euler-Lagrange (EL) denklemlerini elde ettikten sonra, radyal ve dairesel 

jeodeziklerin her ikisini de ayrı ayrı analiz ettik. Bu düşünce doğrultusunda, 

jeodeziklerin görüntülenmesi sağlaycak birçok grafik çizebilmek için nümerik 

simulasyonlar yaptık. Radyal ve açısal jeodezik denklemleri için tam analitik 

çözümler ayrıca elde edilmiştir. Özellikle, radyal yörüngelerin eliptik-tipi özel bir 

fonksiyon olan WeierstrassP-fonksiyonu (-fonksiyonu) tarafından yönetildiği 

gösterdik. 

Anahtar kelimeler: Lineer dilaton kara deliği, Jeodezik, WeierstrassP-fonksiyonu. 
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Chapter 1 

INTRODUCTION 

The motion of test particles (both massive and massless) provides the only 

experimentally feasible way to study the gravitational fields of objects such as black 

holes (BHs). Predictions about their observable effects (light deflection, the 

perihelion shift, gravitational time–delay etc.) can be made, and also compared with 

the observations. For this reason, geodesics in the BH spacetimes have always been 

studied, extensively. Today, there are numerous studies about the geodesics of 

various BHs in the literature (for instance, one may see [1]). Recently, exploring the 

general solution to the geodesic equation in 4D spacetimes has also been attracted 

much attention [2-5]. 

In this thesis, our main motivation is to study the geodesic structure of the LDBH 

introduced in [6] whose asymptotic behavior is NAF. This BH arises as an exact 

solution to the EMD theory [6,7]. One of the intriguing features of these BHs is that 

their Hawking radiation (HR) is governed by isothermal processes, which occur at a 

constant temperature. Namely, while a LDBH radiates, the energy transferring out of 

the BH happens at such a slow rate that the thermal equilibrium is always 

maintained. The thermodynamical studies on the LDBH can be seen in [8-14].We 

study the motion of both massless (null geodesics) and massive particles (timelike 

geodesics) on this background. To this end, we follow the standard Lagrangian 

procedure as employed in [5]. We analyze the effective potential, which describes 
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the motion of particles along the null and timelike geodesics. We make numerical 

computations and present many plots to serve fine details about the associated 

geodesics. Also, we give analytical expressions for the radial and angular geodesic 

equations. The radial ones are found in terms of the ℘-function [15].  

The thesis is organized as follows. In chapter 2, we review the LDBH spacetime and 

present some of its physical properties. In chapter 3, the derivation of geodesic 

equations via the standard Lagrangian method is represented. Radial geodesics with 

zero angular momentum are also discussed. Chapter 4 is devoted to the circular 

motion of the null and timelike geodesics. The plots of those geodesics are exhibited. 

Exact analytical solutions of the geodesic equations in the LDBH background are 

studied in chapter 5. We draw our conclusions in chapter 6. 
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Chapter 2 

LDBH SPACETIME 

In general, the metric of a static and spherically symmetric BH in 4D is given by: 

 2 2 1 2 2 2ds fdt f dr R d       (2.1) 

where 

 2 2 2 2Ωd d sin d      (2.2) 

which is the line-element of the unit 2-sphere. When the metric functions of the line-

element (2.1) are written in the following form:  

  
0

1
f   r b

r
    (2.3) 

 
2

0R r r       (2.4) 

the spacetime (2.1) is called as the LDBH. Here, the physical constant parameter 0r  

is related with the conserved charge of the LDBH as: 0 2r Q  in which Q  is a non-

zero positive definite physical parameter [6]. However, these BHs have no zero 

charge limit due to the associated field equations coming from the EMD theory. 

More details about this issue can be found in the paper written by Clément et al. [6]. 

It is obvious from Eq. (2.3) that a LDBH possesses a NAF geometry and its event 

horizon is hr b . For 0b  , the horizon transparently shields the null singularity at 

𝑟 = 0. On the other hand, if one considers the quasi-local mass ( M ) definition of 
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Brown and York [16] for the line-element (1) with Eqs. (2.3) and (2.4), we obtain the 

following relationship  

 4b M   (2.5) 

In general, the definition of the Hawking temperature 𝑇𝐻 [17] is expressed in terms 

of the surface gravity 𝜅: 

  
1

4 h

tt ij

tt ,i tt , j
r r
lim g g g g


 
  

 
  (2.6) 

as  

 
2

HT



       (2.7) 

Using Eq. (2.6), one can compute the surface gravity 
0

1

2r
  . Thus, the 𝑇𝐻 value of 

the LDBH becomes: 

 
0

1

4
HT

r
       (2.8) 

It is obvious from the above expression that the obtained temperature is constant; 

thus Δ𝑇 = 0. So, the HR of the LDBH is made by the series of the isothermal 

processes.  

