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ABSTRACT 

Linear-phase finite impulse response (FIR) filters are widely used in digital signal 

processing applications because of their various advantages. These advantages 

include the absence of phase distortion, unrestricted stability, and lower filter-

coefficient sensitivity. The most important shortcoming of linear-phase FIR filter is 

that the overall group delay is (N-1)/2 where N is the length of the filter. This 

quantity becomes large for higher order filters in communication applications.  

Many algorithms have been proposed to reduce this delay and its distortion. 

Typically, block convolution techniques such as overlap-add method (OAM) and 

overlap-save method (OSM) are used for a long input sequence. Yet, with respect to 

input, by using these methods, the output sequence has a finite group delay. 

In this thesis, the performance of enhanced modified overlap and save method is 

investigated. First, the impulse response is made causal and then it is 

shifted left (circular) by an amount of         for   odd and     for   even. 

Finally, the samples to be excluded from the final convolution are defined. It is 

expected that this results in a reduction in the causal delay and also in the group 

delay. Simulations are carried out by MATLAB. The performance of the method is 

compared with the results obtained from the OSM based filter. 

Keywords: Impulse Response, FIR Filter, Linear Phase FIR Filter, Group Delay. 
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ÖZ 

Doğrusal fazlı sonlu dürtü cevaplı (FIR) süzgeçler çok çeşitli avantajlarından dolayı, 

sayısal sinyal işleme uygulamalarında yaygın olarak kullanılmaktadırlar. Bu 

avantajlar, faz bozunumu içermeyen, sınırsız kararlılık ve süzgeç katsayılarına olan 

az duyarlılık olarak sıralanabilir. Ancak, doğrusal fazlı FIR süzgeçlerinin en önemli 

dezavantajı ise toplam grup gecikmesinin (N-1)/2 olarak ortaya çıkmasıdır. Buradaki 

N, süzgeçteki katsayı sayısını temsil etmektedir. Haberleşme uygulamalarında, 

toplam gecikmenin miktarı süzgeç katsayılarının sayıları ile doğru orantılı olarak 

artmaktadır.  

Bu gecikmeyi ve ondan dolayı oluşan bozunumu azaltmak için birçok algoritma 

önerilmiştir. Tipik olarak, uzun giriş dizileri için blok konvolüsyon olarak bilinen 

üstüste binik toplama metodu (OAM) ve üstüste binik saklama metodu (OSM) 

kullanılır. Bu metodlar kullanıldığında, çıkış dizisinin girişe göre sonlu bir grup 

gecikmesi vardır. 

Bu tezde, iyileştirilip modifiye edilmiş üstüste binik saklama metodunun performansı 

incelemiştir. İlk olarak, süzgeçin dürtü cevabı nedensel yapılmıştır ve bu dürtü 

cevabı daha sonra, N tek olduğu zaman (N-1)/2 kadar sola, çift olduğu zaman ise N/2 

kadar yine sola kaydırılmıştır. 

Son olarak, son konvolüsyon sonucundan dışlanacak olan örnekler tanımlanmıştır. 

Bunun, nedensel gecikme ve grup gecikmesinin azalmasına neden olacağı 
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beklenmektedir. Benzetim çalışmaları MATLAB ortamında yapılarak, bu metodun 

performansı, OSM metodundan elde edilen sonuçlarla karşılaştırılmıştır. 

Anahtar kelimeler: Dürtü Cevabı, FIR Süzgeç, Doğrusal Fazlı FIR Süzgeç, Grup 

Gecikmesi 
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Chapter 1 

INTRODUCTION 

Finite impulse response (FIR) filter is defined as the digital filter that performs 

mathematical operations on a piece of discrete-time signal in order to change some of 

its characteristics in a desired manner. Linear-phase FIR filters are preferred in 

digital signal processing applications because of their various advantages. These 

advantages include unconditional stability, absence of any phase distortion and lower 

filter-coefficient sensitivity.  

The linear-phase FIR filter also has a main disadvantage which is the overall group 

delay           in specific applications, where N represents the filter length. It is 

obvious that this amount becomes larger when high order filters are considered. 

Also, such a large amount of group delay leads to untolerable echoes of the 

transmitted signals in communication applications. There are a lot of important 

applications of linear phase filters, in which the high group delay caused by linear 

phase is important (for instance in electrocardiography where the delay could modify 

the QRS complex location [1], in two-way speech communication systems calling 

for a low round-trip delay).  

On the other hand, large delay in discrete-time control applications is also 

unacceptable. The group delay slows down the speed of processor. A multirate 

digital signal processing approach has been suggested to minimize this delay in 

active noise control systems [2].  
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A recent category of maximally nonsymmetrical flat FIR lowpass filter has been 

improved as in [3] to improve the performance of the filter design. In comparative 

manner, this improvement gives a constant of group delay, unlike the symmetric 

filter with no collapse of frequency response magnitude. A robust non-iterative 

algorithm has been proposed in [4] to design optimal minimum-phase digital FIR 

filters with arbitrary magnitude responses based on discrete Hilbert transform (DHT). 

When the DHT is extended to the complex case, the minimum-phase filters require 

less memory and less arithmetic calculations than linear-phase filters for satisfying 

the same constraints on delay and magnitude response. Here, by that algorithm, the 

magnitude spectrum of the truncated minimum-phase sequence is different from the 

actual magnitude spectrum. As a result, it is interesting to calculate the minimum 

delayed outcome response without making any change in the impulse response (IR) 

of the filter. It looks like unattainable according to the most common filtering 

algorithms, for instance overlap add method (OAM), and overlap save method 

(OSM) mentioned in [5] and this technique is utilized by the following convolution 

equation: 

                

 

   

 (1-1) 

   

Here x(n)  represents  the input signal which  will be filtered, h(n)  represents the 

filter impulse response, y(n)  represents  filtered signal, and  N is the filter length. 

The design of low delay FIR bandpass filters with maximally flat passband and 

equiripple stopband by doing successive projections approach was presented in [6]. It 

is well known that linear-phase FIR filter delay increases by increasing the filter 

length. A weighted least squares (WLS) technique has been proposed to design a 
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near-equiripple FIR filter having variable fractional delay [7]. On the other hand, the 

design of arbitrary variable fractional-delay FIR filters has been achieved which is 

based on the complex version of WLS [8]. 

