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A method is given which renders indirect detection of strong gravitational waves possible. This is based
on the reflection (collision) of a linearly polarized electromagnetic shock wave from (with) a cross
polarized impulsive and shock gravitational waves in accordance with the general theory of relativity. This
highly nonlinear process induces a detectable Faraday rotation in the polarization vector of the
electromagnetic field.
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I. INTRODUCTION

Nonlinear interaction (collision) of gravitational waves
(GWs) in Einstein’s theory, which was initiated a long time
ago by the two letters to Nature [1,2] is a well-known
subject by now [3,4]. As an outcome of this process we
quest whether it is possible to probe controllable electro-
magnetic (em) waves in sensing the passing of a strong
GW. Given the known exact solutions to Einstein’s field
equations to date, the answer is affirmative. After an en-
counter with a GW, the physical changes in the em wave
will inform about the latter. We recall that the first indirect
evidence of GWs from the binary pulsar in the early 1970s,
by the team of R. Hulse and J. Taylor also was based on em
observations. The main feature on which we concentrate
here is the rotation of em polarization vector known as the
Faraday effect. Such rotation has been introduced also for
the GWs [5–8]; however, its detection is hampered by the
challenge of detecting GWs themselves.

In this paper, we propose that given its Faraday rotation
after encountering with a GW, a linearly polarized em
wave signals the passage of a GW. For a thorough analysis,
GWs may be considered in three different profiles. The first
(and simplest), albeit idealized, is an impulsive GW whose
possible sources are cosmic bursts, supernova explosions,
collision of black holes, etc. It is dubbed ‘‘idealized’’ in the
sense that it arises as a limit of a Gaussian curvature. The
second profile of interest is a shock type with a uniform
curvature. The third type is a hybrid sandwich GW that lies
intermediate to the aforementioned ones. In the sequel, we
shall restrict ourselves to the two types alone.

The general form of plane waves known as the Rosen
form is described by the line element

 ds2 � 2e�Mdudv� e�Uf�eVdx2 � e�Vdy2� coshW

� 2 sinhWdxdyg: (1)

The metric functions depend only on the null coordi-
nates u and v. In the plane wave regions, all metric
functions appearing in this line element depend only on

either u or v. In this paper we shall be interested in the
metric function W�u; v� which represents the second po-
larization content of the waves.

II. INTERACTION OF ELECTROMAGNETIC AND
GRAVITATIONAL WAVES

In our analysis, we consider the interaction of linearly
polarized plane em waves with cross polarized GWs that
propagate in the opposite directions in each of the incom-
ing regions as illustrated in Fig. 1. Region III (v > 0, u <
0) contains a linearly polarized plane em wave described
by the line element

 ds2 � 2dudv� �12� g��dx
2 � dy2�; (2)

where g � g�v� is only a function of v. The only nontrivial
Einstein-Maxwell equation in this region is given by

 2Uvv �U
2
v � 4�00; (3)

where e�U � 1
2� g and �00 stands for the Ricci tensor.

                                                        

FIG. 1. The spacetime diagram describes the collision of a
plane em wave propagating in one of the incoming regions and a
plane GW propagating in the other incoming region. The sin-
gular hypersurface occurs when f � g � 0 in the interaction
region.
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Region II (v < 0, u > 0) contains a plane GW described
by

 ds2 � 2dudv� �12� f��Zd �x2 � Z�1d �y2�; (4)

in which f and Z � eV depend only on u and are con-
strained by the vacuum Einstein equation

 2Uuu �U
2
u � V2

u: (5)

Now, we rotate the � �x; �y� axes by angle � to align them
along with �x; y� at the cost of creating a cross polarization
term in (4). The two waves, em from left and GW from
right, make a head-on collision on the hypersurface speci-
fied by u � 0 � v. Physically the cross (� ) mode of the
GW will rotate the linear (� ) mode of the em wave giving
rise to the Faraday effect in the em wave. Irrespective of the
initial data, the Einstein-Maxwell equations admit the
following metric and Maxwell fields in the interaction
region (u > 0, v > 0) [3];

 ds2 �

� �g0 ������������
1
2� f

q
�������������
f� g
p ������������

1
2� g

q
�
dudv� �f� g���eVdx2

� e�Vdy2� coshW � 2 sinhWdxdy�;

�0 �

�
�g0

2
�������������
f� g
p ������������

1
2� g

q
�
ei��u�;

�2 � �

������������
1
2� g

q
2
�������������
f� g
p �V 0 coshW � iW0�ei��u�;

(6)

in which the phase function ��u� is to be determined from
�0 � � 1

2V
0 sinhW (a prime implies derivative with respect

to the argument for each function). The incoming em shock
wave with (� ) mode is characterized by the function

 g�v� � 1
2� sin2�bv��; (7)

where b is the energy (frequency) constant and v� �
v��v� with ��v� the unit step function. The initial data
for the GW are
 

�i� for impulsive wave; f �
1

2
� u2

�;

Z �
1� u�
1� u�

;

�ii� for shock wave; f � �
1

2
� cosu� 	 coshu�;

Z �
cosu�
coshu�

;

(8)

where u� is to be understood with the step function, i.e.,
u��u�. The resulting solution for both cases is summarized
as follows:

 

e2V �
Z2cos2��=2� � sin2��=2�

Z2sin2��=2� � cos2��=2�
;

sinhW �
1

2
�Z� Z�1� sin�;

tan� �
1

2Z cos�
�
����������������������������������������������
4Z2 � �1� Z2�2sin2�

q

� �1� Z2� sin��; (9)

while f�u� and g�v� functions are readily available from
(7) and (8). We note that � is confined by 0<�<�=2.
Before collision the em wave is linearly polarized along the
x axis.