One can also compute that the invariants (Ricci scalar ( ), full contradiction of the 

Ricci tensor (


  ) and Kretschmann scalar ( ), see [18] for the details) of the 

spacetime and obtains  

 
2

0

1 1

2

b

r r r

 
   

 
    (2.9)  



5 

 

 
2

2 4 2

0

1 3

4

b

r r r





 
    

 
    (2.10)  

 
2

2 4 3 2

0

1 3 6 11

4

b b

r r r r





 
     

 
 (2.11)  

which represent that the curvature singularity is located at 0r  . 
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Chapter 3 

RADIAL GEODESICS OF THE LDBH 

3.1 Derivation of the Complete Geodesics Equations of the LDBH 

From EL Equations 

In order to study the geodesics of the test particles in the LDBH background, in this 

section we employ the standard Lagrangian method. The corresponding Lagrangian 

 L  of a massive particle with unit mass in the LDBH geometry is given by 

  
2

2 2 22    o

r
L ft r r sin

f
      

    (3.1)  

where the dot over a quantity denotes the derivative with respect to the affine 

parameter  . The metric condition is in general defined by  

 
2

L


       (3.2)  

in which  0 1    stands for the null (timelike) geodesics. Since  t,  are cyclic 

coordinates, their conjugate momenta  ,t    are  

   0tdd L d
ft

d t d d  


   





 (3.3)  

  2   0o

d L d d
r rsin

d t d d




  

 
  





 (3.4)  
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Besides, the metric (2.1) admits a timelike Killing vector field as t   , which is 

related to the stationarity of the metric. Thus, we obtain a conserved quantity as 

follows. 

 
0

g u tf E

Er
t

r b

 

    

 





 (3.5)  

where E  is a constant of motion and u  is known as the four-velocity vector. This 

E  is related to the energy of the test particles. However, due to the NAF structure of 

the LDBH spacetime, E  is associated with the "total energy" of the particles 

detected by an external observer located at 0r r b  , instead of the spatial infinity, 

which is in general valid for the asymptotically-flat geometries. On the other hand, 

the spacelike Killing vector     is related to the axial symmetry of the line-

element (2.1). Its conserved quantity is found by 

 

2

2

o

o

g u r r sin l

l

r r sin

 

 




 

 



  (3.6)  

where l  is an integration constant associated with the angular momentum of the 

particles. For simplicity reasons, we project the problem onto an equilateral plane 

whose 
2


  . This makes it possible to obtain the following radial EL equation: 

 
2 2

2

o

dr
 E f

d r r




  
     

   


  (3.7)  

which can be rewritten as 

 
2

1

2
eff eff

dr
V

d




 
  

 
  (3.8)  
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where the effective potential and the effective energy read 

 
21

2
eff

o

V    f
r r


 

   
 


  (3.9)  

 21

2
eff    E    (3.10)  

Using the chain rule 
o

d d
  

d rr d 



, we obtain 

  
2 2 2

2

2 o
eff eff

r rdr
V  .

d




 
  

  
  (3.11)  

Setting 𝑟 =
1

𝑢
 , we can carry out the problem to the standard Kepler problem. Thus, 

we have  

 
2 2 2 2

2 0
02 2

0

1 oE r rdu bu
u r

d r u





     
       

       
 (3.12)  

As can be seen in the later sections, this equation is going to be used in the analysis 

of the circular motion.  

3.2 Radial Geodesics without Angular Momentum 

In the case of zero angular momentum (i.e. 𝓁= 0), the motion remains in the plane 

with const.  , and the particle moves only in the radial direction. Therefore, Eq. 

(3.7) becomes  

 
2

2dr
 E  f

d




 
  

 
   (3.13)  

In the null geodesics, which refers to the motion of a photon (massless particle), the 

above equation reduces to 

 
2

2dr
 E

d

 
 

 
  (3.14)  
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Recalling Eq. (3.5), one can change the variable of the above differential equation 

from the affine parameter   to the t  time. To this end, we use 
f

d   dt
E

   and 

therefore Eq. (3.14) becomes 

 
o

dr r b
   f  

dt r

 
   

 
  (3.15)  

Hence, we first obtain the following integral between the radial position of the 

photon and the time, and then the solution of r( t )  as follows. 