Apaydin showed a new technique for reducing the delay in FIR digital filters with 

equiripple passband, and peak constrained least squares stop-bands for real-time 

applications [9]. In this technique, the reduction of the group delay that can be 

reached is between 12-22 % in passband compared with the present techniques. Kene 

[10] proposed doing some adjustments to overlap-save method (OSM) and overlap-

add method (OAM) algorithms to be used for filtering real signals by an N tap FIR 

filter. This technique requires two complex 2N-point discrete Fourier transform 

(DFT) in order to get two blocks of N samples, unlike the actual method which only 

needs four real 2N-point DFT to generate the exact data quantities. In this method, 

when it is compared with the classical algorithms, the time needed for processing the 

delay increases by N samples. Although the polyphase decomposition method 

reduces the delay considerably, it increases the computational complexity. A recent 

filtering algorithm has been designed using the DFT based circular convolution and 

the OSM method of block convolution when the data sequences are long and need to 

be filtered [11]. Zero group delay has been obtained by zero delay modified overlap-

save method (ZDMOSM). Although this method achieves a zero group delay, it 

needs some changes in the acquisition duration in the process period, which is not 

likely preferred. Furthermore, J., S. Fouda [11] proposed a reduced delay modified 

overlap-save method (RDMOSM), in which the group delay reduction was achieved 

by a factor of 0.5 compared to OSM. 
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 In this thesis, the RDMOSM technique has been enhanced by redefining the samples 

to be excluded from the final circular convolution result. According to the simulation 

results, the proposed technique is very close to that of the OSM with little changes in 

the delay. Subsequently, it can be compared to linear convolution. This thesis is 

organized as follows: Chapter 2 deals with the FIR filter structures and their types. In 

Chapter 3, the reduction of group delay will be explained with delay reduction 

methods such as RDMOSM and ZDMOSM and the proposed enhanced RDMOSM 

(ERDMOSM) technique will be discussed.  In Chapter 4, results and discussions will 

be discussed. Finally, Chapter 5 gives conclusions of the work. 
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Chapter 2 

 

FIR FILTERS 

2.1 Structures of FIR Systems 

A polynomial system function in     for a basic FIR filter is: 

 (z)         
 

   

 (2-1) 

the transfer function of the FIR filter is     , the impulse response is h(n), a delay of 

one sample time denoted by     , N represents the filter length (number of 

coefficients) and n represents discrete time. For an input      , the output is as 

follows: 

y(n)            

 

   

 (2-2) 

Equation (2-2) is identified as the convolution sum equation. Computation of this 

sum requires   additions and         multiplications for every n value. 

2.1.1 Direct Form 

The realization of equation (2-2) by using a tapped delay line method is shown in 

Fig. 1. 

 

 

Figure 1: Direct Form Structure 
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Each output sample      needs   additions,        multiplications, and   delays. 

Otherwise, in the case of any similarity in the unit sample response, it is possible to 

reduce the multiplications number. 

2.1.2 Cascade Form 

For a basic FIR filter, the transfer function could be factored into first-order factors, 

 (z)                 

 

   

 

   

     (2-3) 

where    for              are the zeros of      . The complex roots of      

happen in complex conjugated pairs if      is real and these conjugated pairs can be 

combined to form second-order factors with real coefficients, 

 (z)  A         

  

   

          
    (2-4) 

the structure of equation (2-4) is illustrated in Figure 2. 

   

 

 

 

 

 Figure 2: An FIR Filter Implemented as a Cascade of Second-order Systems 

 

2.1.3 Linear Phase Filters 

Impulse responses of linear phase filters are either symmetric or anti-symmetric  

            (2-5) 
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             (2-6) 

respectively. This symmetry could be exploited to make the network structure 

simpler. For instance, if      is symmetric, and N is even (type I filter),  

                                          
 

 
     

 

 
 

 
 
  

   

 

   

                 

( 
 

 

Consequently, making the sums                           before multiplying 

by      reduces the multiplications number. The out coming structure is in Fig. 3 

(a). While, if N is odd and      symmetric (type II filter), the resulting structure is 

shown in Fig. 3(b). There are similar anti-symmetric structures (type III and IV) 

linear phase filters. 

 

 

  

 

 

 

 

 

  

 

 

 

 

Figure 3: Direct Form Implementations for Linear Phase Filters. (a) Type I, III (b) 

Type II, IV 

    

  

        

    

    

    

    

  

            

        

        

    

    

    

      

+ for type I 

 

-  for type III 

 

 

+ for type II 

 

-  for type IV 

 

 

± ± ± 

± ± ± ± 
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2.1.4 Frequency Sampling 

A filter is parameterized after the implementation of frequency sampling structure in 

terms of its discrete Fourier transform (DFT) coefficients. Particularly, if      is the 

            of an FIR filter with        for      , then the unit sample 

response of the filter written as: 

     
 

 
             
 

   

 (2-8) 

The transfer function can be written as  

 

                
 

 
             
   

   

    
   

   

   

   

 

           
 

 
                 

   

   

   

   

 

(2-9) 

Computing the sum over   gives 

     
 

 
        

    

             

   

   

 (2-10) 

which corresponds to an FIR filter cascade  
 

 
        with one-pole parallel 

network filters: 

     
    

             
 (2-11) 

For a filter in narrowband that has the majority of its DFT coefficients equal to zero, 

the structure of the frequency sampling shall be an efficient implementation. The 

structure of the frequency sampling is given in Figure 4. If       is real,       

          , the structure could be simplified . For instance of     ,  if   is even 

[12] 
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  (2-12) 

where  

                 (2-13) 

                                (2-14) 

On the other hand, when   is odd, same definition results can be obtained. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Frequency Sampling Filter Structure 
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2.2 Linear Phase Response 

Linear phase response is one of the most important properties of FIR filters. When an 

input signal is applied to filter, it appears at the output of the filter with modifications 

done in amplitude and/or phase. The extent of this modification depends on the 

amplitude and phase characteristics of the filter. The phase delay or group delay of 

the filter gives important information about how the filter makes this modification in 

the phase of the signal. The phase delay of the filter is defined as the amount of time 

delay each frequency component of the input signal suffers in going through the 

filter. On the other hand, the group delay is the average time delay the composite 

signal suffers at each frequency. Mathematically, the phase delay can be defined as 

the negative of the phase angle divided by frequency and the group delay is defined 

as the negative of the derivative of the phase with respect to frequency.  