III. THE FARADAY ROTATION

The polarization vector of the incoming em wave which
was aligned with the x axis does not preserve its linear
form after interacting with the gravitational wave. In an
orthonormal tetrad (!a), the line element can be expressed
by

 ds2 � �!0�2 � �!1�2 � �!2�2 � �!3�2: (10)

The electric and magnetic field components are defined
by [9]

 Ex � F02 � Re��0 ��2�;

Hy � F12 � �Re��0 ��2�;

Ey � F03 � Im��0 ��2�;

Hx � F31 � Im��0 ��2�:

(11)

The Faraday rotation angle � is determined from the
electric field components of the em wave by

 tan� �
Im��0 ��2�

Re��0 ��2�
; (12)

in which �0 and �2 are the em spinor components given in
Eq. (6). In terms of metric functions, the Faraday rotation
angle is

 tan� �
W0 � �V 0 coshW � 2b cotbv� tan�
W0 tan�� V 0 coshW � 2b cotbv

: (13)

In the case of a gravitational plane impulsive wave and
for the particular angle � � 45
, Eq. (13) becomes

 tan� � �1� u2�

�
1� A�u�b cotbv

A�u� � b�1� u2�2 cotbv

�
; (14)

where A�u� � 1� u2 �
���
2
p ��������������

1� u4
p

. The behavior of this
expression for various b values is illustrated in Fig. 2. The
behavior for a shock gravitational wave case which can be
obtained in analogy to Eq. (14) also from the Eqs. (8)–(13)
is given in Fig. 3. Since the v dependence in tan� is
periodic, one would expect to see this behavior explicitly.

M. HALILSOY AND O. GURTUG PHYSICAL REVIEW D 75, 124021 (2007)

124021-2



However, due to the curvature singularity that the space-
time possesses on the hypersurface, u2 � sin2bv � 1, we
have to choose 0< u< 1 and 0< bv< �=2 such that
u2 � sin2bv < 1, for all �u; v�. As a result of this constraint
condition, the v dependence does not display its periodic
character in this range. Figures 2(a)–2(c) represent the
impulsive wave plots for the parameters b � 0:1, b � 1,
and b � 100, respectively. Similarly for the shock gravi-
tational waves, the curvature singularity occurs on the
hypersurface cosu 	 coshu� cos2bv � 1. The values of u
and v confined to 0< u< �=2, 0< bv< �=2 must be
chosen in such a way to satisfy cosu 	 coshu� cos2bv <
1. The Figs. 3(a)–3(c) illustrate the shock wave plots for
b � 0:1, b � 1, and b � 10, respectively. Our study shows
that highly energetic em waves (i.e. greater b) udergo
rotation shortly after their encounter with the GW, while
for the less energetic beams this effect is delayed. Smooth
variations, beside the local extrema is another noticeable
effect in different plots. One fact, however, is evident that
an em wave reflecting from a cross polarized GW under-
goes a Faraday rotation. Further details of this effect can be
obtained by studying more plots. Our result applies also to
the cosmic microwave background radiation as well as the
radio astronomical fields. In other words, rotation in the
polarization vector in the cosmic microwave background

radiation can be attributed to the encounters with the strong
(� ) moded GWs.

Considerations of mixed profile GWs and sandwich
waves will be the subject of a detailed analysis. Let us
remark that encountering of an em wave with a series of
successive impulsive GWs has been considered already
[10]. Search for GWs through the Faraday rotation due to
a test em wave in a GW background has been considered
by various authors [11,12]. Distinctly, our method takes the
full nonlinear effects into account by employing the cross
polarization mode of GWs.

IV. CONCLUSION

In this paper, by using Einstein’s theory of general
relativity, we have analyzed the exact behavior of the
polarization vector of a linearly polarized em shock wave
upon encountering with GWs. As expected, the Faraday’s
angle emerges highly dependent on the type of the GW as
well as the energy of the em wave. It suggests that com-
pared with the polarization changes expected from the
quantum process of photon-electron scattering in the early
universe, or test field approximations, significant contribu-
tions to the polarization vector can be imparted by the
classical em-GW collisions.

    (a)                                                                          (b) 

   (c) 

FIG. 3 (color online). The tan� plot when the electromagnetic
shock wave encounters a gravitational shock wave with the (� )
polarization angle for � � 45
, for frequencies (a) b � 0:1,
(b) b � 1, and (c) b � 10.

(a)                                                              (b) 

(c)

FIG. 2 (color online). The tan� plot when the electromagnetic
shock wave encounters a gravitational plane impulsive wave
with the (� ) polarization angle for � � 45
, for frequencies
(a) b � 0:1, (b) b � 1, and (c) b � 100.
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