 

   

 

  1

o  o

o 

o  

i

o  

dr dr
 dt   dt  

f f

r ln r b ln(c) t t t

r b t
ln

c r

t
r t  b  c exp   

r

t
r t  r b exp   

r

  

 

    

       

  
   

 

 
    

 

  
     

   

 

  (3.16)  

in which the integral constant c  is chosen to be  

 0ic  r b      (3.17)  

where ir  represents the initial position of the photon, and t   corresponds to the time 

measured by an external observer as his/her initial time is 0t . 

On the other hand, in the case of timelike geodesics  1i.e.       , which belongs to 

the motion of a massive particle (with unit mass), Eq. (3.13) takes the following form 

 
2 2

2 o

o

f
E r b rdr

 E  
d r


 

 
 

 
  (3.18)  
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which leads to 

 

2

2

2

2

1
2

1

2

o

o

dr d r dr
   

d d r d

d r

d r

  





  

  (3.19)  

If we select the proper time  , instead of the affine parameter  , we obtain the 

radial force per unit mass as 

 
2

2

1

2
r

o

d r
a    

d r
    (3.20)  

where ra  represents the centrifugal acceleration due to its negative sign. It is well-

known that ra  is directed toward centre of the LDBH.  

Now let us consider a particle that starts its motion from rest at an initial radial point 

ir r . Using    within Eq. (3.18), we obtain  

2 i

o

r b
E    

r


      (3.21)  

which changes Eq. (3.18) to 

2

i  

o

r rdr
 

d r

 
 

 
    (3.22)  

Furthermore, the effective potential in radial motion can be derived from Eq. (3.20). 

To this end, let us consider the conservative force definition for a test particle ( 1m  ) 
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 

2 2

2 2

1

0

1

2

1

2 2

1

2 2

o

eff

eff

eff

o

eff

o

r d r
F m      

d d r

dV
F V   F

dr

r
V F  dr  dr c

r r

f

d

r bV    
r

 
   

    

     

  

      (3.23)  

where the integration constant 1c  is properly selected as 1

02

b
c

r
   for the sake of 

the conformity with Eq. (3.9).  

By using the physical quantities given in chapter one, which are 4b M  and 

0 2r Q , the effective potential becomes 

1 4

2 2
eff

r M
V      

 Q  Q

 
  

 
    (3.24)  

Upon introducing 
r

r̂
Q
  and 

M
M̂

Q
 ,  we can rewrite it as   

 
1

4
2 2

eff
ˆˆ ˆV r     r)  ( M      (3.25)  

which is depicted in Fig. 1. In this figure the horizon ĥr  is the intersection of effV ( r̂ )  

with the r̂  axis. This figure shows that there is an upper bound for the motion of the 

particle which tends to diverge while shifting towards spatial infinity. Depending on 

the bigness of the size of M̂  this upper bound diverges further away.  

Finally, by using Eqs. (3.5) and (3.13), we can obtain 

 
2 2

2

2

dr f
  E f

dt E

 
  

 
     (3.26)  
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Figure 1: The plot of the effective potential effV ( r̂ )  versus r̂ . The plot is 

governed by [Eq. (3.25)]. For a constant M̂ , the linear behavior of the 

effV ( r̂ )  is illustrated 

 

which is for the timelike geodesics. Now differentiating the square-rooted form of 

the above expression with respect to 𝑡, one finds out that 

   

 

2 31
2 2

2
2 2

2 1

2
2

dr f f
  E f   X X f

dt E E

d r d
X

dt dt

 
      

 



   

 

 

 

2 1

2
2

2 1

2
2

2

2

2
2

2 2

1

2

1 1

2 2

3 1
2

2 3
2

o

o

d r dX
X   

dt dt

d r dX dr dX
X      ,

dt dr dt dr

dX f df df
f   ; ,

dr E dr dr r

d r f
E f

dt E r







 

   
    

   

 

   (3.27)  
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Figure 2: Plot of how the massive particle falls into 𝑟 = 0 singularity of 

the LDBH spacetime. The plots are governed by Eqs. (3.20) and (3.27). 

In Fig. 2, we plot the variation of the coordinate time ( t  ) and the proper time ( ) 

along a timelike radial-geodesic described by the test particle, starting at rest at ir r

and falling towards the centre of the BH (singularity). 