If a filter has nonlinear phase characteristics, it causes a phase distortion in the signal 

passing through it. Such a distortion is undesired in many applications such as music, 

data transmission, video, and biomedicine. Therefore, the filters having linear phase 

characteristics are widely used in these applications. A linear shift-invariant system 

has a linear phase response if it is written in the following form 

                     (2-15) 

where α can be a real number which defines the group delay, 

        (2-16) 

A system has a generalized linear phase when the frequency response gets the form 

                       (2-17) 

 where α and β are constants. Now, consider the FIR system with an impulse 

response 
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  (2-18) 

The frequency response is 

              
          

       
 (2-19) 

Thus, this system has generalized linear phase, with α = N / 2 and β = 0. 

For a causal system with a rational transfer function to own linear phase, the impulse 

response have to be finite in length. An FIR filter that has a real-valued impulse 

response of length N + 1, has generalized linear phase if its impulse response is 

symmetric, 

            (2-20) 

In this case, α = N / 2 and β   0 or π. Another sufficient condition is that h(n) be 

antisymmetric [12] 

             (2-21) 

which corresponds to case through which α = N/2 and β   π/2 or 3π/2. 

2.3 Types of Linear Phase FIR Filters 

Let us consider the special types of FIR filters where the coefficients      of the 

transfer function 

                 
 

   

 (2-22) 

are supposed to be symmetric or anti-symmetric. Since the order of the polynomial in 

both of these two types can be either odd or even, there are four types of filters with 

diverse properties, which will be explained next [13].  

Type I. Coefficients are symmetric [               ], and the order N is even. 
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In general, coefficients can be expressed in some other forms. Let us assume that the 

order is even. The transfer function in equation (2-22) can be expanded as: 

               
 

   

 

                                            

(2-23) 

For type I filter with   order, as shown in Fig. 5, it is noted that           

                         . Applying these relationships in the equation 

above, we get 

                                       
 

 
   

  
    

(2-24) 

This can also be shown as in the following form 

        
  
         

 
   

  
            

 
        

 
    

   
 

 
   

(2-25) 

 

 

 

 

 

 

The frequency response of equation (2-25) is given by 

                    (2-26) 

0         1         2                 
 

 
                         

… … 

    

) 

Figure 5: Unit Impulse Responses of the Type I FIR Linear Phase Filters 
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In this formula, the term       is a real-valued function; however it can be negative 

or positive at any specific frequency, therefore while transforming from a positive 

value to a negative one, the angle of the phase changes by   radians       . The 

angle of the phase            is a linear function of ω, and the group delay   is 

the same as three samples. Remember that the group delay is three samples on the 

normalized frequency basis, but the real the group delay is    seconds, where   

denotes the sampling period. 

In general,        can be expressed  in some other forms 

                 
 

   

 

                                                      

                                     
  

 
 

           
 

 
                

 

 
        

    
 

 
   

(2-27) 

and now in a more compact form: 

                     
 

 
      

 

 
          

   

   

             
(2-28) 

The whole the group delay is constant         in the general case, for a type 

I           . 

         Coefficients are symmetric [               ], and the order N is odd. 
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                                (2-29) 

and due to symmetry 

                                                 (2-30) 

Now, if we consider symmetric coefficients with N odd, the impulse response is 

shown in Figure 6. 

The frequency response is in the type II filter for general case can be written as 

                  
 

   

               

     
 
 
       

   

 
          

 

 
   

       

   

  

 

 

(2-31) 

which demonstrates a linear phase                  and a constant group delay 

       samples. 

 

 

  

Figure 6: Unit Impulse Responses of the Type II FIR of Linear Phase FIR Filters 
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Type III. The coefficients are anti-symmetric                 , and the order 

N is even. Figure 7 shows that                                   

         and        = 0 to preserve anti-symmetry for these samples: 

                                       
 

 
   

  
      (2-32) 

This can also be shown as in the following form 

        
  
         

 
   

  
            

 
        

 
    

   
 

 
     

(2-33) 

Here if we place        , and     –                                   , we 

get the frequency response in the general case as 

                          
 

 
          

   

   

  
(2-34) 

and it has a linear phase                      and the group delay τ = N/2 

samples. 

 

 

 

 

 

 

 

Figure 7: Unit Impulse Responses of the Type III FIR of Linear Phase FIR Filters 
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Type IV. Coefficients are anti-symmetric [                 , and the order N is 

odd. As in Figure 8, in which                              

                      . Its transfer function can be written as 

                                       
   

 
   

–   
    (2-35) 

The frequency response of the transfer function of the type IV linear phase filter is 

usually given by 

                          
   

 
          

 

 
   

       

   

  (2-36) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8: Unit Impulse Responses of the Type IV FIR of Linear Phase FIR Filters 

 

2.4 Properties of Linear Phase FIR Filters 

The discussion of the types of FIR filters revealed that FIR filters with symmetric or 

anti-symmetric coefficients offer equivalently constant group delay or (linear phase); 

these coefficients represent the impulse response samples. It was noticed before that 

an FIR filter with symmetric or anti-symmetric coefficients has a linear phase and as 
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a result a constant group delay. Theoretically, [14] confirmed that an FIR filter with a 

constant group delay is required to have symmetric or anti-symmetric coefficients. 

These properties are practical in designing a FIR filters and their applications. The 

magnitude response of standard FIR filters with linear phase have been calculated to 

observe some extra properties of these four filter types [13] as shown in Figure 9. 

 
Figure 9: Magnitude Responses of the Four Types of Linear Phases FIR Filter 

The following explanations about these standard magnitude responses will be useful 

in creating suitable alternatives at the beginning of their design. For example, type I 

filters have a non-zero magnitude at       as well as a non-zero value at the 

normalized frequency         (corresponding to the Nyquist frequency), while 

type II filters have non-zero magnitude at ω = 0 however a zero value at the Nyquist 

frequency. Therefore, these filters are clearly not appropriate for the design of 

bandpass and highpass filters, while both types are appropriate for lowpass filters. 
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Type III filters have zero magnitude at       as well as at   π    , thus they are 

appropriate for the design of bandpass filters nevertheless it is not appropriate for 

lowpass and bandstop filters. Whereas, type IV filters have zero magnitude at ω = 0 

and a non-zero at   π    . They are not appropriate for the design of lowpass and 

bandstop filters however they can be used for bandpass and highpass filters. 

In Figure 10 (a), the linear relationship is shown by plotting filter phase response 

(type I). The phase response shows a jump discontinuity of   radians at the 

corresponding frequency when the transfer function has a zero on the unit circle in 

the   plane, and the plot applies a jump discontinuity of    every time the phase 

response goes beyond ±  so that the overall phase response stays within the principal 

range of ±π. If there are no zeros on the unit circle, that is, if there are no jump 

discontinuities of π radians, the phase response, when it is unwrapped, becomes a 

constant function of ω. The result of unwrapping the phase (as shown in Figure 10 

(a)) is to eliminate the jump discontinuities in the phase response in such way that the 

phase response stays within ±  (as shown in Fig. 10 (b)). Its group delay is an 

integer multiple of samples equal to     samples if the order   of the FIR filter is 

even. Whereas, when the order   is odd, the group delay is equal to (an integer plus 

half) a sample. 
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Figure 10: Linear Phase Responses of Type I FIR Filter 
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Chapter 3 

GROUP DELAY REDUCTION METHODS 

3.1 General Overview 

Fast Fourier Transform (FFT) based circular convolution is used by Overlap-Save 

Method (OSM) to construct equivalent results as in the linear convolution. After that, 

the aliasing that occurs because of the circular convolution could be eliminated only 

following zero padding after the last nonzero impulse response (IR) sample. The 

convolution length for two signals having size   and   is             . 

Therefore, for an IR with size  , the minimum number of added zeros is M − 1. For a 

considered piece period of signal with duration  ,      unwanted samples are to 

be deleted. While the OSM is in use, these samples are first on the circular 

convolution result provided by            OSM result will provide a group delay 

equal to                odd and     for N even if      is a linear phase IR. 

Nevertheless, it is seen that Discrete Fourier Transform (DFT) of a samples series 

relies on its layout and the phase can be reduced for a certain layout [11]. To prove 

that, consider a linear phase IR of length  , denoted      (Figure 11). Its DFT      

is given by: 

            
   

   

   

 (3-1) 
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Figure 11: Linear Phase IR h(n) 

  

Figure 12: Circularly Shifted Linear Phase IR h1(n) 

 

with   
            ,            . During the calculation of the DFT, it is 

assumed that the samples series are periodic, and are positioned on a circle whose 

origin synchronizes with the first sample of     . The sort of      being     , its 

phase is given by 

     
   

 
    (3-2) 

Therefore the group delay is (N −1)/2. Now, by shifting the IR of          

samples circularly toward the left the origin is changed as in Fig. 12. The DFT of the 

new IR is represented by       will be: 
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 (3-3) 

Equation (3-3) may be written also as below 

           
   

 
   

   

   

   

 (3-4) 

The relation in equation (3-4), according to the DFT characteristics, lastly can be 

written as follows: 

        
               

   

   

   

 (3-5) 

Equation (3-5) demonstrates that the phase of       compared to that of     , is 

given by 

     
   

 
  

(3-6) 

Which shows the cancellation of the dephasing φ because     . Consequently,       

shows a zero phase if N is odd and its phase is       if N is even. This type which 

is named as zero phase IR could be utilized in the     based circular convolution to 

achieve zero group delay in filtering. However, this kind of operation is impossible 

since OSM and overlap-add method (OAM) techniques which are based on the 

basics of using the    , advise zero padding at the IR end. Thus, the DFT phase of 

the IR       acquired after zero padding to       would become, as in Fig. 13, 

unspecified. Fig. 13 shows the frequency response of       after zero padding [11]. 

As a result, it appears essential to develop a new algorithm based on the utilization of 

DFT, which keeps the zero phase IR properties [15]. 
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Figure 13: Frequency Response of h1(n) after zero padding: (a) magnitude response 

of h1(n), (b) magnitude response of h2(n), (c) phase response of h1(n), (d) phase 

response of h2(n). 

 

3.2 Modified Overlap and Save Method (MOSM) 

In this section, a new algorithm is presented for filtering with the use of the FFT 

based circular convolution and the OSM. The idea here is to make it easier to realize 

the zero group delay in the filtering. Here, no zero padding occurs after the zero 

phase IR which means that it is possible to maintain its spectral properties [16]. Let 

     be the circular convolution result of      and     , its DFT will be written as 

              (3-7) 

According to the    , if the size of      is          –   ,   being the size 

of     , then the   –    first samples of      should be omitted. By determining the 

circular convolution       of       and       one obtains 
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         (3-8) 

This formula demonstrates that the result obtained with the zero phase IR is 

circularly shifted of          samples to the left like      . As a result,     

     samples of the N − 1 to be deleted should be suppressed by each of the two 

extremities of the circular convolution result. Next, it seems that after the       

first samples of       are deleted by the     they will be unsuitable to the use of the 

zero phase filters. Thus, we name the      whose idea is to delete          

samples on both sides of the circular convolution result extremities. It can be noticed 

that this convolution result rotation does not modify the group delay produced by the 

filter, thus the      offers the same results like the other conventional filtering 

techniques. In order to reduce the group delay, the redefinition of the samples to be 

retained is required. 

3.3 Zero Delay MOSM (ZDMOSM) 

It is possible to perform zero delay filtering by the use of the     . Therefore, 

rather than adding       zero samples to the beginning of file to be filtered as 

suggested by the OSM,  as explained in Fig. 14, only  (N −1)/2 samples will be 

considered [11]. Next, by deleting          samples on both sides of the filtered 

signal, the group delay is suppressed. This method is named as the zero delay 

MOSM (ZDMOSM). An example of a filtered signal without group delay is shown 

in Fig. 15 [17]. 
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Figure 14: Principle of the ZDMOSM 
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Figure 15: Zero Group Delay Filtering using the ZDMOSM  

 

3.4 Reduced Delay MOSM (RDMOSM)  

Here        method cannot be applied since it would need altering the acquisition 

time during the processing, which is not easy. Next, when starting filtering as in the 

case of the OSM,        zero samples are taken into consideration. In general, the 

      deleted samples present some ripples. These ripples, when emerging on the 

filtered signal can create an awkward effect (for example in audio filtering). But, 

their amplitude reduces slowly from left to right as seen in Fig. 16. In the real time 

processing, the decrease of the group delay might be considered by deleting, 

following circular convolution with the zero phase filter, rather than           

samples each sides as explained in the     , however           on the left end 

and only          on the right end of the result. This method maintains at the right 

end          of the samples which usually should have been deleted, according to 

the OSM. Whereas,          of the samples carrying the group delay is deleted, 

this reduces the group delay into a half. This method is named as the reduced delay 

output sequence in ZDMOSM 

output sequence in OSM 
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MOSM (RDMOSM). Fig. 17 shows a filtered signal example (in real time) in which 

the groups delay was reduced [11]. 