 

 

Also, we would like to emphasize that energy-related constant of motion of the 

particle can be found from Eq. (3.2). Name6ly, for a massive particle starting from 

rest, one reads 

 
2

2

2
0 i

i

f
  E f

E
       (3.28)  

which yields 

2 i
i

o

r b
E f

r


       (3.29)  
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In Fig. 3, we plot 2E   versus ir  for different values of 0r . It is clear from this figure 

that  energy vanishes at the horizon ir b , which is chosen as 1 in this figure.. 

 

 

 

Figure 3: A plot 2E  versus ir   [Eq. (3.29)] of a massive particle, starting 

from rest at ir , which moves along timelike geodesics for different values of 

0r . Here b =1. 
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Chapter 4  

CIRCULAR GEODESICS OF THE LDBH 

4.1 Geodesics with Angular Momentum 

In this section, we study the circular motion of both null and timelike geodesics [see 

Eq. (3.12)] by considering 0
u uc

du

d


  in which 
1

c cr u  is the circular orbit of the 

particle. Therefore, the associated condition corresponds to 

2 2 2 2
2

2 2

1
0

c

o c o
c o

o c
u u

E r bu rdu
  u r .  

d r u






     
       

       
  (4.1)  

Now, taking derivative of both sides with respect to   one finds 

2 2 22
2

2 2 2

1
2 o o

o

o

E r rdu d u d bu
u r   

d d d r u



  

        
       

       


  
  (4.2)  

which results in 

2 2 22
2

2 2 2

1 1

2

o o
o

o

E r rd u d bu
u r  

d du r u





     
     

     



 
  (4.3)  

As usual, the above equation is used for having equilibrium. Namely, the net force 

exerting on the particle should be terminated. This in turn implies the vanishing of 

the acceleration, i.e., 
2

2
0

d u

d
 . Thus we have   
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2 2 2
2

2 2

1
0

c

o o
o

o
u u

E r rd bu
u r

du r u





     
     

      


 

  (4.4)  

which yields the following expressions for the constants of motion that are required 

for having the equilibrium. 

 
2

2 2

2

1 c

eq

c o

bu
E E

u r b

 
      (4.5)  

and  

 
 

2

2 2
2 2

3 2

o eq c o c

eq

c c

r E u r bu

u bu

 
 





     (4.6)  

Substituting Eq. (4.5) into Eq. (4.6), we further obtain 

 
 

 

 

 

 

 

 

 

2

2

2

2

2

2 2 2

2 2

2

2 2

3 2

2 1
2

3 2

2 1
1 2

3 2

2 1 2

3 2

2 1 2
3 2

o eq c o c

eq

c c

c o c

o c

c o

c c

o co
c

c c c o

o c c o c oo

c c c o

o
o c

c o c

r E u r bu

u bu

u r bu
r bu

u br

u bu

r bur
bu

u bu u r b

r bu u r b b u rr

u bu u r b

r
r b u

u r b bu

 


 







 
 



 
  
 
  



 
   

   

   
  

   


  





 

 
 

 
 

2 2

2

2

2

2 3
3 2

2 3
3 2

c c o c o

o c o

c c

o
c

c c

bu u r b b u r

r u r b
u b bu

r
u b

u b bu





  
 


 




  


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 

 

 
 

 
 

 
 

2 2 2

2 2 2 2

2

2

2

2

2

2 1 2

3 2

2 1 2 2
3 2

2 3
3 2

2 3
3 2

o c c o c oo

c c c o

o
o c c c o c o

c o c

o c o

c c

o
c

c c

o
eq

c

r bu u r b b u rr

u bu u r b

r
r b u bu u r b b u r

u r b bu

r u r b
u b bu

r
u b

u b bu

r

u b











   
   

   


     
 


 




 







 (4.7)  

It is easy to see that for the physical particles ( 0 1,   ) both 
2

eqE  and 
2

eq  cannot 

take positive values. It means that the stable (equilibrium) circular motion does not 

exist in the LDBH background. Additionally, if one computes the ratio of 

2

2

eq

eq

E


, we 

have 

 
2 2

0

2 2
1eq

eq

cbu

r

E 



    (4.8)  

which is independent of  . 