 
Figure 16: Evolution of the Ripples Amplitude 

 

Figure 17: The use of RDMOSM to Reduce Group Delay Filtering 

 

n 

output sequence in RDMOSM 

output sequence in OSM 
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3.5 Enhanced RDMOSM (ERDMOSM) 

In this section, the new proposed filtering algorithm via     based circular 

convolution and the OSM will be examined. 

The main aim of this method is to realize zero group delay filtering. In this method, 

there exists no zero padding to zero phase IR. Let us consider      as the result of 

circular convolution of                 Now, the     of      can be written as 

follows 

              (3-9) 

According to the OSM, if the size of                 where N is the size of 

      after that leftmost     samples of       have to be deleted. By evaluating 

the circular convolution       of       and     , we are able to show that: 

                

                                        

               
          

         

(3-10) 

Taking inverse DFT gives 

 
 
         

   

 
   (3-11) 

This equation demonstrates that the result obtained by the zero phase    is a 

circularly shifted version of      shifted by         samples to the left. 

Therefore,         samples out of     samples to be deleted have to be 

suppressed on each side of the circular convolution result extremities. After that, it is 

found that the     which deletes the     first samples of      is not appropriate 

to be utilized in zero phase filters. As a result, the MOSM method was defined and 

its working principle is to delete         samples on both ends of the circular 



 

29 
 

convolution result. The convolution result rotation       does not change the group 

delay generated by the filter. Thus, the MOSM offers the same result as obtained 

from the     or other usual filtering method. Afterward, it is noted that a reduction 

in the group delay can be obtained by re-defining the samples to be kept from last 

rotated result of the circular convolution.  

In case of       , a reduction in the group delay can reach half. This technique 

has been extended to one where reduction in the group delay can be obtained using a 

factor more than half. In performing     based circular convolution the     zero 

samples should be considered to be filtered as in the case of the    . Following 

circular convolution of      with      ,          and           of the 

samples are deleted from the left end side. Similarly,         and          of 

the samples are deleted from the right end side of the result. These are named as 

enhanced RDMOSM,          and         , respectively. This process 

preserves at the left end side                         samples in 

ERDMOSM1 case and                          samples in the 

ERDMOSM2 case, which would usually be deleted according to the OSM. Whereas, 

         or           samples carrying the group delay are deleted, 

correspondingly, for the          or          cases. These lead to the 

reduction of the group delay by a factor given by 

   

   
 

   
 

  
 

 
 (3-12) 

and 
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 (3-13) 

Figures 18 and 19 show an example of a filtered signal (in real time) in which the 

reduction in the group delay happened by a factor 3/5 and 4/5, correspondingly, in 

ERDMOSM1 and ERDMOSM2 cases.  

 

 

 

 

 

 

 

 

 

Figure 18: Reduced Group Delay Filtering using ERDMOSM1  

 

 

 

 

 

Figure 19: Reduced Group Delay Filtering using ERDMOSM2 

output sequence in ERDMOSM1 

output sequence in ERDMOSM2 

output sequence in OSM 

output sequence in OSM 

output sequence in OSM 
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It is observed that for a filter of order   , the result of the output signal begins from 

     sample in the OSM case (see Fig. 17) or linear convolution (the group delay is 

           samples), where in the RDMOSM case (see Fig. 17), the output 

sequence begins from the      sample (i.e., the group delay is 
 

 
             

samples) and in       , the output sequence begins from the     sample meaning 

that there is no group delay. On the opposing side, for the same input signal, the 

output sequence of ZDMOSM varies a lot from the     filtered output which shows 

a deviation from linear convolution result. In the present ERDMOSM1 case (see Fig. 

18), the filtered output sequence begins from the      sample (i.e., the group delay is 

 

 
 
   

 
    samples) and for          case (see Fig 19), the filtered output 

sequence begins after 6 samples, from     sample (i.e, the group delay is 
 

 
     

       samples). 

The full algorithms are shown in Figures 20 and 21. The results obtained from each 

of these algorithms are better than the usual       . 
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           Figure 20: Algorithm for                                              Figure 21: Algorithm for        

                    ERDMOSM1                                                         ERDMOSM2 

 

In our present work, it has been observed that if the movement in the number of 

samples is increased from the left side of the circular convolution result, there will be 
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a reduction in the group delay that increases with the increase of the movement of the 

number of samples at the cost of increased ripple amplitude. If     samples are 

deleted from the left of the circular convolution result side, the group delay will be 

totally suppressed since no sample carrying the group delay will remain, which will 

increase the deviation of the resulting filtered sequence from the OSM result. Thus, 

the result will be invalid. Therefore, samples have to be deleted from each sides of 

the circular convolution result to attain better performance. 

The reason of removing                   numbers of samples from the right 

and                    numbers of samples from the left can be explained as 

follows. Three important conditions should be followed in order to re-define the 

samples to be retained after circular convolution: 

 The overall number of samples to be deleted from left and right side of final 

circular convolution result of length           have to be       as 

the original input length is M.  

 More samples are to be deleted from left instead of right end of the circular 

convolution result since the reduction factor of the group delay depends on 

how many samples are deleted from the left. 

 Samples should be deleted from each sides of the circular convolution result 

to obtain better performance [17]. 

  



 

34 
 

Chapter 4 

COMPUTER SIMULATIONS 

In this chapter, two cases will be presented to show the effectiveness of group delay 

reduction to the recently suggested algorithms defined in chapter 3. In order to be 

able to compare these filtering techniques with the traditional    , the results with 

reduced delay are every time compared to those obtained with the    . 