4.2 Null Geodesics of the Circular Motion 

To analyze the circular motion of the null geodesics, we first set 0   in Eqs. (4.1) 

and (4.4). Thus, one arrives at 

3

0 0
2

c

u uc

c c

u b
u

du
r

d


        (4.9)  

and according to the ratio (4.8), one reads 

22

0

2
1eq

eq

E

r



     (4.10)  
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Furthermore, we want to study on the stability of light orbits. To this end, we use the 

geodesic equation of the null geodesics given in Eq. (3.7). So, the reduced equation 

 0   becomes 

2 2

2 2

1

o

dr f E

d r r

 
  

  
     (4.11)  

Setting 








 enables us to rewrite the above expression in the following form 


 

2

effeffV
d

dr
E



 
  

 
     (4.12)  

where 

 2 2

4
1

4

1
1eff

o o o

f M r
r

r r rr M
V

rr

 
     

 



    (4.13)  


2

2
eff

E
E 


     (4.14)  

where 
4

r
r

M
 . The stable circular orbits become possible when we have 

2

2
0 0

c c

eff eff

r r r r

dV d V

dr dr
 

  
 

   (4.15)  

The peak value of effV  the corresponds to the spatial infinity. Fig. 4 represents the 

plots for effV  versus r  for different values of 0r . These figures manifest that there 

are no stable circular orbits for photons.  
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Figure 4: The plot of effV  versus r  [see Eq. (4.13)]. For various 0r  

values, it is seen that there exists unstable orbits for the massless 

particles (photons). However, the instability tends to disappear for the 

greater values 0r  while r  . 
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(a) (b) 

(c) 

Figure 5: Circular orbits of the photons. The simulations which are made in the 

famous mathematical program Maple 18 [19] are governed by Eq. (3.11) with 0  . 

During simulations, the initial speed of the photon is assumed to be 1, and the Runge-

Kutta method is employed. The far region (a), the middle region (b) and the near 

horizon region behaviors of the photon are shown. Parameters are chosen to be 1M   

 4hr   and 2 10 . 

For 0 1r  , the orbital motions of the photon are illustrated in Fig. 5. 
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4.3 Timelike Geodesics of the Circular Motion 

To finalize our study about the stability of the equilibrium circular motion for a 

massive particle, we also take account of the effective potential (3.9) for the 

dynamical motion of the massive particle. Let us recall that for a stable circular 

motion the requirements are given in Eq. (4.15). Fig. 6 exhibits the effective potential 

in terms of r  for 0 0 1 0 5 1and 5r . , . , , respectively. We see that similar to the 

unstable circular orbits for the photons, there is no stable circular orbit for the 

massive particles, whose their plots are presented in detail in the Fig. 7.  

 

Figure 6: The effV  plot versus r  for massive particles with different values of 0r . 

No stable orbits exist. Here 1M .   
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Figure 7: Circular orbits of the massive particles for various 0r  values. The 

simulations are performed with the Maple 18 [19] and they are governed by Eq. 

(3.11) with 1   . During simulations, the initial speed of the massive particle is 

assumed to be 0, and the Runge-Kutta method is employed. Parameters are chosen to 

be 1M    4hr   and 2 10 .  

In Fig. 7, we give the both plots of the effV  of the massive particles with unit mass 

and its corresponding circular orbits, in the same framework.  
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Finally, using Eq. (3.20) one can also derive the circular velocity of the massive 

particles with unit mass by using the fact that 

2v
F

r
  . Thus one finds 

02

r
v

r
      (4.16)  

Its associated plots are given in Fig. 8. It can be easily seen that the circular velocity 

of the massive particles tends to decrease when the charge parameter 0r  gets larger 

values. 
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Figure 8: Plots of the circular velocity v  versus radial distance r  for 

different values of the 0r . The blue dashed line indicates the event horizon 

hr  . 
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Chapter 5 

ANALYTIC SOLUTION TO THE GEODESIC 

EQUATIONS OF THE LDBH GEOMETRY 
 

5.1 EL Equations with Mino Proper Time 

In this section, we reconsider the Lagrangian (3.1) by using the Mino proper time 

   [20] which is governed by the following differential expression for the LDBH.  