 

where   (n) and      represent the filtered output OSM and the filtered output 

regarding each filtering technique, respectively. The input signal that is to be filtered 

is denoted by      and the zero phase impulse response is represented by     . In 

the simulation studies, sine and random waves are considered as the input. 
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4.1 Simulation Study 1: Sine Wave 

 
Figure 22: Impulse Response of FIR Filter Lowpass Equiripple Filter & Actual 

Impulse Response and Zero Phase h1(n) 

 

Fig. 22 shows the desired impulse response, actual impulse response and zero phase 

impulse response of FIR filter. It is clear that zero phase impulse response can be 

obtained by circularly shifting the impulse response of the filter by (N-1)/2 samples 

toward left. 

 

 



 

36 
 

 
Figure 23: Comparison Between the Linear Convolution and OSM method 

Fig. 23 shows the comparison between linear convolution and OSM method. Since 

two methods are equivalent, the OSM method can be considered as the reference in 

the other parts of this discussion. It has been observed that for a filter length of 60 

coefficients, the resultant output signal starts from      sample in the case of OSM 

(or linear convolution) which shows that the group delay is (N-1)/2=30 samples. 

 

 

 

31st sample 

31st sample 
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Figure 24: Comparison between ZDMOSM and OSM methods 

Fig. 24 shows the output of the filter obtained by OSM and MOSM methods for the 

off-line processing case. The input signal,     , the output of the filter obtained by 

the ZDMOSM, the output of the filter obtained by the OSM are illustrated, from top 

to bottom, in Fig. 24. It is clear the output obtained by ZDMOSM is different from 

that of obtained by the OSM. 

 

 

 

1st sample 
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Figure 25: Comparison between RDMOSM and OSM methods 

Fig. 25 shows the output of the filter obtained by OSM and RDMOSM methods for 

the same input shown in Fig. 24. If the output signals obtained by ZDMOSM in Fig. 

24 and by RDMOSM in Fig. 25 are compared, one can easily see that the group 

delay has been reduced by a factor of 1/2. 

 

16th sample 
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Figure 26: Comparison between ERDMOSM1 and OSM methods 

Fig. 26 and 27 show the results obtained from the OSM and enhanced-RDMOSM 

(ERDMOSM1 and ERDMOSM2). In Fig. 26, the results obtained by OSM and 

ERDMOSM1 are compared. Similarly, in Fig. 27, the results obtained from the OSM 

and ERDMOSM2 are compared. It can be clearly seen from these figures that 

ERDMOSM1 and ERDMOSM2 methods result in better delay reduction. The delay 

reductions obtained by the ERDMOSM 1 and ERDMOSM2 are approximately 3/5 

and 4/5, respectively. 

The performances of the group delay reduction methods are compared and the results 

are reported in Table 1. Except ZDMOSM, it is obvious that ERDMOSM1 and 

ERDMOSM2 performs better than the other methods. 

 

13th sample 
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Figure 27: Comparison between ERDMOSM2 and OSM methods 

Table 1: Comparison of Group Delay Reduction Methods 

Methods Group Delay (samples) 

Linear Convolution 30 

OSM 30 

ZDMOSM 0 

RDMOSM 15 

ERDMOSM1 12 

ERDMOSM2 6 

 

4.2 Simulation Study 2: Random Wave 

Another FIR, equiripple filter having passband frequency of 5 kHz, stopband 

frequency of 6 kHz, sampling frequency of 45 kHz, maximum passband ripple of 0.1 

dB and minimum stopband attenuation of 60.1 dB has been considered. 

7th sample 
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Figure 28: Impulse Response (blue and solid), the Equiripple Linear-phase Filters 

(red and dash) same Filter after Zero Padding and Circular Left Shifting 
 

 

In this study, in order to make the filter length equal to the block length L=N+M-1, 

M-1 zeros have been added following the original filter coefficients. Also, the filter 

coefficients are circularly shifted to the left by an amount (N-1)/2. Fig. 28 shows the 

impulse response of the original filter and the modified filter. The parameters in this 

figure are: length of original filter (N)=121, data points in the segmented input 

sequence (M)=180, block length (L)=N+M-1=300. Thus, M-1=179 number of zeros 

have been added following the original filter coefficients. Also, the amount of the 

circular left shift is for (N-1)/2 = 60 number of samples. 
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Figure 29: Comparison between OSM method and the Linear Convolution  

Fig. 29 shows the comparison between linear convolution and OSM method. Since 

two methods are equivalent, the OSM method can be considered as the reference in 

the other parts of this discussion.  
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Figure 30: Comparison between ZDMOSM and OSM methods 

Fig. 30 shows the output of the filter obtained by OSM and MOSM methods for the 

off-line processing case. The input signal,     , the output of the filter obtained by 

the ZDMOSM, the output of the filter obtained by the OSM are illustrated, from top 

to bottom, in Fig. 30. It is clear the output obtained by ZDMOSM is different from 

that of obtained by the OSM. 
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Figure 31: Comparison between RDMOSM and OSM methods. 

Fig. 31 shows the output of the filter obtained by OSM and RDMOSM methods for 

the same input shown in Fig. 30. If the output signals obtained by ZDMOSM in Fig. 

30 and by RDMOSM in Fig. 31 are compared, one can easily see that the group 

delay has been reduced by a factor of 1/2. 
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Figure 32: Comparison between ERDMOSM1 and OSM methods. 

Fig. 32 and 33 show the results obtained from the OSM and enhanced-RDMOSM 

(ERDMOSM1 and ERDMOSM2). In Fig. 32, the results obtained by OSM and 

ERDMOSM1 are compared. Similarly, in Fig. 33, the results obtained from the OSM 

and ERDMOSM2 are compared. It can be clearly seen from these figures that 

ERDMOSM1 and ERDMOSM2 methods result in better delay reduction. The delay 

reductions obtained by the ERDMOSM 1 and ERDMOSM2 are approximately 3/5 

and 4/5, respectively. 
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Figure 33: Comparison between ERDMOSM2 and OSM methods. 
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Chapter 5 

CONCLUSION 

Block convolution techniques such as overlap-add method (OAM) and overlap-save 

method (OSM) are usually used for a long input sequence to be filtered. In these 

methods, however, the output sequence has a finite group delay with respect to input. 

In this thesis, the performance of enhanced modified overlap and save method 

(ERDMOSM) has been investigated in reducing that group delay. In this method, the 

impulse response (IR) is made causal and then IR has been circularly shifted to the 

left by an amount of (N-1)/2 for N odd and N/2 for N even, where N is the length of 

the filter. This modified IR has been used in OSM based block convolution 

technique. Finally, the samples to be removed from the final convolution result have 

been defined. This leads to a minimized group delay. ERDMOSM1 permits a 

reduction of group delay by a factor of 3/5. On the other hand, ERDMOSM2 reduces 

the group delay by a factor of 4/5. Also, a compromise between the group delay 

reduction and the ripple amplitude is obtained. Although the group delay is reduced 

considerably, there exists some phase problems in passband which makes it 

ineffective for real time audio applications where group delay deviation in passband 

should be considered. However, the main advantage  of this  algorithm is in 

obtaining 83.33% group delay reduction devoid of using any complicated algorithm 

and keeping the magnitude response same as those of linear-phase filter. 
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Continually of this work, in future the following points can be taken in consideration: 

i) Reduction of group delay deviation in pass band by using higher order filters, 

thereby    giving rise to more selective filters. 

ii) Generalization of the approach to all linear-phase IIR filters to obtain an 

effective real-time audio application filter. 

iii) Application of the proposed approach to filter banks and modification of the 

method to reduce the overall group delay. 

iv) Widening the consideration out to linear phase property of the stop band to 

optimize the overall delay performance of the filter. 
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Appendix A1: Simulation of Sine Wave 

clear all; 
clc; 
wp=0.6*pi; ws=0.8*pi; 
tr_width=abs(ws-wp); 
%Use Hanning window,  
M=63; 
wc=0.5*(ws+wp); %Ideal LPF cutoff freq. 
%========Compute Ideal filter response============== 
alpha=(M-1)/2; 
n=1:M; 
MM=n-alpha+eps; %add smallest number to avoid divide by zero 
hd=sin(wc*MM) ./ (pi*MM); %design LPF 
%=================================================== 
figure(1); 
 

h=hd.*hanning(M)'; 
subplot(3,1,1); stem(1:61,hd(1:61)); title('Ideal Impulse Respose'); 
axis([0 M -inf inf]), xlabel('n');ylabel('hd(n)'); 
subplot(3,1,2); stem(1:61,h(1:61)); title('Actual Impulse 

Response'); 
axis([0 M -inf inf]),  
xlabel('n'); ylabel('h(n)'); 
h1=circshift(h',(length(h)-1)/2)'; 
subplot(3,1,3); stem(1:61,h1(1:61)); title('Zero Phase h1'); 
axis([0 M -inf inf]), xlabel('n'); ylabel('h1(n)'); 

  
%=========Comparison between linear convolution and OSM 

method========= 
figure(2); 
 

x=sin(2*pi*0.06*(1:200));%the signal to be filtered 
subplot(3,1,1); plot(x); title('Input signal');grid; 
axis([0 length(x) -3 3]), xlabel('n'); ylabel('x(n)'); 
h2=[h zeros(1,length(x)-1)]; 
x2=[x zeros(1,length(h)-1)]; 
y=ifft(fft(h2).*fft(x2)); 
y=y(1:length(x)); 
subplot(3,1,2); plot(y); title('output sequence in OSM');grid; 
axis([0 length(x) -3 3]), xlabel('n'); ylabel('y(n)'); 
y1=filter(h,1,x); 
subplot(3,1,3); plot(y); title('output sequence in linear 

convolution');grid; 
axis([0 length(x) -3 3]), xlabel('n'); ylabel('y1(n)'); 
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%=============Comparison between ZDMOSM and OSM method========= 
figure(3); 
 

subplot(3,1,1); plot(x); title('Input signal');grid; 
axis([0 length(x) -3 3]), xlabel('n'); ylabel('x(n)'); 
h2=[h zeros(1,length(x)-1)]; 
x2=[x zeros(1,length(h)-1)]; 
y=ifft(fft(h2).*fft(x2)); 
y=y(round(length(h)/2):length(x)+round(length(h)/2)-1); 
subplot(3,1,2); plot(y); title('output sequence in ZDMOSM');grid; 
axis([0 length(x) -3 3]), xlabel('n'); ylabel('y(n)'); 
y1=filter(h,1,x); 
subplot(3,1,3); plot(y1); title('output sequence in OSM');grid; 
axis([0 length(x) -3 3]), xlabel('n'); ylabel('y1(n)'); 

 
%=============Comparison between RDMOSM and OSM method========= 
figure(4); 

  
subplot(3,1,1); plot(x); title('Input signal');grid; 
axis([0 length(x) -3 3]), xlabel('n'); ylabel('x(n)'); 
h2=[h zeros(1,length(x)-1)]; 
x2=[x zeros(1,length(h)-1)]; 
y=ifft(fft(h2).*fft(x2)); 
y=y(round(length(h)/4):length(x)+round(length(h)/4)-1); 
subplot(3,1,2); plot(y); title('output sequence in RDMOSM');grid; 
axis([0 length(x) -3 3]), xlabel('n'); ylabel('y(n)'); 
y1=filter(h,1,x); 
subplot(3,1,3); plot(y1); title('output sequence in OSM');grid; 
axis([0 length(x) -3 3]), xlabel('n'); ylabel('y1(n)'); 
 

%=============Comparison between ERDMOSM1 and OSM method========= 
figure(5); 

  
subplot(3,1,1); plot(x); title('Input signal');grid; 
axis([0 length(x) -3 3]), xlabel('n'); ylabel('x(n)'); 
h2=[h zeros(1,length(x)-1)]; 
x2=[x zeros(1,length(h)-1)]; 
y=ifft(fft(h2).*fft(x2)); 
y=y(round((3/5)*(length(h)/2)):length(x)+round((3/5)*(length(h)/2))-

1); 
subplot(3,1,2); plot(y); title('output sequence in ERDMOSM1');grid; 
axis([0 length(x) -3 3]), xlabel('n'); ylabel('y(n)'); 
y1=filter(h,1,x); 
subplot(3,1,3); plot(y1); title('output sequence in OSM');grid; 
axis([0 length(x) -3 3]), xlabel('n'); ylabel('y1(n)'); 
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%=============Comparison between ERDMOSM2 and OSM method========= 
figure(6); 

  
subplot(3,1,1); plot(x); title('Input signal');grid; 
axis([0 length(x) -3 3]), xlabel('n'); ylabel('x(n)'); 
h2=[h zeros(1,length(x)-1)]; 
x2=[x zeros(1,length(h)-1)]; 
y=ifft(fft(h2).*fft(x2)); 
y=y(round((4/5)*(length(h)/2)):length(x)+round((4/5)*(length(h)/2))-