 0d rr d       (5.1)  

Thus, the modified Lagrangian becomes 

 

2 2 2 2

21 1 1 1

2 2 2 2o o

f dt dr d d
L sin

rr d rr f d d d

 


   

       
           

       
 (5.2)  

and its corresponding metric condition is in the same form with Eq. (3.2). After 

applying the EL method, we obtain 

 
2

0

0

0  
r rd f dt dt

d rr d d


  

 
    

 
   (5.3)  

 2

2
0  

d d d
sin

d d d sin

  


   

 
   

 
   (5.4)  

in which rf  ,   and   are the integration constants. In addition to them, we 

have 
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2

2

2

2

3

2

2 2

2 2

d
sin  cos

d d

d
sin  cos

d

cos
 
sin

d

d
d d

d

d d


 

 


 






   

 









 
  

 

 
   

 



 
    

 

  

   (5.5)  

therefore 

 

2 2
d

 K
d sin

 

 

   
    

  
     (5.6)  

where K  is another integration constant. Finally, with the aid of the metric 

condition, one can derive the radial equation as follows. 

 

2 2
2 2 20

2 2 4

0 0

3 2 2
2 20

2 2 2 2

4 2

0

1 1 1 1

2 2 2 2 2

1

r rf
r K sin

rr rr f sin sin

fr r
r K

r f rr f sin sin

  
 

 

 


 

 
     

  



 
 



 



  





   

2
2 20

0

2

0

2

0

1r r
r K

r

r K r rr



 

 



    
 

    





 (5.7)  

5.2 Exact Analytical Solution of the Radial Geodesics 

Following the method in which the details are given by [21,22], we make a 

transformation for the r -coordinate as  

 
s

r   z
x

        (5.8)  

where 1s    and z  satisfies the following condition  

     0 0

2
0

r z

K r rr 


        (5.9)  
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which is equivalent to 

  
   2 2 2

0 0z r K zb K

z

   



   






    (5.10)  

where 

   b K        (5.11)  

 
2 2

0r K         (5.12)  

Then, Eq. (5.7) becomes 

  

2

3 2

3 2

dx
 b x b x

d

 
  

 
     (5.13)  

where 

  
2 2

0
2

r b
b

b z





     (5.14)  

  
3 2 2

z
 b   b szb

s
      (5.15)  

Letting another transformation, which is given by 

  
2

4 1

3

s U
x

z  b  

 
  

 
    (5.16)  

we then put Eq. (5.13) into the following form : 

  

2 2 3
3 2 24

12 216

b
U

dU

d

b



 
 


  


    (5.17)  

The above equation has two solutions. One of them is  
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  2
1

6

b
U        (5.18)  

which admits 
s

x
z

   and consequently 0r  , so that it is a trivial solution. Another 

solution can be found in terms of the -function [15] as  

  2 3

2 22

1
3

6 6
U , b , b




 
    

 
    (5.19)  

where   is an integration constant. Thus, the exact solution for the radial geodesics 

of the LDBH results in 

  2

2 2

3
1

12

s bs
r   z  z

x U  b

 
    

 
    (5.20)  

After a straightforward computational simplifications, we have managed to express it 

as follows.  

   
2

3

2 3
6

r  r

, ,




 

 
 
   
 





       

  

   (5.21)  

The significant cases about this solution are summarized below. 

 𝑖   If    , which means that K     ⟹     0r .   

 𝑖𝑖   If    , which means that 
2 2

oK r       ⟹    r .   

 

 



29 

 

5.3 Exact Analytical Solution of the Angular Geodesics 

One can easily integrate the  -equation (5.6) to obtain the analytical solution as in 

the following form.  

   1  ( ) cos           (5.22)  

in which  

   ˆ         (5.23)  

where ̂  is yet another integration constant. After substituting the above solution 

into the  -equation (5.4), we find out  

  
0  ( )           (5.24)  

where 0  is also an integration constant. 
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Chapter 6 

CONCLUSION 

In this thesis, we have considered geodesic structure of the LDBH, which is a 

solution to the EMD theory. Using the conventional Lagrangian procedure, the radial 

and angular geodesics of photons and massive test particles have been obtained. 

Then, we have studied the radial and circular motions, numerically. We have shown 

that the effective potentials of both null and timelike geodesics admits unstable 

motions. The associated circular motion of the photon is exhibited in Fig. (5). 

Furthermore, depending on the initial position of the massive particle, its spiral like 

attractive trajectories have been depicted in the Figs. (7). Besides, the circular 

velocity of the massive particles is also examined. Finally, the exact analytical 

solution of the general  0 11, ,    radial geodesics with the particular time, which 

is the so-called Mino proper time is given in terms of the -function. Also, we have 

represented the angular solutions as a function of the Mino time.  

As a final remark, it would be interesting to extend my work to the geodesics of the 

rotating LDBHs. Because of this reason, I plan to investigate the effect of the 

rotation parameter on the related geodesics. This is going to be my future study in the 

near future. 
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