1); 
subplot(3,1,2); plot(y); title('output sequence in ERDMOSM2');grid; 
axis([0 length(x) -3 3]), xlabel('n'); ylabel('y(n)'); 
y1=filter(h,1,x); 
subplot(3,1,3); plot(y1); title('output sequence in OSM');grid; 
axis([0 length(x) -3 3]), xlabel('n'); ylabel('y1(n)'); 

   
%=======================End of example1============================ 
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Appendix A2: Simulation of Random Wave 

clc; 
clear all; 
H = fdesign.lowpass('Fp,Fst,Ap,Ast',5000,6000,0.1,60.1,45000); 
hd = design(H,'equiripple'); 
hd=hd.Numerator; 
l=300; 
h=[hd zeros(1,l-length(hd)-1)]; 
stem(hd); 
hold on 
h1=circshift(h',-round(length(hd)/2)+1)'; 
stem(h1,'r'); title('Impulse Response');grid; 
xlabel('Samples'); ylabel('Amplitude'); 
leg=legend('orignal filter','Modified filter'); 
h=hd; 

 
% % %=====Comparison between linear convolution and OSM 

method========= 
figure(2); 

  
l=300; 
x=rem((0.5*(sin(2*pi*0.17*(1:200))+rand(1,200)))-0.3,1); 
h=[hd zeros(1,l-length(hd)-1)]; 
h1=circshift(h',-round(length(hd)/2)+1)'; 
h=hd; 
subplot(3,1,1); plot(x); title('Input signal');grid; 
axis([0 length(x) -1 1]), xlabel('n'); ylabel('x(n)'); 
h2=[h zeros(1,l-length(h)-1)]; 
x2=[x zeros(1,l-length(x)-1)]; 
y=ifft(fft(h2).*fft(x2)); 
y=y(1:length(x)); 
subplot(3,1,2); plot(y); title('output sequence in OSM');grid; 
axis([0 length(x) -0.3 0.3]), xlabel('n'); ylabel('y(n)'); 
y1=filter(h,1,x); 
subplot(3,1,3); plot(y1); title('output sequence in linear 

convolution');grid; 
axis([0 length(x) -0.3 0.3]); 
xlabel('n'); ylabel('y1(n)'); 
 

% % %=============Comparison between ZDMOSM and OSM method========= 
figure(3); 

  
subplot(3,1,1); plot(x); title('Input signal');grid; 
axis([0 length(x) -1 1]), xlabel('n'); ylabel('x(n)'); 
h2=[h zeros(1,length(x)-1)]; 
x2=[x zeros(1,length(h)-1)]; 
y=ifft(fft(h2).*fft(x2)); 
y=y(round(length(h)/2):length(x)+round(length(h)/2)-1); 
subplot(3,1,2); plot(y); title('output sequence in ZDMOSM');grid; 
axis([0 length(x) -0.3 0.3]), xlabel('n'); ylabel('y(n)'); 
y1=filter(h,1,x); 
subplot(3,1,3); plot(y1); title('output sequence in OSM');grid; 
axis([0 length(x) -0.3 0.3]); 
xlabel('n'); ylabel('y1(n)'); 
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% % %=============Comparison between RDMOSM and OSM method========= 
figure(4); 

  
subplot(3,1,1); plot(x); title('Input signal');grid; 
axis([0 length(x) -1 1]), xlabel('n'); ylabel('x(n)'); 
h2=[h zeros(1,length(x)-1)]; 
x2=[x zeros(1,length(h)-1)]; 
y=ifft(fft(h2).*fft(x2)); 
y=y(round(length(h)/4):length(x)+round(length(h)/4)-1); 
subplot(3,1,2); plot(y); title('output sequence in RDMOSM');grid; 
axis([0 length(x) -0.3 0.3]), xlabel('n'); ylabel('y(n)'); 
y1=filter(h,1,x); 
subplot(3,1,3); plot(y1); title('output sequence in OSM');grid; 
axis([0 length(x) -0.3 0.3]), xlabel('n'); ylabel('y1(n)'); 
 

% % %=============Comparison between ERDMOSM1 and OSM 

method========= 
figure(5); 

  
subplot(3,1,1); plot(x); title('Input signal');grid; 
axis([0 length(x) -1 1]), xlabel('n'); ylabel('x(n)'); 
h2=[h zeros(1,length(x)-1)]; 
x2=[x zeros(1,length(h)-1)]; 
y=ifft(fft(h2).*fft(x2)); 
y=y(round((3/5)*(length(h)/2)):length(x)+round((3/5)*(length(h)/2))-

1); 
subplot(3,1,2); plot(y); title('output sequence in ERDMOSM1');grid; 
axis([0 length(x) -0.3 0.3]), xlabel('n'); ylabel('y(n)'); 
y1=filter(h,1,x); 
subplot(3,1,3); plot(y1); title('output sequence in OSM');grid; 
axis([0 length(x) -0.3 0.3]), xlabel('n'); ylabel('y1(n)'); 
 

% % %=============Comparison between ERDMOSM2 and OSM 

method========= 
figure(6); 

  
subplot(3,1,1); plot(x); title('Input signal');grid; 
axis([0 length(x) -1 1]), xlabel('n'); ylabel('x(n)');  
h2=[h zeros(1,length(x)-1)]; 
x2=[x zeros(1,length(h)-1)]; 
y=ifft(fft(h2).*fft(x2)); 
y=y(round((4/5)*(length(h)/2)):length(x)+round((4/5)*(length(h)/2))-

1); 
subplot(3,1,2); plot(y); title('output sequence in ERDMOSM2');grid; 
axis([0 length(x) -0.3 0.3]), xlabel('n'); ylabel('y(n)'); 
y1=filter(h,1,x); 
subplot(3,1,3); plot(y1); title('output sequence in OSM');grid; 
axis([0 length(x) -0.3 0.3]), xlabel('n'); ylabel('y1(n)'); 

 
% % %===================End of example2============================ 

 


